JP2002256342A - Method for manufacturing composite magnetic material, and method for manufacturing pole piece - Google Patents

Method for manufacturing composite magnetic material, and method for manufacturing pole piece

Info

Publication number
JP2002256342A
JP2002256342A JP2001060506A JP2001060506A JP2002256342A JP 2002256342 A JP2002256342 A JP 2002256342A JP 2001060506 A JP2001060506 A JP 2001060506A JP 2001060506 A JP2001060506 A JP 2001060506A JP 2002256342 A JP2002256342 A JP 2002256342A
Authority
JP
Japan
Prior art keywords
manufacturing
magnetic
ferromagnetic
pole piece
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001060506A
Other languages
Japanese (ja)
Inventor
Toru Kuwabara
徹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2001060506A priority Critical patent/JP2002256342A/en
Publication of JP2002256342A publication Critical patent/JP2002256342A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a composite magnetic material having excellent product yield and productivity and a method for manufacturing a pole piece. SOLUTION: In the method for manufacturing the composite magnetic material 14 having a ferromagnetic part and a nonmagnetic part or a weak-magnetic part, a composite magnetic material 10 is formed using ferromagnetic stainless steel, heat treatment is applied to the entire composite magnetic material 10 to form the whole of the material into nonmagnetic or weak-magnetic austenitic phase, and then quenching treatment is applied to the desired part of the composite magnetic material 11 to form the quenched part into the ferromagnetic part 12 composed of martensitic phase and also form the unquenched part into the nonmagnetic part or weak-magnetic part 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合磁性材の製造
方法及びポールピースの製造方法に係り、特に、車両に
減速制動を与えるリターダ用渦電流減速装置のポールピ
ースの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a composite magnetic material and a method of manufacturing a pole piece, and more particularly to a method of manufacturing a pole piece of an eddy current reduction device for a retarder that applies deceleration braking to a vehicle. .

【0002】[0002]

【従来の技術】一般に、車両が長い坂等を下る時には、
車両に生じる加速を低減すると共に、車両に安定した連
続的な減速制動を与え、メインブレーキであるフットブ
レーキの焼損を防止するために減速制動装置(リター
ダ)が用いられ、そのリターダの一つとして渦電流式減
速装置がある。
2. Description of the Related Art Generally, when a vehicle goes down a long hill or the like,
A deceleration braking device (retarder) is used to reduce the acceleration that occurs in the vehicle, apply stable and continuous deceleration braking to the vehicle, and prevent burnout of the foot brake, which is the main brake, as one of the retarders. There is an eddy current type reduction gear.

【0003】図11に示すように、渦電流式減速装置1
10の構成部材の一つに、回転軸111と同軸に取り付
けられるロータ112と、そのロータ112の内周面に
対向して設けられる磁石体113,114との間に設け
られるポールピース(複合磁性材)115がある。ここ
でいうポールピース115とは、強磁性部と非磁性部
(又は弱磁性部)を周方向(又は軸方向)に亘って交互
に有する円筒状部材のことである。
As shown in FIG. 11, an eddy current type speed reducer 1
One of the ten constituent members is a pole piece (composite magnetic material) provided between a rotor 112 mounted coaxially with the rotation shaft 111 and magnet bodies 113 and 114 provided facing the inner peripheral surface of the rotor 112. Material) 115. The pole piece 115 here is a cylindrical member having a ferromagnetic portion and a non-magnetic portion (or a weak magnetic portion) alternately in a circumferential direction (or an axial direction).

【0004】図10(a),(b)に示すように、従来
のポールピース101の一般的な製造方法は、強磁性の
ステンレス鋼からなる円筒部材100の一部に、具体的
には円筒部材100の周方向又は軸方向(図10(b)
中では周方向)に亘って、所定の間隔で部分溶体化処理
(例えば、1100〜1200℃の温度で約10〜60
分保持)を施し、溶体化処理部分を非磁性部(そのステ
ンレス鋼における最低比透磁率の部分)102とし、非
溶体化処理部分を強磁性部103とするものである。
As shown in FIGS. 10 (a) and 10 (b), a conventional method of manufacturing a pole piece 101 is a method of manufacturing a part of a cylindrical member 100 made of ferromagnetic stainless steel, specifically, a cylindrical member. The circumferential direction or the axial direction of the member 100 (FIG. 10B)
(In the circumferential direction), at a predetermined interval, with a partial solution treatment (for example, about 10 to 60 at a temperature of 1100 to 1200 ° C.).
The solution-treated portion is a non-magnetic portion (the portion having the lowest relative magnetic permeability in the stainless steel) 102, and the non-solution-treated portion is a ferromagnetic portion 103.

【0005】[0005]

【発明が解決しようとする課題】ところで、従来の製造
方法においては、円筒部材100の一部に高温の溶体化
処理を施すことで非磁性部102を形成しているため、
熱処理後におけるポールピース101の熱歪みは、熱処
理部分(非磁性部102)近傍のみであって、全体に亘
って不均一となることから、熱歪みの歪み量の差異が大
きくなってしまうという問題があった。このため、続い
て行う機械加工による修正量・切削量が大きくなってし
まい、ポールピース101の製品歩留り及び生産性の悪
化を招き、延いては製品コストの上昇を招いていた。
By the way, in the conventional manufacturing method, the non-magnetic portion 102 is formed by subjecting a part of the cylindrical member 100 to a high-temperature solution treatment.
Since the thermal strain of the pole piece 101 after the heat treatment is only in the vicinity of the heat-treated portion (the non-magnetic portion 102) and becomes non-uniform throughout, the difference in the amount of thermal strain increases. was there. For this reason, the amount of correction and the amount of cutting by the subsequent machining process become large, and the product yield and productivity of the pole piece 101 are deteriorated, and the product cost is increased.

【0006】以上の事情を考慮して創案された本発明の
目的は、製品歩留り及び生産性が良好な複合磁性材の製
造方法及びポールピースの製造方法を提供することにあ
る。
An object of the present invention, which has been made in view of the above circumstances, is to provide a method of manufacturing a composite magnetic material and a method of manufacturing a pole piece having good product yield and productivity.

【0007】[0007]

【課題を解決するための手段】上記目的を達成すべく本
発明に係る複合磁性材の製造方法は、強磁性のステンレ
ス鋼で複合磁性材を形成した後、その複合磁性材全体に
熱処理を施して全体を非磁性又は弱磁性のオーステナイ
ト相とし、その後、複合磁性材の所望の部分に焼入れ処
理を施し、焼入れ処理部分をマルテンサイト相からなる
強磁性部に、非焼入れ処理部分を非磁性部又は弱磁性部
とするものである。
In order to achieve the above object, a method of manufacturing a composite magnetic material according to the present invention comprises forming a composite magnetic material from ferromagnetic stainless steel, and then subjecting the entire composite magnetic material to heat treatment. The whole is made to be a non-magnetic or weakly magnetic austenitic phase, and then a desired portion of the composite magnetic material is subjected to a quenching process, the quenched portion is a ferromagnetic portion composed of a martensite phase, and the non-quenched portion is a non-magnetic portion. Alternatively, it is a weak magnetic portion.

【0008】一方、本発明に係るポールピースの製造方
法は、強磁性のステンレス鋼で円筒部材を形成した後、
その円筒部材全体に熱処理を施して全体を非磁性又は弱
磁性のオーステナイト相とし、その後、円筒部材の周方
向又は軸方向に亘って所定の間隔で焼入れ処理を施し、
焼入れ処理部分をマルテンサイト相からなる強磁性部
に、非焼入れ処理部分を非磁性部又は弱磁性部とするも
のである。また、本発明に係るポールピースの製造方法
は、強磁性のステンレス鋼で板部材を形成した後、その
板部材全体に熱処理を施して全体を非磁性又は弱磁性の
オーステナイト相とし、その後、板部材の縦方向又は横
方向に亘って所定の間隔で焼入れ処理を施し、焼入れ処
理部分をマルテンサイト相からなる強磁性部に、非焼入
れ処理部分を非磁性部又は弱磁性部とし、その後、その
板部材を縦方向又は横方向に丸めて円筒部材を形成する
ものである。
On the other hand, the method of manufacturing a pole piece according to the present invention comprises forming a cylindrical member from ferromagnetic stainless steel,
The entire cylindrical member is subjected to a heat treatment to make the whole a nonmagnetic or weakly magnetic austenitic phase, and then subjected to a quenching treatment at predetermined intervals in a circumferential direction or an axial direction of the cylindrical member,
The quenched portion is a ferromagnetic portion composed of a martensite phase, and the non-quenched portion is a non-magnetic portion or a weak magnetic portion. Further, in the method of manufacturing a pole piece according to the present invention, after a plate member is formed of ferromagnetic stainless steel, the entire plate member is subjected to a heat treatment to make the whole a nonmagnetic or weakly magnetic austenitic phase. A quenching process is performed at predetermined intervals in the longitudinal direction or the horizontal direction of the member, the quenched portion is a ferromagnetic portion composed of a martensite phase, the non-quenched portion is a non-magnetic portion or a weak magnetic portion, and thereafter, The plate member is rolled in a vertical or horizontal direction to form a cylindrical member.

【0009】以上の方法によれば、高温の溶体化処理
を、複合磁性材、円筒部材、又は板部材の全体に施すた
め、溶体化処理後における複合磁性材、円筒部材、又は
板部材の熱歪みは全体に亘って均一であり、熱歪みの歪
み量の差異が小さくなる。
According to the above-mentioned method, since the high-temperature solution treatment is applied to the whole of the composite magnetic material, the cylindrical member, or the plate member, the heat of the composite magnetic material, the cylindrical member, or the plate member after the solution treatment is obtained. The distortion is uniform throughout, and the difference in the amount of thermal distortion is small.

【0010】[0010]

【発明の実施の形態】以下、本発明の好適一実施の形態
を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described.

【0011】第1の実施の形態に係る複合磁性材の製造
方法の概略図を図1に示す。
FIG. 1 is a schematic view of a method for manufacturing a composite magnetic material according to the first embodiment.

【0012】図1に示すように、本実施の形態に係る複
合磁性材14の製造方法は、強磁性のステンレス鋼で複
合磁性材10を形成した後、その複合磁性材10全体に
熱処理(溶体化処理)を施して全体を非磁性又は弱磁性
のオーステナイト相とし、その後、複合磁性材11の所
望の部分Aに焼入れ処理を施し、焼入れ処理部分をマル
テンサイト相からなる強磁性部12に、非焼入れ処理部
分、即ちその他の部分を非磁性部(又は弱磁性部)13
とするものである。非磁性部(又は弱磁性部)13の
内、非磁性部はその殆どがオーステナイト相であり、弱
磁性部は主相がオーステナイト相である。
As shown in FIG. 1, in the method of manufacturing a composite magnetic material 14 according to the present embodiment, a composite magnetic material 10 is formed from ferromagnetic stainless steel, and then the entire composite magnetic material 10 is heat-treated (solution). To a non-magnetic or weakly magnetic austenitic phase, and thereafter, a desired portion A of the composite magnetic material 11 is subjected to a quenching process, and the quenched portion is converted to a ferromagnetic portion 12 composed of a martensite phase. The non-quenched part, that is, the other part is a non-magnetic part (or a weak magnetic part) 13
It is assumed that. In the non-magnetic portion (or weak magnetic portion) 13, the non-magnetic portion is mostly austenitic, and the main phase of the weak magnetic portion is austenitic.

【0013】ここで、溶体化処理は、1100〜120
0℃の温度で10〜60分間加熱保持するものであり、
この条件範囲内において、ステンレス鋼の化学組成に応
じて加熱温度および保持時間が適宜選択される。また、
焼入れ処理は、850℃前後の温度に加熱した後に急冷
するものである。
Here, the solution treatment is performed in the range of 1100 to 120
It is to be heated and held at a temperature of 0 ° C. for 10 to 60 minutes,
Within this condition range, the heating temperature and the holding time are appropriately selected according to the chemical composition of the stainless steel. Also,
In the quenching treatment, the material is heated to a temperature of about 850 ° C. and then rapidly cooled.

【0014】溶体化処理後の冷却速度は、複合磁性材1
1全体が非磁性又は弱磁性のオーステナイト相となる速
度以下であれば特に限定するものではなく、空冷が一般
的である。
[0014] The cooling rate after the solution treatment is the same as that of the composite magnetic material 1.
No particular limitation is imposed as long as the speed at which the whole 1 becomes a nonmagnetic or weakly magnetic austenitic phase is not particularly limited, and air cooling is generally used.

【0015】複合磁性材10を構成するステンレス鋼と
しては、常温で強磁性を有し、溶体化処理により非磁性
又は弱磁性のオーステナイト相に変態するステンレス鋼
であれば特に限定するものではなく、例えば、フェライ
ト系ステンレス鋼、マルテンサイト系ステンレス鋼など
が挙げられる。
The stainless steel constituting the composite magnetic material 10 is not particularly limited as long as it is ferromagnetic at room temperature and is transformed into a nonmagnetic or weakly magnetic austenitic phase by solution treatment. For example, ferritic stainless steel, martensitic stainless steel and the like can be mentioned.

【0016】以上、本発明に係る複合磁性材14の製造
方法は、強磁性のステンレス鋼からなる複合磁性材10
の全体に溶体化処理を施して非磁性化(又は弱磁性化)
した後、所望の部分Aのみに焼入れ処理を施してその部
分12を強磁性化するものである。溶体化処理に伴う熱
歪みは複合磁性材11全体に生じるため、複合磁性材1
1に部分的な熱歪みが生じるおそれは殆どない。また、
焼入れ処理の温度および時間は、溶体化処理と比較して
低温・短時間であるため、焼入れ処理に伴う熱歪みは非
常に小さいものとなる。よって、本発明によれば、溶体
化処理前の複合磁性材10と焼入れ処理後の複合磁性材
14のサイズ・形状は略同じとなることから、最終形状
又はそれに近い形状の製品を得ることができる。
As described above, the method of manufacturing the composite magnetic material 14 according to the present invention is based on the method of manufacturing the composite magnetic material
Non-magnetic (or weak-magnetic) by applying solution treatment to the whole
After that, only the desired portion A is subjected to a quenching treatment to ferromagnetically make the portion 12 ferromagnetic. Since the thermal strain caused by the solution treatment occurs in the entire composite magnetic material 11, the composite magnetic material 1
There is almost no possibility that a partial thermal distortion will occur in 1. Also,
Since the temperature and time of the quenching treatment are lower and shorter than those of the solution treatment, the heat distortion accompanying the quenching treatment is very small. Therefore, according to the present invention, since the size and shape of the composite magnetic material 10 before the solution treatment and the composite magnetic material 14 after the quenching treatment are substantially the same, it is possible to obtain a product having a final shape or a shape close thereto. it can.

【0017】次に、本発明の他の実施の形態を添付図面
に基いて説明する。
Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

【0018】第2の実施の形態に係るポールピースの製
造方法の横断面図を図2に、本実施の形態の製造方法に
より得られたポールピースを用いた渦電流減速装置の縦
断面図を図3に示す。尚、図3において、図11と同様
の部材には同じ符号を付している。
FIG. 2 is a cross-sectional view of a method of manufacturing a pole piece according to a second embodiment, and FIG. 2 is a vertical cross-sectional view of an eddy current reduction device using the pole piece obtained by the method of the present embodiment. As shown in FIG. In FIG. 3, the same members as those in FIG. 11 are denoted by the same reference numerals.

【0019】先ず、図2(a)に示すように、強磁性の
ステンレス鋼で円筒部材20を形成する。この円筒部材
20に溶体化処理を施して、全体を1100〜1200
℃の温度で10〜60分間加熱保持し、その後、冷却す
る。これによって、図2(b)に示すように、全体が非
磁性又は弱磁性のオーステナイト相からなる円筒部材2
1となる。この溶体化処理により生じた熱歪みはこの時
点において機械加工等により除去し、円筒部材21を真
円に矯正する。
First, as shown in FIG. 2A, a cylindrical member 20 is formed of ferromagnetic stainless steel. This cylindrical member 20 is subjected to a solution treatment, so that the whole is 1100-1200.
Heat and hold at a temperature of 10 ° C. for 10 to 60 minutes, then cool. Thereby, as shown in FIG. 2 (b), the cylindrical member 2 entirely made of a nonmagnetic or weak magnetic austenitic phase.
It becomes 1. At this point, the thermal strain generated by the solution treatment is removed by machining or the like, and the cylindrical member 21 is corrected to a perfect circle.

【0020】次に、図2(c)に示すように、この円筒
部材21の周方向又は軸方向(図2(c)中では周方
向)に亘って、かつ、図11に示した磁石体113,1
14の磁極面(図11中では上面)と対向するように所
定の間隔を有して、850℃前後の温度で焼入れ処理を
施し、周方向に亘る複数個(図2(c)中では12個)
の焼入れ処理部分をマルテンサイト相からなる強磁性部
22に形成し(戻し)、各強磁性部22の間の非焼入れ
処理部分を非磁性部(又は弱磁性部)23とする。
Next, as shown in FIG. 2C, the magnet body shown in FIG. 11 extends in the circumferential direction or axial direction of the cylindrical member 21 (the circumferential direction in FIG. 2C). 113,1
The hardening treatment is performed at a temperature of about 850 ° C. at a predetermined interval so as to face the magnetic pole surface (the upper surface in FIG. 11) of the magnetic recording medium, and a plurality of circumferentially extending magnetic heads (12 in FIG. Pieces)
Is formed (returned) in the ferromagnetic portion 22 composed of a martensite phase, and the non-quenched portion between the ferromagnetic portions 22 is defined as a non-magnetic portion (or a weak magnetic portion) 23.

【0021】その後、焼き入れ後の円筒部材21に対し
て、適宜、低温焼戻し処理を施し、ポールピース24を
得る。この時、低温焼戻し処理は、円筒部材20を構成
するステンレス鋼の化学組成に応じて焼戻し温度および
焼戻し時間が適宜選択される。
Thereafter, the quenched cylindrical member 21 is appropriately subjected to low-temperature tempering to obtain a pole piece 24. At this time, in the low-temperature tempering treatment, the tempering temperature and the tempering time are appropriately selected according to the chemical composition of the stainless steel constituting the cylindrical member 20.

【0022】本実施の形態の製造方法により得られたポ
ールピース24は、図11に示した従来の渦電流式減速
装置110に適用できることは言うまでもないが、図3
に示す周方向1列式(回転軸111の長軸方向(図3中
では左右方向)に磁石体113を1列のみ配置する方
式)のリターダ(渦電流式減速装置)30に対して、特
に有効である。
It goes without saying that the pole piece 24 obtained by the manufacturing method of the present embodiment can be applied to the conventional eddy current type speed reducer 110 shown in FIG.
In particular, the retarder (eddy current type speed reducer) 30 of the circumferential single row type (only one row of the magnet bodies 113 is arranged in the long axis direction (the horizontal direction in FIG. 3) of the rotating shaft 111) shown in FIG. It is valid.

【0023】図10に示した従来の製造方法において
は、円筒部材100を部分的に高温状態で長時間保持す
るという熱処理、即ち部分溶体化処理を施していたた
め、加熱源としてレーザや電子ビームを使用しなければ
ならず、加熱炉等を用いる熱処理と比較して、熱処理工
程が複雑であり、コスト高であった。また、円筒部材1
00に対して部分的に熱処理を施すため、熱処理後にお
けるポールピース101の熱歪みは熱処理部分近傍の
み、即ち全体に亘って不均一となり、よって、熱歪みの
歪み量の差異が大きくなる。結果として、ポールピース
101の製品歩留り及び生産性があまり良好でなかっ
た。
In the conventional manufacturing method shown in FIG. 10, a heat treatment for partially maintaining the cylindrical member 100 at a high temperature for a long time, that is, a partial solution treatment is performed, so that a laser or an electron beam is used as a heating source. It must be used, and the heat treatment process is complicated and costly as compared with the heat treatment using a heating furnace or the like. In addition, cylindrical member 1
Since the heat treatment is partially applied to the heat treatment 00, the heat distortion of the pole piece 101 after the heat treatment becomes non-uniform only in the vicinity of the heat treatment part, that is, over the whole, and therefore, the difference in the distortion amount of the heat distortion becomes large. As a result, the product yield and productivity of the pole piece 101 were not so good.

【0024】これに対して、本実施の形態の製造方法に
おいては、円筒部材20全体を加熱炉の中に入れて高温
状態で長時間保持するという熱処理、即ち溶体化処理を
施しているため、従来の製造方法における部分溶体化処
理と比較して、熱処理工程が容易であり、コストも安価
である。また、円筒部材20全体に対して溶体化処理を
施すため、溶体化処理後における円筒部材21の熱歪み
は全体に亘って均一となり、よって、熱歪みの歪み量の
差異も小さくなる。結果として、機械加工による切削量
が少なくて済むことから、ポールピース24の製品歩留
り及び生産性が良好となり、製品コストの低減を図るこ
とができる。
On the other hand, in the manufacturing method of the present embodiment, a heat treatment of putting the entire cylindrical member 20 in a heating furnace and keeping it at a high temperature for a long time, that is, a solution treatment is performed. Compared with the partial solution treatment in the conventional production method, the heat treatment step is easier and the cost is lower. Further, since the solution treatment is performed on the entire cylindrical member 20, the thermal strain of the cylindrical member 21 after the solution treatment becomes uniform over the whole, and therefore, the difference in the distortion amount of the thermal strain is reduced. As a result, since the amount of cutting by machining is small, the product yield and productivity of the pole piece 24 are improved, and the product cost can be reduced.

【0025】また、強磁性部22を形成するための焼入
れ処理の温度および時間は、円筒部材20全体に施す溶
体化処理と比較して低温・短時間であるため、焼入れ処
理後におけるポールピース24の熱歪みは、溶体化処理
後における円筒部材21の熱歪みと比較して、更に小さ
くなる。これによって、焼入れ処理後のポールピース2
4に対して、機械加工による修正を施す必要はない。
The temperature and time of the quenching process for forming the ferromagnetic portion 22 are lower and shorter than those of the solution treatment performed on the entire cylindrical member 20, so that the pole piece 24 after the quenching process is performed. Is smaller than the thermal strain of the cylindrical member 21 after the solution treatment. Thereby, the pole piece 2 after the quenching process is performed.
There is no need to make a mechanical correction to 4.

【0026】さらに、図4〜図6に示すように、焼入れ
処理後のポールピース24の非磁性部23(円筒部材2
1の非焼入れ処理部分)の外周面部(図4中では上面
部)、内周面部(図5中では下面部)、又は両面部(図
6中では上・下面部)に、それぞれ機械加工により凹部
40,50,60を形成し、非磁性部23の厚みを強磁
性部22よりも薄く形成してもよい。これによって、ポ
ールピース24の重量軽減、延いては渦電流減速装置の
軽量化を図ることができる。
Further, as shown in FIGS. 4 to 6, the non-magnetic portion 23 (the cylindrical member 2) of the pole piece 24 after the quenching process is performed.
No. 1 non-quenched portion) is machined on the outer peripheral surface (upper surface in FIG. 4), inner peripheral surface (lower surface in FIG. 5), or both surfaces (upper and lower surfaces in FIG. 6). The recesses 40, 50, and 60 may be formed, and the thickness of the nonmagnetic portion 23 may be formed smaller than that of the ferromagnetic portion 22. As a result, the weight of the pole piece 24 can be reduced, and the weight of the eddy current reduction device can be reduced.

【0027】また、図4に示した凹部40(又は図5に
示した凹部50や、図6に示した凹部60)を形成する
際、図7に示すように、段差部71を有する凹部70、
又は図8に示すように、段差部81を有する凹部80を
形成してもよい。これによって、ポールピース24の最
外周面部(又は最内周面部や、最外周面部及び/又は最
内周面部)に非磁性部23が残存することがなくなる。
これによって、磁石体(図11における113,11
4)からの磁束が、強磁性部22を介して効果的にロー
タに作用するようになる。
When forming the concave portion 40 shown in FIG. 4 (or the concave portion 50 shown in FIG. 5 or the concave portion 60 shown in FIG. 6), as shown in FIG. ,
Alternatively, a concave portion 80 having a step portion 81 may be formed as shown in FIG. Thereby, the nonmagnetic portion 23 does not remain on the outermost peripheral surface portion (or the innermost peripheral surface portion, the outermost peripheral surface portion and / or the innermost peripheral surface portion) of the pole piece 24.
Thereby, the magnet body (113, 11 in FIG. 11)
The magnetic flux from 4) effectively acts on the rotor via the ferromagnetic portion 22.

【0028】さらに、図4に示した凹部40を形成する
際、図9に示すように、ロータ(図11における11
2)が矢印Bで示す方向に回転する場合、強磁性部22
の周方向両端部(図9中では左右方向両端部)22a,
22bが回転方向下流側(図9中では左側)に傾斜する
ように、回転方向下流側及び上流側に段差部91,92
を有する凹部90を形成してもよい。これによって、磁
石体(図11における113,114)からの磁束が、
強磁性部22の回転方向下流側端部22aへ絞り込まれ
た状態でロータに作用するようになるため、制動トルク
をより高めることができる。
Further, when forming the recess 40 shown in FIG. 4, as shown in FIG.
When 2) rotates in the direction indicated by arrow B, the ferromagnetic portion 22
(In FIG. 9, both ends in the left-right direction) 22a,
Steps 91 and 92 are provided on the downstream side and the upstream side in the rotation direction so that the rotation direction 22b is inclined toward the downstream side in the rotation direction (the left side in FIG. 9).
May be formed. Thereby, the magnetic flux from the magnet body (113, 114 in FIG. 11)
The ferromagnetic portion 22 acts on the rotor in a state of being narrowed down to the downstream end 22a in the rotation direction, so that the braking torque can be further increased.

【0029】以上、本発明の実施の形態は、上述した実
施の形態に限定されるものではなく、他にも種々のもの
が想定されることは言うまでもない。
As described above, the embodiment of the present invention is not limited to the above-described embodiment, and it goes without saying that various other embodiments can be envisaged.

【0030】[0030]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。 (1) 高温の熱処理を、複合磁性材の全体に施すこと
で、熱処理後における複合磁性材の熱歪みは全体に亘っ
て均一であり、熱歪みの歪み量の差異が小さくなる。 (2) (1)の結果、複合磁性材の製品歩留り及び生
産性が良好となり、製品コストの低減を図ることができ
る。
In summary, according to the present invention, the following excellent effects are exhibited. (1) By performing a high-temperature heat treatment on the entire composite magnetic material, the heat distortion of the composite magnetic material after the heat treatment is uniform throughout, and the difference in the amount of thermal distortion is small. (2) As a result of (1), the product yield and productivity of the composite magnetic material are improved, and the product cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態に係る複合磁性材の製造方法
を示す概略図である。
FIG. 1 is a schematic view illustrating a method for manufacturing a composite magnetic material according to a first embodiment.

【図2】第2の実施の形態に係るポールピースの製造方
法を示す横断面図である。
FIG. 2 is a cross-sectional view illustrating a method of manufacturing a pole piece according to a second embodiment.

【図3】第2の実施の形態の製造方法により得られたポ
ールピースを用いた渦電流減速装置の縦断面図である。
FIG. 3 is a longitudinal sectional view of an eddy current reduction device using a pole piece obtained by a manufacturing method according to a second embodiment.

【図4】非磁性部に形成する凹部の一例を示す部分拡大
図である。
FIG. 4 is a partially enlarged view showing an example of a concave portion formed in a non-magnetic portion.

【図5】非磁性部に形成する凹部の一例を示す部分拡大
図である。
FIG. 5 is a partially enlarged view showing an example of a concave portion formed in a non-magnetic portion.

【図6】非磁性部に形成する凹部の一例を示す部分拡大
図である。
FIG. 6 is a partially enlarged view showing an example of a concave portion formed in a non-magnetic portion.

【図7】非磁性部に形成する凹部の一例を示す部分拡大
図である。
FIG. 7 is a partially enlarged view showing an example of a concave portion formed in a non-magnetic portion.

【図8】非磁性部に形成する凹部の一例を示す部分拡大
図である。
FIG. 8 is a partially enlarged view showing an example of a concave portion formed in a non-magnetic portion.

【図9】非磁性部に形成する凹部の一例を示す部分拡大
図である。
FIG. 9 is a partially enlarged view showing an example of a concave portion formed in a non-magnetic portion.

【図10】従来のポールピースの製造方法を示す横断面
図である。
FIG. 10 is a cross-sectional view showing a conventional method of manufacturing a pole piece.

【図11】渦電流減速装置の縦断面図である。FIG. 11 is a longitudinal sectional view of the eddy current reduction device.

【符号の説明】[Explanation of symbols]

10,11,14 複合磁性材 12,22 強磁性部 13,23 非磁性部(非磁性部又は弱磁性部) 20,21 円筒部材 24 ポールピース 40,50,60,70,80,90 凹部 71,81,91,92 段差部(凹部) 10, 11, 14 Composite magnetic material 12, 22 Ferromagnetic part 13, 23 Nonmagnetic part (nonmagnetic part or weak magnetic part) 20, 21 Cylindrical member 24 Pole piece 40, 50, 60, 70, 80, 90 Concave part 71 , 81, 91, 92 Step (recess)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 強磁性部と非磁性部又は弱磁性部を有す
る複合磁性材の製造方法において、強磁性のステンレス
鋼で複合磁性材を形成した後、その複合磁性材全体に熱
処理を施して全体を非磁性又は弱磁性のオーステナイト
相とし、その後、複合磁性材の所望の部分に焼入れ処理
を施し、焼入れ処理部分をマルテンサイト相からなる強
磁性部に、非焼入れ処理部分を非磁性部又は弱磁性部と
することを特徴とする複合磁性材の製造方法。
1. A method of manufacturing a composite magnetic material having a ferromagnetic part and a non-magnetic part or a weak magnetic part, comprising: forming a composite magnetic material from ferromagnetic stainless steel; The whole is a nonmagnetic or weak magnetic austenitic phase, and then a quenching process is performed on a desired portion of the composite magnetic material, the quenched portion is a ferromagnetic portion composed of a martensite phase, and the non-quenched portion is a nonmagnetic portion or A method for producing a composite magnetic material, comprising a weak magnetic portion.
【請求項2】 上記熱処理が、1100〜1200℃の
温度で10〜60分間加熱保持するものである請求項1
記載の複合磁性材の製造方法。
2. The heat treatment according to claim 1, wherein the heat treatment is performed at a temperature of 1100 to 1200 ° C. for 10 to 60 minutes.
A method for producing the composite magnetic material as described above.
【請求項3】 上記焼入れ処理を、850℃前後の温度
で行う請求項1又は2記載の複合磁性材の製造方法。
3. The method for producing a composite magnetic material according to claim 1, wherein the quenching treatment is performed at a temperature of about 850 ° C.
【請求項4】 渦電流減速装置に用いられ、強磁性部と
非磁性部又は弱磁性部を交互に有するポールピースの製
造方法において、強磁性のステンレス鋼で円筒部材を形
成した後、その円筒部材全体に熱処理を施して全体を非
磁性又は弱磁性のオーステナイト相とし、その後、円筒
部材の周方向又は軸方向に亘って所定の間隔で焼入れ処
理を施し、焼入れ処理部分をマルテンサイト相からなる
強磁性部に、非焼入れ処理部分を非磁性部又は弱磁性部
とすることを特徴とするポールピースの製造方法。
4. A method for manufacturing a pole piece, which is used in an eddy current reduction device and has a ferromagnetic part and a non-magnetic part or a weak magnetic part alternately, after forming a cylindrical member from ferromagnetic stainless steel, The entire member is subjected to a heat treatment to make the whole a non-magnetic or weakly magnetic austenitic phase, and then subjected to a quenching treatment at predetermined intervals in a circumferential direction or an axial direction of the cylindrical member, and the quenched portion comprises a martensite phase. A method for manufacturing a pole piece, wherein a non-quenched part is a non-magnetic part or a weak magnetic part in a ferromagnetic part.
【請求項5】 渦電流減速装置に用いられ、強磁性部と
非磁性部又は弱磁性部を交互に有するポールピースの製
造方法において、強磁性のステンレス鋼で板部材を形成
した後、その板部材全体に熱処理を施して全体を非磁性
又は弱磁性のオーステナイト相とし、その後、板部材の
縦方向又は横方向に亘って所定の間隔で焼入れ処理を施
し、焼入れ処理部分をマルテンサイト相からなる強磁性
部に、非焼入れ処理部分を非磁性部又は弱磁性部とし、
その後、その板部材を縦方向又は横方向に丸めて円筒部
材を形成することを特徴とするポールピースの製造方
法。
5. A method for manufacturing a pole piece, which is used in an eddy current reduction device and has a ferromagnetic portion and a non-magnetic portion or a weak magnetic portion alternately, after forming a plate member from ferromagnetic stainless steel, The entire member is subjected to a heat treatment to make the whole a non-magnetic or weakly magnetic austenitic phase, and thereafter, a quenching treatment is performed at predetermined intervals in the longitudinal direction or the lateral direction of the plate member, and the quenched portion comprises a martensite phase. In the ferromagnetic part, the non-quenched part is a non-magnetic part or a weak magnetic part,
Thereafter, the plate member is rolled in a vertical direction or a horizontal direction to form a cylindrical member.
【請求項6】 上記熱処理が、1100〜1200℃の
温度で10〜60分間加熱保持するものである請求項4
又は5記載のポールピースの製造方法。
6. The heat treatment according to claim 4, wherein the heat treatment is performed at a temperature of 1100 to 1200 ° C. for 10 to 60 minutes.
Or the manufacturing method of the pole piece of 5.
【請求項7】 上記焼入れ処理を、850℃前後の温度
で行う請求項4から6いずれかに記載のポールピースの
製造方法。
7. The method of manufacturing a pole piece according to claim 4, wherein the quenching treatment is performed at a temperature of about 850 ° C.
【請求項8】 焼入れ処理後、上記円筒部材の非焼入れ
処理部分の外周面部、内周面部、又は両面部に、凹部を
形成する請求項4から7いずれかに記載のポールピース
の製造方法。
8. The method of manufacturing a pole piece according to claim 4, wherein after the quenching process, a concave portion is formed on the outer peripheral surface, the inner peripheral surface, or both surfaces of the non-quenched portion of the cylindrical member.
JP2001060506A 2001-03-05 2001-03-05 Method for manufacturing composite magnetic material, and method for manufacturing pole piece Pending JP2002256342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060506A JP2002256342A (en) 2001-03-05 2001-03-05 Method for manufacturing composite magnetic material, and method for manufacturing pole piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060506A JP2002256342A (en) 2001-03-05 2001-03-05 Method for manufacturing composite magnetic material, and method for manufacturing pole piece

Publications (1)

Publication Number Publication Date
JP2002256342A true JP2002256342A (en) 2002-09-11

Family

ID=18919913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060506A Pending JP2002256342A (en) 2001-03-05 2001-03-05 Method for manufacturing composite magnetic material, and method for manufacturing pole piece

Country Status (1)

Country Link
JP (1) JP2002256342A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365733A (en) * 2018-05-02 2018-08-03 盐城哈力动力传动及智能装备产业研究院有限公司 A kind of magnetic gear structure that can improve production efficiency
CN108400693A (en) * 2018-05-02 2018-08-14 盐城哈力动力传动及智能装备产业研究院有限公司 A kind of magnetic field modulation type coaxial magnetic gear
CN108448869A (en) * 2018-05-02 2018-08-24 盐城哈力动力传动及智能装备产业研究院有限公司 A kind of the modulation ring and its manufacturing method of modulation permanent-magnet gear

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365733A (en) * 2018-05-02 2018-08-03 盐城哈力动力传动及智能装备产业研究院有限公司 A kind of magnetic gear structure that can improve production efficiency
CN108400693A (en) * 2018-05-02 2018-08-14 盐城哈力动力传动及智能装备产业研究院有限公司 A kind of magnetic field modulation type coaxial magnetic gear
CN108448869A (en) * 2018-05-02 2018-08-24 盐城哈力动力传动及智能装备产业研究院有限公司 A kind of the modulation ring and its manufacturing method of modulation permanent-magnet gear
CN108448869B (en) * 2018-05-02 2023-09-26 盐城永安科技有限公司 Modulation ring of modulation type permanent magnet gear and manufacturing method thereof
CN108365733B (en) * 2018-05-02 2023-09-29 盐城永安科技有限公司 Magnetic gear structure capable of improving production efficiency
CN108400693B (en) * 2018-05-02 2023-10-03 盐城永安科技有限公司 Magnetic field modulation type coaxial magnetic gear

Similar Documents

Publication Publication Date Title
US6153030A (en) Method for the manufacture of hollow shafts
JP2009197312A (en) Method for correcting deformation of annular member
JP5779887B2 (en) Heat treatment method for raceway member
WO2021140853A1 (en) Rolling bearing raceway ring and method for manufacturing same
JP2002256342A (en) Method for manufacturing composite magnetic material, and method for manufacturing pole piece
JP5332371B2 (en) Manufacturing method of bearing device and bearing device
JP2006328465A (en) Method for manufacturing bearing ring for rolling bearing, bearing ring for rolling bearing, and rolling bearing
JP5380812B2 (en) Quenching method for annular body
JPH11140543A (en) Production of bearing ring
JP6519282B2 (en) Ring gear manufacturing method and ring gear
JPH1143717A (en) Method for preventing deformation of ring-shaped member due to heat treatment
JP2010013039A (en) Rolling bearing unit for wheel support and method of manufacturing the same
JP2009203525A (en) Production line for rolling bearing
JP5195081B2 (en) Rolling bearing unit for wheel support and manufacturing method thereof
JP2005060760A (en) Quenching method by gas cooling
JPS63118079A (en) Production of crankshaft
JP2007077425A (en) Carburizing method and carburized member
JP2007039725A (en) Partial quenching method for boss-fitted work, and quenched boss-fitted component
JPH03115564A (en) Production of sputtering target material
JP2009203521A (en) Heat deformation straightening method of annular body, and its hardening method
JP2002281733A (en) Pole piece and its manufacturing method
JPH0254717A (en) Method for spheroidization annealing of bearing steel
JP2021011606A (en) Method for manufacturing bearing components
RU2133299C1 (en) Method of manufacturing nitrided parts from low-carbon martensitic steels
JPH03181655A (en) Manufacture of cam shaft