JP2002249877A - Electrode device - Google Patents

Electrode device

Info

Publication number
JP2002249877A
JP2002249877A JP2001049141A JP2001049141A JP2002249877A JP 2002249877 A JP2002249877 A JP 2002249877A JP 2001049141 A JP2001049141 A JP 2001049141A JP 2001049141 A JP2001049141 A JP 2001049141A JP 2002249877 A JP2002249877 A JP 2002249877A
Authority
JP
Japan
Prior art keywords
electrode
discharge
gas
atmospheric pressure
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001049141A
Other languages
Japanese (ja)
Other versions
JP3987291B2 (en
Inventor
Yasushi Nishida
靖 西田
Takeshi Nagasawa
武 長澤
Noboru Yugami
登 湯上
Hiroaki Ito
弘昭 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001049141A priority Critical patent/JP3987291B2/en
Publication of JP2002249877A publication Critical patent/JP2002249877A/en
Application granted granted Critical
Publication of JP3987291B2 publication Critical patent/JP3987291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode device which stably generates plasma near the atmospheric pressure and decomposes organic gas. SOLUTION: As one embodiment of rotational floating multipole discharge device, an electrode 110 is constituted so as to bury screws 116 of 3ϕ concentrically at an interval of 4.5 mm into an insulator disk 114. The electrode 110 of such a constitution is disposed in an atmosphere of organic gas such as methane and ethylene near the atmospheric pressure, the electrode 110 is rotated at 2-10 rpm by a central shaft 112 and a voltage is applied to the two screws of the outer periphery via brushes 118. Then, discharge is generated between the screws of a path A-B which connects the two brushes 118 and the plasma is formed. The path through which the discharge is generated is changed at all times because the circular insulator is rotated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電極装置に関し、
特に、大気圧近辺で安定的にプラズマを発生することが
でき、有機ガス等を分解することができるフローティン
グ電極装置に関する。
TECHNICAL FIELD The present invention relates to an electrode device,
In particular, the present invention relates to a floating electrode device capable of stably generating plasma near the atmospheric pressure and decomposing an organic gas or the like.

【0002】[0002]

【技術的背景】従来から、低気圧(10−2〜10−3
Torr)で、メタンガスなどをマイクロ波励起プラズ
マで分解し、ダイヤモンド膜やDLC(Diamond-like c
arbon)膜を形成する技術は、マイクロ波励起プラズマ
CVDとして良く知られている。しかし、大気圧に近い
メタン・エチレンなどの有機ガスを水素と炭素に分解し
ようとするときには、マイクロ波励起では、安定なプラ
ズマの形成が難しいとか大電力が必要になるなどの問題
がある。
BACKGROUND ART Conventionally, low pressure (10-2 to 10-3) has been used.
Torr), methane gas and the like are decomposed by microwave-excited plasma, and diamond film or DLC (Diamond-like c
The technique of forming an arbon) film is well known as microwave excited plasma CVD. However, when trying to decompose organic gas such as methane and ethylene close to the atmospheric pressure into hydrogen and carbon, there are problems such as difficulty in forming a stable plasma by microwave excitation and the necessity of large power.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、大気
圧近辺で安定にプラズマを発生させて、有機ガス等を分
解することができる電極装置を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrode device capable of generating plasma stably near atmospheric pressure and decomposing organic gas and the like.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、絶縁体の円盤と、前記円盤上に形成した
複数の電極と、前記円盤および電極を回転させる駆動部
と、前記電極の外周に設置された1対のブラシと、前記
ブラシに印加する電圧を発生する電源とを備え、大気圧
近傍の気体中で放電によるプラズマを前記電極で形成す
ることを特徴とする電極装置である。前記電源ではパル
スを発生しており、該パルスは、高電圧スパイクに続く
低電圧プラトーを有する波形を有しており、このパルス
を用いることにより、大気圧近傍の有機ガスを分解する
ことができる。
In order to achieve the above object, the present invention provides an insulating disk, a plurality of electrodes formed on the disk, a driving unit for rotating the disk and the electrodes, An electrode device, comprising: a pair of brushes provided on an outer periphery of an electrode; and a power supply for generating a voltage to be applied to the brush, wherein the electrode forms plasma by discharge in a gas near atmospheric pressure. It is. The power supply generates a pulse, and the pulse has a waveform having a low voltage plateau following a high voltage spike, and by using this pulse, an organic gas near atmospheric pressure can be decomposed. .

【0005】[0005]

【発明の実施の形態】本発明の実施形態を、図面を参照
して詳細に説明する。図1にプラズマを発生させるため
の回転浮遊多極放電装置の構成を示す。図1において、
回転浮遊多極放電装置の1実施形態として、絶縁体円盤
114に3φねじ(ビス 長さ:30mm)116を
4.5mm間隔に同心円状に埋め込んだ構成で、電極1
10を構成している。このような構成の電極110を、
大気圧近辺のメタンやエチレンなどの有機ガスの雰囲気
に設置し、電極110を中心軸112により2〜10r
pmで回転し、外周の2つのねじに対して、ブラシ11
8を介して電圧を印加する。すると、2つのブラシ11
8を結ぶ経路A−Bのねじ間で放電が起こり、プラズマ
が形成される。放電を起こす経路は円形絶縁体が回転し
ているために常に変更される。形成されたプラズマは安
定しており、この安定なプラズマは、各ねじ116が絶
縁体の円盤114に埋め込まれ、電気的には相互に絶縁
されたフローティング状態にすることにより得られてい
る。
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration of a rotating floating multi-pole discharge device for generating plasma. In FIG.
As one embodiment of the rotating floating multipolar discharge device, a 3φ screw (screw length: 30 mm) 116 is embedded concentrically at 4.5 mm intervals in an insulator disk 114, and the electrode 1
10. The electrode 110 having such a configuration is
The electrode 110 is placed in an atmosphere of an organic gas such as methane or ethylene near the atmospheric pressure, and the electrode 110 is moved by a central axis 112 for 2 to 10 r.
pm, the brush 11
A voltage is applied via 8. Then, two brushes 11
Discharge occurs between the screws in the path AB connecting the lines 8 and plasma is formed. The path of the discharge is constantly changed due to the rotation of the circular insulator. The formed plasma is stable, and the stable plasma is obtained by embedding each screw 116 in the insulating disk 114 and electrically floating each other.

【0006】図2に、プラズマが形成されている様子を
示す写真を示す。この写真をとるための放電条件は、大
気圧の空気の放電であり、印加電圧は6.6KVであ
る。印加電圧は、図1に示されているように、交流10
0ボルトの電源からスライダック124、インダクショ
ン・コイル126で高電圧として電極(ねじ)に印加し
ている。図2の写真は、図1の電極を上下逆転して放電
した様子を示しており、中心軸112により円形絶縁体
の一部は遮られている。図2の写真から分かるように、
円形絶縁体上の全てのねじの周囲にプラズマが形成され
ている。これは絶縁体が移転しているため、放電を起こ
す経路が常に変更されるためである。この様に多くのね
じの周囲でプラズマが形成されるため、有機ガス等を分
解する場合に効率よく行うことができる。有機ガスを分
解し、水素と炭素の成分に分けるためには、図3に示す
ようなパルスをブラシ118間に印加する。図3におい
て、1000ボルト程度で、100μsecほどの鋭い
パルスを加えると、ガス分解を起こすことができる。引
き続き、200ボルト、0.5msec程度の電圧を印
加する。この様な高電圧スパイクに続く低電圧プラトー
を有する波形のパルスを用いることにより、炭素成分を
膜状に堆積させることができる。
FIG. 2 is a photograph showing a state in which plasma is formed. The discharge condition for taking this photograph is discharge of air at atmospheric pressure, and the applied voltage is 6.6 KV. The applied voltage is, as shown in FIG.
A high voltage is applied to the electrode (screw) from a power supply of 0 volts by the Slidac 124 and the induction coil 126. The photograph in FIG. 2 shows a state in which the electrode in FIG. 1 is turned upside down and discharged. As can be seen from the photograph of FIG.
Plasma is formed around all the screws on the circular insulator. This is because the path in which the discharge occurs is always changed because the insulator has been transferred. Since plasma is formed around many screws as described above, it is possible to efficiently perform decomposition of an organic gas or the like. In order to decompose the organic gas and separate it into hydrogen and carbon components, a pulse as shown in FIG. In FIG. 3, when a sharp pulse of about 1000 volts is applied at about 1000 volts, gas decomposition can be caused. Subsequently, a voltage of about 200 volts and about 0.5 msec is applied. By using a pulse having a waveform having a low voltage plateau following such a high voltage spike, the carbon component can be deposited in a film shape.

【0007】[0007]

【実施例】図1の回転電極を上下逆に設置して、入口お
よび出口を有する径150φの気密円筒で覆い、ガスを
封入した。そして、回転電極を回転させながら、所定の
時間、図3に示すようなパルス電圧を印加した後に、内
部のガスを分析した。 (実施例1)気密円筒内に1気圧の空気:メタンを約1
0:1の割合で混合した気体を流入する。これは分解効
率と空気が存在することによる効果を調べる目的で、空
気を混入させたものである。本来は空気がない状態で分
解を行う。分解状態の測定は次のように行う。 (1)気密円筒にガス採取用の小さな管を挿入し、小さ
な真空フラスコ内にガスを採取する。 (2)採取したガスをガスクロマトグラフィーを用いて
質量分析する。 図4に採取したガスのガスクロマトグラフィーを用いた
計測結果を示す。図4の横軸:質量および縦軸:各質量
の強度を示す。図4(a)は、放電前の分析結果を示し
ている。この図から、メタン(m/z=16)と空気成
分(m/z≒16:窒素、32:酸素)の存在が明らか
に示されている。図4(b)は回転電極を回転させなが
ら、放電時間10分の場合を示す。この図から、メタン
は、ほぼ分解されている。また、空気成分も化学反応を
起こして減少している。なお、m/z=41〜42の成
分は正確には分からないが、二酸化炭素が重合された可
能性がある。発生した水素は微量なため検出されていな
い。
EXAMPLE The rotating electrode of FIG. 1 was installed upside down, covered with an airtight cylinder having a diameter of 150φ having an inlet and an outlet, and filled with gas. Then, while applying a pulse voltage as shown in FIG. 3 for a predetermined time while rotating the rotating electrode, the gas inside was analyzed. (Example 1) 1 atmosphere of air: methane in an airtight cylinder
The mixed gas flows at a ratio of 0: 1. This is to mix air for the purpose of examining the decomposition efficiency and the effect of the presence of air. The decomposition is performed without air. The decomposition state is measured as follows. (1) Insert a small tube for gas collection into an airtight cylinder and collect gas in a small vacuum flask. (2) The collected gas is subjected to mass spectrometry using gas chromatography. FIG. 4 shows the measurement results of the collected gas using gas chromatography. In FIG. 4, the horizontal axis: mass and the vertical axis: intensity of each mass. FIG. 4A shows an analysis result before discharge. This figure clearly shows the presence of methane (m / z = 16) and air components (m / z ≒ 16: nitrogen, 32: oxygen). FIG. 4B shows a case where the discharge time is 10 minutes while rotating the rotating electrode. From this figure, methane is almost completely decomposed. Further, the air component is also reduced due to a chemical reaction. In addition, although the component of m / z = 41-42 is not exactly known, carbon dioxide may have been polymerized. The generated hydrogen is not detected because it is very small.

【0008】(実施例2)気密円筒内に、1気圧、1リ
ットルのメタンガスを封入した。そして、回転電極を回
転させながら、30分間、図3に示すようなパルス電圧
を印加した後に、内部のガスを分析した。その結果、水
素:992ml,メタン:8mlであった。円筒内壁に
は、黒色物体が堆積した。この黒色物体は炭素成分であ
るが、その同素体が何であるかについては確認していな
い。
Example 2 One atmosphere and one liter of methane gas were sealed in an airtight cylinder. Then, a pulse voltage as shown in FIG. 3 was applied for 30 minutes while rotating the rotating electrode, and then the gas inside was analyzed. As a result, hydrogen: 992 ml and methane: 8 ml. Black objects were deposited on the inner wall of the cylinder. This black body is a carbon component, but we have not confirmed what its allotropic nature is.

【0009】(実施例3)上述と同じ条件で、封入ガス
を窒素ベースの2.7体積%一酸化炭素に変えて、放電
による分解処理を行った。その結果、分解処理後の一酸
化炭素は0.6体積%に減少した。
(Example 3) Under the same conditions as described above, the sealed gas was changed to 2.7% by volume of carbon monoxide based on nitrogen, and a decomposition treatment was performed by electric discharge. As a result, carbon monoxide after the decomposition treatment was reduced to 0.6% by volume.

【0010】[0010]

【発明の効果】上述のように、本発明の電極装置を用い
ることにより、大気圧近辺の有機ガス雰囲気で、安定な
プラズマを形成でき、ガスの分解を行うことが、マイク
ロ波励起プラズマに比べ容易にできる。また、マイクロ
波を発生することに比べ、本発明の電極装置へのプラズ
マを発生させるための電力は少ない。
As described above, by using the electrode device of the present invention, a stable plasma can be formed in an organic gas atmosphere near the atmospheric pressure, and the gas can be decomposed compared to the microwave-excited plasma. Easy. Further, compared to generating microwaves, the power for generating plasma to the electrode device of the present invention is smaller.

【図面の簡単な説明】[Brief description of the drawings]

【図1】回転浮遊多極放電装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a rotating floating multi-pole discharge device.

【図2】回転浮遊多極放電装置でプラズマが発生してい
ることを示す写真である。
FIG. 2 is a photograph showing that plasma is generated in a rotating floating multipolar discharge device.

【図3】回転浮遊多極放電装置で有機ガスを分解するた
めに印加するパルスの波形を示す図である。
FIG. 3 is a diagram showing a waveform of a pulse applied to decompose an organic gas in a rotating floating multipolar discharge device.

【図4】メタンと空気の混合ガスを分解した結果を示す
図である。
FIG. 4 is a diagram showing a result of decomposing a mixed gas of methane and air.

【符号の説明】[Explanation of symbols]

110 電極 112 中心軸 114 絶縁体円盤 118 ブラシ 122 交流電源 124 スライダック 126 インダクション・コイル 128 抵抗 110 electrode 112 central axis 114 insulator disk 118 brush 122 ac power supply 124 slidac 126 induction coil 128 resistance

フロントページの続き Fターム(参考) 4G075 AA03 AA62 BA01 BA05 CA15 CA20 DA02 DA12 EA02 EB41 EC21 EC30 ED01 ED08 ED20 EE13 FC11 4K030 AA09 BA27 FA03 JA09 JA17 KA15 Continued on the front page F-term (reference) 4G075 AA03 AA62 BA01 BA05 CA15 CA20 DA02 DA12 EA02 EB41 EC21 EC30 ED01 ED08 ED20 EE13 FC11 4K030 AA09 BA27 FA03 JA09 JA17 KA15

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁体の円盤と、 前記円盤上に形成した複数の電極と、 前記円盤および電極を回転させる駆動部と、 前記電極の外周に設置された1対のブラシと、 前記ブラシに印加する電圧を発生する電源とを備え、大
気圧近傍の気体中で放電によるプラズマを前記電極で形
成することを特徴とする電極装置。
An insulating disk; a plurality of electrodes formed on the disk; a driving unit for rotating the disk and the electrodes; a pair of brushes installed on the outer periphery of the electrode; An electrode device comprising: a power source for generating a voltage to be applied; and forming plasma by discharge in the gas near atmospheric pressure by the electrode.
【請求項2】 請求項1に記載された電極装置におい
て、 前記電源ではパルスを発生しており、該パルスは、高電
圧スパイクに続く低電圧プラトーを有する波形を有し、 大気圧近傍の有機ガスを分解することを特徴とする電極
装置。
2. The electrode device according to claim 1, wherein the power supply generates a pulse, the pulse having a waveform having a low voltage plateau following a high voltage spike, and an organic near atmospheric pressure. An electrode device for decomposing gas.
JP2001049141A 2001-02-23 2001-02-23 Electrode device Expired - Lifetime JP3987291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001049141A JP3987291B2 (en) 2001-02-23 2001-02-23 Electrode device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001049141A JP3987291B2 (en) 2001-02-23 2001-02-23 Electrode device

Publications (2)

Publication Number Publication Date
JP2002249877A true JP2002249877A (en) 2002-09-06
JP3987291B2 JP3987291B2 (en) 2007-10-03

Family

ID=18910289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001049141A Expired - Lifetime JP3987291B2 (en) 2001-02-23 2001-02-23 Electrode device

Country Status (1)

Country Link
JP (1) JP3987291B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331407A (en) * 2003-04-30 2004-11-25 Takeshi Nagasawa Apparatus and method of producing hydrogen
KR100630807B1 (en) 2004-04-03 2006-10-02 사단법인 한국가속기 및 플라즈마 연구협회 Large area electric discharge plasma generator
JP2006353046A (en) * 2005-06-20 2006-12-28 Utsunomiya Univ Lightning surge protector
JP2009538989A (en) * 2006-05-30 2009-11-12 フジフィルム マニュファクチャリング ユーロプ ビー.ブイ. Method and apparatus for deposition using pulsed atmospheric pressure glow discharge
WO2011034189A1 (en) * 2009-09-17 2011-03-24 イマジニアリング株式会社 Gas treatment device and internal combustion engine
JP5407003B1 (en) * 2013-06-25 2014-02-05 Saisei合同会社 Methane gas cracker
CN106961779A (en) * 2017-05-11 2017-07-18 无锡荣坚五金工具有限公司 It is a kind of to carry the plasma-initiated polymerization device for turning electrode group surely
WO2019042207A1 (en) * 2017-08-29 2019-03-07 刘铁林 High-energy particle generation device using carbon allotrope complex field effect
KR20200065605A (en) * 2018-11-30 2020-06-09 한국과학기술연구원 DC power plasma CVD diamond growth apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331407A (en) * 2003-04-30 2004-11-25 Takeshi Nagasawa Apparatus and method of producing hydrogen
KR100630807B1 (en) 2004-04-03 2006-10-02 사단법인 한국가속기 및 플라즈마 연구협회 Large area electric discharge plasma generator
JP2006353046A (en) * 2005-06-20 2006-12-28 Utsunomiya Univ Lightning surge protector
JP2009538989A (en) * 2006-05-30 2009-11-12 フジフィルム マニュファクチャリング ユーロプ ビー.ブイ. Method and apparatus for deposition using pulsed atmospheric pressure glow discharge
JP5782591B2 (en) * 2009-09-17 2015-09-24 イマジニアリング株式会社 Gas processing apparatus and internal combustion engine
WO2011034189A1 (en) * 2009-09-17 2011-03-24 イマジニアリング株式会社 Gas treatment device and internal combustion engine
US9359926B2 (en) 2009-09-17 2016-06-07 Imagineering, Inc. Gas treatment device and internal combustion engine
JP5407003B1 (en) * 2013-06-25 2014-02-05 Saisei合同会社 Methane gas cracker
CN106961779A (en) * 2017-05-11 2017-07-18 无锡荣坚五金工具有限公司 It is a kind of to carry the plasma-initiated polymerization device for turning electrode group surely
CN106961779B (en) * 2017-05-11 2024-02-02 江苏菲沃泰纳米科技股份有限公司 Plasma initiation polymerization device with fixed rotation electrode group
WO2019042207A1 (en) * 2017-08-29 2019-03-07 刘铁林 High-energy particle generation device using carbon allotrope complex field effect
KR20200065605A (en) * 2018-11-30 2020-06-09 한국과학기술연구원 DC power plasma CVD diamond growth apparatus
KR102207607B1 (en) * 2018-11-30 2021-01-26 한국과학기술연구원 DC power plasma CVD diamond growth apparatus

Also Published As

Publication number Publication date
JP3987291B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
US11959846B2 (en) In situ chemical transformation and ionization of inorganic perchlorates on surfaces
Falkenstein et al. Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures
WO2003010088A8 (en) Production of hydrogen and carbon from natural gas or methane using barrier discharge non-thermal plasma
WO2011089912A1 (en) Mass spectrometry device
Malović et al. Mass analysis of an atmospheric pressure plasma needle discharge
JP2004047696A5 (en)
Foner et al. Ionization potential of the free HO2 radical and the H–O2 bond dissociation energy
JP2002249877A (en) Electrode device
CN111739783B (en) Atmospheric pressure electric arc ion source for small mass spectrometer and detection method thereof
CN102103039A (en) Surface desorption sampling method and device
Wang et al. Collision-induced dissociation of 2-and 3-dimensional polycyclic aromatic hydrocarbon cations in a modified ion-trap detector
Islam et al. Phenomenology of corona discharge in helium admixtures inside a point-to-point electrode geometry
Seto et al. Decomposition of toluene with surface-discharge microplasma device
JP3337473B2 (en) Method and apparatus for generating negatively charged oxygen atoms
Zhou et al. Characteristics of a Nanosecond Pulsed Bubble Discharge in N 2/O 2 Atmospheres
Zhang et al. Hydrophilicity improvement of quartz glass surface by a large-area atmospheric pressure plasma generator
JP2000348896A (en) Plasma generating method, plasma generating device, and gas treatment method in plasma reaction
Shakir et al. rf-generated ambient-afterglow plasma
Feng et al. The study of active atoms in high-voltage pulsed coronal discharge by optical diagnostics
Olthoff et al. Use of an ion energy analyser-mass spectrometer to measure ion kinetic-energy distributions from RF discharges in argon-helium gas mixtures
JP3462949B2 (en) Negative charge oxygen atom generation method
TW548338B (en) An apparatus for forming a carbon film to an inner surface of a plastic bottle and a method for manufacturing a plastic bottle with an inner surface coated a carbon film
JPH11209105A (en) Ozonizer
Rao et al. Mass spectrometric measurements in inductively coupled CF4/Ar plasmas
Zhang et al. Atmospheric-Pressure Diffuse Dielectric-Barrier-Discharge Plasma Generated by Bipolar Nanosecond Pulse in Nitrogen and Air

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3