JP2002249860A - Method for controlling structure of aluminum or aluminum alloy - Google Patents

Method for controlling structure of aluminum or aluminum alloy

Info

Publication number
JP2002249860A
JP2002249860A JP2001046019A JP2001046019A JP2002249860A JP 2002249860 A JP2002249860 A JP 2002249860A JP 2001046019 A JP2001046019 A JP 2001046019A JP 2001046019 A JP2001046019 A JP 2001046019A JP 2002249860 A JP2002249860 A JP 2002249860A
Authority
JP
Japan
Prior art keywords
aluminum
tool
aluminum alloy
controlling
changed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001046019A
Other languages
Japanese (ja)
Other versions
JP3755024B2 (en
Inventor
Kazunori Shigematsu
一典 重松
Takafumi Saito
尚文 齋藤
Mamoru Nakamura
守 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001046019A priority Critical patent/JP3755024B2/en
Publication of JP2002249860A publication Critical patent/JP2002249860A/en
Application granted granted Critical
Publication of JP3755024B2 publication Critical patent/JP3755024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling the structure of aluminum or aluminum alloy. SOLUTION: A tool rotating at high speed is brought into contact with the surface of am aluminum or aluminum-alloy member to combine the heat treatment effect of the frictional heat between the tool and the member surface on the tool with the mechanical stirring effect of the tool on the member, by which the structure of the aluminum or aluminum alloy can be controlled. In this method for controlling the structure of the aluminum or aluminum alloy, the number of revolutions of the tool is changed and/or the area of the part where the tool and the member come into contact with each other is arbitrarily changed, by which the amount of the generated frictional heat can be controlled and the heat treatment temperature of the member can be changed into an arbitrary value and, as the result, the grain size and structure of the member can be controlled to arbitrary size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム及び
アルミニウム合金の組織制御方法に関するものであり、
更に詳しくは、特に、製品形状に柔軟に対応でき、生産
性良く、大きな設備を必要とせず、省エネルギーで、ア
ルミニウム及びアルミニウム合金の結晶粒径を広い範囲
にわたって制御しうる新しいアルミニウム及びアルミニ
ウム合金の組織制御方法に関するものである。本発明
は、アルミニウムならびにアルミニウム合金の組織制御
による強度、硬度の制御をきわめて容易に、低コストで
行うことを可能にする方法として有用である。
The present invention relates to a method for controlling the structure of aluminum and aluminum alloys,
More specifically, a new aluminum and aluminum alloy structure capable of flexibly adapting to product shapes, high productivity, not requiring large equipment, saving energy, and controlling the grain size of aluminum and aluminum alloy over a wide range. It relates to a control method. INDUSTRIAL APPLICABILITY The present invention is useful as a method that enables very easy and low-cost control of strength and hardness by controlling the structure of aluminum and aluminum alloys.

【0002】[0002]

【従来の技術】従来より、アルミニウム及びアルミニウ
ム合金は、比強度が高いことから、様々な分野におい
て、各種構造部材への応用が検討され実施されてきてい
る。
2. Description of the Related Art Conventionally, aluminum and aluminum alloys have high specific strength, and therefore, their application to various structural members has been studied and implemented in various fields.

【0003】アルミニウム及びアルミニウム合金の機械
的特性は、その結晶組織に大きな影響を受けることが知
られている。特に、強度や硬度は組織の結晶粒径の影響
を大きく受け、一般に結晶粒径が小さいほど室温下にお
いて高強度、高硬度であることが今までの研究で明らか
になっている[Hall−Petchの式、σ=σ0
k・d-1/2、ここで、σは変形応力、σ0 及びkは材料
に依存する定数、dは結晶粒径]。
[0003] Aluminum and aluminum alloy machines
Properties are strongly influenced by the crystal structure.
Have been. In particular, the strength and hardness are affected by the crystal grain size of the structure.
In general, the smaller the crystal grain size, the lower the room temperature
Research shows that it is high strength and high hardness
[Hall-Petch equation, σ = σ0 +
kd-1/2, Where σ is the deformation stress, σ0 And k are materials
And d is the crystal grain size].

【0004】結晶粒径の制御方法としては、鋳造時の冷
却速度の大小により、直径数十μmから数mmオーダー
までコントロールできることが知られている。しかし、
強度等の機械的特性の向上のためには、数μm以下の、
より細かい範囲での結晶粒径組織の制御方法が必要とさ
れている。
As a method of controlling the crystal grain size, it is known that the diameter can be controlled from several tens μm to several mm depending on the cooling rate during casting. But,
In order to improve mechanical properties such as strength, several μm or less,
There is a need for a method of controlling the grain size structure in a finer range.

【0005】結晶粒径を数μmオーダーで制御するため
には、微量の添加元素を母材のアルミニウム合金に加え
ることも従来から行われてきた。しかしながら、安易に
他元素を利用することはコストの面からも、部材をリサ
イクルして再利用する際の処理を複雑にする点からも、
好ましいこととは言えないのである。
In order to control the crystal grain size on the order of several μm, it has been conventionally performed to add a trace amount of an additional element to an aluminum alloy as a base material. However, the use of other elements easily does not only reduce costs but also complicates the process of recycling and reusing components.
It is not good.

【0006】このようなことから、近年では、材料に強
い塑性歪みを与えることで、材料に動的な組織変化を起
こし、これを利用して結晶粒を微細化する手法が検討さ
れている。例えば、材料を繰り返し押し出すことで強い
歪みを与えるECAP法によれば、結晶粒径を約1μm
まで微細化しうることが明らかになっており、材料強度
も飛躍的に向上することが知られている。
[0006] For these reasons, in recent years, a method of giving a strong plastic strain to a material to cause a dynamic structural change in the material, and utilizing this to refine a crystal grain has been studied. For example, according to the ECAP method in which a material is repeatedly extruded to give a strong strain, the crystal grain size is about 1 μm.
It has been clarified that the material can be miniaturized, and it is known that the material strength is also dramatically improved.

【0007】しかしながら、ECAP法等の押し出し法
は、押し出し形状に制限があるため、製品の形状に柔軟
に対応できないこと、大きな部材を押し出すためには数
百トン以上の能力をもったプレス設備が必要になるこ
と、一般に、加熱のために電気炉を必要とすること、一
般に、一つの製品を数回から十数回繰り返して押し出す
ため、生産性が悪く、多大のエネルギーを要すること、
が問題点として挙げられている。
However, the extrusion method such as the ECAP method has a limitation in the extrusion shape, so that it cannot flexibly cope with the shape of the product. That it becomes necessary, in general, an electric furnace is required for heating, and in general, one product is repeatedly extruded several to several tens of times, so that productivity is poor and a large amount of energy is required,
Is mentioned as a problem.

【0008】このようなことから、当技術分野におい
て、製品形状に柔軟に対応でき、生産性良く、大きな設
備を必要とせず、省エネルギーを指向した新しいアルミ
ニウム又はアルミニウム合金の組織制御方法の開発が強
く求められてきたのである。
[0008] In view of the above, there is a strong need in the art to develop a new method for controlling the structure of aluminum or aluminum alloy that can flexibly respond to product shapes, has good productivity, does not require large equipment, and is energy-saving. It has been sought.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑みて、アルミニウム及びアルミニウム合金の新し
い組織制御方法を開発することを目標として鋭意研究を
重ねた結果、新たに見出された知見に基づきなされたも
のであり、本発明の解決課題とするところは、構造用材
料として多くの需要が見込まれているアルミニウム及び
アルミニウム合金に対する、製品形状に柔軟に対応で
き、生産性良く、大きな設備を必要とせず、且つ省エネ
ルギーを指向した新しい組織制御方法を提供することに
ある。すなわち、本発明は、アルミニウム及びアルミニ
ウム合金の結晶粒径組織を広い範囲にわたって制御する
ことが可能な新しいアルミニウム及びアルミニウム合金
の組織制御方法を提供することを目的とするものであ
る。
DISCLOSURE OF THE INVENTION In view of the above prior art, the present invention has been made as a result of intensive studies with the aim of developing a new method for controlling the structure of aluminum and aluminum alloys. The object of the present invention is to provide a large facility capable of flexibly responding to product shapes for aluminum and aluminum alloys, for which a great demand is expected as a structural material, with good productivity. It is an object of the present invention to provide a new organization control method which does not require a computer and is aimed at energy saving. That is, an object of the present invention is to provide a new method for controlling the structure of aluminum and aluminum alloy, which can control the crystal grain size structure of aluminum and aluminum alloy over a wide range.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
の本発明は、アルミニウム乃至アルミニウム合金部材の
表面に高速回転する工具を接触させ、工具と部材表面の
摩擦熱による部材の熱処理効果と、工具による部材の機
械的撹拌効果との併用によりアルミニウム乃至アルミニ
ウム合金の組織制御を行う方法であって、工具の回転数
を変化させること、及び/又は工具と部材が接触する部
分の面積を任意に変化させること、によって、発生する
摩擦熱量を制御して部材の熱処理温度を任意の値に変化
させ、それにより、部材の結晶粒径組織を任意の大きさ
に制御することを特徴とするアルミニウム乃至アルミニ
ウム合金の組織制御方法、である。また、本発明は、上
記方法において、回転工具の、部材と接触し摩擦熱を発
生する部分の直径を変化させることにより、工具と部材
が接触する部分の面積を任意に変化させること、また、
回転工具の回転軸を、あらかじめ接触させる部材表面の
法線方向に対して傾斜させて設置することにより、回転
工具の部材に接触する部分と部材表面のなす角を0度以
上10度以下にし、更に、回転工具と部材表面の距離を
変化させることにより、工具と部材が接触する部分の面
積を任意に変化させること、を好ましい実施態様とする
ものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method of contacting a tool rotating at a high speed with the surface of an aluminum or aluminum alloy member, and performing a heat treatment of the member by frictional heat between the tool and the member surface; A method for controlling the structure of aluminum or an aluminum alloy in combination with the mechanical stirring effect of a member by a tool, wherein the number of rotations of the tool is changed, and / or the area of a portion where the tool and the member come into contact is arbitrarily set. By changing the amount of frictional heat generated to change the heat treatment temperature of the member to an arbitrary value, thereby controlling the grain size structure of the member to an arbitrary size. A method for controlling the structure of an aluminum alloy. Further, the present invention, in the above method, by changing the diameter of the portion of the rotary tool, which generates frictional heat in contact with the member, by arbitrarily changing the area of the portion where the tool and the member contact,
By setting the rotation axis of the rotating tool at an angle in advance with respect to the normal direction of the surface of the member to be brought into contact in advance, the angle between the part contacting the member of the rotating tool and the surface of the member is set to 0 degree or more and 10 degrees or less, Further, it is a preferred embodiment that the area of the portion where the tool and the member come into contact is arbitrarily changed by changing the distance between the rotating tool and the surface of the member.

【0011】[0011]

【発明の実施の形態】以下、本発明を更に具体的に明ら
かにするために、図面を参照しつつ、本発明の具体的構
成について詳細に説明することとする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, in order to clarify the present invention more specifically, a specific configuration of the present invention will be described in detail with reference to the drawings.

【0012】図1は、回転工具を用いて、アルミニウム
部材のアルミニウム板4の組織制御を行う工程を示した
ものである。回転工具1は、アルミニウム板を摩擦する
工具底面部1aでアルミニウム部材表面を摩擦し、摩擦
熱を発生させる。同時に先端のピン1bを部材内部に挿
入し、機械的撹拌を加えることで、部材に動的な組織変
化を与えるものである。2は攪拌部、3は摩擦痕を示
す。回転工具1を部材表面に沿って移動させることで、
広範囲に渉って処理を行い、部材の組織を制御しうるも
のである。
FIG. 1 shows a process of controlling the structure of an aluminum plate 4 of an aluminum member using a rotary tool. The rotary tool 1 generates frictional heat by rubbing the surface of the aluminum member with the tool bottom surface 1a that rubs the aluminum plate. Simultaneously, the pin 1b at the tip is inserted into the inside of the member and mechanical agitation is applied to give a dynamic structural change to the member. Reference numeral 2 denotes a stirring section, and 3 denotes a friction mark. By moving the rotary tool 1 along the member surface,
The processing can be performed over a wide range to control the structure of the member.

【0013】本発明は、このとき、回転工具1の回転数
を変化させること、及び、アルミニウム板を摩擦する工
具底面部1aと部材の間の接触面積を変化させることに
より、発生する摩擦熱量を変化させ、アルミニウム部材
のアルミニウム板の熱処理温度を制御することを特徴と
している。
The present invention reduces the amount of frictional heat generated by changing the number of revolutions of the rotary tool 1 and changing the contact area between the tool bottom surface portion 1a that rubs the aluminum plate and the member. The heat treatment temperature of the aluminum plate of the aluminum member is controlled by changing the temperature.

【0014】特に、本発明においては、工具底面部1a
の直径を変化させること、及び工具の底面と部材の間の
位置関係を変化させることにより、工具の底面と部材の
間の接触面積を変化させるものである。好適には、工具
の、部材と接触し摩擦熱を発生する部分の直径は7mm
〜20mmであるが、これらに制限されるものではな
い。
In particular, in the present invention, the tool bottom portion 1a
The contact area between the bottom surface of the tool and the member is changed by changing the diameter of the tool and the positional relationship between the bottom surface of the tool and the member. Preferably, the diameter of the part of the tool that generates frictional heat by contacting the member is 7 mm.
2020 mm, but is not limited to these.

【0015】図2は、工具底面1aとアルミニウム部材
表面間の距離を変えることで、工具底面(ショルダー
部)とアルミニウム部材の接触面積を変化させる工程を
示したものである。工具底面とアルミニウム板表面の距
離は、工具底面の直径によって最適な範囲が決まるが、
およそ0〜0.3mmの範囲が望ましい。それより大き
い場合には接触面積が小さくなることから、アルミニウ
ム板材を充分に軟化させるに足る摩擦熱が得られず、そ
の結果、攪拌部においてアルミニウム板材が充分な塑性
流動を起こさないため、亀裂や空孔といった機械的特性
に悪影響を及ぼす欠陥の発生が多くなる可能性がある。
回転工具1の回転軸は工具の進行方向に対して後方に傾
斜して設置されている。傾斜角は0度以上10度以下、
最も好適には3〜5度が望ましく、それより小さい場合
には工具の底面とアルミニウム部材表面間の接触面積の
増減を細かく制御することが困難になる可能性があり、
逆にそれより大きい場合には接触面積を増やす際に工具
をアルミニウム部材に深く挿入しなければならず、その
結果、アルミニウム部材表面に生じる窪みが大きくなる
という問題が生じる可能性がある。図2において、3
は、工具底面とアルミニウム板表面を最も接触させた時
のアルミニウム板表面位置(接触面積;大、この時の工
具とアルミニウムの位置関係を位置Aと定義する。)、
4は、工具底面とアルミニウム板表面をやや離した時の
アルミニウム板表面位置(接触面積;中、この場合を位
置Bと定義)、5は、工具底面とアルミニウム板表面を
最も離した時のアルミニウム板表面位置(接触面積;
小、この場合を位置Cと定義)を示す。
FIG. 2 shows a step of changing the contact area between the tool bottom surface (shoulder portion) and the aluminum member by changing the distance between the tool bottom surface 1a and the aluminum member surface. The optimal distance between the tool bottom and the aluminum plate surface is determined by the diameter of the tool bottom,
A range of approximately 0 to 0.3 mm is desirable. If it is larger than that, the contact area becomes small, so that frictional heat sufficient to sufficiently soften the aluminum plate cannot be obtained. Defects that adversely affect mechanical properties, such as vacancies, can increase.
The rotation axis of the rotary tool 1 is installed to be inclined backward with respect to the traveling direction of the tool. The inclination angle is 0 degree or more and 10 degrees or less,
Most preferably, 3 to 5 degrees is desirable, and if less than 3 degrees, it may be difficult to finely control the increase or decrease in the contact area between the bottom surface of the tool and the surface of the aluminum member,
Conversely, if it is larger than that, the tool must be inserted deeper into the aluminum member when increasing the contact area, and as a result, there is a possibility that a problem arises in that the depression formed on the surface of the aluminum member increases. In FIG. 2, 3
Is the surface position of the aluminum plate when the bottom surface of the tool and the surface of the aluminum plate are most in contact with each other (contact area; large; the positional relationship between the tool and aluminum at this time is defined as position A);
4 is the aluminum plate surface position when the tool bottom surface is slightly separated from the aluminum plate surface (contact area; medium, this case is defined as position B). 5 is aluminum when the tool bottom surface and the aluminum plate surface are separated most. Plate surface position (contact area;
Small, this case is defined as position C).

【0016】[0016]

【実施例】以下に、実施例として、工業用純アルミニウ
ム圧延材を対象とした本発明による組織制御の例を示
し、本発明の効果について明らかにする。
EXAMPLES As examples, examples of the structure control according to the present invention for rolled pure aluminum for industrial use are shown below, and the effects of the present invention will be clarified.

【0017】図3は、工具の回転数を1540rpm、
移動速度を0.5mm/secで一定とし、アルミニウ
ム部材と接触する工具底面の直径を7〜10ミリまで変
化させ、同時に工具底面とアルミニウム部材表面の位置
関係を3段階に変化させたときの、摩擦熱によって上昇
したアルミニウム部材処理部の到達温度を示している。
工具位置Aとは、工具底面全面がアルミニウム部材表面
に接触している状態であり、工具位置Bは、工具位置A
から工具を0.1mm上昇させ、工具底面とアルミニウ
ム部材表面の接触面積を減じた状態であり、工具位置C
は、工具位置Aから工具を0.2mm上昇させ、接触面
積を最も減じた状態である。
FIG. 3 shows that the rotation speed of the tool is 1540 rpm,
When the moving speed is constant at 0.5 mm / sec, the diameter of the tool bottom surface in contact with the aluminum member is changed from 7 to 10 mm, and at the same time, the positional relationship between the tool bottom surface and the aluminum member surface is changed in three stages. The temperature attained by the aluminum member processing section increased by frictional heat is shown.
The tool position A is a state in which the entire bottom surface of the tool is in contact with the aluminum member surface, and the tool position B is a tool position A.
In this state, the tool is raised 0.1 mm from the tool to reduce the contact area between the tool bottom surface and the aluminum member surface.
Is a state in which the tool is raised 0.2 mm from the tool position A and the contact area is most reduced.

【0018】図4は、工具の回転数を890rpm、移
動速度を0.5mm/secで一定とし、アルミニウム
部材と接触する工具底面の直径を7〜10mmまで変化
させ、同時に工具底面とアルミニウム部材表面の位置関
係を3段階に変化させたときの、摩擦熱によって上昇し
たアルミニウム部材処理部の到達温度を示している。工
具位置A、B、Cの定義は、図3と同様である。
FIG. 4 shows that the rotational speed of the tool is constant at 890 rpm, the moving speed is constant at 0.5 mm / sec, the diameter of the tool bottom contacting the aluminum member is changed from 7 to 10 mm, and at the same time, the tool bottom and the aluminum member surface are changed. 5 shows the ultimate temperature of the aluminum member processing section which has increased due to frictional heat when the positional relationship of the above is changed in three stages. The definitions of the tool positions A, B, and C are the same as in FIG.

【0019】ここまでで、工具の回転数及びアルミニウ
ム部材と接触する工具底面の直径、更に、工具底面と部
材表面の距離を変化させることにより、摩擦熱による部
材の温度上昇を制御し、到達温度を130℃から470
℃まで任意に変化させうることが明らかになった。
Up to this point, the rise in temperature of the member due to frictional heat is controlled by changing the number of revolutions of the tool, the diameter of the bottom surface of the tool in contact with the aluminum member, and the distance between the bottom surface of the tool and the surface of the member. From 130 ° C to 470
It was found that the temperature can be arbitrarily changed up to ° C.

【0020】表1は、処理中の工業用純アルミニウムの
到達温度と、得られる組織の関係を示したものである。
処理部の温度が400〜470℃に達するとき、結晶粒
径は100μm程度まで粗大化する。これは母材の結晶
粒径を大きく上回っている。温度が380〜390℃の
ときには、結晶粒径は50〜80μm、温度が270〜
320℃のときには、20〜40μm、200℃以下の
ときには、1〜数μmまで微細化が可能である。
Table 1 shows the relationship between the ultimate temperature of industrial pure aluminum during processing and the structure obtained.
When the temperature of the processing section reaches 400 to 470 ° C., the crystal grain size increases to about 100 μm. This greatly exceeds the crystal grain size of the base material. When the temperature is 380-390 ° C., the crystal grain size is 50-80 μm, and the temperature is 270-390 μm.
When the temperature is 320 ° C., the size can be reduced to 20 to 40 μm, and when the temperature is 200 ° C. or less, the size can be reduced to 1 to several μm.

【0021】[0021]

【表1】 [Table 1]

【0022】図5は、本発明により結晶粒径を微細化し
た工業用純アルミニウムの硬度測定結果の一例である。
処理部の硬度は52〜57HVであり、母材の37〜4
1HVに比べて上昇していることが分かる。
FIG. 5 shows an example of the hardness measurement results of industrial pure aluminum whose crystal grain size has been reduced according to the present invention.
The hardness of the processing section is 52 to 57 HV, and the hardness of the base material is 37 to 4
It can be seen that it is higher than 1 HV.

【0023】図6は、動的に工具底面と部材表面の接触
面積を変化させることにより、場所ごとに異なる結晶粒
径を有する部材を作成する工程を示している。このよう
に、本発明によれば、部材の必要とされる部位にのみ、
局所的に強度及び硬度を高める処理を施すことが可能で
あり、効率的であるばかりかコストの低減に寄与でき
る。
FIG. 6 shows a step of dynamically changing the contact area between the tool bottom surface and the member surface to produce a member having a different crystal grain size for each location. Thus, according to the present invention, only at the site where the member is needed,
It is possible to locally perform a treatment for increasing the strength and hardness, which is not only efficient but also contributes to cost reduction.

【0024】以上、本発明の代表的な実施例として、工
業用純アルミニウムに適用した例について詳述してきた
が、本発明は、そのような具体例にのみ限定して解釈さ
れるものではなく、JIS A5083等に代表される
既知のアルミニウム合金にも同様に実施されうるもので
ある。
As described above, a typical embodiment of the present invention has been described in detail with respect to an example applied to industrial pure aluminum. However, the present invention should not be construed as being limited to such specific examples. And a known aluminum alloy represented by JIS A5083 and the like.

【0025】[0025]

【発明の効果】以上に説明したように、本発明によれ
ば、従来の押出しや圧延に比べて簡便で、部材の形状の
自由度が大きい上、処理条件によって結晶粒径を1μm
から100μmの幅広い範囲内で任意に制御することが
できる。
As described above, according to the present invention, it is simpler than conventional extrusion and rolling, the degree of freedom of the shape of the member is large, and the crystal grain size is 1 μm depending on the processing conditions.
Can be arbitrarily controlled within a wide range from 1 to 100 μm.

【0026】また、動的に処理条件を変更することで、
局所的に部材の結晶粒径を制御することが可能であり、
それにより、部材の必要とされる部位にのみ、局所的に
強度及び硬度を高める処理を施すことが可能である。ま
た、このような処理の後に、必要であれば、強化及び硬
化処理を施していない部位に対して、容易に切削加工、
塑性加工等を実施することができる。
Also, by dynamically changing the processing conditions,
It is possible to locally control the crystal grain size of the member,
Thus, it is possible to locally increase the strength and hardness of only the necessary parts of the member. In addition, after such a process, if necessary, a portion that has not been subjected to the strengthening and hardening processes can be easily cut,
Plastic working or the like can be performed.

【0027】更に、本発明によれば、添加元素を母材の
アルミニウム合金に加えることなく、加熱のための電気
炉も必要なく、更には、大型プレスのような特殊設備を
必要としないことから、アルミニウムならびにアルミニ
ウム合金の組織制御による強度、硬度の制御を従来法に
比べてきわめて容易に、低コストで行うことができる。
Further, according to the present invention, the additive element is not added to the base aluminum alloy, an electric furnace for heating is not required, and special equipment such as a large press is not required. The strength and hardness of the aluminum and aluminum alloy can be controlled very easily and at low cost by controlling the structure of the aluminum alloy and the aluminum alloy.

【0028】そして、それらの結果として、アルミニウ
ムならびにアルミニウム合金の機械的構造物等への適用
が促進され、その工業的な利用が大きく拡大することが
期待される。
As a result, it is expected that the application of aluminum and aluminum alloys to mechanical structures and the like will be promoted, and the industrial use thereof will be greatly expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるアルミニウム及びアルミニウム
合金の組織制御方法を実施しうる装置の一例を示す模式
図である。
FIG. 1 is a schematic view showing an example of an apparatus capable of implementing a method for controlling the structure of aluminum and an aluminum alloy according to the present invention.

【図2】本発明に係わる回転工具と、組織制御を実施さ
れるアルミニウム及びアルミニウム合金部材表面の位置
関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a positional relationship between a rotary tool according to the present invention and surfaces of aluminum and an aluminum alloy member on which structure control is performed.

【図3】本発明により組織制御を実施した際に、工具の
回転数が1540rpmの時の、工具底面の直径、なら
びに工具と工業用純アルミニウム材表面の位置関係が、
処理中の工業用純アルミニウム材の到達温度に与える影
響を示す説明図である。
FIG. 3 is a graph showing the relationship between the diameter of the tool bottom surface and the positional relationship between the tool and the surface of the industrial pure aluminum material when the number of rotations of the tool is 1540 rpm when the structure control is performed according to the present invention.
It is explanatory drawing which shows the influence which it has on the attainment temperature of the industrial pure aluminum material during a process.

【図4】本発明により組織制御を実施した際に、工具の
回転数が890rpmの時の、工具底面の直径、ならび
に工具と工業用純アルミニウム材表面の位置関係が、処
理中の工業用純アルミニウム材の到達温度に与える影響
を示す説明図である。
FIG. 4 is a graph showing the relationship between the diameter of the tool bottom surface and the positional relationship between the tool and the surface of the industrial pure aluminum material when the rotational speed of the tool is 890 rpm when the structure control is performed according to the present invention. It is explanatory drawing which shows the influence which it has on the attainment temperature of an aluminum material.

【図5】本発明により結晶粒径を微細化した工業用純ア
ルミニウムの硬度分布測定例を示す説明図である。
FIG. 5 is an explanatory diagram showing an example of hardness distribution measurement of industrial pure aluminum having a refined crystal grain size according to the present invention.

【図6】本発明に係わるアルミニウム及びアルミニウム
合金の組織制御方法に従って、回転工具の高さ又は回転
数を動的に変化させることにより、アルミニウム部材の
任意の場所の結晶粒径を、任意の大きさに制御できるこ
とを示す模式図である。
FIG. 6 shows a method for controlling the structure of aluminum and an aluminum alloy according to the present invention, in which the height or the number of rotations of the rotating tool is dynamically changed, so that the crystal grain size at an arbitrary position of the aluminum member is changed to an arbitrary size. It is a schematic diagram which shows that control is possible.

【符号の説明】[Explanation of symbols]

(図1の符号の説明) 1 回転工具 1a アルミニウム板を摩擦する工具底面部 1b ピン 2 攪拌部 3 摩擦痕 4 アルミニウム板 (図2の符号の説明) 1 回転工具 1a 工具底面 1b ピン 2 工具の回転軸 3 工具底面とアルミニウム板表面を最も接触させた
時のアルミニウム板表面位置(接触面積;大、位置A) 4 工具底面とアルミニウム板表面をやや離した時の
アルミニウム板表面位置(接触面積;中、位置B) 5 工具底面とアルミニウム板表面を最も離した時の
アルミニウム板表面位置(接触面積;小、位置C) (図3、図4の符号の説明) A 工具底面とアルミニウム板表面を最も接触させた
時のアルミニウム板表面位置(接触面積;大) B 工具底面とアルミニウム板表面をやや離した時の
アルミニウム板表面位置(接触面積;中) C 工具底面とアルミニウム板表面を最も離した時の
アルミニウム板表面位置(接触面積;小)
(Description of reference numerals in FIG. 1) 1 Rotary tool 1a Tool bottom portion for friction with aluminum plate 1b Pin 2 Stirrer 3 Friction mark 4 Aluminum plate (Description of reference symbols in FIG. 2) 1 Rotary tool 1a Tool bottom surface 1b Pin 2 Rotation axis 3 Aluminum plate surface position when tool bottom and aluminum plate surface are most in contact (contact area; large, position A) 4 Aluminum plate surface position when tool bottom and aluminum plate surface are slightly separated (contact area; Medium, position B) 5 Aluminum plate surface position when tool bottom and aluminum plate surface are farthest apart (contact area; small, position C) (Explanation of reference numerals in FIGS. 3 and 4) A Tool bottom and aluminum plate surface Aluminum plate surface position when contacted most (contact area; large) B Aluminum plate surface position when tool bottom and aluminum plate surface are slightly separated (contact area Aluminum plate surface position when the most away medium) C tool bottom and the surface of the aluminum plate (contact area; small)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム乃至アルミニウム合金部材
の表面に高速回転する工具を接触させ、工具と部材表面
の摩擦熱による部材の熱処理効果と、工具による部材の
機械的撹拌効果との併用によりアルミニウム乃至アルミ
ニウム合金の組織制御を行う方法であって、工具の回転
数を変化させること、及び/又は工具と部材が接触する
部分の面積を任意に変化させること、によって、発生す
る摩擦熱量を制御して部材の熱処理温度を任意の値に変
化させ、部材の結晶粒径組織を任意の大きさに制御する
ことを特徴とするアルミニウム乃至アルミニウム合金の
組織制御方法。
An aluminum or aluminum alloy member is brought into contact with a tool which rotates at a high speed, and a heat treatment effect of the member due to frictional heat between the tool and the member surface and a mechanical stirring effect of the member by the tool are used in combination with the aluminum or aluminum alloy. A method for controlling the structure of an alloy, comprising controlling the amount of frictional heat generated by changing the number of revolutions of a tool and / or arbitrarily changing the area of a portion where the tool comes into contact with the member. A method of controlling the structure of aluminum or an aluminum alloy, wherein the heat treatment temperature is changed to an arbitrary value to control the crystal grain size structure of the member to an arbitrary size.
【請求項2】 回転工具の、部材と接触し摩擦熱を発生
する部分の直径を変化させることにより、工具と部材が
接触する部分の面積を任意に変化させることを特徴とす
る、請求項1に記載のアルミニウム乃至アルミニウム合
金の組織制御方法。
2. The method according to claim 1, wherein the area of the portion of the rotary tool that contacts the member and generates frictional heat is changed by changing the diameter of the portion of the rotary tool. 3. The method for controlling the structure of aluminum or an aluminum alloy according to item 1.
【請求項3】 回転工具の回転軸を、あらかじめ接触さ
せる部材表面の法線方向に対して傾斜させて設置するこ
とにより、回転工具の部材に接触する部分と部材表面の
なす角を0度以上10度以下にし、更に、回転工具と部
材表面の距離を変化させることにより、工具と部材が接
触する部分の面積を任意に変化させることを特徴とす
る、請求項1に記載のアルミニウム乃至アルミニウム合
金の組織制御方法。
3. An angle between a portion of the rotating tool contacting the member and the surface of the member is set to 0 ° or more by installing the rotating shaft of the rotating tool at an angle with respect to the normal direction of the surface of the member to be contacted in advance. 2. The aluminum or aluminum alloy according to claim 1, wherein an area of a portion where the tool and the member come into contact is arbitrarily changed by making the angle equal to or less than 10 degrees and further changing a distance between the rotating tool and the member surface. 3. Organization control method.
JP2001046019A 2001-02-22 2001-02-22 Structure control method of aluminum and aluminum alloy Expired - Lifetime JP3755024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001046019A JP3755024B2 (en) 2001-02-22 2001-02-22 Structure control method of aluminum and aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001046019A JP3755024B2 (en) 2001-02-22 2001-02-22 Structure control method of aluminum and aluminum alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002237777A Division JP4006515B2 (en) 2002-08-19 2002-08-19 Structure control of aluminum and aluminum alloys

Publications (2)

Publication Number Publication Date
JP2002249860A true JP2002249860A (en) 2002-09-06
JP3755024B2 JP3755024B2 (en) 2006-03-15

Family

ID=18907718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001046019A Expired - Lifetime JP3755024B2 (en) 2001-02-22 2001-02-22 Structure control method of aluminum and aluminum alloy

Country Status (1)

Country Link
JP (1) JP3755024B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039527A2 (en) * 2002-11-01 2004-05-13 Airbus Uk Limited Welding method
JP2006239734A (en) * 2005-03-03 2006-09-14 Showa Denko Kk Weld joint and method for forming the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039527A2 (en) * 2002-11-01 2004-05-13 Airbus Uk Limited Welding method
WO2004039527A3 (en) * 2002-11-01 2004-06-17 Airbus Uk Ltd Welding method
JP2006504535A (en) * 2002-11-01 2006-02-09 エアバス・ユ―ケ―・リミテッド Welding method
US7740162B2 (en) 2002-11-01 2010-06-22 Airbus UK, Limited Welding method
JP2006239734A (en) * 2005-03-03 2006-09-14 Showa Denko Kk Weld joint and method for forming the same

Also Published As

Publication number Publication date
JP3755024B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
KR102033520B1 (en) Friction Stir Welding Device and Friction Stir Welding Control Method
US8167188B2 (en) Friction stir welding method
US20190262934A1 (en) Friction stir spot welding device and friction stir spot welding method
JP4006515B2 (en) Structure control of aluminum and aluminum alloys
JP2007107039A (en) Method for modifying alloy formed body and alloy formed body
CN108025391A (en) The manufacture method of joint method and liquid-cooled jacket cylinder
JP2002249860A (en) Method for controlling structure of aluminum or aluminum alloy
EP1366856A3 (en) Apparatus for processing a lens and a process for processing a lens
CN109747159A (en) Method and apparatus for connecting the component with friction pin
Chang et al. Influence of grain size and temperature on micro upsetting of copper
JP2012035295A (en) Method for highly corrosion-resistant surface treatment
KR101990224B1 (en) Plastic machining method of magnesium alloys
JP5187886B2 (en) Protrusion formation by friction welding
WO2020132119A1 (en) Apparatus, system and method for a hybrid additive manufacturing nozzle
JPS61292000A (en) Formation of groove/fin pattern to support surface of dynamical bearing
JP2007064129A (en) Piston for internal combustion engine and method for manufacturing same
Kulkarni A review and unifying analysis of defect decoration and surface polishing by chemical etching in silicon processing
JP4321017B2 (en) Friction stir welding method and rotating tool for friction stir welding
JP2007319907A (en) Surface treatment device for workpiece
JP2594852B2 (en) Manufacturing method of wheel rim
JP5429760B2 (en) Protrusion formation by friction welding
JP3942978B2 (en) Three-dimensional shape cutting apparatus, cutting method, program, and storage medium using spiral tool path
CN1044247A (en) Make the equipment of the method and this method of enforcement of metal wire
JP2003025078A (en) Copper, copper-base alloy and method of manufacturing the same
JPH05123808A (en) Plastic working method for stainless steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3755024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term