JP2002254066A - Vacuum evaporation type desalination plant - Google Patents

Vacuum evaporation type desalination plant

Info

Publication number
JP2002254066A
JP2002254066A JP2001057090A JP2001057090A JP2002254066A JP 2002254066 A JP2002254066 A JP 2002254066A JP 2001057090 A JP2001057090 A JP 2001057090A JP 2001057090 A JP2001057090 A JP 2001057090A JP 2002254066 A JP2002254066 A JP 2002254066A
Authority
JP
Japan
Prior art keywords
tank
condensable gas
fresh water
drainage
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001057090A
Other languages
Japanese (ja)
Other versions
JP3854084B2 (en
Inventor
Tomoyuki Uchimura
知行 内村
Osayuki Inoue
修行 井上
Kiichi Irie
毅一 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001057090A priority Critical patent/JP3854084B2/en
Publication of JP2002254066A publication Critical patent/JP2002254066A/en
Application granted granted Critical
Publication of JP3854084B2 publication Critical patent/JP3854084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum evaporation type desalination plant equipped with an inexpensive and reliable noncondensing gas discharge means to discharge noncondensing gas inside equipment without using a vacuum pump. SOLUTION: In a vacuum evaporation type desalination plant where raw water is heated under reduced pressure directly or indirectly by the heat source, an evaporative distiller 10 is equipped to generate and condense a steam to produce freshwater and a freshwater drain pump 30 is equipped to discharge the produced freshwater, a condensation extraction means (condensation extraction pipe 17 and ejector 23, etc.), to collect the noncondensing gas inside the system and a condensation extraction tank 16 to store the noncondensing gas collected by the condensation extraction means under subatmospheric pressure are installed. The pressurization up to or over atmospheric pressure inside the condensation extraction tank 16 can be performed by the freshwater drain pump 30 and when the noncondensing gas inside the condensation extraction tank 16 is discharged, the inside of the condensation extraction tank 16 is pressurized by the freshwater drain pump 30 and the noncondensing gas is discharged outside the system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、減圧下で原水を加
熱し発生した水蒸気を凝縮させて淡水を製造する真空蒸
発式淡水化装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum evaporation type desalination apparatus for producing raw water by heating raw water under reduced pressure and condensing generated steam.

【0002】[0002]

【従来の技術】真空蒸発式淡水化装置、特に太陽熱や廃
熱などを利用して淡水化を行う真空蒸発式淡水化装置で
は、これまで装置内を真空にし、また、原水に含まれる
不凝縮性ガスや、装置内に漏れ込む空気等の不凝縮性ガ
スを排出(抽気)する手段として、通常真空ポンプが用
いられている。しかしながら、不凝縮性ガスの排出に真
空ポンプを用いる方法は下記のような問題点があった。
2. Description of the Related Art In a vacuum evaporation type desalination apparatus, particularly in a vacuum evaporation type desalination apparatus which performs desalination using solar heat or waste heat, the inside of the apparatus has been evacuated and the non-condensation contained in raw water has been used. As means for discharging (bleeding) non-condensable gas such as non-condensable gas or air leaking into the apparatus, a vacuum pump is usually used. However, the method using a vacuum pump for discharging non-condensable gas has the following problems.

【0003】真空蒸発式淡水化装置の装置内は、比較
的水蒸気分圧、即ち水蒸気の比率が高く、通常の真空ポ
ンプでは使用不能或いは負担が大きい。また、真空ポン
プ内に水が溜まり易く、水抜き等の作業を頻繁に行う必
要がある。
The inside of a vacuum evaporation type desalination apparatus has a relatively high water vapor partial pressure, that is, a ratio of water vapor, and cannot be used with a normal vacuum pump or the load is large. Further, water easily accumulates in the vacuum pump, and it is necessary to frequently perform operations such as drainage.

【0004】真空ポンプを駆動するための動力には、
通常電力が必要であり、熱を淡水化の直接の駆動力とし
ている蒸発式の淡水化装置においては、補機類の中でも
真空ポンプの負荷が大きい。
The power for driving the vacuum pump includes:
In an evaporative desalination apparatus that normally requires electric power and uses heat as a direct driving force for desalination, the load of a vacuum pump is large among auxiliary equipment.

【0005】また、真空ポンプは、分解清掃や油の交
換など、定期的な保守点検や交換を必要とする。
[0005] Further, the vacuum pump requires regular maintenance and inspection and replacement such as disassembly cleaning and oil replacement.

【0006】上記〜の問題は、特に淡水化装置を無
人で長時間運転しようとすると深刻な問題となる。ま
た、太陽熱などを駆動力とする淡水化装置では、太陽電
池などで発電した電力で装置が必要とする電力を賄うた
め、装置が消費する電力の削減は大きな課題となる。
[0006] The above-mentioned problems become serious problems especially when the desalination apparatus is to be operated unattended for a long time. Further, in a desalination apparatus using solar heat or the like as a driving force, the power generated by a solar cell or the like can cover the power required by the apparatus, and thus reducing the power consumed by the apparatus is a major issue.

【0007】真空ポンプを用いずに抽気を行う方法とし
ては、エゼクタ装置による排出が考えられる。しかし、
真空蒸発式淡水化装置の装置内の圧力は大気圧の1/1
0ほどであり、この装置内圧力から大気圧にまでエゼク
タ装置で不凝縮性ガスを排出しようとすると、下記のよ
うな問題がある。
As a method of performing bleeding without using a vacuum pump, discharge by an ejector device can be considered. But,
The pressure inside the vacuum evaporation type desalination unit is 1/1 of atmospheric pressure
When the non-condensable gas is exhausted by the ejector device from the internal pressure of the device to the atmospheric pressure, the following problem occurs.

【0008】液エゼクタであれば、流体を駆動するた
めの電力、駆動するための流体の流量等が大きくなる。
In the case of a liquid ejector, the power for driving the fluid, the flow rate of the fluid for driving, and the like become large.

【0009】蒸気エゼクタは、高圧蒸気を必要とし、
排出ガスの取扱や給水が問題となる。
[0009] The steam ejector requires high-pressure steam,
Handling of exhaust gas and water supply are problematic.

【0010】[0010]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたもので,装置内の不凝縮性ガスの排出に真
空ポンプを用いることなく、安価で信頼性の高い不凝縮
性ガス排出手段を具備する真空蒸発式淡水化装置を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has been made inexpensive and highly reliable non-condensable gas without using a vacuum pump for discharging the non-condensable gas in the apparatus. It is an object of the present invention to provide a vacuum evaporation type desalination apparatus having a discharge means.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、熱源から直接又は間接に供給
される熱で、減圧下で原水を加熱し、水蒸気を発生させ
該水蒸気を凝縮して淡水を製造する蒸発蒸留器を備え、
該製造された淡水若しくは濃縮原水或いは原水を装置外
に排出する排液手段を1以上備えた真空蒸発式淡水化装
置において、装置内の不凝縮性ガスを収集する抽気手段
と、該抽気手段で収集された不凝縮性ガスを大気圧以下
で貯留する抽気タンクを設けると共に、排液手段を用い
て該抽気タンクを大気圧以上若しくは大気圧程度まで加
圧する加圧手段を設け、抽気タンク内の不凝縮性ガスを
排出する場合、加圧手段で該抽気タンク内を加圧して、
該不凝縮性ガスを装置外に排出することを特徴とする。
Means for Solving the Problems To solve the above problems, the invention according to claim 1 is to heat raw water under reduced pressure with heat supplied directly or indirectly from a heat source to generate steam and generate the steam. Equipped with an evaporative still to produce fresh water by condensing
In a vacuum evaporation type desalination apparatus provided with at least one drainage means for discharging the produced fresh water or concentrated raw water or raw water to the outside of the apparatus, a bleeding means for collecting non-condensable gas in the apparatus, and a bleeding means Along with providing an bleeding tank for storing the collected non-condensable gas at or below the atmospheric pressure, and providing a pressurizing means for pressurizing the bleeding tank to at least the atmospheric pressure or about the atmospheric pressure using a drainage means, When discharging the non-condensable gas, the inside of the bleeding tank is pressurized by pressurizing means,
The non-condensable gas is discharged outside the apparatus.

【0012】上記のように抽気手段で集められた不凝縮
性ガスを大気圧以下で貯留する抽気タンクに貯留するの
で、大気圧以下に減圧されている装置内の不凝縮性ガス
を抽気するための抽気手段の動力が小さくて済む。ま
た、該抽気タンク内を加圧して不凝縮性ガスを外部に排
出するための加圧手段に真空蒸発式淡水化装置が備えて
いる排液手段を用いるので、抽気タンク内に貯留された
不凝縮性ガスを排出するのに格別の手段を別途設ける必
要がない。
As described above, the non-condensable gas collected by the bleeding means is stored in the bleed tank which stores the gas at a pressure lower than the atmospheric pressure. The power of the bleed means can be small. Further, since the drainage means provided in the vacuum evaporation type desalination apparatus is used as the pressurizing means for pressurizing the inside of the bleeding tank and discharging the non-condensable gas to the outside, the non-condensable gas stored in the bleeding tank is used. There is no need to provide any special means for discharging the condensable gas.

【0013】請求項2に記載の発明は、請求項1に記載
の淡水化装置において、装置内の不凝縮性ガスを収集す
る抽気手段が流体で駆動されるエゼクタであることを特
徴とする。
According to a second aspect of the present invention, in the desalination apparatus according to the first aspect, the bleeding means for collecting the non-condensable gas in the apparatus is an ejector driven by a fluid.

【0014】上記のように装置内の不凝縮性ガスを収集
する抽気手段に流体で駆動されるエゼクタを用いても、
該エゼクタで抽気した不凝縮性ガスを内部が大気圧以下
である抽気タンク内に吐出するので、該エゼクタを駆動
するための流体の流量及び動力が少なくて済む。
As described above, even if an ejector driven by a fluid is used for the bleeding means for collecting non-condensable gas in the apparatus,
Since the non-condensable gas extracted by the ejector is discharged into the extraction tank whose inside is equal to or lower than the atmospheric pressure, the flow rate and power of the fluid for driving the ejector can be reduced.

【0015】請求項3に記載の発明は、請求項1又は2
に記載の淡水化装置において、蒸発蒸留器の高温部の不
凝縮性ガスは抽気管を通して直接抽気タンクに導かれる
ようになっていることを特徴とする。
[0015] The invention described in claim 3 is the first or second invention.
The non-condensable gas in the high temperature part of the evaporative distillation apparatus is directly guided to the extraction tank through the extraction pipe.

【0016】上記のように蒸発蒸留器の高温部の不凝縮
性ガスは抽気管で直接抽気タンクに導かれるので、その
分抽気手段の動力が少なくなる。
As described above, the non-condensable gas in the high-temperature portion of the evaporator is directly guided to the extraction tank by the extraction pipe, so that the power of the extraction means is reduced accordingly.

【0017】請求項4に記載の発明は、請求項1乃至3
のいずれか1項に記載の淡水化装置において、抽気タン
クは、排液手段の排液経路の途中に、該排液経路の一部
として設けられると共に、不凝縮性ガスの排出は、排液
と同一の経路で行うことを特徴とする。
The invention described in claim 4 is the first to third aspects of the present invention.
In the desalination apparatus according to any one of the above, the bleeding tank is provided in the drainage path of the drainage means as a part of the drainage path, and discharge of the non-condensable gas is performed by drainage. Is performed on the same route.

【0018】上記のように抽気タンクを排液経路の途中
に、該排液経路の一部として設け、不凝縮性ガスの排出
は排液と同一の経路で行うので、不凝縮性ガスの排出に
別途排出経路を設ける必要がなく排液排ガス経路の構成
が簡単となる。
As described above, the bleeding tank is provided in the middle of the drainage path as a part of the drainage path, and the discharge of the noncondensable gas is performed through the same path as the drainage. Therefore, it is not necessary to provide a separate discharge path, and the configuration of the discharge exhaust gas path is simplified.

【0019】請求項5に記載の発明は、請求項2乃至4
のいずれか1項に記載の淡水化装置において、エゼクタ
を駆動するエゼクタ駆動手段及び/又は抽気タンクを加
圧する加圧手段は、淡水を排出するための淡水排液ポン
プであることを特徴とする。
The invention described in claim 5 is the invention according to claims 2 to 4
In the desalination apparatus according to any one of the above, the ejector driving means for driving the ejector and / or the pressurizing means for pressurizing the bleeding tank is a freshwater drainage pump for discharging freshwater. .

【0020】上記のようにエゼクタ駆動手段及び/又は
抽気タンクを加圧する加圧手段に淡水を排出する淡水排
液ポンプを用いることにより、エゼクタ駆動手段及び/
又は加圧手段を別途設ける必要がないと共に、淡水を用
いるため不純物が少なく動作不良の原因になりにくく、
逆流した場合でも装置内の汚染を最小限にとどめること
ができる。
As described above, the ejector driving means and / or the pressurizing means for pressurizing the bleeding tank is provided with the fresh water drainage pump for discharging fresh water, so that the ejector driving means and / or
Or, it is not necessary to separately provide a pressurizing means, and since fresh water is used, impurities are less likely to cause a malfunction,
Even in the case of backflow, contamination in the apparatus can be minimized.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて説明する。図1は本発明に係る真空蒸発式
淡水化装置の構成例を示す図である。図1において、1
0は減圧下で原水を加熱し、水蒸気を発生させ該水蒸気
を凝縮して淡水(蒸留水)を製造する蒸発蒸留器であ
り、該蒸発蒸留器10は、熱源から直接又は間接に供給
される熱で原水を加熱し水蒸気を発生するようになって
いる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration example of a vacuum evaporation type desalination apparatus according to the present invention. In FIG. 1, 1
Reference numeral 0 denotes an evaporative evaporator that heats raw water under reduced pressure, generates steam, and condenses the steam to produce fresh water (distilled water). The evaporative evaporator 10 is supplied directly or indirectly from a heat source. The raw water is heated by heat to generate steam.

【0022】また、11は凝縮器、12は淡水タンクで
あり、蒸発蒸留器10で発生し凝縮して得られた淡水
(蒸留水)は淡水流路13を通って淡水タンクに流れ込
む。また、蒸発蒸留器10で凝縮しなかった水蒸気は蒸
気流路14を通って凝縮器11に流れ込み、該凝縮器1
1で凝縮され淡水となって淡水流路15を通って淡水タ
ンク12に流れ込む。
Further, reference numeral 11 denotes a condenser, and 12 denotes a fresh water tank. Fresh water (distilled water) generated and condensed in the evaporator 10 flows into the fresh water tank through a fresh water passage 13. The steam not condensed in the evaporative distillation apparatus 10 flows into the condenser 11 through the vapor flow path 14 and is condensed.
The fresh water is condensed at 1 and flows into the fresh water tank 12 through the fresh water flow path 15.

【0023】また、16は真空蒸発式淡水化装置の運転
中内部が減圧下にあり、不凝縮性ガスを大気圧以下で貯
留する抽気タンクであり、該抽気タンク16には蒸発蒸
留器10の高温部が抽気管17及び抽気制御弁18を介
して接続されている。凝縮器11内の不凝縮性ガス及び
淡水タンク12内の不凝縮性ガスは、それぞれ不凝縮性
ガス流路19及び抽気制御弁20、不凝縮性ガス流路2
1及び抽気制御弁22を通ってエゼクタ23により抽気
され、抽気タンク16内に吐出されるようになってい
る。
Reference numeral 16 denotes a bleeding tank for storing a noncondensable gas at a pressure lower than the atmospheric pressure during operation of the vacuum evaporation type desalination apparatus. The high temperature section is connected via an extraction pipe 17 and an extraction control valve 18. The non-condensable gas in the condenser 11 and the non-condensable gas in the fresh water tank 12 are supplied to the non-condensable gas passage 19, the bleed control valve 20, and the non-condensable gas passage 2, respectively.
The air is extracted by the ejector 23 through the air extraction control valve 22 and the air extraction control valve 22, and is discharged into the air extraction tank 16.

【0024】24はエゼクタ23を駆動するエゼクタ駆
動ポンプであり、25は抽気タンク16内に集められた
不凝縮性ガスを排気するための排気弁、26は抽気タン
ク16内の圧力を検出する圧力計、27は抽気タンク1
6内に溜まる淡水の水位を検出する水位計、28は抽気
タンク16内を加圧するための加圧弁である。淡水タン
ク12内には淡水排水路29が接続され、該淡水排水路
29に淡水排液ポンプ30及び排液弁31が接続されて
いる。
Reference numeral 24 denotes an ejector drive pump for driving the ejector 23; 25, an exhaust valve for exhausting non-condensable gas collected in the bleed tank 16; 26, a pressure for detecting the pressure in the bleed tank 16; 27, bleed tank 1
Reference numeral 28 denotes a pressurizing valve for pressurizing the inside of the bleeding tank 16. A freshwater drainage channel 29 is connected to the freshwater tank 12, and a freshwater drainage pump 30 and a drainage valve 31 are connected to the freshwater drainage channel 29.

【0025】蒸発蒸留器10の高温部(高圧部)の不凝
縮性ガスは抽気管17及び抽気制御弁18を介して直接
抽気タンク16に導かれるようになっている。また、淡
水タンク12に連通する蒸発蒸留器10の低温部及び凝
縮器11の不凝縮性ガスはエゼクタ23によって捕集さ
れ、抽気タンク16内に吐出される。なお、エゼクタ2
3はエゼクタ駆動ポンプ24で抽気タンク16の淡水を
給水することにより駆動される。
The non-condensable gas in the high-temperature section (high-pressure section) of the evaporator 10 is directly guided to the bleed tank 16 via the bleed pipe 17 and the bleed control valve 18. Further, the low-temperature portion of the evaporative evaporator 10 communicating with the fresh water tank 12 and the non-condensable gas of the condenser 11 are collected by the ejector 23 and discharged into the extraction tank 16. In addition, ejector 2
Numeral 3 is driven by supplying fresh water from the bleed tank 16 with an ejector drive pump 24.

【0026】装置内の不凝縮性ガスは上記のように抽気
タンク16に集められ、抽気タンク16内に不凝縮性ガ
スが一定量溜まったと判断された場合(抽気タンク内圧
が一定以上になったとき、一定時間おき、蒸発蒸留器1
0に供給される原水供給量が一定以上になったとき、淡
水タンク12に淡水が一定以上溜まったときなど)、排
水排液ポンプ30を運転し、加圧弁28を開くことによ
り、抽気タンク16内が加圧され、該抽気タンク16内
に集められた不凝縮性ガスが、抽気タンク16内の淡水
と混合された状態で排気弁25を通して、点線に示す淡
水排水路29’を通って排出される。
The non-condensable gas in the apparatus is collected in the bleed tank 16 as described above, and when it is determined that a certain amount of the non-condensable gas has accumulated in the bleed tank 16 (when the internal pressure of the bleed tank has exceeded a certain level). Occasionally, at regular intervals, the evaporative evaporator 1
When the supply amount of raw water supplied to the water tank 0 reaches a certain level or more, or when a certain amount of fresh water accumulates in the fresh water tank 12), the drainage pump 30 is operated and the pressurizing valve 28 is opened. The inside of the bleeding tank 16 is pressurized, and the non-condensable gas collected in the bleeding tank 16 is mixed with the fresh water in the bleeding tank 16 and discharged through the exhaust valve 25 and the freshwater drainage passage 29 ′ indicated by a dotted line. Is done.

【0027】抽気タンク16は上記のように真空蒸発式
淡水化装置の淡水化運転中は、減圧下にあるので、凝縮
器11や淡水タンク12内の不凝縮性ガスを抽気するた
めにエゼクタに流す流体が少なくて済む(容量の少ない
エゼクタで済む)。また、抽気タンク16の加圧には淡
水排液ポンプ30の吐出圧を用いるので、抽気タンク1
6内に集められた不凝縮性ガスを排出するために、新た
に追加される機器が少なくて済む。
Since the bleeding tank 16 is under reduced pressure during the desalination operation of the vacuum evaporation type desalination apparatus as described above, the ejector is used to extract noncondensable gas in the condenser 11 and the fresh water tank 12 to the ejector. A small amount of fluid is required (an ejector with a small capacity is sufficient). Further, since the discharge pressure of the fresh water drainage pump 30 is used for pressurizing the bleeding tank 16, the bleeding tank 1
Since the non-condensable gas collected in 6 is discharged, the number of newly added devices is small.

【0028】上記真空蒸発式淡水化装置においては、加
圧弁28は淡水の排水と不凝縮性ガスの排出とを分離す
るために設けているが、淡水を排出する排液弁31と加
圧弁28を併せて3方向弁としてもよく、液封で代用し
てもよく、また無くてもよい。また、この場合、抽気タ
ンク16の液面の低下を水位計27で検知することで、
不凝縮性ガスが蓄積されていることを知ることができ
る。
In the above-mentioned vacuum evaporation type desalination apparatus, the pressurizing valve 28 is provided to separate the drainage of fresh water and the discharge of non-condensable gas, but the drain valve 31 for discharging fresh water and the pressurizing valve 28 are provided. May be combined as a three-way valve, and may be replaced with a liquid ring, or may be omitted. Also, in this case, by detecting a drop in the liquid level of the bleeding tank 16 with the water level gauge 27,
It can be known that non-condensable gas is accumulated.

【0029】抽気タンク16内の不凝縮性ガスだけを排
出するには、抽気タンク16内を加圧し、上昇する抽気
タンク16内の液面を検知しながら、液面が抽気タンク
16の上部に達したら排出を止めるか、図2に示すよう
に、エアロックタンク33を設けてエアロック33aを
形成し、抽気タンク16から出てきた淡水を再度吸わせ
るのがよい。なお、図2において、34は排気弁であ
る。この場合エアロックタンク33のレベルスイッチ3
5が動作するまで不凝縮性ガスと淡水を吐き出した後、
淡水排液ポンプ30を止め、レベルスイッチ35が復帰
した後、排気弁34を閉める。
In order to discharge only the non-condensable gas in the bleeding tank 16, the inside of the bleeding tank 16 is pressurized and the liquid level rises above the bleeding tank 16 while detecting the rising liquid level in the bleeding tank 16. When it reaches, it is preferable to stop the discharge or, as shown in FIG. 2, provide an air lock tank 33 to form an air lock 33a and allow fresh water coming out of the bleed tank 16 to be sucked again. In FIG. 2, reference numeral 34 denotes an exhaust valve. In this case, the level switch 3 of the airlock tank 33
After exhaling non-condensable gas and fresh water until 5 works,
After the freshwater drainage pump 30 is stopped and the level switch 35 returns, the exhaust valve 34 is closed.

【0030】また、淡水の混じった不凝縮性ガスを淡水
排水路29(点線で示す淡水排水路29’)に流しても
よい。この場合、淡水排水路29に空気が混入すること
になるが、必要であれば気液分離器を外部に設ければよ
い。
The non-condensable gas mixed with fresh water may flow into the fresh water drain 29 (fresh water drain 29 'shown by a dotted line). In this case, air is mixed into the freshwater drainage channel 29, but if necessary, a gas-liquid separator may be provided outside.

【0031】淡水排液ポンプ30が逆流不可能なポンプ
(ギアポンプ、ダイアフラムポンプ等)であれば、淡水
排液ポンプ30に並列にバイパス弁32を取り付ける。
If the freshwater drainage pump 30 is a non-backflowable pump (such as a gear pump or a diaphragm pump), a bypass valve 32 is mounted in parallel with the freshwater drainage pump 30.

【0032】抽気タンク16に送り込む液、及びエゼク
タ23などの駆動流体としては、淡水の代わりに濃縮原
水、原水等を用いてもよい(但し、不純物が少なくて動
作不良の原因となりにくく、逆流した場合でも、装置内
の汚染等のトラブルを最小限にとどめるには淡水がよ
い)。蒸発蒸留器10、凝縮器11の抽気個所には特に
限定しない。例えば蒸発蒸留器10の集熱系等でもよ
い。
As the liquid to be fed into the bleeding tank 16 and the driving fluid for the ejector 23 and the like, concentrated raw water or raw water may be used instead of fresh water. Even in this case, fresh water is preferable to minimize troubles such as contamination in the apparatus.) There is no particular limitation on the locations of the bleeding points of the evaporative distillation apparatus 10 and the condenser 11. For example, the heat collection system of the evaporative distillation apparatus 10 may be used.

【0033】抽気タンク16内の圧力が大気圧まで上昇
したことを検知するには、圧力計26で抽気タンク16
内の圧力を検出するのがよいが、淡水排液ポンプ30の
運転後一定の時間が経過したことを以って大気圧に達し
たと判断してもよい。抽気タンク16が1個のみだと、
排気中は不凝縮性ガスの抽気ができないので、2系統設
けて交互に使用するなどの方法も考えられる。
To detect that the pressure in the bleed tank 16 has risen to atmospheric pressure, the pressure gauge 26
Although it is preferable to detect the internal pressure, it may be determined that the atmospheric pressure has been reached when a certain time has elapsed after the operation of the freshwater drainage pump 30. If there is only one bleeding tank 16,
Since the non-condensable gas cannot be extracted during the exhaust, a method of alternately using two systems by providing two systems is also conceivable.

【0034】図3は本発明に係る真空蒸発式淡水化装置
の構成例を示す図である。本真空蒸発式淡水化装置で
は、サイクル内の蒸気流によって凝縮器11に集められ
た不凝縮性ガス(淡水タンク12内の不凝縮性ガスも不
凝縮性ガス流路36を通って凝縮器11に集められる)
を抽気タンク16に不凝縮性ガス流路19及び逆止弁3
7を通してエゼクタ23で捕集して導いている。エゼク
タ23はエゼクタ駆動ポンプ24により淡水タンク12
内の淡水によって駆動される。該エゼクタ23を駆動し
た淡水は、淡水排液ポンプ30を逆流して淡水タンク1
2に戻る。なお、38はエゼクタ23とエゼクタ駆動ポ
ンプ24の間に配置された逆止弁である。
FIG. 3 is a diagram showing a configuration example of a vacuum evaporation type desalination apparatus according to the present invention. In the present vacuum evaporation type desalination apparatus, the non-condensable gas collected in the condenser 11 by the steam flow in the cycle (the non-condensable gas in the fresh water tank 12 also passes through the non-condensable gas flow path 36 and the condenser 11 Collected in)
Into the bleeding tank 16 and the non-condensable gas flow path 19 and the check valve 3
7 and are collected and guided by the ejector 23. The ejector 23 is connected to the freshwater tank 12 by an ejector drive pump 24.
Driven by freshwater inside. The freshwater that has driven the ejector 23 flows back through the freshwater drainage pump 30 and the freshwater tank 1
Return to 2. Reference numeral 38 denotes a check valve disposed between the ejector 23 and the ejector drive pump 24.

【0035】本真空蒸発式淡水化装置では、抽気タンク
16を加圧する加圧手段は淡水排液ポンプ30であり、
また抽気タンク16を淡水排水路29の一部として構成
しているので、装置から淡水を排出するときに、同時に
抽気タンク16内に集められた不凝縮性ガスも排出され
る。
In this vacuum evaporation type desalination apparatus, the pressurizing means for pressurizing the bleeding tank 16 is a fresh water drainage pump 30,
In addition, since the bleeding tank 16 is configured as a part of the freshwater drainage channel 29, the noncondensable gas collected in the bleeding tank 16 is simultaneously discharged when the freshwater is discharged from the apparatus.

【0036】本真空蒸発式淡水化装置の運転方法を、以
下に述べる。抽気タンク16内に不凝縮性ガスを集める
場合、エゼクタ駆動ポンプ24を運転する。これによ
り、装置内の不凝縮性ガスは抽気タンク16内に集めら
れる。エゼクタ23を駆動した液(淡水)は上記のよう
に淡水排液ポンプ30を逆流して淡水タンク12に戻
る。
An operation method of the vacuum evaporation type desalination apparatus will be described below. When collecting non-condensable gas in the bleeding tank 16, the ejector drive pump 24 is operated. Thereby, the non-condensable gas in the device is collected in the bleeding tank 16. The liquid (fresh water) that has driven the ejector 23 flows back through the fresh water drain pump 30 and returns to the fresh water tank 12 as described above.

【0037】抽気タンク16内に不凝縮性ガスが集まる
につれ、該抽気タンク16内の圧力が上昇し液面が降下
し、水位計27が動作した場合、淡水排液ポンプ30を
運転して、抽気タンク16内を加圧し、排出弁39を開
き、不凝縮性ガスを淡水と一緒に排出する。この場合、
排出弁は内圧が上昇するまで開かなくてもよい。また、
排出弁に代えて逆止弁を用いてもよい。
As the non-condensable gas collects in the bleeding tank 16, the pressure in the bleeding tank 16 rises and the liquid level drops, and when the water level gauge 27 operates, the fresh water drainage pump 30 is operated. The inside of the bleeding tank 16 is pressurized, the discharge valve 39 is opened, and the non-condensable gas is discharged together with the fresh water. in this case,
The discharge valve does not have to be opened until the internal pressure rises. Also,
A check valve may be used instead of the discharge valve.

【0038】上記淡水の排出に伴い、淡水タンク12内
の液面が降下する。淡水タンク12内の液面が規定位置
まで降下したことを水位計40で検知すると、排出弁3
9を閉じ、淡水排液ポンプ30を停止する。この時、淡
水タンク12から抽気タンク16までの淡水排水路29
等にある淡水量は常に一定であるので、前回排出したと
きから淡水タンク12に貯留された淡水量に相当する淡
水が、装置外に排出されたことになる。
As the fresh water is discharged, the liquid level in the fresh water tank 12 drops. When the water level gauge 40 detects that the liquid level in the fresh water tank 12 has dropped to a specified position, the discharge valve 3
9 is closed, and the freshwater drainage pump 30 is stopped. At this time, the freshwater drainage channel 29 from the freshwater tank 12 to the bleeding tank 16
And so on, the fresh water amount is always constant, so that the fresh water corresponding to the fresh water amount stored in the fresh water tank 12 from the previous discharge is discharged outside the apparatus.

【0039】抽気タンク16と淡水排液ポンプ30の間
には、液(淡水)の戻り量を調整する調整弁や、液封を
設けたりしてもよい。淡水排液ポンプ30が逆流させに
くいポンプ(ダイアフラムポンプやギアポンプ等)の場
合、バイパス弁を設けてもよい。排水中に若干の空気が
混入することになるので、必要であれば、気液分離器を
装置外に設けてもよい。またはエゼクタ駆動ポンプ24
と淡水排液ポンプ30を兼用してもよい。
Between the bleeding tank 16 and the fresh water drainage pump 30, an adjusting valve for adjusting the return amount of the liquid (fresh water) or a liquid seal may be provided. If the freshwater drainage pump 30 is a pump (diaphragm pump, gear pump, or the like) that does not easily flow backward, a bypass valve may be provided. Since a small amount of air will be mixed into the wastewater, a gas-liquid separator may be provided outside the apparatus if necessary. Or ejector drive pump 24
And the freshwater drainage pump 30 may also be used.

【0040】図4は本発明に係る真空蒸発式淡水化装置
の構成例を示す図である。本真空蒸発式淡水化装置で
は、蒸発蒸留器10の高温部(高圧部)の不凝縮性ガス
は抽気管17で直接抽気タンク16に導き、蒸発蒸留器
10の低温部及び凝縮器11の不凝縮性ガスは不凝縮性
ガス流路19及び逆止弁37を通してエゼクタ23で捕
集して抽気タンク16内に吐出している。エゼクタ23
の駆動流体には淡水タンク12内の淡水を用い、淡水排
液ポンプ30により駆動するようになっている。淡水排
水路29に3方弁43を設け、該3方弁43の1端と淡
水タンク12の間に淡水戻流路44を設けている。
FIG. 4 is a diagram showing a configuration example of a vacuum evaporation type desalination apparatus according to the present invention. In the present vacuum evaporative desalination apparatus, the non-condensable gas in the high-temperature part (high-pressure part) of the evaporative evaporator 10 is led directly to the bleed tank 16 through the bleed pipe 17, The condensable gas is collected by the ejector 23 through the non-condensable gas channel 19 and the check valve 37 and is discharged into the bleeding tank 16. Ejector 23
The fresh water in the fresh water tank 12 is used as the drive fluid for the, and is driven by the fresh water drainage pump 30. A three-way valve 43 is provided in the freshwater drainage channel 29, and a freshwater return flow path 44 is provided between one end of the three-way valve 43 and the freshwater tank 12.

【0041】抽気タンク16には高水位を検出する高水
位計41と低水位を検出する低水位計42を設けてい
る。抽気タンク16内に不凝縮性ガスを集める場合、3
方弁43で抽気タンク16への淡水排水路29を閉鎖
し、淡水排液ポンプ30によりエゼクタ23に淡水を送
り、エゼクタ23を駆動する。これにより、装置内の不
凝縮性ガスはエゼクタ23で抽気され、抽気タンク16
内に吐出される。エゼクタ23を駆動した液(淡水)は
3方弁43及び淡水戻流路44を通って淡水タンク12
に戻る。
The bleeding tank 16 is provided with a high water level gauge 41 for detecting a high water level and a low water level gauge 42 for detecting a low water level. When collecting non-condensable gas in the bleeding tank 16, 3
The freshwater drainage path 29 to the bleeding tank 16 is closed by the direction valve 43, freshwater is sent to the ejector 23 by the freshwater drainage pump 30, and the ejector 23 is driven. As a result, the non-condensable gas in the device is bled by the ejector 23,
It is discharged into. The liquid (fresh water) that has driven the ejector 23 passes through the three-way valve 43 and the fresh water return flow path 44 and the fresh water tank 12
Return to

【0042】抽気タンク16内に不凝縮性ガスが集まる
につれ、該抽気タンク16内の圧力が上昇し液面が降下
し、低水位計42が動作した場合、3方弁43で淡水戻
流路44を閉鎖し、淡水排液ポンプ30の吐出液を抽気
タンク16へ送り込む。排出弁39を開くことにより、
抽気タンク16内の不凝縮性ガスは排気される。液面が
上昇し高水位計41が動作したら排出弁39を閉じ、3
方弁43で淡水戻流路44を閉鎖する。これにより上記
と同様の動作により抽気タンク16内に装置内の不凝縮
性ガスが集められる。
As the non-condensable gas collects in the bleeding tank 16, the pressure in the bleeding tank 16 rises and the liquid level drops, and when the low water level gauge 42 operates, the three-way valve 43 operates the fresh water return flow path. 44 is closed, and the liquid discharged from the freshwater drainage pump 30 is sent to the bleeding tank 16. By opening the discharge valve 39,
The non-condensable gas in the bleed tank 16 is exhausted. When the liquid level rises and the high water level gauge 41 operates, the discharge valve 39 is closed, and
The fresh water return flow path 44 is closed by the direction valve 43. Thereby, the non-condensable gas in the apparatus is collected in the bleeding tank 16 by the same operation as described above.

【0043】また、淡水タンク12の淡水を排出する場
合は、3方弁43で淡水戻流路44を閉鎖すると同時に
淡水排液ポンプ30を運転し、更に排出弁39を開くこ
とにより、抽気タンク16の不凝縮性ガスと淡水は排出
される。淡水の排出に伴い、淡水タンク12内の液面が
降下する。淡水タンク12内の液面が規定位置まで降下
したことを水位計40で検知すると、排出弁39を閉
じ、3方弁43で抽気タンク16への淡水排水路29を
閉鎖する。
To discharge fresh water from the fresh water tank 12, the three-way valve 43 closes the fresh water return flow path 44, and simultaneously operates the fresh water drain pump 30 and opens the discharge valve 39, thereby opening the fresh air tank. The 16 non-condensable gases and fresh water are discharged. As the fresh water is discharged, the liquid level in the fresh water tank 12 drops. When the water level gauge 40 detects that the liquid level in the freshwater tank 12 has dropped to the prescribed position, the discharge valve 39 is closed, and the three-way valve 43 closes the freshwater drainage passage 29 to the bleeding tank 16.

【0044】なお、上記真空蒸発式淡水化装置におい
て、各部の弁やポンプはそれに代わる手段で置き換えて
も構わない。例えば逆止弁と2方弁を置き換えたり、3
方弁と同一の作用を2方弁を組合せて構成してもよい。
In the above-mentioned vacuum evaporation type desalination apparatus, the valves and the pumps of the respective components may be replaced by alternative means. For example, replacing a two-way valve with a check valve,
The same operation as the one-way valve may be configured by combining the two-way valve.

【0045】図5は本発明に係る真空蒸発式淡水化装置
の構成例を示す図である。本真空蒸発式淡水化装置で
は、蒸発蒸留器10の低温部及び凝縮器11の不凝縮性
ガスは逆止弁37を通してエゼクタ23によって捕集さ
れ抽気タンク16に吐出している。なお、その他の蒸発
蒸留器10の低温部(淡水タンク12等を含む)などの
不凝縮性ガスは、蒸発濃縮サイクルの蒸気流によって、
全て凝縮器11に運ばれるようになっている。また、必
要があれば,蒸発蒸留器10の高温部(高圧部)の不凝
縮性ガスは、抽気配管によって抽気タンク16に直接送
ることもできる。46は淡水タンク12の高水位を検出
する高水位計、47は低水位を検出する低水位計であ
る。
FIG. 5 is a diagram showing a configuration example of a vacuum evaporation type desalination apparatus according to the present invention. In this vacuum evaporative desalination apparatus, the low-temperature portion of the evaporative still 10 and the non-condensable gas of the condenser 11 are collected by the ejector 23 through the check valve 37 and discharged to the bleed tank 16. The non-condensable gas such as the low-temperature portion (including the fresh water tank 12 and the like) of the other evaporative distillation apparatus 10 is generated by the vapor flow of the evaporative concentration cycle
All are transported to the condenser 11. If necessary, the non-condensable gas in the high-temperature section (high-pressure section) of the evaporator 10 can be sent directly to the bleed tank 16 through a bleed pipe. 46 is a high water level meter for detecting the high water level of the fresh water tank 12, and 47 is a low water level meter for detecting the low water level.

【0046】エゼクタ23の駆動液及び駆動源は、淡水
排液ポンプ30の吐出液(淡水)を用いている。ここで
の加圧手段としては、エゼクタ23の駆動液の戻りの制
御弁、即ち排出制御弁45を閉じることで、抽気タンク
16の内圧を上げ、不凝縮性ガスと、駆動液である淡水
と同時に排出逆止弁48を通して装置外に排出できる。
As the driving liquid and the driving source of the ejector 23, the discharge liquid (fresh water) of the fresh water drainage pump 30 is used. As the pressurizing means here, the control valve for returning the driving liquid of the ejector 23, that is, the discharge control valve 45 is closed to increase the internal pressure of the bleeding tank 16, and the non-condensable gas and the fresh liquid as the driving liquid At the same time, it can be discharged out of the apparatus through the discharge check valve 48.

【0047】上記構成の真空蒸発式淡水化装置の運転制
御は、例えば下記のように行えばよい。水位計27が、
抽気タンク16内の液面の低下を検知した場合、排出制
御弁45を閉じる。この時、エゼクタ23を通って送り
込まれる淡水により、抽気タンク16内は加圧される。
切換後、抽気タンク16内の圧力が大気圧以上になる
と、排出逆止弁48を通して不凝縮性ガスと、淡水が排
出される。
The operation control of the vacuum evaporation type desalination apparatus having the above configuration may be performed, for example, as follows. The water level gauge 27
When the lowering of the liquid level in the bleeding tank 16 is detected, the discharge control valve 45 is closed. At this time, the inside of the bleed tank 16 is pressurized by fresh water sent through the ejector 23.
After the switching, when the pressure in the bleeding tank 16 becomes equal to or higher than the atmospheric pressure, the non-condensable gas and the fresh water are discharged through the discharge check valve 48.

【0048】なお、この時淡水の戻り配管49に流量制
限手段(オリフィス等)を設けると、抽気中の抽気タン
ク16内の圧力を上昇させ、抽気タンク16の容積を小
さくすることができる。この場合、流量制限手段の容量
は、エゼクタ23の排気能力とポンプの特性とから導か
れる。抽気タンク16の抽気中の最大圧力において、相
当する流量を戻すことのできる程度の容量とするとよ
い。
At this time, if a flow restricting means (orifice or the like) is provided in the return pipe 49 of the fresh water, the pressure in the bleeding tank 16 during bleeding can be increased and the volume of the bleeding tank 16 can be reduced. In this case, the capacity of the flow restricting means is derived from the exhaust capacity of the ejector 23 and the characteristics of the pump. At the maximum pressure during the bleeding of the bleeding tank 16, the capacity should be such that the corresponding flow rate can be returned.

【0049】また、例えば抽気タンク16内の圧力を圧
力計26等で計測し、これに応じて排出制御弁45を開
度制御することにより、抽気タンク16内への不凝縮性
ガスの蓄積量を適宜制御することでもできる。具体的に
は、例えば次のように運転(制御)を行えばよい。例え
ばエゼクタ23の排気能力に合わせ、抽気タンク16内
の圧力が、設定値となるように排出制御弁45の開度を
開度調整する(圧力が上昇した場合は開き、下降した場
合は閉じる)。ここで、設定圧力で液面の低下が水位計
で検出された場合、不凝縮性ガスの限界量蓄積されたと
判断し、排出制御弁45を全閉し、不凝縮性ガスと淡水
とを排出する。これにより、エゼクタの駆動流量を最小
としながら、抽気タンクの容積を最小とすることができ
る。
Also, for example, the pressure in the bleeding tank 16 is measured by the pressure gauge 26 or the like, and the opening of the discharge control valve 45 is controlled in accordance with the measured pressure. Can also be controlled appropriately. Specifically, for example, the operation (control) may be performed as follows. For example, the opening degree of the discharge control valve 45 is adjusted so that the pressure in the bleeding tank 16 becomes a set value in accordance with the exhaust capacity of the ejector 23 (opens when the pressure increases, closes when the pressure decreases). . Here, when a drop in the liquid level is detected by the water level meter at the set pressure, it is determined that the limit amount of the non-condensable gas has been accumulated, the discharge control valve 45 is fully closed, and the non-condensable gas and fresh water are discharged. I do. Thereby, the volume of the bleeding tank can be minimized while the drive flow rate of the ejector is minimized.

【0050】真空蒸発式淡水化装置を図5に示すように
構成することにより、装置を構成する機器の数を全体的
に減らして装置の低コスト化を図ることができる。
By constructing the vacuum evaporation type desalination apparatus as shown in FIG. 5, the number of devices constituting the apparatus can be reduced as a whole and the cost of the apparatus can be reduced.

【0051】また、図1、3、4、5では淡水タンク1
2や抽気タンク16等を別置きに構成しているが、生
産、設計上は淡水タンク12や抽気タンク16、更に図
示しない原水タンクを蒸発蒸留器10や凝縮器11と一
体装置として構成してもよい。
Also, in FIGS.
2 and the bleeding tank 16 and the like are separately provided, but for production and design, the fresh water tank 12, the bleeding tank 16, and a raw water tank (not shown) are configured as an integrated device with the evaporative distillation unit 10 and the condenser 11. Is also good.

【0052】また、淡水排液ポンプ30に好ましい特性
は、抽気中は低ヘッドでもエゼクタ23の駆動に必要な
大流量の運転を行い、排出中は低流量でも、大気相当ま
での高ヘッドで排水の運転ができるものがよい。例え
ば、遠心渦巻きポンプなどが好ましい。
Further, the preferable characteristics of the freshwater drainage pump 30 are that a large flow required for driving the ejector 23 is operated even when the head is low during bleeding. The one that can drive for is good. For example, a centrifugal vortex pump or the like is preferable.

【0053】上記実施形態例で用いる原水とは、海水、
地下水等の塩や不純物を多く含んだ水を指す。
The raw water used in the above embodiment is seawater,
Refers to water containing a lot of salt and impurities such as groundwater.

【0054】[0054]

【発明の効果】以上、説明したように各請求項によれ
ば、下記のような優れた効果が得られる。
As described above, according to each claim, the following excellent effects can be obtained.

【0055】請求項1に記載の発明によれば、抽気手段
で集められた不凝縮性ガスを大気圧以下の抽気タンクに
貯留するので、大気圧以下に減圧されている装置内の不
凝縮性ガスを抽気するための抽気手段の動力が小さくて
済む。また、該抽気タンク内を加圧して不凝縮性ガスを
外部に排出するための加圧手段に真空蒸発式淡水化装置
が備えている排液手段を用いるので、抽気タンク内に貯
留された不凝縮性ガスを排出するのに格別の手段を別途
設ける必要がない。
According to the first aspect of the present invention, the non-condensable gas collected by the bleeding means is stored in the bleeding tank at a pressure lower than the atmospheric pressure. The power of the bleeding means for bleeding gas is small. Further, since the drainage means provided in the vacuum evaporation type desalination apparatus is used as the pressurizing means for pressurizing the inside of the bleeding tank and discharging the non-condensable gas to the outside, the non-condensable gas stored in the bleeding tank is used. There is no need to provide any special means for discharging the condensable gas.

【0056】請求項2に記載の発明によれば、装置内の
不凝縮性ガスを収集する抽気手段にエゼクタを用いて
も、該エゼクタで抽気した不凝縮性ガスを内部が大気圧
以下である抽気タンク内に吐出させるので、該エゼクタ
を駆動するための流体の流量及び動力が少なくて済む。
According to the second aspect of the present invention, even if an ejector is used as the bleeding means for collecting the noncondensable gas in the apparatus, the inside of the noncondensable gas extracted by the ejector is lower than the atmospheric pressure. Since the fluid is discharged into the bleeding tank, the flow rate and power of the fluid for driving the ejector can be reduced.

【0057】請求項3に記載の発明によれば、蒸発蒸留
器の高温部の不凝縮性ガスは抽気管で直接抽気タンクに
導かれるので、その分抽気手段の動力が少なくなる。
According to the third aspect of the present invention, since the non-condensable gas in the high temperature portion of the evaporator is directly guided to the bleed tank by the bleed pipe, the power of the bleed means is reduced accordingly.

【0058】請求項4に記載の発明によれば、抽気タン
クを排液経路の途中に、該排液経路の一部として設け、
不凝縮性ガスの排出は排液と同一の経路で行うので、排
液排ガスのための経路の構成が簡単となる。
According to the fourth aspect of the present invention, the bleeding tank is provided in the middle of the drainage path as a part of the drainage path,
Since the discharge of the non-condensable gas is performed in the same path as the waste liquid, the configuration of the path for the discharged exhaust gas is simplified.

【0059】請求項5に記載の発明によれば、エゼクタ
駆動手段及び/又は抽気タンクの加圧手段に淡水を排出
する淡水排液ポンプを用いることにより、エゼクタ駆動
手段及び/又は加圧手段を別途設ける必要がないと共
に、淡水を用いるため不純物が少なく動作不良の原因に
なりにくく、逆流した場合でも装置内の汚染を最小限に
とどめることができる。
According to the fifth aspect of the present invention, the ejector driving means and / or the pressurizing means are provided by using a fresh water drainage pump for discharging fresh water for the ejector driving means and / or the pressurizing means of the bleeding tank. There is no need to provide a separate device, and since fresh water is used, the amount of impurities is small, which is unlikely to cause malfunction, and contamination in the apparatus can be minimized even in the case of backflow.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る真空蒸発式淡水化装置の構成例を
示す図である。
FIG. 1 is a diagram showing a configuration example of a vacuum evaporation type desalination apparatus according to the present invention.

【図2】本発明に係る真空蒸発式淡水化装置の抽気タン
クから不凝縮性ガスを排出する手段の構成例を示す図で
ある。
FIG. 2 is a diagram showing a configuration example of a means for discharging a non-condensable gas from a bleeding tank of the vacuum evaporation type desalination apparatus according to the present invention.

【図3】本発明に係る真空蒸発式淡水化装置の構成例を
示す図である。
FIG. 3 is a diagram showing a configuration example of a vacuum evaporation type desalination apparatus according to the present invention.

【図4】本発明に係る真空蒸発式淡水化装置の構成例を
示す図である。
FIG. 4 is a diagram showing a configuration example of a vacuum evaporation type desalination apparatus according to the present invention.

【図5】本発明に係る真空蒸発式淡水化装置の構成例を
示す図である。
FIG. 5 is a diagram showing a configuration example of a vacuum evaporation type desalination apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

10 蒸発蒸留器 11 凝縮器 12 淡水タンク 13 淡水流路 14 蒸気流路 15 淡水流路 16 抽気タンク 17 抽気管 18 抽気制御弁 19 不凝縮性ガス流路 20 抽気制御弁 21 不凝縮性ガス流路 22 抽気制御弁 23 エゼクタ 24 エゼクタ駆動ポンプ 25 排気弁 26 圧力計 27 水位計 28 加圧弁 29 淡水排水路 29’ 淡水排水路 30 淡水排液ポンプ 31 排液弁 32 バイパス弁 33 エアロックタンク 34 排気弁 35 レベルスイッチ 36 不凝縮性ガス流路 37 逆止弁 38 逆止弁 39 排出弁 40 水位計 41 高水位計 42 低水位計 43 3方弁 44 淡水戻流路 45 排出制御弁 46 高水位計 47 低水位計 48 排出逆止弁 49 淡水戻り配管 DESCRIPTION OF SYMBOLS 10 Evaporation distillation apparatus 11 Condenser 12 Fresh water tank 13 Fresh water flow path 14 Steam flow path 15 Fresh water flow path 16 Extraction tank 17 Extraction pipe 18 Extraction control valve 19 Non-condensable gas flow path 20 Extraction control valve 21 Non-condensable gas flow path Reference Signs List 22 Extraction control valve 23 Ejector 24 Ejector drive pump 25 Exhaust valve 26 Pressure gauge 27 Water level gauge 28 Pressurization valve 29 Freshwater drainage channel 29 'Freshwater drainage channel 30 Freshwater drainage pump 31 Drainage valve 32 Bypass valve 33 Air lock tank 34 Exhaust valve 35 level switch 36 non-condensable gas flow path 37 check valve 38 check valve 39 discharge valve 40 water level gauge 41 high water level meter 42 low water level meter 43 three way valve 44 fresh water return flow path 45 discharge control valve 46 high water level meter 47 Low water level gauge 48 Discharge check valve 49 Fresh water return piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 入江 毅一 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D034 BA03 CA12 4D076 AA22 BA01 CD21 CD22 HA01 JA03 JA04  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor: Kiichi Irie 11-1 Haneda Asahimachi, Ota-ku, Tokyo F-term in Ebara Corporation 4D034 BA03 CA12 4D076 AA22 BA01 CD21 CD22 HA01 JA03 JA04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱源から直接又は間接に供給される熱
で、減圧下で原水を加熱し、水蒸気を発生させ該水蒸気
を凝縮して淡水を製造する蒸発蒸留器を備え、該製造さ
れた淡水若しくは濃縮原水或いは原水を装置外に排出す
る排液手段を1以上備えた真空蒸発式淡水化装置におい
て、 装置内の不凝縮性ガスを収集する抽気手段と、該抽気手
段で収集された不凝縮性ガスを大気圧以下で貯留する抽
気タンクを設けると共に、前記排液手段を用いて該抽気
タンクを大気圧以上若しくは大気圧程度まで加圧する加
圧手段を設け、 前記抽気タンク内の不凝縮性ガスを排出する場合、前記
加圧手段で該抽気タンク内を加圧して、該不凝縮性ガス
を装置外に排出することを特徴とする真空蒸発式淡水化
装置。
1. An evaporative distillation apparatus for heating raw water under reduced pressure with heat supplied directly or indirectly from a heat source to generate steam and condensing the steam to produce fresh water. Alternatively, in a vacuum evaporative desalination apparatus provided with one or more drainage means for discharging concentrated raw water or raw water out of the apparatus, a bleed means for collecting non-condensable gas in the apparatus, and a non-condensate collected by the bleed means And a pressurizing means for pressurizing the bleeding tank to above or above atmospheric pressure using the drainage means, and providing a non-condensable gas in the bleeding tank. When discharging the gas, the pressurizing means pressurizes the inside of the bleeding tank, and discharges the non-condensable gas to the outside of the apparatus.
【請求項2】 請求項1に記載の淡水化装置において、 前記装置内の不凝縮性ガスを収集する抽気手段が流体で
駆動されるエゼクタであることを特徴とする真空蒸発式
淡水化装置。
2. The desalination apparatus according to claim 1, wherein the extraction means for collecting non-condensable gas in the apparatus is an ejector driven by a fluid.
【請求項3】 請求項1又は2に記載の淡水化装置にお
いて、 前記蒸発蒸留器の高温部の不凝縮性ガスは抽気管を通し
て直接前記抽気タンクに導かれるようになっていること
を特徴とする真空蒸発式淡水化装置。
3. The desalination apparatus according to claim 1, wherein the non-condensable gas in a high-temperature portion of the evaporative still is directly guided to the extraction tank through an extraction pipe. Vacuum evaporation desalination equipment.
【請求項4】 請求項1乃至3のいずれか1項に記載の
淡水化装置において、 前記抽気タンクは、前記排液手段の排液経路の途中に、
該排液経路の一部として設けられると共に、前記不凝縮
性ガスの排出は、排液と同一の経路で行うことを特徴と
する真空蒸発式淡水化装置。
4. The desalination apparatus according to claim 1, wherein the bleeding tank is provided in a middle of a drainage path of the drainage unit.
A vacuum evaporation type desalination apparatus provided as a part of the drainage path and discharging the non-condensable gas through the same path as the drainage.
【請求項5】 請求項2乃至4のいずれか1項に記載の
淡水化装置において、 前記エゼクタを駆動するエゼクタ駆動手段及び/又は前
記抽気タンクを加圧する加圧手段は、淡水を排出する淡
水排液ポンプであることを特徴とする真空蒸発式淡水化
装置。
5. The desalination apparatus according to claim 2, wherein the ejector driving means for driving the ejector and / or the pressurizing means for pressurizing the bleeding tank discharge fresh water. A vacuum evaporation type desalination apparatus characterized by being a drainage pump.
JP2001057090A 2001-03-01 2001-03-01 Vacuum evaporation desalination equipment Expired - Fee Related JP3854084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001057090A JP3854084B2 (en) 2001-03-01 2001-03-01 Vacuum evaporation desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001057090A JP3854084B2 (en) 2001-03-01 2001-03-01 Vacuum evaporation desalination equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005231124A Division JP4113213B2 (en) 2005-08-09 2005-08-09 Vacuum evaporation distillation equipment

Publications (2)

Publication Number Publication Date
JP2002254066A true JP2002254066A (en) 2002-09-10
JP3854084B2 JP3854084B2 (en) 2006-12-06

Family

ID=18917023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001057090A Expired - Fee Related JP3854084B2 (en) 2001-03-01 2001-03-01 Vacuum evaporation desalination equipment

Country Status (1)

Country Link
JP (1) JP3854084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109809516A (en) * 2019-03-28 2019-05-28 北京理工大学 A kind of water-filling exhaust natural vacuum solar energy sea water desalination apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101587123B1 (en) * 2014-05-28 2016-02-22 한국에너지기술연구원 Freshwater Apparatus of Seawater of MED and VMD Hybrid Type using Ejector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109809516A (en) * 2019-03-28 2019-05-28 北京理工大学 A kind of water-filling exhaust natural vacuum solar energy sea water desalination apparatus

Also Published As

Publication number Publication date
JP3854084B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
KR850001258B1 (en) Refrigerator purging system
BR0301461A (en) Method for venting fuel vapor from a tank and system to it
KR101614280B1 (en) Water/steam cycle and method for operating the same
CN109095535B (en) Sewage evaporation concentration device and operation method thereof
JP7115680B2 (en) Desalination and temperature difference power generation system
JPS6030686Y2 (en) Purge device for refrigeration equipment
KR101632252B1 (en) Pure liquid production device
WO2019019514A1 (en) System for automatic gas extraction and discharge
JP4113213B2 (en) Vacuum evaporation distillation equipment
JP3854084B2 (en) Vacuum evaporation desalination equipment
CN102079552B (en) Low-temperature multi-effect evaporation seawater desalination system with falling film condenser
JP4058422B2 (en) Oil / water separator
JP2021055965A (en) Drain recovery device
JP4949770B2 (en) Condensate recovery device
JP2020128845A (en) Drain recovery device
KR101147182B1 (en) Automatic multistage solar-thermal desalination system
KR100588969B1 (en) Ventilation apparatus of desalination plant using distillation
JP2008170126A (en) Condensate collecting apparatus
JP2010065917A (en) Absorption heat pump
CN108571840B (en) Refrigerant purification equipment
US5447193A (en) Apparatus for injecting a volume of liquid into a liquid-conducting system
JP2757589B2 (en) Oil absorption type bleeding device for refrigerator
JP3638329B2 (en) Non-condensable gas extraction device
TWI824923B (en) Improvement of low-pressure distillation and concentration cycle equipment and its method
JP3868219B2 (en) Heat exchanger, heat exchange temperature control method, and heat supply device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050809

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees