JP2002256307A - Method for manufacturing magnesium-alloy powder using rapid solidification, and method for forming from the powder - Google Patents

Method for manufacturing magnesium-alloy powder using rapid solidification, and method for forming from the powder

Info

Publication number
JP2002256307A
JP2002256307A JP2001052093A JP2001052093A JP2002256307A JP 2002256307 A JP2002256307 A JP 2002256307A JP 2001052093 A JP2001052093 A JP 2001052093A JP 2001052093 A JP2001052093 A JP 2001052093A JP 2002256307 A JP2002256307 A JP 2002256307A
Authority
JP
Japan
Prior art keywords
powder
magnesium alloy
quenched
temperature
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001052093A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nishio
敏幸 西尾
Keizo Kobayashi
慶三 小林
Koyo Ozaki
公洋 尾崎
Akira Sugiyama
明 杉山
Akihiro Matsumoto
章宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001052093A priority Critical patent/JP2002256307A/en
Publication of JP2002256307A publication Critical patent/JP2002256307A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a high strength article of complicated shape requiring no inert gas in the powder metallurgy of magnesium alloy and extrusion thereof. SOLUTION: In the method for manufacturing the magnesium-alloy member of complicated shape, a rapidly solidified magnesium-alloy nonequilibrium material is prepared, pulverized into ultrafine grain size and then formed into a preformed material at room temperature or at room temperature in vacuum or at a temperature right under the solidus by means of a press, etc., and the preformed material is extruded using an extruding machine. By this method, the magnesium-alloy member of complicated shape combining high formability with high strength of >300 MPa class tensile strength can be manufactured by utilizing the high-temperature softening of the material at high temperature and resultant small amounts of liquid phase of metal while obviating the necessity of inert gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、急冷凝固を利用し
たマグネシウム合金粉末、及びその成形体の製造方法等
に関するものであり、更に詳しくは、アルミニウム合金
などで一般に利用されている粉末冶金法をマグネシウム
合金材料に適用して、マグネシウム合金の鋳造時の溶解
プロセスに伴う発火の危険性を無くすもので、マグネシ
ウム合金粉末を用いて均質で高強度かつ高硬度の複雑形
状品を成形する方法であり、また、当該プロセスを行う
ために必要な前処理等に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnesium alloy powder utilizing rapid solidification and a method of manufacturing a compact thereof, and more particularly to a powder metallurgy method generally used for an aluminum alloy or the like. This method is applied to magnesium alloy materials to eliminate the danger of ignition associated with the melting process during casting of magnesium alloys, and is a method of forming homogeneous, high-strength, high-hardness complex shapes using magnesium alloy powder. Also, it relates to pre-processing and the like necessary for performing the process.

【0002】[0002]

【従来の技術】一般に、マグネシウム合金の粉末冶金法
に関しては、研究室レベルの報告しかなく、棒材の押出
しの報告に限られている。なお、複雑形状品は、鋳造法
により作製されており、現在よく使用されている合金
は、鋳造性と耐食性において優れた性質を示すAZ91
系(ASTM規格)合金である。この鋳造に用いられる
手法は、ダイキャスト法やチキソモールディング法であ
る。マグネシウム合金の鋳造による成形では、成形時に
材料を溶融状態にするため発火の危険性が高いという問
題がある。そのため、防燃用の不活性ガスにより、常に
溶湯に触れる酸素を遮断しておかなければならない。一
方、マグネシウム合金の粉末冶金に関する工業的な実施
例は無く、以下に従来の鋳造法による成形について例示
する。
2. Description of the Related Art In general, a powder metallurgy method of a magnesium alloy is reported only at a laboratory level, and is limited to a report of extrusion of a bar. In addition, the complex-shaped product is manufactured by a casting method, and an alloy that is frequently used at present is AZ91 which exhibits excellent properties in castability and corrosion resistance.
(ASTM standard) alloy. The technique used for this casting is a die casting method or a thixo molding method. In the molding by casting of a magnesium alloy, there is a problem that the risk of ignition is high because the material is in a molten state at the time of molding. Therefore, oxygen that always touches the molten metal must be shut off by an inert gas for fire prevention. On the other hand, there is no industrial example relating to powder metallurgy of magnesium alloy, and molding by a conventional casting method will be exemplified below.

【0003】マグネシウム合金のダイキャスト法では、
金型への湯回り性を確保するため700℃程度の温度で
鋳造を行う。この方法の特徴は、溶湯温度が高いため、
湯回り性が良く、薄肉で複雑な形状の部品が作製できる
ことにある。この温度で溶湯を空気中にさらして一旦発
火が起こると、その温度は2200℃近くに達する。そ
のため、ダイキャストではコールドチャンバーあるいは
ホットチャンバーマシンで成形を行い、不燃性ガスとし
て防燃効果の大きい六弗化硫黄ガスを一般に使用する。
この六弗化硫黄ガスは、その使用が抑制されており、使
用禁止の方向にあるガスである。このダイキャストによ
り得られる鋳造品の引張り強度は200MPa程度であ
る(JIS規格−MC2E)。
[0003] In the die casting method of magnesium alloy,
Casting is performed at a temperature of about 700 ° C. in order to ensure the ability of the mold to run. The feature of this method is that the molten metal temperature is high,
The advantage is that a part having a good shape, a thin wall and a complicated shape can be produced. Once the molten metal is exposed to air at this temperature and once ignited, the temperature reaches nearly 2200 ° C. For this reason, in die casting, molding is performed by a cold chamber or hot chamber machine, and sulfur hexafluoride gas having a large flame-retardant effect is generally used as a nonflammable gas.
This sulfur hexafluoride gas is a gas whose use has been suppressed and is in a direction of being prohibited from being used. The tensile strength of the cast product obtained by this die casting is about 200 MPa (JIS standard-MC2E).

【0004】もう一つ高強度の鋳造材を得る方法に、近
年に急速に広まったアメリカのDOWCHEMICAL
社の開発したチキソモールディング法がある。この場
合、プラスチックスの成形で用いられる射出成形機を用
いて、金属の半溶融状態を利用して複雑な形状品あるい
は薄肉品を成形する方法である。溶解温度は、金属の半
溶融状態を利用するため、固相線温度以上液相線温度以
下での成形であるため約600℃直下で行われる。液相
により流動性をかせぐため、その液相率はかなり高く、
また、発火を回避する必要から常時不活性ガスを使用す
る。この方法で得られる鋳造品の引張り強度は230M
Pa程度である(文献1:Proceeding ofthe Second In
ternational Conference on the proceeding of Semi-S
olid Alloys and Composites, (1992) pp159-169)。
[0004] Another method of obtaining a high-strength cast material is an American DOWCHEMICAL which has rapidly spread in recent years.
There is a thixomolding method developed by the company. In this case, an injection molding machine used for molding plastics is used to mold a complicated shaped product or a thin-walled product utilizing a semi-molten state of metal. The melting temperature is about 600 ° C. or lower because the shaping is performed at a temperature between the solidus temperature and the liquidus temperature in order to utilize the semi-molten state of the metal. The liquid phase ratio is quite high because the liquid phase gives more fluidity,
In addition, an inert gas is always used because it is necessary to avoid ignition. The tensile strength of the casting obtained by this method is 230M
Pa (Reference 1: Proceeding of the Second In)
ternational Conference on the proceeding of Semi-S
olid Alloys and Composites, (1992) pp159-169).

【0005】また、粉末ではないが、機械加工時の粗い
切り粉を300℃程度で熱間押出しして、結晶粒径を微
細化した素材を作製し、材質を調査した研究報告例があ
る(文献2:軽金属 (1995) vol. 45, No. 10, pp560-5
65) 。
[0005] In addition, there is an example of a research report in which, although not a powder, a coarse chip during machining is hot-extruded at about 300 ° C to produce a material having a fine crystal grain size, and the material is investigated ( Reference 2: Light metal (1995) vol. 45, No. 10, pp560-5
65).

【0006】更に、急冷粉末作製方法として、ガスアト
マイズ法があるが、この場合、冷却のために大量の不活
性ガスが必要である。また、作製される粉末の形状は、
球状粒子あるいは鱗片状(薄片)であり、そのまま焼結
して棒材の押出しを行ったことが報告されている(文献
3:Scripta METALLURGICA (1989) vol. 23, pp1079-10
84) 。
Further, a gas atomizing method is used as a method for producing a quenched powder. In this case, a large amount of inert gas is required for cooling. Also, the shape of the powder to be produced is
It has been reported that the rods are spherical particles or scale-like (flakes), and are sintered as they are to extrude rods (Reference 3: Scripta METALLURGICA (1989) vol. 23, pp1079-10)
84).

【0007】以上のように、マグネシウム合金の成形で
は、主に押出しによる棒材の作製、又は、溶融状態を利
用した鋳造に限られており、粉末冶金法による複雑形状
品の作製例はない。これまで、マグネシウム合金の粉末
冶金が行われていないのは、溶融状態での酸素との反応
性が激しいことから、粉末の作製時に大量の不活性ガス
が必要であること、通常のバルク材の押出しでは複雑形
状が成形できないこと、更には、微粉化するとすぐ爆発
につながると言われていること、のためである。マグネ
シウム合金は、結晶構造上常温で滑り面が少なく、高温
での塑性加工性もアルミニウムに比べて悪いため、押出
しによる加工が難しい。そのため、低合金材を用いた単
純形状の低強度部材しか成形できなかった。
As described above, the forming of a magnesium alloy is mainly limited to the production of a rod by extrusion or the casting utilizing a molten state, and there is no example of producing a complex-shaped product by a powder metallurgy method. Until now, powder metallurgy of magnesium alloys has not been performed because the reactivity with oxygen in the molten state is severe, so a large amount of inert gas is required at the time of powder production, and ordinary bulk materials are not used. This is because extrusion cannot form complicated shapes, and furthermore, it is said that pulverization leads to an explosion immediately. Magnesium alloys have few slip surfaces at room temperature due to their crystal structure, and have poor plastic workability at high temperatures compared to aluminum. Therefore, only a simple-shaped low-strength member using a low-alloy material could be formed.

【0008】[0008]

【発明が解決しようとする課題】本発明者らは、上記従
来技術に鑑みて、マグネシウム合金の複雑形状品を作製
する方法を開発することを目標として鋭意研究を重ねた
結果、急冷凝固を利用してマグネシウム合金粉末を作製
することで所期の目的を達成し得るとの知見を得て、本
発明を完成するに至った。本発明は、マグネシウム合金
に粉末冶金とこれに次ぐ押出し加工プロセスを適用し
て、マグネシウム合金の複雑形状部材を得る方法を提供
することを目的とするものである。また、本発明は、従
来、鋳造材で引張り強度230MPa程度であったもの
を、300MPa超級のマグネシウム合金材料を製造
し、提供することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above prior art, the present inventors have conducted intensive studies with the aim of developing a method of manufacturing a magnesium alloy having a complicated shape, and as a result, have utilized rapid solidification. It was found that the intended purpose could be achieved by producing a magnesium alloy powder, thereby completing the present invention. An object of the present invention is to provide a method for obtaining a complex shaped member of a magnesium alloy by applying powder metallurgy and a subsequent extrusion process to the magnesium alloy. Another object of the present invention is to manufacture and provide a magnesium alloy material having a tensile strength of more than 300 MPa, instead of a conventional cast material having a tensile strength of about 230 MPa.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段から構成される。 (1)急冷凝固を利用してマグネシウム合金粉末を製造
する方法であって、以下の工程; 1)マグネシウム合金をロール装置に導入して真空ある
いは不活性ガス下で急冷して非平衡状態(過飽和固溶
体)にすると共に、微細な結晶粒径の箔材(リボン材)
を作製する、 2)リボン材を粉砕し、粉末とする、ことにより急冷粉
末とすることを特徴とする、マグネシウム合金粉末の製
造方法。 (2)溶融マグネシウム合金をロール装置に導入して3
0〜50ミクロンの急冷材を作製することを特徴とする
前記(1)記載の方法。 (3)不活性ガスあるいは大気圧以下の真空中で高エネ
ルギー投入型のミルで急冷粉末を粉砕することを特徴と
する前記(1)記載の方法。 (4)前記(1)に記載の方法により作製した急冷粉末
を成形し、その成形体を製造する方法であって、以下の
工程; 1)上記粉末を焼結して予備成形を行い押出し用の素材
を得る、 2)上記素材を押出し装置で押出して成形する、ことに
より成形することを特徴とするマグネシウム合金粉末の
成形体の製造方法。 (5)前記(1)に記載のリボン材又は急冷粉末の試料
を保管する方法であって、 1)リボン材を巻き取り、かさ密度を減じて保管する、
又は、 2)急冷粉末を、型に充填し、上下方向から圧力50〜
180MPa程度を加えて保持して、緻密化して保管す
る、ことを特徴とする上記試料の保管方法。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) A method for producing a magnesium alloy powder using rapid solidification, which comprises the following steps: 1) A magnesium alloy is introduced into a roll device and rapidly cooled under vacuum or an inert gas to obtain a non-equilibrium state (supersaturation) (Solid solution) and foil material (ribbon material) with fine crystal grain size
2) A method for producing a magnesium alloy powder, characterized in that a ribbon material is pulverized into powder to obtain a quenched powder. (2) Introduce the molten magnesium alloy into the roll device and
The method according to the above (1), wherein a quenched material of 0 to 50 microns is produced. (3) The method according to (1), wherein the quenched powder is pulverized by a high-energy-input mill in an inert gas or a vacuum at or below atmospheric pressure. (4) A method for forming a quenched powder produced by the method described in the above (1) to produce a molded body, comprising the following steps: 1) Sintering the powder, preforming and extruding And 2) extruding and molding the material with an extruder to produce a molded body of magnesium alloy powder. (5) A method for storing a sample of a ribbon material or a quenched powder according to the above (1), wherein 1) winding the ribbon material and storing it with a reduced bulk density.
Or 2) Fill the mold with the quenched powder, and apply a pressure of 50 to 50
The method for storing a sample described above, wherein the sample is stored after being densified while holding at about 180 MPa.

【0010】[0010]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明では、金属系材料の組織を熱伝導率の
大きな金属製の単ロールなどによって急冷して、非平衡
状態(過飽和固溶体)を造り込むとともに、微細な結晶
粒径のリボン材を作製する。次に、このリボン材の粉砕
を行う。この時にリボン材が剪断されて粉末になると加
工ひずみが与えられることで、より微細な結晶粒径から
なる粉末を得ることができる。更に、この粉末に対し
て、脱ガスを目的とした予備成形を行い、押出し用の素
材を得る。この素材は、固相線温度直下から平衡状態図
上で液相が生成する温度までの広い温度範囲において極
めて流動性が良いため、複雑形状の部材を成形できる。
しかも、得られた部材は300MPaを越える引張り強
度とビッカース硬度80というすぐれた特性を示す。
Next, the present invention will be described in more detail. In the present invention, a non-equilibrium state (supersaturated solid solution) is produced by rapidly cooling the structure of a metal-based material by a single roll made of metal having a high thermal conductivity, and a ribbon material having a fine crystal grain size is produced. Next, the ribbon material is crushed. At this time, when the ribbon material is sheared into powder, a processing strain is applied, so that powder having a finer crystal grain size can be obtained. Further, this powder is preformed for the purpose of degassing to obtain a material for extrusion. Since this material has extremely good fluidity in a wide temperature range from just below the solidus temperature to the temperature at which a liquid phase is formed on the equilibrium diagram, a member having a complicated shape can be formed.
In addition, the obtained member has excellent properties such as a tensile strength exceeding 300 MPa and a Vickers hardness of 80.

【0011】本発明においては、急冷凝固粉末を準備す
る必要がある。これには熱伝導の良い銅製の単ロールあ
るいは双ロールなどに溶融マグネシウム合金を吹き出す
方法が例示される。この溶解操作は、酸化による発火を
抑制するため、真空あるいはアルゴンなどの不活性ガス
を充填したチャンバー内で行う。急冷材は厚さ100ミ
クロン程度、好ましくは後の粉砕を効果的に行うために
30から50ミクロン程度の急冷箔材(リボン)にす
る。得られたリボン材の保管については、巻き取ること
でかさ密度を減じて保管できる。
In the present invention, it is necessary to prepare a rapidly solidified powder. For example, a method of blowing a molten magnesium alloy onto a copper single roll or twin rolls having good heat conductivity is exemplified. This melting operation is performed in a chamber filled with a vacuum or an inert gas such as argon in order to suppress ignition due to oxidation. The quenched material is a quenched foil material (ribbon) having a thickness of about 100 microns, preferably about 30 to 50 microns for effective subsequent pulverization. The obtained ribbon material can be stored with reduced bulk density by winding.

【0012】次に、ボールミルで粉砕を行うが、急冷リ
ボン材の強度が鋳造材に比べて高く300MPa近くも
あるため、転動型のミルでは破砕効果が小さく効率的な
粉砕ができないので、遊星型などの高エネルギー投入型
のミルを用いる方が短時間での粉砕が可能である。粉砕
中の雰囲気は、不活性ガスあるいは大気圧以下の真空中
で行った方が粉末の酸化を抑制できる。後記する表1に
170回転毎分で25時間まで粉砕した結果を示す。
Next, grinding is carried out by a ball mill. Since the strength of the quenched ribbon material is higher than that of the cast material and is close to 300 MPa, the crushing effect of the rolling mill is small, and efficient grinding cannot be performed. The use of a high-energy-input mill such as a mold enables more rapid pulverization. As for the atmosphere during the pulverization, the oxidation in the powder can be more suppressed when the pulverization is performed in an inert gas or a vacuum at or below atmospheric pressure. Table 1 shows the results of grinding at 170 rotations per minute for up to 25 hours.

【0013】本発明では、粉砕時間を50時間と長くし
て、更に微細になるかについての確認をしたが、変化は
なかった。これは、25時間粉砕した時に既に粉砕粉が
凝集状態となって、粉砕容器底に張り付くことによる。
この凝集状態は、手で摘めば崩れる程度のかたさであ
り、特段に再分散のための粉砕は必要ない。また、普通
のマグネシウム合金の切り粉では湿気が多いと数時間で
金属光沢を失い表面酸化が進むが、急冷凝固粉末はいつ
までも金属光沢を示しており、表面が安定で耐酸化性
(耐食性)があることを示した。
In the present invention, the pulverization time was increased to 50 hours, and it was confirmed whether or not the particles became finer. However, there was no change. This is because the crushed powder is already in an agglomerated state when crushed for 25 hours and sticks to the bottom of the crushing container.
This coagulated state is hard enough to be broken by picking by hand, and no special pulverization for re-dispersion is required. In addition, ordinary magnesium alloy chips lose their metallic luster in a few hours when the humidity is high, and the surface oxidation progresses. It was shown.

【0014】得られた急冷粉末は、リボン材の厚さが4
0ミクロンであったのに比べ10ミクロン程度の粉末ま
で微粉化しているものもかなりあり、表面積が格段に増
加した。このような金属の微粉末をそのまま室温で保管
すると発火する危険がある。
The quenched powder obtained has a ribbon material thickness of 4
Some of the powders were pulverized to about 10 μm compared to 0 μm, and the surface area was significantly increased. If such a fine metal powder is stored at room temperature as it is, there is a risk of ignition.

【0015】そこで、粉末の保管方法についても試験し
た。室温で超硬製のφ20mmの円筒型に粉末14gを
充填し、上下方向から圧力60MPaを加えて1分保持
した後、試料を取り出した。この試料の見かけ密度は
1.5g/cm3 であり、真密度の1.8g/cm3
比べて多孔体であるが、表面は鏡面で金属光沢を示して
おり、粉塵が舞うこともなく、粉末状態で保管するより
も表面積は格段に減少したことから、酸化を抑制でき
る。切断して断面を観察すると、表面部が緻密なペレッ
トであることが確認できた。次に、上記粉末を真空中に
て固相線温度直下約20℃で焼結し、真密度の99%程
度のプリフォーム素材を作製する。次に、上記素材を押
出して成形体を作製する。押出し装置はできるだけ温度
コントロールを±5℃以内で制御できることが好まし
く、発火を避けるために固相線温度以上で10%以下の
液相率での押出しが好ましい
Therefore, the method of storing the powder was also tested. At room temperature, 14 g of powder was filled into a superhard cylindrical mold having a diameter of 20 mm, and a pressure of 60 MPa was applied from above and below and held for 1 minute, and then a sample was taken out. The apparent density of this sample is 1.5 g / cm 3, which is more porous than the true density of 1.8 g / cm 3 , but the surface shows a mirror-like metallic luster, and no dust Since the surface area is significantly reduced as compared with the case where the powder is stored, the oxidation can be suppressed. By cutting and observing the cross section, it was confirmed that the surface was a dense pellet. Next, the powder is sintered in vacuum at about 20 ° C. just below the solidus temperature to produce a preform material having a true density of about 99%. Next, the above-mentioned material is extruded to produce a molded body. It is preferable that the extruder can control the temperature within ± 5 ° C as much as possible, and in order to avoid ignition, it is preferable to extrude at a liquidus ratio of 10% or more at a temperature higher than the solidus temperature.

【0016】[0016]

【作用】本発明によると、固相線直下から直上までの広
い温度範囲で押し出せる流動性の高い粉末が作製でき
る。特に、液相線直上では、複雑な形状の部材の作製も
可能となる。この流動性は、更に液相率の高い状態でも
固液分離しない高い流動性を保証するが、防燃用のガス
を使用しないためには、液相率のできるだけ低い状態が
好ましい。この流動性の確保は、昇温中に液相が粒界に
現れてくることによるが、従来材では、結晶粒径が10
0ミクロンと粗く、常温で既にα相とβ相の2相に分離
しているため、固液分離してしまう。ところが、この非
平衡粉末では、過飽和固溶状態からの原子の拡散により
徐々に5ミクロン程度の微細な結晶粒界に液相が生成し
てくるため、同じ液相量でもフィルム状に微細固相結晶
粒子まわりに液相が存在して、流動性を向上させること
ができる。
According to the present invention, a powder having high fluidity which can be extruded in a wide temperature range from immediately below the solidus to immediately above the solidus can be produced. In particular, directly above the liquidus line, a member having a complicated shape can be manufactured. This fluidity guarantees a high fluidity that does not cause solid-liquid separation even in a state of a higher liquid phase ratio, but it is preferable that the liquid phase ratio be as low as possible in order not to use a gas for fire prevention. This fluidity is ensured by the fact that the liquid phase appears at the grain boundaries during the temperature rise.
It is coarse, 0 micron, and has already been separated into two phases, an α phase and a β phase, at room temperature, resulting in solid-liquid separation. However, in this non-equilibrium powder, a liquid phase is gradually generated at a fine grain boundary of about 5 μm due to diffusion of atoms from a supersaturated solid solution state. A liquid phase exists around the crystal particles, and the fluidity can be improved.

【0017】[0017]

【実施例】以下に、実施例に基づいて本発明を説明する
が、本発明は当該実施例によって何ら限定されるもので
はない。 実施例1 以下の実施例1〜2において、単ロール装置としては、
急冷リボン作製装置(日新技研製)を用いた。また、粉
砕には、遊星型ボールミル(伊藤製作所製)を使用し
た。粉末の予備成形には、通電焼結装置(住友石炭鉱業
(現イズミテック)製)を用いた。押出しには、イメー
ジ炉を備えたプレス機を使用した。化学組成Mg−9m
ass%Al−1mass%Znのマグネシウム合金
(宇部興産株式会社製のAZ91D合金)を切り出し、
単ロールリボン作製装置内にセットして700℃に1分
間加熱保持した。その後、0.15MPaで直径200
mmの銅製単ロールを3000回転で運転し、幅2mm
で厚さ約40ミクロンのリボン材を得た。遊星型のボー
ルミルでこのリボン材40gを鋼製の容器に鋼製のボー
ルとともに入れ、65KPaのアルゴン雰囲気下で17
0回転にて25時間粉砕した。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the examples. Example 1 In the following Examples 1 and 2, as a single roll device,
A quenched ribbon manufacturing device (manufactured by Nissin Giken) was used. A planetary ball mill (manufactured by Ito Seisakusho) was used for pulverization. An electric current sintering apparatus (manufactured by Sumitomo Coal Mining (currently Izumitec)) was used for preforming the powder. For the extrusion, a press equipped with an image furnace was used. Chemical composition Mg-9m
Cut out magnesium alloy (AZ91D alloy manufactured by Ube Industries, Ltd.) of ass% Al-1mass% Zn,
It was set in a single roll ribbon production apparatus and heated and maintained at 700 ° C. for 1 minute. Then, at 0.15MPa, diameter 200
mm single copper roll at 3000 revolutions, width 2mm
A ribbon material having a thickness of about 40 microns was obtained. In a planetary ball mill, 40 g of the ribbon material was put into a steel container together with steel balls, and the material was placed in a steel container at 65 KPa in an argon atmosphere.
Grinding was performed at 0 rotation for 25 hours.

【0018】[0018]

【表1】 [Table 1]

【0019】この粉末を取り出し、真空中にて400℃
で焼結し、ほぼ真密度のプリフォーム材を得た。これを
押出し装置内のコンテナに挿入して、大気中で少量の液
相が生成する450℃まで昇温し、10分間保持した
後、押出し比4:1で押し出して丸棒を作製した。この
材料の強度は320MPaであり、硬度もHv80であ
り、高強度特性を示した。比較のため、通常の鋳造材を
直接この条件で押し出すと、押出し初期に固体と液体の
分離が起こり、液相が先に押し出され固相成分のみとな
り、液相がほとんど関与しないため、固相状態のみの押
出しとなり、容易に押し出せない。これらの結果を表2
に示す。
The powder is taken out and placed in a vacuum at 400 ° C.
To obtain a preform material of almost true density. This was inserted into a container in an extruder, heated to 450 ° C. where a small amount of a liquid phase was formed in the atmosphere, held for 10 minutes, and extruded at an extrusion ratio of 4: 1 to produce a round bar. This material had a strength of 320 MPa, a hardness of Hv80, and exhibited high strength properties. For comparison, when a normal cast material is directly extruded under these conditions, separation of solid and liquid occurs at the initial stage of extrusion, the liquid phase is extruded first, and only the solid phase component is involved. Extrusion occurs only in the state, and cannot be easily extruded. Table 2 shows these results.
Shown in

【0020】[0020]

【表2】 [Table 2]

【0021】実施例2 更に、複雑な形状品を作製するため、この粉末を実施例
1と同様に真空中にて400℃で焼結したプリフォーム
材を準備した。これを押出し装置内のコンテナに挿入
し、ダイスは実施例1と同じ直径7mmのものを使用し
て、その下部に直径35mmの歯車形状の型を用いて大
気中で押出した。温度は流動性を確保するため5%程度
の液相の存在する470℃まで昇温して、10分間保持
したが、この複雑な歯車形状の金型内に完全に充填させ
ることができた。
Example 2 Further, in order to produce a complicated shaped product, a preform material was prepared by sintering this powder at 400 ° C. in a vacuum in the same manner as in Example 1. This was inserted into a container in the extruder, and the same die having the same diameter as that of Example 1 having a diameter of 7 mm was extruded in the atmosphere using a gear-shaped mold having a diameter of 35 mm below the die. The temperature was raised to 470 ° C. where a liquid phase of about 5% was present and maintained for 10 minutes in order to ensure fluidity, but the complex gear-shaped mold could be completely filled.

【0022】実施例3 この粉砕粉末を超硬製のφ20mmの円筒型に粉末14
gを充填し、上下方向から圧力60MPaを加えて1分
保持した後、試料を取り出し、予備焼結せずに直径4m
mのダイス上にセットした。プレス圧100MPaを加
えて1分間に15℃で昇温した。試料は液相線以下の3
50℃で押し出され始め、その速度は温度上昇とともに
徐々に増加して、液相線温度を越えた450℃では小型
油圧プレスでは十分な圧力を付与できなかった。得られ
た丸棒には液相生成による亀裂もなく、予備成形しなく
とも高品質の棒材が作製できた。
Example 3 This pulverized powder was converted into a cylindrical form of carbide having a diameter of 20 mm.
g, and a pressure of 60 MPa was applied from above and below and held for 1 minute. Then, the sample was taken out and the diameter was 4 m without preliminary sintering.
m on a die. A press pressure of 100 MPa was applied and the temperature was raised at 15 ° C. for 1 minute. The sample is 3 below the liquidus
Extrusion began at 50 ° C., and the speed gradually increased with increasing temperature. At 450 ° C., which was above the liquidus temperature, sufficient pressure could not be applied with a small hydraulic press. The obtained round bar was free from cracks due to liquid phase generation, and a high-quality bar could be produced without preforming.

【0023】[0023]

【発明の効果】以上詳述したとおり、本発明は、急冷凝
固を利用してマグネシウム合金粉末を製造する方法、及
びその成形方法等に係るものであり、本発明によれば、
1)固相線直下から直上までの広い温度範囲で押し出せ
る流動性の高い粉末を作製することができる、2)マグ
ネシウム合金の鋳造時の溶解プロセスに伴う発火の危険
性を無くすことができる、3)マグネシウム合金粉末を
用いて均質で高強度かつ高硬度の複雑形状品を成形する
ことができる、4)複雑形状の部材を高精度で製造する
ことができる、5)300MPa超級のマグネシウム合
金材料を作製し、提供することができる、6)上記方法
で作製したマグネシウム合金リボン材あるいは急冷粉末
を安全にかつ酸化を抑制して保管する方法を提供するこ
とができる、等の格別の効果が奏される。
As described above in detail, the present invention relates to a method for producing a magnesium alloy powder using rapid solidification, a method for molding the same, and the like.
1) It is possible to produce a powder having high fluidity that can be extruded in a wide temperature range from immediately below to just above the solidus line. 2) It is possible to eliminate the danger of ignition accompanying the melting process during casting of a magnesium alloy. 3) A homogeneous, high-strength and high-hardness complex-shaped product can be molded using magnesium alloy powder. 4) A member with a complex shape can be manufactured with high precision. 5) A magnesium alloy material of a grade exceeding 300 MPa. And 6) a method of storing the magnesium alloy ribbon material or the quenched powder produced by the above method safely and with suppressed oxidation can be provided. Is done.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉山 明 愛知県名古屋市名東区平和が丘1丁目70番 地 猪子石住宅1棟302号 (72)発明者 松本 章宏 愛知県名古屋市名東区平和が丘1丁目70番 地 猪子石住宅6棟401号 Fターム(参考) 4E004 DB02 NC09 TA02 TA07 TB04 4K017 AA04 BA10 BB01 EA03 FA03 4K018 AA13 BA07 EA32  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Sugiyama 1-70 Heiwagaoka, Meito-ku, Nagoya City, Aichi Prefecture Inokoishi Housing Building No. 302 (72) Inventor Akihiro Matsumoto Heiwagaoka, Meito-ku, Nagoya City, Aichi Prefecture 1-chome No. 1 Inokoishi House 6 Building 401 F-term (reference) 4E004 DB02 NC09 TA02 TA07 TB04 4K017 AA04 BA10 BB01 EA03 FA03 4K018 AA13 BA07 EA32

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 急冷凝固を利用してマグネシウム合金粉
末を製造する方法であって、以下の工程; 1)マグネシウム合金をロール装置に導入して真空ある
いは不活性ガス下で急冷して非平衡状態(過飽和固溶
体)にすると共に、微細な結晶粒径の箔材(リボン材)
を作製する、 2)リボン材を粉砕し、粉末とする、ことにより急冷粉
末とすることを特徴とする、マグネシウム合金粉末の製
造方法。
1. A method for producing a magnesium alloy powder using rapid solidification, comprising the following steps: 1) introducing a magnesium alloy into a roll device and rapidly cooling it under a vacuum or an inert gas to obtain a non-equilibrium state; (Supersaturated solid solution) and foil material (ribbon material) with fine crystal grain size
2) A method for producing a magnesium alloy powder, characterized in that a ribbon material is pulverized into powder to obtain a quenched powder.
【請求項2】 溶融マグネシウム合金をロール装置に導
入して30〜50ミクロンの急冷材を作製することを特
徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the molten magnesium alloy is introduced into a roll device to produce a quenched material of 30 to 50 microns.
【請求項3】 不活性ガスあるいは大気圧以下の真空中
で高エネルギー投入型のミルで急冷粉末を粉砕すること
を特徴とする請求項1記載の方法。
3. The method according to claim 1, wherein the quenched powder is pulverized by a high-energy-input mill in an inert gas or a vacuum at or below atmospheric pressure.
【請求項4】 請求項1に記載の方法により作製した急
冷粉末を成形し、その成形体を製造する方法であって、
以下の工程; 1)上記粉末を焼結して予備成形を行い押出し用の素材
を得る、 2)上記素材を押出し装置で押出して成形する、ことに
より成形することを特徴とするマグネシウム合金粉末の
成形体の製造方法。
4. A method for molding a quenched powder produced by the method according to claim 1 to produce a molded article,
The following steps; 1) sintering the powder, preforming to obtain a material for extrusion, 2) extruding and molding the material with an extruder to form a magnesium alloy powder. A method for producing a molded article.
【請求項5】 請求項1に記載のリボン材又は急冷粉末
の試料を保管する方法であって、 1)リボン材を巻き取り、かさ密度を減じて保管する、
又は、 2)急冷粉末を、型に充填し、上下方向から圧力50〜
180MPa程度を加えて保持して、緻密化して保管す
る、ことを特徴とする上記試料の保管方法。
5. A method for storing a sample of a ribbon material or a quenched powder according to claim 1, wherein: 1) winding the ribbon material and storing it with a reduced bulk density;
Or 2) Fill the mold with the quenched powder, and apply a pressure of 50 to 50
The method for storing a sample described above, wherein the sample is stored after being densified while holding at about 180 MPa.
JP2001052093A 2001-02-27 2001-02-27 Method for manufacturing magnesium-alloy powder using rapid solidification, and method for forming from the powder Pending JP2002256307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001052093A JP2002256307A (en) 2001-02-27 2001-02-27 Method for manufacturing magnesium-alloy powder using rapid solidification, and method for forming from the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001052093A JP2002256307A (en) 2001-02-27 2001-02-27 Method for manufacturing magnesium-alloy powder using rapid solidification, and method for forming from the powder

Publications (1)

Publication Number Publication Date
JP2002256307A true JP2002256307A (en) 2002-09-11

Family

ID=18912777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052093A Pending JP2002256307A (en) 2001-02-27 2001-02-27 Method for manufacturing magnesium-alloy powder using rapid solidification, and method for forming from the powder

Country Status (1)

Country Link
JP (1) JP2002256307A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256133A (en) * 2004-03-15 2005-09-22 Katsuyoshi Kondo Raw alloy powder and manufacturing method therefor
JP2014162991A (en) * 2013-02-28 2014-09-08 Seiko Epson Corp Manganese-based alloy powder and manganese-based alloy molding
JP2014167136A (en) * 2013-02-28 2014-09-11 Seiko Epson Corp Manganese-based alloy powder and manganese-based alloy molding
JP2019056140A (en) * 2017-09-21 2019-04-11 株式会社戸畑製作所 Magnesium alloy powder
CN109807294A (en) * 2019-03-31 2019-05-28 华南理工大学 A kind of Ultra-fine Grained alloy block material and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256133A (en) * 2004-03-15 2005-09-22 Katsuyoshi Kondo Raw alloy powder and manufacturing method therefor
WO2005087410A1 (en) * 2004-03-15 2005-09-22 Gohsyu Co., Ltd. Powder material of alloy and method for production thereof
US7909948B2 (en) 2004-03-15 2011-03-22 Gohsyu Co., Ltd. Alloy powder raw material and its manufacturing method
JP2014162991A (en) * 2013-02-28 2014-09-08 Seiko Epson Corp Manganese-based alloy powder and manganese-based alloy molding
JP2014167136A (en) * 2013-02-28 2014-09-11 Seiko Epson Corp Manganese-based alloy powder and manganese-based alloy molding
JP2019056140A (en) * 2017-09-21 2019-04-11 株式会社戸畑製作所 Magnesium alloy powder
CN109807294A (en) * 2019-03-31 2019-05-28 华南理工大学 A kind of Ultra-fine Grained alloy block material and preparation method thereof
CN109807294B (en) * 2019-03-31 2022-01-18 华南理工大学 Superfine crystal alloy block material and preparation method thereof

Similar Documents

Publication Publication Date Title
US8293031B2 (en) Magnesium alloy and the respective manufacturing method
EP1640466B1 (en) Magnesium alloy and production process thereof
US20100183471A1 (en) Metal injection moulding method
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
CN101709418B (en) Thermally conductive magnesium alloy and preparation method thereof
WO2010122960A1 (en) High-strength copper alloy
WO2014171550A1 (en) Fire-resistant magnesium alloy and production method therefor
US20110064599A1 (en) Direct extrusion of shapes with l12 aluminum alloys
KR101276665B1 (en) Magnesium alloy heat-treatable at high temperature
CA2777830A1 (en) Magnesium alloy with excellent ignition resistance and mechanical properties, and method of manufacturing the same
KR101310622B1 (en) Magnesium alloy chips and process for manufacturing molded article using same
CN103114217A (en) Preparation method of novel SiCP particulate reinforced rapid solidification magnesium alloy composite material
KR20150017143A (en) Magnesium alloy for extrusion with excellent plasticity―workability and method for producing the same
WO2004085689A1 (en) Magnesium alloy of high strength and high toughness and method for production thereof
JP2002256307A (en) Method for manufacturing magnesium-alloy powder using rapid solidification, and method for forming from the powder
EP0668806B1 (en) Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon alloy
JP4397425B1 (en) Method for producing Ti particle-dispersed magnesium-based composite material
US5833772A (en) Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon
Balog et al. Novel ultrafine-grained aluminium metal matrix composites prepared from fine atomized Al powders
CN113732442B (en) Method for performing additive forming on full-equiaxial fine-grain magnesium alloy component through arc fuse
JPH05306424A (en) High strength magnesium-base alloy and its laminated and solidified material
US6893515B2 (en) Manufacturing process for highly ductile magnesium alloy
CN110527881B (en) Fast-solidification high-performance high-zinc-content Al-Zn-Mg-Cu-Zr alloy and preparation method thereof
JP3987471B2 (en) Al alloy material
Fujii et al. Al-Sc master alloy prepared by mechanical alloying of aluminum with addition of Sc2O3

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041206