JP2002256831A - Intake and exhaust valve driving device and its controlling method - Google Patents

Intake and exhaust valve driving device and its controlling method

Info

Publication number
JP2002256831A
JP2002256831A JP2001053877A JP2001053877A JP2002256831A JP 2002256831 A JP2002256831 A JP 2002256831A JP 2001053877 A JP2001053877 A JP 2001053877A JP 2001053877 A JP2001053877 A JP 2001053877A JP 2002256831 A JP2002256831 A JP 2002256831A
Authority
JP
Japan
Prior art keywords
magnetic pole
intake
valve
exhaust valve
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001053877A
Other languages
Japanese (ja)
Inventor
Shiro Yamaoka
士朗 山岡
Kouchiyuu Kin
金  弘中
Minoru Osuga
大須賀  稔
Toshiji Nogi
利治 野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001053877A priority Critical patent/JP2002256831A/en
Publication of JP2002256831A publication Critical patent/JP2002256831A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2105Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids comprising two or more coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Magnetically Actuated Valves (AREA)
  • Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the electrical power consumption on valve driving from increasing as well as provide an intake and exhaust valve driving device of internal combustion engine capable of controlling the valve timing during engine operation, and a valve lift at arbitrary quantity and its controlling method. SOLUTION: An armature having upper and lower magnetic pole teeth alternatively installing the upper magnetic pole tooth provided to an armature iron core, a first magnetic pole and a second magnet pole provided at both sides of the armature iron core and the first magnetic pole, and a lower magnetic pole tooth provided to the second magnetic pole having a previously determined gap with the upper magnetic pole tooth in parallel, and a needle installed between the gaps by the armature current are moved so as to control the opening and closing of the suction and exhaust valve by the movement of the needle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンの吸排気
バルブを電磁力により開閉駆動制御をおこなう吸排気弁
駆動装置およびその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake / exhaust valve driving apparatus for performing opening / closing drive control of an intake / exhaust valve of an engine by electromagnetic force and a control method thereof.

【0002】[0002]

【従来の技術】従来,内燃機関の吸排気バルブをカム駆
動方式から電動駆動させる方式が提案されている。この
吸排気バルブを電動駆動させる方式によれば,カムを駆
動させるためのカムシャフトやタイミングベルト等が不
要になると共に,バルブタイミングを容易に変更できる
ことから,内燃機関の運転条件に応じた理想的なバルブ
開閉タイミングを設定することができる。これにより,
バルブ動作によってエンジンに吸入される空気量を制御
できることから,出力特性,排気特性,および燃費特性
に対して有利な方式である。
2. Description of the Related Art Conventionally, there has been proposed a system in which intake and exhaust valves of an internal combustion engine are driven electrically from a cam drive system. According to the method of electrically driving the intake and exhaust valves, a camshaft and a timing belt for driving the cam are not required, and the valve timing can be easily changed. Valve opening and closing timing can be set. This gives
Since the amount of air taken into the engine can be controlled by the valve operation, this method is advantageous for output characteristics, exhaust characteristics, and fuel consumption characteristics.

【0003】この吸排気弁の電動駆動方式としては,例
えば,特開2000−179733号公報に開示されて
いる方式がある。これは,電磁石を用いた電磁アクチュ
エータをバルブの開弁方向と閉弁方向に配し,それぞれ
の電磁石への通電制御によってその間に配した可動部を
吸引させて,バルブの開閉を行なっている方式である。
As a method of electrically driving the intake and exhaust valves, there is, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2000-179733. This is a method in which electromagnetic actuators using electromagnets are arranged in the valve opening direction and valve closing direction, and by controlling the energization of each electromagnet, the movable parts arranged between them are attracted to open and close the valve. It is.

【0004】また、特開平3−105006号公報に開
示されている方式がある。これは、エンジンの吸排気バ
ルブに連結して複数個配列された磁極を有する可動子と
対向して配置された固定磁極を励磁する励磁コイルを有
し通電を制御して可動子を所定方向に移動させる駆動装
置である。
Further, there is a method disclosed in Japanese Patent Application Laid-Open No. 3-105006. This has a movable element having a plurality of magnetic poles connected to an intake / exhaust valve of an engine, and an excitation coil for exciting a fixed magnetic pole arranged opposite to the movable element. It is a driving device for moving.

【0005】また、特開平2−259211号公報に開
示されている方式がある。この方式も可動磁極と固定磁
極があって、一方の磁極の極性を制御して特に開弁動作
のときに加速手段を動作させるものである。
Further, there is a method disclosed in Japanese Patent Application Laid-Open No. 2-259221. This method also has a movable magnetic pole and a fixed magnetic pole, and controls the polarity of one of the magnetic poles to operate the accelerating means particularly during the valve opening operation.

【0006】[0006]

【発明が解決しようとする課題】しかし,上記の従来技
術に示されるような電磁駆動方式の可変動弁装置には次
のような問題があった。すなわち従来方式では,可動部
を双方の電磁石に吸引するためにごく短時間に10A程
度の高電流を電磁石内のコイルに供給する必要があるた
め,瞬間的に100〜160V程度の高電圧が必要とな
り,消費電力が非常に大きくなってしまう問題がある。
自動車用バッテリを電源とした場合にこのような高電圧
高電流を実現するためには,大容量のパワースイッチに
よるドライブユニットが必要となり,コスト高になるこ
とが避けられない。さらに、エンジンの高回転時におけ
る電力供給の困難性などの問題点も存在する。
However, the electromagnetically driven variable valve device as shown in the above prior art has the following problems. That is, in the conventional method, it is necessary to supply a high current of about 10 A to the coil in the electromagnet in a very short time in order to attract the movable portion to both electromagnets. Therefore, there is a problem that the power consumption becomes very large.
In order to realize such a high voltage and a high current when an automobile battery is used as a power source, a drive unit including a large-capacity power switch is required, which inevitably increases the cost. Further, there are also problems such as difficulty in supplying electric power when the engine rotates at a high speed.

【0007】また従来方式では,可動部を挟んで配置さ
れた開弁用電磁石と閉弁用電磁石のギャップによって,
バルブリフト量が一義的に決定される構成となってお
り,特に空気量を絞りたいエンジンの運転条件,例えば
アイドル運転のような低速低負荷条件では,精密な空気
量制御が困難である。
In the conventional method, the gap between the valve-opening electromagnet and the valve-closing electromagnet arranged with the movable portion interposed therebetween causes
Since the valve lift amount is uniquely determined, precise air amount control is difficult particularly under operating conditions of the engine for which the air amount is to be reduced, for example, at low speed and low load conditions such as idling operation.

【0008】本発明の目的は、上記従来技術の問題点に
鑑み,バルブ駆動時の消費電力の増大を防止すると共
に,エンジン運転中のバルブタイミングおよびバルブリ
フト量が任意の値に制御可能な,内燃機関の吸排気弁駆
動装置およびその制御方法を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, it is an object of the present invention to prevent an increase in power consumption at the time of driving a valve and to control valve timing and valve lift during engine operation to arbitrary values. It is an object of the present invention to provide an intake / exhaust valve driving device for an internal combustion engine and a control method thereof.

【0009】[0009]

【課題を解決するための手段】上記課題を以下の手段に
より解決することができる。内燃機関の吸気弁もしくは
排気弁の少なくともどちらか一方を駆動する吸排気弁駆
動装置であって,電機子鉄心と、前記電機子鉄心の両側
に設けられた第1の磁極と第2の磁極と、前記第1の磁
極に取り付けられた上部磁極歯と、前記上部磁極歯と予
め定められたギャップを設けて前記第2の磁極に取り付
けられた下部磁極歯と、並行して設けられ前記第1の磁
極に取り付けられた下部磁極歯と、前記下部磁極歯と前
記ギャップを設けて前記第2の磁極に取り付けられた上
部磁極歯と、を交互に長手方向に配設して構成した電機
子と、前記ギャップ間を移動可能に設けられN極S極を
交互に配列されかつその移動により吸気弁もしくは排気
弁の開閉制御をおこなう可動子と、前記電機子鉄心の巻
回された電機子巻線、とを具備したことに特徴がある。
The above object can be attained by the following means. An intake / exhaust valve driving device for driving at least one of an intake valve and an exhaust valve of an internal combustion engine, comprising: an armature core; and first and second magnetic poles provided on both sides of the armature core. An upper magnetic pole tooth attached to the first magnetic pole, and a lower magnetic pole tooth attached to the second magnetic pole provided with a predetermined gap from the upper magnetic pole tooth, the first magnetic pole tooth being provided in parallel with the first magnetic pole tooth. An armature formed by alternately disposing longitudinally the lower magnetic pole teeth attached to the magnetic poles and the upper magnetic pole teeth provided with the lower magnetic pole teeth and the gap and attached to the second magnetic pole. A mover provided so as to be movable between the gaps, the N pole and the S pole are alternately arranged, and the opening / closing control of an intake valve or an exhaust valve is performed by the movement; and a wound armature winding of the armature core. Is characterized by having That.

【0010】また、前記電機子巻線への供給電流あるい
は供給電流方向により位置が制御される可動子であるこ
と。前記可動子は前記吸気弁あるいは排気弁のステムで
あること。前記吸気弁および排気弁のステムと可動子を
接続する接続装置を設けたこと。供給電流を燃焼室内圧
力に応じて補正をおこなうための燃焼室内圧力センサを
設けたこと。供給電流をエンジン温度により補正をおこ
なうためのエンジン冷却水温度センサを設けたこと、に
特徴がある。
[0010] Further, a movable element whose position is controlled by a current supplied to the armature winding or a direction of the supplied current. The mover is a stem of the intake valve or the exhaust valve. A connection device for connecting the mover with the stems of the intake valve and the exhaust valve; A pressure sensor in the combustion chamber for correcting the supply current according to the pressure in the combustion chamber. It is characterized in that an engine cooling water temperature sensor for correcting the supply current based on the engine temperature is provided.

【0011】また、吸気弁あるいは排気弁の開閉を永久
磁石と電磁力によりおこなう吸気排気駆動制御方法にお
いて、電機子鉄心の長手方向の両側に第1、第2の磁極
を設け、前記磁極の一方から上部磁極歯を他方から下部
磁極歯を予め定められたギャップを設けて前記電機子鉄
心の長手方向に交互配置し、前記ギャップ間を移動する
可動子は永久磁石のN極S極を交互に配し、前記電機子
に巻回された電機子巻線の電機子電流を制御し、前記可
動子の移動により前記吸気弁あるいは排気弁の開閉制御
をおこなう制御方法に特徴がある。
Also, in an intake / exhaust drive control method in which an intake valve or an exhaust valve is opened and closed by a permanent magnet and an electromagnetic force, first and second magnetic poles are provided on both sides in the longitudinal direction of an armature core, and one of the magnetic poles is provided. The upper magnetic pole teeth and the other lower magnetic pole teeth are arranged alternately in the longitudinal direction of the armature core with a predetermined gap provided, and the mover moving between the gaps alternately changes the N pole S pole of the permanent magnet. The control method is characterized by controlling the armature current of an armature winding wound around the armature and controlling the opening / closing of the intake valve or the exhaust valve by moving the mover.

【0012】また、前記電機子巻線に供給する電流の大
きさあるいは供給電流の方向を制御し、前記吸気弁ある
いは排気弁の開閉制御をおこなうこと。前記電機子巻線
に供給する電流の大きさは検出された燃焼室圧力あるい
はエンジン温度により補正されること。前記電機子巻線
に供給する電流の大きさは前記弁が着座する前に通常駆
動する電流値よりも小さな値あるいは通常の電流の通流
方向とは反対の方向に通流する期間を設けて供給制御さ
れることに特徴がある。
Further, the magnitude of the current supplied to the armature winding or the direction of the supplied current is controlled to control the opening and closing of the intake valve or the exhaust valve. The magnitude of the current supplied to the armature winding is corrected based on the detected combustion chamber pressure or engine temperature. The magnitude of the current supplied to the armature winding is set to a value smaller than the current value normally driven before the valve is seated, or to provide a period in which the current flows in a direction opposite to the flowing direction of the normal current. It is characterized in that the supply is controlled.

【0013】[0013]

【発明の実施の形態】以下,本発明の実施形態について
図面を用いて説明する。図1は本発明の第一の実施例に
かかる吸排気弁駆動装置を取り付けたエンジンの構成図
である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an engine to which an intake / exhaust valve driving device according to a first embodiment of the present invention is attached.

【0014】図1に示すように,シリンダブロック1
4,ピストン12およびシリンダヘッド44によって囲
まれた燃焼室10に,吸気ポート4および排気ポート5
が連通されており,吸気弁3aによって吸気ポート4
を,排気弁3bによって排気ポート5を,それぞれ燃焼
室との通路開閉手段として用いた構成となっており,吸
気弁3aおよび排気弁3bのステム部にそれぞれのバル
ブの駆動装置101aおよび101bが備えられてい
る。
As shown in FIG.
4, an intake port 4 and an exhaust port 5 are provided in the combustion chamber 10 surrounded by the piston 12 and the cylinder head 44.
Are connected to each other, and the intake port 4 is controlled by the intake valve 3a.
The exhaust port 3 is used as a passage opening / closing means with respect to the combustion chamber by the exhaust valve 3b, respectively. Stem portions of the intake valve 3a and the exhaust valve 3b are provided with drive devices 101a and 101b for the respective valves. Have been.

【0015】本実施例では吸気弁3aおよび排気弁3b
の両方に駆動装置101aおよび101bを取り付けて
いるが,どちらか一方のみに備えた構成でもかまわな
い。また,本実施例での駆動装置の動力源には,磁極を
発生する電機子102aおよび102bと,吸排気弁駆
動方向に動作する可動子103aおよび103bとによ
って構成されるリニアモータを用いる。
In this embodiment, the intake valve 3a and the exhaust valve 3b
Although the drive devices 101a and 101b are attached to both of them, a configuration provided in only one of them may be used. Further, as the power source of the driving device in this embodiment, a linear motor constituted by armatures 102a and 102b that generate magnetic poles and movers 103a and 103b that operate in the intake and exhaust valve driving direction is used.

【0016】また,図1では,本発明の吸排気弁駆動装
置を搭載したエンジンは筒内噴射方式となっているが,
吸気ポート4へ噴射するポート噴射方式のエンジンに適
用してもかまわない。2a、2bは吸気側および排気側
の弁駆動用ドライブユニットである。1はバッテリであ
る。そして9は燃料噴射弁、11はピストンリング、1
2はピストン、13はコンロッド、8はエンジン冷却水
温センサ、10は燃焼室、6は排気管、7は触媒を示し
ている。
In FIG. 1, the engine equipped with the intake / exhaust valve driving device of the present invention is of an in-cylinder injection type.
The present invention may be applied to a port injection type engine that injects fuel into the intake port 4. 2a and 2b are drive units for driving the valves on the intake side and the exhaust side. 1 is a battery. 9 is a fuel injection valve, 11 is a piston ring, 1
Reference numeral 2 denotes a piston, 13 denotes a connecting rod, 8 denotes an engine coolant temperature sensor, 10 denotes a combustion chamber, 6 denotes an exhaust pipe, and 7 denotes a catalyst.

【0017】図2に本発明に用いるリニアモータの概要
を示す。図2は電機子17全体をあらわしている。23
は磁極、19aは磁極23の上部磁極歯、18bは磁極
23の下部磁極歯、20は磁極、19bは磁極20の下
部磁極歯、18aは磁極20の上部磁極歯、17は電機
子、22は電機子巻線、21は電機子鉄心、15は可動
子、16は永久磁石、8は磁極23の上部磁極歯19a
と磁極20の下部磁極歯19b(あるいは磁極23の下
部磁極歯18bと磁極20の上部磁極歯18a)のギャ
ップ、Psは同部磁極面の隣り合う磁極歯中心の極ピッ
チである。したがって19aと19bで第一の磁極歯
を、18aと18bで第二の磁極歯を構成する。
FIG. 2 shows an outline of a linear motor used in the present invention. FIG. 2 shows the entire armature 17. 23
Is a magnetic pole, 19a is an upper magnetic pole tooth of the magnetic pole 23, 18b is a lower magnetic pole tooth of the magnetic pole 23, 20 is a magnetic pole, 19b is a lower magnetic pole tooth of the magnetic pole 20, 18a is an upper magnetic pole tooth of the magnetic pole 20, 17 is an armature, and 22 is an armature. Armature winding, 21 is an armature core, 15 is a mover, 16 is a permanent magnet, 8 is an upper magnetic pole tooth 19 a of a magnetic pole 23.
And the gap between the lower magnetic pole teeth 19b of the magnetic pole 20 (or the lower magnetic pole teeth 18b of the magnetic pole 23 and the upper magnetic pole teeth 18a of the magnetic pole 20), and Ps is the pole pitch of the center of adjacent magnetic pole teeth on the same magnetic pole surface. Therefore, 19a and 19b constitute the first magnetic pole teeth, and 18a and 18b constitute the second magnetic pole teeth.

【0018】電機子17はその底部の電機子鉄心21の
両側に磁極23および20を設け、断面がコ字状で上に
開いた直線状の細長い電機子鉄心21に長手方向に電機
子巻線22を巻回する。電機子鉄心21には二つの磁極
23および20を持たせることになる。磁極23はその
上面に磁極20に向かって突起状の上部磁極歯19a、
下部磁極歯18bをもち、磁極20はその上面に磁極2
3に向かって突起状の下部磁極歯19b、上部磁極歯1
8aをもつ。すなわち磁極23の突起状の(2nー1)
番目(n=1,2,3、?)の磁極歯は上部、(2n)
番目(n=1,2,3、?)の磁極歯は下部になるよう
に上下2段に分けて伸ばす。
The armature 17 is provided with magnetic poles 23 and 20 on both sides of an armature core 21 at the bottom thereof. The armature 17 has a U-shaped cross section and a straight elongated armature core 21 which is open upward. 22 is wound. The armature iron core 21 has two magnetic poles 23 and 20. The magnetic pole 23 has upper magnetic pole teeth 19a protruding toward the magnetic pole 20 on its upper surface.
It has a lower magnetic pole tooth 18b, and the magnetic pole 20 has a magnetic pole 2 on its upper surface.
3, lower magnetic pole teeth 19b, upper magnetic pole teeth 1
8a. That is, the protrusion (2n-1) of the magnetic pole 23
The (m = 1, 2, 3,?) Magnetic pole tooth is the upper part, (2n)
The third (n = 1, 2, 3,?) Magnetic pole teeth are extended in two stages, upper and lower, so as to be at the bottom.

【0019】また、磁極23とは反対に、磁極20の突
起状(2n−1)番目の磁極歯は下部、(2n)番目
(n=1,2,3、?)の磁極歯は上部になるように同
じく2段に分けて伸ばす。磁極23と磁極20よりの上
部磁極歯全体を上部磁極面、下部磁極歯全体を下部磁極
面と定義すると、磁極23と磁極20の向かい合う磁極
歯が互い違いになる磁極面を上部と下部2ケ所にもたせ
る構造になる。
Contrary to the magnetic pole 23, the protruding (2n-1) -th magnetic pole teeth of the magnetic pole 20 are located at the lower part, and the (2n) -th (n = 1, 2, 3,?) Magnetic pole teeth are located at the upper part. And stretch it in two steps. If the entire upper magnetic pole teeth from the magnetic pole 23 and the magnetic pole 20 are defined as an upper magnetic pole surface, and the entire lower magnetic pole tooth is defined as a lower magnetic pole surface, the magnetic pole surfaces where the magnetic poles 23 and the magnetic poles 20 face each other are alternately positioned at the upper and lower two places. It becomes a structure that can be given.

【0020】ここで、一番目の上部上部磁極歯19aと
下部磁極磁極歯19bを第一の対向部と定義し、2番目
の下部磁極歯18bと上部磁極歯18aを第二の対向部
と定義する。よって、(2n−1)番目は第一の対向
部、(2n)番目は第二の対向部になるような電機子構
造になる。
Here, the first upper magnetic pole teeth 19a and the lower magnetic pole teeth 19b are defined as a first opposing portion, and the second lower magnetic pole teeth 18b and the upper magnetic pole teeth 18a are defined as a second opposing portion. I do. Therefore, the armature structure is such that the (2n-1) th is the first facing portion and the (2n) th is the second facing portion.

【0021】また、各対向部の上部磁極歯と下部磁極歯
の間に一定のギャップ8を設けギャップ8に磁性を有す
る可動子15を通すと、可動子15が第一の対向部に挟
持されかつ、可動子15が前記第二の対向部に挟持され
た構造を形成する。
When a fixed gap 8 is provided between the upper magnetic pole teeth and the lower magnetic pole teeth of each of the opposing portions, and a movable element 15 having magnetism is passed through the gap 8, the movable element 15 is sandwiched between the first opposing portions. Further, a structure is formed in which the mover 15 is sandwiched between the second facing portions.

【0022】上記のような配置をとることにより、本実
施形態のリニアモータ各対向部の上部磁極歯と下部磁極
歯のギャップには磁束が上部と下部の磁極歯間を交番し
て上下に流れる電機子ユニットを形成し、ギャップを通
して可動子が相対移動する構造になる。
With the above arrangement, the magnetic flux flows vertically between the upper and lower magnetic pole teeth alternately between the upper and lower magnetic pole teeth in the gap between the upper magnetic pole teeth and the lower magnetic pole teeth of each opposing portion of the linear motor of the present embodiment. An armature unit is formed, and the mover moves relatively through the gap.

【0023】本実施形態のリニアモータにおける磁束の
流れは、上部の磁極歯から可動子15の永久磁石N極、
S極を貫いて下部磁極歯に流れ、また、下部の磁極歯か
ら可動子15の永久磁石S極、N極を貫いて上部磁極歯
に流れるようになることにより、有効磁束の磁気回路の
磁路が短くなり、磁気抵抗が小さく、有効磁束が増え、
かつ漏れ磁束が少なくなるため、電磁力を有効にバルブ
駆動力として用いることができる。
The flow of the magnetic flux in the linear motor of the present embodiment flows from the upper magnetic pole teeth to the permanent magnet N pole of the mover 15,
By flowing through the S pole to the lower magnetic pole teeth and flowing from the lower magnetic pole teeth through the permanent magnet S pole and the N pole of the mover 15 to the upper magnetic pole teeth, the magnetic flux of the magnetic circuit of the effective magnetic flux is generated. The path becomes shorter, the magnetic resistance becomes smaller, the effective magnetic flux increases,
In addition, since the leakage magnetic flux is reduced, the electromagnetic force can be effectively used as the valve driving force.

【0024】また、本実施形態のリニアモータでは電機
子17の磁極歯を上部と下部2箇所に持たせ、上部磁極
歯と下部磁極歯間に可動子15が相対移動するが、可動
子15の中心から上下磁極歯までの距離が同じであれ
ば、可動子15と上部磁極歯に働く吸引力と、可動子1
5と下部磁極歯に働く吸引力との大きさは同じであり、
かつ、吸引力が働く方向は反対であるので、全体の吸引
力は相殺して零になる。このため、可動子15と電機子
17の磁極歯間の吸引力を小さくすることができ、支持
機構はより簡単なものでよい特徴がある。
Further, in the linear motor of this embodiment, the magnetic pole teeth of the armature 17 are provided at upper and lower two places, and the movable element 15 relatively moves between the upper magnetic pole tooth and the lower magnetic pole tooth. If the distance from the center to the upper and lower magnetic pole teeth is the same, the attractive force acting on the mover 15 and the upper magnetic pole teeth and the mover 1
5 and the magnitude of the attraction force acting on the lower magnetic pole teeth are the same,
In addition, since the direction in which the suction force acts is opposite, the total suction force cancels out to zero. For this reason, the attractive force between the magnetic pole teeth of the mover 15 and the armature 17 can be reduced, and a simpler support mechanism is advantageous.

【0025】図3は,図2に示すリニアモータを本実施
例の吸排気弁駆動装置に適用した場合の概要図である。
図3において,26は強磁性体,25は非磁性体,27
は電磁力を発生する電機子,24は駆動軸である。
FIG. 3 is a schematic diagram showing a case where the linear motor shown in FIG. 2 is applied to the intake / exhaust valve driving device of this embodiment.
In FIG. 3, 26 is a ferromagnetic material, 25 is a non-magnetic material, 27
Is an armature that generates an electromagnetic force, and 24 is a drive shaft.

【0026】図3の(A)の本実施例において、駆動軸
24はバルブ3aおよび3bのステム部に相当する。ま
た駆動軸24の外側に磁性体26および非磁性体25
が、図2と同じように交互に配列されており,この駆動
軸24,磁性体26および非磁性体25が一体となって
構成され、モータの可動子15として駆動する。
In the embodiment shown in FIG. 3A, the drive shaft 24 corresponds to the stem of the valves 3a and 3b. A magnetic body 26 and a non-magnetic body 25 are provided outside the drive shaft 24.
The drive shaft 24, the magnetic body 26, and the non-magnetic body 25 are integrally formed, and are driven as the mover 15 of the motor.

【0027】図3の(B)は図3の(A)のA−A‘断
面図で駆動軸24が挿入された場合を想定し、また電機
子コイル22が巻かれた状態として表した図である。電
機子27には断面がコの字形状で上に開いた直線上の細
長い電機子鉄心すなわち可動子15(ここでは駆動軸2
4と同じ)に対して長手方向にコイル22を巻回してお
り、コイル22に電流が通じると誘導起電力が発生し,
駆動軸24(可動子の15役割)が巻回したコイル22
の長手方向、つまりバルブ駆動方向に動作する。このと
き、電流の通流方向を逆向きにすると,現在のバルブ駆
動方向に対して逆向きの誘導起電力が働く。この性質を
利用して、吸排気弁の開閉動作を制御することが可能に
なる。
FIG. 3B is a cross-sectional view taken along the line AA ′ of FIG. 3A assuming that the drive shaft 24 is inserted, and also shows a state in which the armature coil 22 is wound. It is. The armature 27 has a linearly elongated armature core, that is, a movable element 15 (here, the drive shaft 2) that is open in a U-shape in cross section and opens upward.
4), the coil 22 is wound in the longitudinal direction, and when a current flows through the coil 22, an induced electromotive force is generated,
Coil 22 wound around drive shaft 24 (15 roles of mover)
, That is, in the valve driving direction. At this time, if the direction of current flow is reversed, an induced electromotive force acts in a direction opposite to the current valve driving direction. By utilizing this property, it is possible to control the opening / closing operation of the intake / exhaust valve.

【0028】図4は,図3の吸排気弁駆動装置における
駆動信号および供給電流波形の関係の一例を示してい
る。特に上側の3段は、弁のリフト量29、駆動信号3
0、弁の推進力32の基本的な関係を示している。駆動
信号30により供給電流が制御され、バルブ推進力は例
えば信号32のように制御される。左側は開弁動作の場
合、右側は閉弁動作の場合、の信号の関係を表してい
る。
FIG. 4 shows an example of the relationship between the drive signal and the supply current waveform in the intake / exhaust valve driving device of FIG. Particularly, the upper three stages are the valve lift amount 29 and the drive signal 3
0 shows the basic relationship of the thrust 32 of the valve. The supply current is controlled by the drive signal 30, and the valve propulsion is controlled, for example, as a signal 32. The left side shows the signal relationship for the valve opening operation, and the right side shows the signal relationship for the valve closing operation.

【0029】また、このようなリニアモータにおける誘
導起電力は、供給された電流値に比例する。したがっ
て、吸気弁3aもしくは排気弁3bの駆動に必要な推力
に応じて、電流を供給することになる。図4の信号29
に示すように、吸気弁3aもしくは排気弁3bのリフト
量が0の状態から所定の値にリフトさせる場合、すなわ
ち開弁駆動させる場合、弁駆動に必要な推力は駆動初期
に比較的大きく、弁駆動速度が大きくなる。すなわち弁
が有する慣性力が大きくなるにつれ、その駆動に必要な
推力は小さくてよい。
Further, the induced electromotive force in such a linear motor is proportional to the supplied current value. Thus, depending on the thrust required to drive the intake valve 3a or the exhaust valve 3b, thus supplying current. Signal 29 in FIG.
As shown in the figure, when the lift amount of the intake valve 3a or the exhaust valve 3b is lifted from a state of 0 to a predetermined value, that is, when the valve is driven to open, the thrust required for driving the valve is relatively large in the early stage of driving. The driving speed increases. That is, as the inertial force of the valve increases, the thrust required for driving the valve may be smaller.

【0030】したがって、上記駆動装置101aもしく
は101bに供給する電流値は,駆動初期に比較的大き
くし、徐々にその値を減じるように制御する。また目標
リフト量における衝撃を少なくするため、あるいは目標
リフト量においてハンチングなどが発生しないで目標値
に到達できるように、バルブ推力が信号32のような形
になるように供給電流の制御をおこなう。
Therefore, the value of the current supplied to the driving device 101a or 101b is controlled to be relatively large at the beginning of driving and to be gradually reduced. Further, the supply current is controlled so that the valve thrust has a form like the signal 32 so as to reduce the impact at the target lift amount or to reach the target value without hunting or the like at the target lift amount.

【0031】リフト量が所定値に達すると、可動子10
3aおよび103b,電機子102aおよび102bに
設置されている永久磁石の磁束による保持力を利用する
ことができるため,図4に示すように電流の供給量をゼ
ロにすることも可能となり,これにより,余分な電力消
費を避けることができる。このとき、さらに大きな保持
力を発生させるために,上記駆動装置101aもしくは
101bに電流を供給し、図4の(a)、(b)もしく
は(c)に示すようにその通流方向を変化させてもよ
い。(a)に対して、(b)、(c)の場合は、供給電
流の負側において図のように電流制御を行い弁のソフト
な開動作ができるようにする(左側)。
When the lift reaches a predetermined value, the mover 10
3a and 103b and the holding force of the magnetic flux of the permanent magnets installed on the armatures 102a and 102b can be used, so that the current supply amount can be reduced to zero as shown in FIG. , Extra power consumption can be avoided. At this time, in order to generate a larger holding force, a current is supplied to the drive device 101a or 101b, and the flow direction is changed as shown in (a), (b) or (c) of FIG. You may. In contrast to (a), in cases (b) and (c), current control is performed on the negative side of the supply current as shown in the figure so that a soft opening operation of the valve can be performed (left side).

【0032】また、閉弁動作の場合も同じように弁のソ
フトな閉動作が出きるように、供給電流の正側の波形
を、例えば図4の(b)、(c)に制御する(右側)。
Similarly, in the case of the valve closing operation, the positive side waveform of the supply current is controlled to, for example, FIGS. 4B and 4C so that a soft closing operation of the valve can be similarly obtained (FIG. 4B). Right).

【0033】またこの永久磁石の効果により,車両故障
等のトラブル時など該電磁力発生装置102aもしくは
102bに電流が供給されない事態となっても,所定の
バルブリフトに保持されることから,バルブ破損等を回
避できる,というメリットも同時に有している。図4に
おいて、29は弁のリフト量を示している。左側は開弁
動作のとき、右側は閉弁動作の時のリフト量を示してい
る。また30はドライブユニットに対する駆動信号で、
この30の信号により、実際にコイルに流す電流32を
制御することになる。
Also, due to the effect of the permanent magnet, even when a current is not supplied to the electromagnetic force generating device 102a or 102b, such as in a trouble such as a vehicle failure, the valve is maintained at a predetermined valve lift. At the same time, it has the advantage that it can avoid such problems. In FIG. 4, reference numeral 29 denotes a valve lift. The left side shows the lift amount during the valve opening operation, and the right side shows the lift amount during the valve closing operation. 30 is a drive signal for the drive unit,
With the signal of 30, the current 32 actually supplied to the coil is controlled.

【0034】次に,リフト量を所定値からゼロにする場
合,すなわち閉弁駆動させる場合,開弁時と同様に,静
止状態からの駆動になることから,駆動初期には比較的
大きな電流を駆動装置101aもしくは101bに供給
し,徐々にその電流値を減じるように制御する。基本的
には供給電流波形は33のようになる。
Next, when the lift amount is reduced from a predetermined value to zero, that is, when the valve is driven to close, the drive is started from a stationary state, as in the case of opening the valve. The current is supplied to the driving device 101a or 101b, and the current is controlled so as to gradually decrease. Basically, the supply current waveform is as shown in FIG.

【0035】ただし,弁リフトがゼロになるとき,すな
わちバルブシートへの着座時に弁駆動速度が大きい場
合,弁とバルブシートとの衝突時の撃力が大きくなり,
異音発生や,弁およびバルブシートの劣化などの問題が
起こる。そこで,着座直前に該駆動装置に供給している
電流値を上記図4の(b)の供給電流信号34ように制
御して,スムーズな弁着座を実現するようにしてもよ
い。このとき,弁駆動速度が大きい,すなわち弁の有す
る慣性力が比較的大きい場合には,駆動装置101aも
しくは101bに供給する電流の通流方向を逆転させる
ことで,弁の持つ慣性力を大きく減じて,スムーズな着
座を図るように制御することも可能である。
However, when the valve lift becomes zero, that is, when the valve drive speed is high when seated on the valve seat, the impact force at the time of collision between the valve and the valve seat increases,
Problems such as generation of abnormal noise and deterioration of valves and valve seats occur. Therefore, the current value supplied to the driving device immediately before the seating may be controlled as the supply current signal 34 in FIG. 4B to realize a smooth valve seating. At this time, when the valve drive speed is high, that is, when the inertia force of the valve is relatively large, the direction of flow of the current supplied to the drive device 101a or 101b is reversed to greatly reduce the inertia force of the valve. Therefore, it is possible to control so as to achieve a smooth seating.

【0036】図4の供給電流信号33および35も供給
電流波形を示している。供給電流信号33のような場合
は着座の衝撃は比較的に大きく、供給電流信号35(図
4、(c))のような場合は、比較的に着座の衝撃は少
なくなる。
The supply current signals 33 and 35 in FIG. 4 also show supply current waveforms. In the case of the supply current signal 33, the impact of sitting is relatively large, and in the case of the supply current signal 35 (FIG. 4, (c)), the impact of sitting is relatively small.

【0037】図5に開弁駆動時における,燃焼室内圧力
と本発明のリニアモータへの供給電流の関係について示
す。開弁時において燃焼室10内圧力が高い場合には,
その圧力に抗して弁を開く必要があり,燃焼室10内圧
力が低い場合に比して高い電流値を必要とする。よって
開弁時には,燃焼室10内圧力を図6に示す筒内圧力検
出手段38によって検出し,その値によって供給する電
流値および通流方向を決定する。本実施例では筒内圧力
検出手段38として,筒内圧センサを用いている。
FIG. 5 shows the relationship between the pressure in the combustion chamber and the current supplied to the linear motor of the present invention during the valve-opening drive. If the pressure inside the combustion chamber 10 is high when the valve is open,
It is necessary to open the valve against the pressure, and a higher current value is required than when the pressure in the combustion chamber 10 is low. Therefore, when the valve is opened, the pressure in the combustion chamber 10 is detected by the in-cylinder pressure detection means 38 shown in FIG. 6, and the value of the supplied current and the direction of flow are determined based on the detected pressure. In this embodiment, an in-cylinder pressure sensor is used as the in-cylinder pressure detecting means 38.

【0038】図7に開弁駆動時における,エンジン冷却
水温度と本発明のリニアモータへの供給電流の関係につ
いて示す。一般に,磁場の温度が高くなるにつれて磁力
は減少する。図7は温度による磁力の減少の補正で、縦
軸は電流値あるいは供給電流の補正係数で、エンジン温
度に応じて電流値の補正の関係を表している。本発明の
吸排気弁駆動装置101aもしくは101bにおいても
同様の現象が発生することから,図1に示す冷却水温セ
ンサ8の出力値に応じて,図7の関係を利して該駆動装
置101aもしくは101bに供給する電流値および通
流方向を補正制御する。
FIG. 7 shows the relationship between the temperature of the engine cooling water and the current supplied to the linear motor of the present invention during the valve-opening operation. Generally, the magnetic force decreases as the temperature of the magnetic field increases. FIG. 7 shows the correction of the decrease in the magnetic force due to the temperature, and the vertical axis shows the correction coefficient of the current value or the supply current, and shows the relationship of the correction of the current value according to the engine temperature. Since the same phenomenon occurs in the intake / exhaust valve driving device 101a or 101b of the present invention, the driving device 101a or 101b is used in accordance with the output value of the cooling water temperature sensor 8 shown in FIG. Correction control is performed on the value of the current supplied to 101b and the direction of flow.

【0039】このとき図8に示すように,駆動装置10
1aもしくは101bの回りに新たな冷却装置39を設
けてもよい。そして、冷媒を用いて冷却する場合、その
冷媒冷却温度に応じて該駆動装置101aもしくは10
1bに供給する電流値および通流方向を決定してもよ
い。また閉弁駆動時のエンジン冷却水温度と本発明の吸
排気弁駆動装置101aもしくは101bへの供給電流
の関係についても,開弁駆動時の場合と同様であること
については言うまでもない。
At this time, as shown in FIG.
A new cooling device 39 may be provided around 1a or 101b. When cooling is performed using a refrigerant, the driving device 101a or 10
The value of the current supplied to 1b and the direction of flow may be determined. Needless to say, the relationship between the engine cooling water temperature during the valve closing drive and the supply current to the intake / exhaust valve driving device 101a or 101b of the present invention is the same as that during the valve opening drive.

【0040】図9に,図1に示した本発明の吸排気弁駆
動装置を応用した実施形態について示す。
FIG. 9 shows an embodiment in which the intake and exhaust valve driving device of the present invention shown in FIG. 1 is applied.

【0041】第一の実施の形態では,電磁力発生装置の
可動子としてバルブステムを用いたが、図9に示した実
施例においては,可動子42とバルブステム41は別体
であり,接続装置40によって接続されている。よっ
て,可動子42を強力な磁性体にすることができ,かつ
バルブ構造や材質は従来のものを用いることができる,
というメリットを有しており,第一の実施例で示した制
御方法と組み合わせることにより,電力のさらなる高効
率利用と低コスト化を図ることが可能となる。またこの
とき図10のように,バルブ駆動装置の前後もしくはそ
のどちらかにバネ43を配することで,駆動力の補助を
行なうような構成としてもよい。
In the first embodiment, the valve stem is used as the mover of the electromagnetic force generating device. However, in the embodiment shown in FIG. 9, the mover 42 and the valve stem 41 are separate bodies, and Connected by a device 40. Therefore, the mover 42 can be made of a strong magnetic material, and a conventional valve structure and material can be used.
In combination with the control method described in the first embodiment, it is possible to achieve more efficient use of electric power and lower costs. Further, at this time, as shown in FIG. 10, a configuration may be employed in which a spring 43 is disposed before and / or after the valve driving device to assist the driving force.

【0042】本発明の吸排気弁駆動装置に用いたリニア
モータは従来のリニアモータよりも漏れ磁束が少ないた
め、これを電磁力発生装置として用いることにより、低
電力でバルブ駆動に必要なトルクを得ることができる。
また高い効率でバルブを駆動することが可能である。ま
た、電流値あるいは電流の通流方向によってバルブの駆
動力あるいは駆動方向を連続的に制御することが可能で
あるため、従来の駆動装置に比較して任意のバルブリフ
ト量、あるいはバルブタイミングを容易に制御すること
ができる。
Since the linear motor used in the intake / exhaust valve driving device of the present invention has less magnetic flux leakage than the conventional linear motor, by using this as an electromagnetic force generating device, the torque required for valve driving with low power can be reduced. Obtainable.
Further, it is possible to drive the valve with high efficiency. In addition, since the driving force or the driving direction of the valve can be continuously controlled by the current value or the current flowing direction, an arbitrary valve lift amount or valve timing can be easily made compared with the conventional driving device. Can be controlled.

【0043】[0043]

【発明の効果】本発明によれば、漏れ磁束の少ないリニ
アモ−タであるため、比較的低電力でバルブの駆動をお
こなうことができる。
According to the present invention, since the linear motor has a small amount of leakage magnetic flux, the valve can be driven with relatively low power.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例にかかる吸排気弁駆動装
置を取り付けたエンジン構成図である。
FIG. 1 is a configuration diagram of an engine to which an intake / exhaust valve driving device according to a first embodiment of the present invention is attached.

【図2】本発明に用いるリニアモータの概要図である。FIG. 2 is a schematic diagram of a linear motor used in the present invention.

【図3】図2に示したリニアモータを第一の実施例の吸
排気弁駆動装置に適用した場合の概要図である。
FIG. 3 is a schematic diagram when the linear motor shown in FIG. 2 is applied to the intake / exhaust valve driving device of the first embodiment.

【図4】図3の吸排気弁駆動装置における駆動信号およ
び供給電流波形の関係の一例を示した図である。
4 is a diagram showing an example of a relationship between a drive signal and a supply current waveform in the intake / exhaust valve driving device of FIG.

【図5】開弁駆動時における燃焼室内圧力と本発明のリ
ニアモータへの供給電流の関係を示した図である。
FIG. 5 is a diagram showing the relationship between the pressure in the combustion chamber and the current supplied to the linear motor of the present invention during valve-opening drive.

【図6】図1の吸排気駆動装置に筒内圧検出手段を取り
付けた場合の、エンジン構成図を示した図である。
FIG. 6 is a diagram showing an engine configuration when an in-cylinder pressure detecting means is attached to the intake / exhaust drive device of FIG. 1;

【図7】開弁駆動時におけるエンジン冷却水温度と本発
明のリニアモータへの供給電流の関係を示した図であ
る。
FIG. 7 is a diagram showing a relationship between an engine coolant temperature and a supply current to a linear motor according to the present invention at the time of valve-opening drive.

【図8】図1の吸排気駆動装置に冷却装置を取り付けた
場合のエンジン構成図を示している。
FIG. 8 shows an engine configuration diagram when a cooling device is attached to the intake / exhaust drive device of FIG.

【図9】本発明の第二の実施例にかかる吸排気弁駆動装
置を示す図である。
FIG. 9 is a view showing an intake / exhaust valve driving device according to a second embodiment of the present invention.

【図10】本発明の第二の実施例にかかる吸排気弁駆動
装置にバネを付加した場合の構成図である。
FIG. 10 is a configuration diagram in a case where a spring is added to the intake / exhaust valve driving device according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…バッテリ 2a…弁駆動用ドライブユニット(吸気
側) 2b…弁駆動用ドライブユニット(排気側) 3
a…吸気弁 3b…排気弁 4…吸気ポート 5…排気
ポート 7…触媒 8…エンジン冷却水温センサ 9…
燃料噴射弁 11…ピストンリング 15…可動子 1
8a…磁極20の上部磁極歯 18b…磁極23の下部
磁極歯 20…磁極 23…磁極 24…駆動軸 25
…非磁性体 26…磁性体 101a…吸気弁駆動装置 101b…
排気弁駆動装置,102a…電磁力発生装置(吸気
側),102b…電磁力発生装置(排気側) 103a
…可動子(吸気側) 103b…可動子(排気側)
DESCRIPTION OF SYMBOLS 1 ... Battery 2a ... Valve drive drive unit (intake side) 2b ... Valve drive drive unit (exhaust side) 3
a ... intake valve 3b ... exhaust valve 4 ... intake port 5 ... exhaust port 7 ... catalyst 8 ... engine cooling water temperature sensor 9 ...
Fuel injection valve 11: piston ring 15: mover 1
8a: Upper magnetic pole teeth of magnetic pole 20 18b: Lower magnetic pole teeth of magnetic pole 23 20: Magnetic pole 23: Magnetic pole 24: Drive shaft 25
... Non-magnetic material 26 ... Magnetic material 101a ... Intake valve drive device 101b ...
Exhaust valve driving device, 102a ... electromagnetic force generator (intake side), 102b ... electromagnetic force generator (exhaust side) 103a
… Mover (intake side) 103b… Mover (exhaust side)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 45/00 368 F02D 45/00 368S H02K 41/03 H02K 41/03 A // F16K 31/06 385 F16K 31/06 385A (72)発明者 大須賀 稔 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 野木 利治 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 3G018 AB09 AB16 BA38 CA14 DA41 DA43 DA45 DA83 DA84 DA85 EA01 EA17 FA01 FA06 FA07 GA06 GA07 GA09 GA14 GA37 3G084 BA23 DA01 DA02 DA10 EC08 FA20 FA21 3G092 AA06 AA11 DA01 DA02 DA07 DF05 DG08 EA01 EA02 EA03 EA04 FA01 FA06 FA15 FA24 HA13X HA13Z HC01Z HE08Z 3H106 DA07 DA23 DA25 DA26 DB12 DB22 DB32 DC02 DD03 EE22 FA07 FA08 FB02 FB11 GA15 KK17 5H641 BB10 GG02 GG04 HH03 HH07 JA02 JA07 JA11 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 45/00368 F02D 45/00 368S H02K 41/03 H02K 41/03 A // F16K 31/06 385 F16K 31/06 385A (72) Inventor Minoru Osuga 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratories Co., Ltd. 3G018 AB09 AB16 BA38 CA14 DA41 DA43 DA45 DA83 DA84 DA85 EA01 EA17 FA01 FA06 FA07 GA06 GA07 GA09 GA14 GA37 3G084 BA23 DA01 DA02 DA10 EC08 FA20 FA21 3G092 AA06 AA11 DA05 DA08 DG EA01 EA02 EA03 EA04 FA01 FA06 FA15 FA24 HA13X HA13Z HC01Z HE08Z 3H106 DA07 DA23 DA25 DA26 DB12 DB22 DB32 DC02 DD 03 EE22 FA07 FA08 FB02 FB11 GA15 KK17 5H641 BB10 GG02 GG04 HH03 HH07 JA02 JA07 JA11

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の吸気弁もしくは排気弁の少なく
ともどちらか一方を駆動する吸排気弁駆動装置であっ
て,電機子鉄心と、前記電機子鉄心の両側に設けられた
第1の磁極と第2の磁極と、前記第1の磁極に取り付け
られた上部磁極歯と、前記上部磁極歯と予め定められた
ギャップを設けて前記第2の磁極に取り付けられた下部
磁極歯と、並行して設けられ前記第1の磁極に取り付け
られた下部磁極歯と、前記下部磁極歯と前記ギャップを
設けて前記第2の磁極に取り付けられた上部磁極歯と、
を交互に長手方向に配設して構成した電機子と、前記ギ
ャップ間を移動可能に設けられN極S極を交互に配列さ
れかつその移動により吸気弁もしくは排気弁の開閉制御
をおこなう可動子と、前記電機子鉄心の巻回された電機
子巻線、とを具備したことを特徴とする吸排気弁駆動装
置。
An intake / exhaust valve driving device for driving at least one of an intake valve and an exhaust valve of an internal combustion engine, comprising: an armature core; and first magnetic poles provided on both sides of the armature core. A second magnetic pole, an upper magnetic pole tooth attached to the first magnetic pole, and a lower magnetic pole tooth attached to the second magnetic pole with a predetermined gap from the upper magnetic pole tooth. Lower magnetic pole teeth provided and attached to the first magnetic pole, and upper magnetic pole teeth provided with the lower magnetic pole teeth and the gap and attached to the second magnetic pole;
And an armature which is arranged movably between the gaps, and which has N poles and S poles arranged alternately and which controls opening and closing of an intake valve or an exhaust valve by the movement. And an intake / exhaust valve driving device, comprising: an armature winding on which the armature core is wound.
【請求項2】前記請求項1の記載において、前記電機子
巻線への供給電流あるいは供給電流方向により位置が制
御される可動子であることを特徴とする吸排気弁駆動装
置。
2. The intake / exhaust valve driving device according to claim 1, wherein the movable element is a movable element whose position is controlled by a supply current or a direction of the supply current to the armature winding.
【請求項3】前記請求項2の記載において、前記可動子
は前記吸気弁あるいは排気弁のステムで構成した可動子
であることを特徴とする吸排気弁駆動装置。
3. The intake / exhaust valve driving device according to claim 2, wherein the mover is a mover constituted by a stem of the intake valve or the exhaust valve.
【請求項4】前記請求項1の記載において、前記吸気弁
および排気弁のステムと可動子を接続する接続装置を設
けたことを特徴とする吸排気弁駆動装置。
4. The intake / exhaust valve driving device according to claim 1, further comprising a connecting device for connecting stems of the intake valve and the exhaust valve to the mover.
【請求項5】前記請求項2記載において、供給電流を燃
焼室内圧力に応じて補正をおこなうための燃焼室内圧力
センサを設けたことを特徴とする吸排気弁駆動装置。
5. An intake / exhaust valve driving device according to claim 2, further comprising a combustion chamber pressure sensor for correcting a supply current according to a pressure in the combustion chamber.
【請求項6】前記請求項2記載において、供給電流をエ
ンジン温度により補正をおこなうためのエンジン冷却水
温度センサを設けたことを特徴とする吸排気弁駆動装
置。
6. An intake / exhaust valve driving apparatus according to claim 2, further comprising an engine cooling water temperature sensor for correcting a supply current based on an engine temperature.
【請求項7】内燃機関の吸気弁あるいは排気弁の開閉を
永久磁石と電磁力によりおこなう吸気排気駆動制御方法
において、電機子鉄心の長手方向の両側に第1、第2の
磁極を設け、前記磁極の一方から上部磁極歯を他方から
下部磁極歯を予め定められたギャップを設けて前記電機
子鉄心の長手方向に交互配置し、前記ギャップ間を移動
する可動子は永久磁石のN極S極を交互に配し、前記電
機子に巻回された電機子巻線の電機子電流を制御し、前
記可動子の移動により前記吸気弁あるいは排気弁の開閉
制御をおこなうことを特徴とする吸排気弁駆動制御方
法。
7. An intake / exhaust drive control method for opening and closing an intake valve or an exhaust valve of an internal combustion engine by means of a permanent magnet and an electromagnetic force, wherein first and second magnetic poles are provided on both sides in the longitudinal direction of the armature core. An upper magnetic pole tooth from one of the magnetic poles and a lower magnetic pole tooth from the other are arranged alternately in the longitudinal direction of the armature core with a predetermined gap provided, and the mover moving between the gaps is an N pole S pole of a permanent magnet. Are arranged alternately to control an armature current of an armature winding wound on the armature, and control the opening and closing of the intake valve or the exhaust valve by moving the mover. Valve drive control method.
【請求項8】前記請求項7の記載において、前記電機子
巻線に供給する電流の大きさあるいは供給電流の方向を
制御し、前記吸気弁あるいは排気弁の開閉制御をおこな
うことを特徴とする吸排気弁駆動制御方法。
8. The apparatus according to claim 7, wherein the magnitude of the current supplied to the armature winding or the direction of the supplied current is controlled to control the opening and closing of the intake valve or the exhaust valve. Intake and exhaust valve drive control method.
【請求項9】前記請求項7の記載において、前記電機子
巻線に供給する電流の大きさは検出された燃焼室圧力あ
るいはエンジン温度により補正されることを特徴とする
吸排気弁駆動制御方法。
9. A method according to claim 7, wherein the magnitude of the current supplied to said armature winding is corrected based on the detected combustion chamber pressure or engine temperature. .
【請求項10】前記請求項7の記載において、前記電機
子巻線に供給する電流の大きさは前記弁が着座する前に
通常駆動する電流値よりも小さな値あるいは通常の電流
の通流方向とは反対の方向に通流する期間を設けて供給
制御されることを特徴とする吸排気弁駆動制御方法。
10. The current supply to the armature winding according to claim 7, wherein the magnitude of the current supplied to the armature winding is smaller than a current value normally driven before the valve is seated, or a flow direction of the normal current. The supply and exhaust control is performed by providing a period for flowing in the opposite direction to the above.
JP2001053877A 2001-02-28 2001-02-28 Intake and exhaust valve driving device and its controlling method Pending JP2002256831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053877A JP2002256831A (en) 2001-02-28 2001-02-28 Intake and exhaust valve driving device and its controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053877A JP2002256831A (en) 2001-02-28 2001-02-28 Intake and exhaust valve driving device and its controlling method

Publications (1)

Publication Number Publication Date
JP2002256831A true JP2002256831A (en) 2002-09-11

Family

ID=18914292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053877A Pending JP2002256831A (en) 2001-02-28 2001-02-28 Intake and exhaust valve driving device and its controlling method

Country Status (1)

Country Link
JP (1) JP2002256831A (en)

Similar Documents

Publication Publication Date Title
JP3629362B2 (en) Driving method of electromagnetic valve for driving engine valve
US7128032B2 (en) Electromagnetic actuator and control
JP4126787B2 (en) Electromagnetic drive device
JP3550989B2 (en) Drive for solenoid valve
JP2001123808A (en) Solenoid valve drive unit
JP2002217027A (en) Electromagnetic actuator control device
JP2526651B2 (en) Internal combustion engine
US10774696B2 (en) Highly efficient linear motor
JP2002256831A (en) Intake and exhaust valve driving device and its controlling method
JP2606740B2 (en) Valve stepping drive
JPH11101110A (en) Derive device for solenoid valve
JP3547115B2 (en) Electromagnetic drive valve
JP2004019533A (en) Electromagnetic drive valve
JP2002309991A (en) Fuel injection device and control method for fuel injection valve
JP4157268B2 (en) Valve drive device
JP3671793B2 (en) Control device for electromagnetically driven valve
JP2009019619A (en) Solenoid driving valve device
US20050248902A1 (en) Electromagnetic valve actuation with series connected electromagnet coils
JP2592375Y2 (en) Electromagnetic drive valve
JPH0347414A (en) Driver device for solenoid valve
JP2002004896A (en) Controller for solenoid driven valve
SUZUKI et al. A study on dynamic performance of electromagnetically driven valve: basic consideration on thrust characteristics using electromagnetic field analysis
JP2002147641A (en) Valve driving device
JP2697052B2 (en) Electromagnetic drive valve
JP2001349462A (en) Valve drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122