JP2002248478A - Slime preventing method in cooling water system - Google Patents

Slime preventing method in cooling water system

Info

Publication number
JP2002248478A
JP2002248478A JP2001046409A JP2001046409A JP2002248478A JP 2002248478 A JP2002248478 A JP 2002248478A JP 2001046409 A JP2001046409 A JP 2001046409A JP 2001046409 A JP2001046409 A JP 2001046409A JP 2002248478 A JP2002248478 A JP 2002248478A
Authority
JP
Japan
Prior art keywords
cooling water
slime
water system
water
residual chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001046409A
Other languages
Japanese (ja)
Other versions
JP4013486B2 (en
Inventor
Akira Iimura
晶 飯村
Kazuhiko Tsunoda
和彦 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001046409A priority Critical patent/JP4013486B2/en
Publication of JP2002248478A publication Critical patent/JP2002248478A/en
Application granted granted Critical
Publication of JP4013486B2 publication Critical patent/JP4013486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a slime preventing method in an open circulating cooling water system capable of suppressing the corrosion by metals and effectively suppressing the generation of slime. SOLUTION: In the method for preventing slime by adding chlorine to the open circulating cooling water system, chlorine water obtained by generating residual chlorine by electrolyzing a saline solution is added and the concentrated cooling water is electrolyzed to generate residual chlorine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷却水系のスライ
ム防止方法に関する。さらに詳しくは、本発明は、冷却
水系において、金属部材の腐食を抑えて、しかもスライ
ムの発生を効果的に防止することができる冷却水系のス
ライム防止方法に関する。
The present invention relates to a method for preventing slime in a cooling water system. More specifically, the present invention relates to a method for preventing slime in a cooling water system that can suppress corrosion of a metal member and effectively prevent slime from being generated in the cooling water system.

【0002】[0002]

【従来の技術】冷却水は、石油化学産業や鉄鋼産業など
の種々の産業分野において、間接的又は直接的に被処理
物を冷却する目的で、あるいは、ビルの空調、冷暖房、
その関連装置などに多量に使用されている。近年は、水
資源の不足や有効利用の観点から、冷却水の使用量を削
減するために、開放循環冷却水系の高濃縮運転における
強制ブロー量の削減など、冷却水の高度利用が行われて
いる。このように冷却水を高度に利用した場合には、溶
存塩類や栄養源の濃縮などにより、循環冷却水の水質が
悪化し、細菌、黴、藻類などの微生物群に、土砂、塵埃
などが混ざり合って形成されるスライムが発生しやすく
なり、熱交換器における熱効率の低下や通水の悪化を引
き起こし、またスライム付着下部において、機器や配管
の局部腐食を誘発する。そこで、このようなスライムに
よる障害を防止するために、種々の抗菌剤、例えば、次
亜塩素酸ナトリウムや過酸化水素水などの酸化性抗菌剤
などが用いられている。これらの抗菌剤は、薬剤タンク
に貯留され、薬注ポンプによって冷却水系に注入されて
いる。しかし、スライム防止のために抗菌剤を使用する
と、ローリー運搬、コンテナ移動など、運搬に労力を要
し、抗菌剤の取り扱い中に漏洩などを起こして人体に被
害を与える危険性があり、抗菌剤の残量をチェックして
定期的に補充する手間がかかるなどの問題がある。冷却
水系で問題となるスライム障害を防止するために、電解
次亜塩素酸発生装置が用いられている。しかし、補給水
中の塩化物イオン濃度が低い場合には、冷却水系におい
て塩化物イオンが濃縮されても、スライム処理に十分な
次亜塩素酸の発生速度が得られなかった。また、冷却水
に食塩などを添加して塩化物イオン濃度を高めると、冷
却水と接触する金属部材に腐食を生じやすくなるという
問題があった。このために、金属部材の腐食を抑え、し
かもスライムの発生を効果的に防止し得る冷却水系のス
ライム防止方法が求められていた。
2. Description of the Related Art Cooling water is used in various industrial fields such as the petrochemical industry and the steel industry for the purpose of indirectly or directly cooling an object to be treated, or for air conditioning, cooling and heating of a building, and the like.
It is used in large quantities in related equipment. In recent years, from the viewpoint of water resources shortage and effective use, advanced use of cooling water has been performed, such as reduction of the amount of forced blow in the high concentration operation of open circulation cooling water systems, in order to reduce the amount of cooling water used. I have. When the cooling water is used in this way, the quality of the circulating cooling water deteriorates due to the concentration of dissolved salts and nutrients, and soil, dust, etc. are mixed with microorganisms such as bacteria, fungi, and algae. Slime that is formed together is likely to be generated, causing a decrease in thermal efficiency and deterioration of water flow in the heat exchanger, and also causes local corrosion of equipment and piping below the slime attachment. Therefore, various antibacterial agents, for example, oxidizing antibacterial agents such as sodium hypochlorite and aqueous hydrogen peroxide have been used to prevent such slime-induced slime. These antibacterial agents are stored in a chemical tank and injected into a cooling water system by a chemical injection pump. However, if an antimicrobial agent is used to prevent slime, labor is required for transportation, such as transporting lorries and containers, and there is a danger of causing damage to the human body due to leakage during handling of the antimicrobial agent. There is a problem that it takes time to check the remaining amount and replenish periodically. Electrolytic hypochlorous acid generators have been used to prevent slime damage which is a problem in cooling water systems. However, when the chloride ion concentration in the makeup water was low, the generation rate of hypochlorous acid sufficient for the slime treatment could not be obtained even if the chloride ions were concentrated in the cooling water system. In addition, when the chloride ion concentration is increased by adding salt or the like to the cooling water, there is a problem that a metal member in contact with the cooling water is apt to be corroded. For this reason, there has been a demand for a slime prevention method for a cooling water system that can suppress corrosion of a metal member and effectively prevent slime from being generated.

【0003】[0003]

【発明が解決しようとする課題】本発明は、開放循環冷
却水系において、金属部材の腐食を抑えて、しかもスラ
イムの発生を効果的に防止することができる冷却水系の
スライム防止方法を提供することを目的としてなされた
ものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of preventing slime in a cooling water system which can suppress corrosion of metal members and effectively prevent slime from being generated in an open circulation cooling water system. It was made for the purpose of.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、開放循環冷却水
系において、食塩水を電解し残留塩素を発生させた塩素
水を補給水に添加し、さらに循環水系に電解槽を設置し
て残留塩素を発生させることにより、金属部材の腐食速
度が小さく、しかもスライム防止に必要かつ十分な残留
塩素の発生速度が得られることを見いだし、この知見に
基づいて本発明を完成するに至った。すなわち、本発明
は、開放循環冷却水系の冷却水に塩素を添加してスライ
ムを防止する方法において、冷却水系に補給される補給
水に食塩水を電解して残留塩素を発生させた塩素水を添
加するとともに、濃縮された冷却水を電解し、残留塩素
を発生させることを特徴とする冷却水系のスライム防止
方法を提供するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, in an open circulating cooling water system, replenish chlorinated water generated by electrolyzing saline solution and generating residual chlorine. By adding residual water to the water and installing an electrolytic cell in the circulating water system to generate residual chlorine, we found that the corrosion rate of metal members was low, and that a sufficient and sufficient residual chlorine generation rate required to prevent slime was obtained. The present invention has been completed based on this finding. That is, the present invention provides a method for preventing slime by adding chlorine to cooling water in an open-circulating cooling water system, wherein chlorine water is produced by electrolyzing a saline solution into makeup water supplied to the cooling water system to generate residual chlorine. It is an object of the present invention to provide a method for preventing slime in a cooling water system, characterized in that the added cooling water is electrolyzed to generate residual chlorine while being added.

【0005】[0005]

【発明の実施の形態】本発明の冷却水系のスライム防止
方法においては、開放循環冷却水系の冷却水に塩素を添
加してスライムを防止する方法において、冷却水系に補
給される補給水に食塩水を電解して残留塩素を発生させ
た塩素水を添加するとともに、濃縮された冷却水を電解
し、残留塩素を発生させる。本発明方法は、補給水中の
塩化物イオン濃度が低く、冷却水系において塩化物イオ
ンを濃縮させても、スライム処理に十分な残留塩素を発
生することができない冷却水系に好適に適用することが
できる。本発明方法において、補給水に添加する食塩水
を電解して残留塩素を発生させた塩素水の製造方法に特
に制限はなく、例えば、食塩水電解次亜塩素酸発生装置
を用いて製造することができる。食塩水電解次亜塩素酸
発生装置を用いて、無隔膜式電解槽で食塩水を電解する
と、陽極と陰極で次のような反応が起こって塩素と水酸
化ナトリウムが生成し、さらに塩素と水酸化ナトリウム
が反応して次亜塩素酸ナトリウムが生成する。市販の食
塩水電解次亜塩素酸発生装置を用いて、残留塩素濃度6
0〜80mgCl/L程度の塩素水を製造することができ
る。 2Cl- → Cl2 + 2e- 2Na+ + 2H2O + 2e- → 2NaOH + H2 Cl2 + 2NaOH → NaOCl + NaCl +
2O 本発明方法において、補給水への塩素水の添加量に特に
制限はないが、補給水中の残留塩素濃度が0.1〜3mgC
l/Lとなるように添加することが好ましく、0.5〜2
mgCl/Lとなるように添加することがより好ましい。補
給水中の残留塩素濃度が0.1mgCl/L未満であると、
スライム防止効果が不十分となるおそれがある。補給水
中の残留塩素濃度が3mgCl/Lを超えると、冷却水系の
金属部材の腐食が速くなるおそれがある。食塩水を電解
して残留塩素を発生させた塩素水には、通常は残留塩素
濃度の10倍程度の塩化物イオンが含まれているので、
補給水中の残留塩素濃度が0.1〜3mgCl/Lである
と、補給水中に含まれる1〜30mgCl-/L程度の塩化
物イオンが冷却水系に送り込まれ、冷却水の濃縮ととも
に濃縮され、例えば、濃縮倍率10倍で冷却水系を運転
すると、濃縮された冷却水中の塩化物イオン濃度は10
〜300mgCl-/L程度となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method for preventing slime of a cooling water system according to the present invention, a method of preventing slime by adding chlorine to cooling water of an open circulation cooling water system is described. Is electrolyzed to add chlorine water that has generated residual chlorine, and the concentrated cooling water is electrolyzed to generate residual chlorine. INDUSTRIAL APPLICABILITY The method of the present invention can be suitably applied to a cooling water system in which the chloride ion concentration in makeup water is low and sufficient chlorine cannot be generated for slime treatment even when chloride ions are concentrated in the cooling water system. . In the method of the present invention, there is no particular limitation on a method for producing chlorine water in which residual chlorine is generated by electrolyzing a saline solution added to make-up water, for example, using a saline electrolytic hypochlorous acid generator. Can be. When a saline solution is electrolyzed in a non-diaphragm type electrolysis tank using a saline electrolysis hypochlorous acid generator, the following reaction occurs between the anode and the cathode to generate chlorine and sodium hydroxide. Sodium oxide reacts to produce sodium hypochlorite. Using a commercially available saline electrolysis hypochlorous acid generator, a residual chlorine concentration of 6
Chlorine water of about 0 to 80 mgCl / L can be produced. 2Cl - → Cl 2 + 2e - 2Na + + 2H 2 O + 2e - → 2NaOH + H 2 Cl 2 + 2NaOH → NaOCl + NaCl +
H 2 O In the method of the present invention, the amount of chlorine water added to the makeup water is not particularly limited, but the residual chlorine concentration in the makeup water is 0.1 to 3 mg C
l / L, preferably 0.5 to 2
More preferably, it is added so as to become mgCl / L. If the residual chlorine concentration in the makeup water is less than 0.1 mgCl / L,
The slime prevention effect may be insufficient. If the residual chlorine concentration in the makeup water exceeds 3 mgCl / L, the corrosion of the cooling water system metal member may be accelerated. Chlorine water, which has generated residual chlorine by electrolyzing saline solution, usually contains chloride ions of about 10 times the residual chlorine concentration.
If the residual chlorine concentration in the makeup water is 0.1 to 3 mgCl / L, chloride ions of about 1 to 30 mgCl / L contained in the makeup water are sent to the cooling water system and concentrated together with the cooling water. When the cooling water system is operated at a concentration ratio of 10 times, the chloride ion concentration in the concentrated cooling water becomes 10%.
It is about 300 mgCl / L.

【0006】本発明方法において、濃縮された冷却水の
電解方法に特に制限はなく、例えば、電極を冷却水のピ
ットに浸漬して電解することができ、あるいは、冷却水
系の配管に電解槽を設置して電解することもできる。電
解槽の設置場所に特に制限はなく、例えば、冷却水の送
り配管にバイパス配管を設けて電解槽を設置し、電解に
より残留塩素を発生させた冷却水をピットに返送するこ
とができ、冷却水の送り配管に電解槽を設置することも
でき、あるいは、冷却水の戻り配管に電解槽を設置する
こともできる。本発明方法に用いる電極の材質に特に制
限はないが、陽極としては、例えば、チタンなどの耐食
性の材料に、白金、イリジウムなどの白金系元素の単体
又はその酸化物を被覆した残留塩素の発生効率が良好な
材質を好適に用いることができる。陰極としては、例え
ば、ステンレス鋼、アルミニウム、銀などを用いること
ができるが、陰極と陽極を同一の材質とすることもでき
る。また、電流の方向を固定する必要はなく、電流の正
負を定期的又は随意的に逆転させ、陰極と陽極とを反転
させながら電解を行うことができる。電極の反転によ
り、陰極に付着した炭酸カルシウムなどのスケールを剥
離しながら運転することができるので、電解効率の低下
を防ぐことができる。なお、この場合、両電極を同一の
材質とすれば、一定の残留塩素の発生効率が得られる。
この場合、用いる電極としては、例えば、チタンなどを
基材とし、白金やイリジウムなどを被覆した電極などを
挙げることができる。
In the method of the present invention, the method of electrolyzing the concentrated cooling water is not particularly limited. For example, an electrode can be immersed in a pit of cooling water for electrolysis, or an electrolytic cell can be provided in a cooling water system pipe. It can be installed and electrolyzed. There is no particular limitation on the installation location of the electrolytic cell.For example, a bypass pipe is provided in a cooling water supply pipe, an electrolytic cell is installed, and cooling water in which residual chlorine is generated by electrolysis can be returned to the pit, and cooling can be performed. An electrolytic cell can be installed in the water supply pipe, or an electrolytic cell can be installed in the cooling water return pipe. There is no particular limitation on the material of the electrode used in the method of the present invention. As the anode, for example, a corrosion-resistant material such as titanium, platinum, the generation of residual chlorine coated with a platinum-based element such as iridium or an oxide thereof is coated. A material with good efficiency can be suitably used. As the cathode, for example, stainless steel, aluminum, silver, or the like can be used, but the cathode and the anode can be made of the same material. Further, it is not necessary to fix the direction of the current, and the electrolysis can be performed while the polarity of the current is periodically or optionally reversed, and the cathode and the anode are reversed. By reversing the electrodes, the operation can be performed while the scale such as calcium carbonate adhered to the cathode is peeled off, so that a decrease in electrolysis efficiency can be prevented. In this case, if both electrodes are made of the same material, a constant generation efficiency of residual chlorine can be obtained.
In this case, examples of the electrode to be used include, for example, an electrode in which titanium or the like is used as a base material and coated with platinum or iridium.

【0007】本発明方法において、電解のために印加す
る直流電圧に特に制限はないが、2〜40Vであること
が好ましく、4〜30Vであることがより好ましい。印
加する電圧が2V未満であると、残留塩素の発生効率が
低下するおそれがある。印加する電圧が40Vを超える
と、人体に対して危険性が生ずるおそれがある。本発明
方法において、電解のために通電する電流に特に制限は
ないが、冷却水系の循環水量1m3/hに対して、0.1
〜3Aであることが好ましい。電流が循環水量1m3
hに対して0.1A未満であると、残留塩素の発生量が
過少となって、スライム防止効果が不十分となるおそれ
がある。電流が循環水量1m3/hに対して3Aを超え
ると、残留塩素濃度が高くなりすぎて金属の腐食を招く
おそれがある。図1は、本発明の冷却水系のスライム防
止方法の実施の一態様の工程系統図である。補給水に食
塩水電解残留塩素発生装置(図示していない。)におい
て残留塩素を発生させた塩素水が添加され、冷却塔1の
ピット2に供給される。冷却水はピットから循環ポンプ
3により送り出され、送り配管4、熱交換器5、戻り配
管6を経由して冷却塔に返送される。送り配管にはバイ
パス配管7が接続され、バイパス配管へ流入した冷却水
は、電解槽8で電解されて残留塩素が発生し、ピットに
返送される。本発明のスライム防止方法によれば、冷却
水系において、抗菌剤などを使用することなく、金属部
材の腐食を抑えて、しかもスライムの発生を効果的に防
止することができる
In the method of the present invention, the DC voltage applied for electrolysis is not particularly limited, but is preferably 2 to 40 V, more preferably 4 to 30 V. If the applied voltage is less than 2 V, the generation efficiency of residual chlorine may decrease. If the applied voltage exceeds 40 V, there is a possibility that danger may be caused to the human body. In the process of the present invention is not particularly limited to the current to be supplied for electrolysis, with respect to the circulating water 1 m 3 / h of cooling water, 0.1
~ 3A is preferred. Current is circulating water volume 1m 3 /
If h is less than 0.1 A, the amount of residual chlorine generated is too small, and the slime prevention effect may be insufficient. If the current exceeds 3 A with respect to the circulating water amount of 1 m 3 / h, the residual chlorine concentration becomes too high, which may cause corrosion of the metal. FIG. 1 is a process flow chart of an embodiment of the method for preventing slime of a cooling water system according to the present invention. Chlorine water that has generated residual chlorine in a saline electrolysis residual chlorine generator (not shown) is added to the make-up water and supplied to the pit 2 of the cooling tower 1. The cooling water is sent out of the pit by the circulation pump 3 and returned to the cooling tower via the feed pipe 4, the heat exchanger 5, and the return pipe 6. A bypass pipe 7 is connected to the feed pipe, and the cooling water flowing into the bypass pipe is electrolyzed in the electrolytic tank 8 to generate residual chlorine and returned to the pit. ADVANTAGE OF THE INVENTION According to the slime prevention method of this invention, in a cooling water system, without using an antibacterial agent etc., corrosion of a metal member can be suppressed and the generation of slime can be effectively prevented.

【0008】[0008]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 図1に示す循環水量100m3/hの冷却水系におい
て、試験を行った。塩化物イオン濃度1.0mgCl-/Lの
水に、食塩水電解次亜塩素酸発生装置により発生させた
次亜塩素酸を含有する塩素水を、残留塩素濃度1.0mgC
l/Lとなるように添加して補給水とした。補給水中の
塩化物イオン濃度は、11mgCl-/Lであった。腐食性
試験の試験片として、材質が低炭素鋼のJIS G 31
41の1種(SPCC)であり、JIS K 0100の
付図4に記載された円形試験片を冷却水ピットに浸漬し
た。濃縮された冷却水中の塩化物イオン濃度を110mg
Cl-/Lとして、冷却水系を濃縮倍数が10倍となるよ
うに運転し、さらに循環水を電解槽に通水して次亜塩素
酸を発生させ、残留塩素濃度を0.5mgCl/Lに維持し
つつ30日間の運転を行った。30日後の冷却水中の一
般細菌数は102CFU(colony forming unit)/mLで
あり、低炭素鋼試験片の腐食速度は10mdd(mg/dm
2/day)であった。 比較例1 循環水を電解槽に通水して次亜塩素酸を発生させる操作
を行わなかった以外は、実施例1と同様にして、冷却水
系の運転を30日間行った。濃縮された冷却水中の塩化
物イオン濃度は110mgCl-/Lであり、残留塩素濃度
は0.1mgCl/Lであった。30日後の冷却水中の一般
細菌数は105CFU/mLであり、低炭素鋼試験片の腐
食速度は15mddであった。 比較例2 実施例1と同じ冷却水系において、塩化物イオン濃度
1.0mgCl-/Lの水に、食塩水電解次亜塩素酸発生装置
から発生させた次亜塩素酸を含有する塩素水を、残留塩
素濃度5.0mgCl/Lとなるように添加して補給水とし
た。補給水中の塩化物イオン濃度は、51mgCl-/Lで
あった。冷却水ピットには、実施例1と同じ低炭素鋼試
験片を浸漬した。循環水を電解槽に通水して次亜塩素酸
を発生させる操作を行うことなく、冷却水系を濃縮倍数
10倍となるようにして30日間運転した。濃縮された
冷却水中の塩化物イオン濃度は510mgCl-/Lであ
り、残留塩素濃度は0.5mgCl/Lであった。30日後
の冷却水中の一般細菌数は102CFU/mLであり、低
炭素鋼試験片の腐食速度は40mddであった。実施例
1及び比較例1〜2の結果を、第1表に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 A test was performed in a cooling water system having a circulating water flow rate of 100 m 3 / h shown in FIG. Chlorine water containing hypochlorous acid generated by a saline electrolysis hypochlorous acid generator was added to water having a chloride ion concentration of 1.0 mgCl / L, and a residual chlorine concentration of 1.0 mgC
1 / L was added to make up water. The chloride ion concentration in the make-up water was 11 mgCl / L. As a test piece for the corrosion test, JIS G 31 of low carbon steel
Circular specimens of Type 41 (SPCC) and described in JIS K 0100 Appended FIG. 4 were immersed in cooling water pits. 110mg of chloride ion concentration in concentrated cooling water
The cooling water system was operated so as to have a concentration factor of 10 times as Cl / L, and circulating water was passed through the electrolytic cell to generate hypochlorous acid, and the residual chlorine concentration was reduced to 0.5 mg Cl / L. The operation was performed for 30 days while maintaining. After 30 days, the number of common bacteria in the cooling water was 10 2 CFU (colony forming unit) / mL, and the corrosion rate of the low carbon steel test piece was 10 mdd (mg / dm.
2 / day). Comparative Example 1 A cooling water system was operated for 30 days in the same manner as in Example 1 except that the operation of generating hypochlorous acid by passing circulating water through the electrolytic cell was not performed. The chloride ion concentration in the concentrated cooling water was 110 mgCl / L, and the residual chlorine concentration was 0.1 mgCl / L. After 30 days, the number of general bacteria in the cooling water was 10 5 CFU / mL, and the corrosion rate of the low carbon steel test piece was 15 mdd. Comparative Example 2 In the same cooling water system as in Example 1, chlorinated water containing hypochlorous acid generated from a saline electrolysis hypochlorous acid generator was added to water having a chloride ion concentration of 1.0 mgCl / L, Water was added so that the residual chlorine concentration was 5.0 mgCl / L to make up water. The chloride ion concentration in the make-up water was 51 mgCl / L. The same low carbon steel test piece as in Example 1 was immersed in the cooling water pit. The cooling water system was operated for 30 days so that the concentration of the cooling water was increased by a factor of several tens without performing the operation of generating hypochlorous acid by passing the circulating water through the electrolytic cell. The chloride ion concentration in the concentrated cooling water was 510 mgCl / L, and the residual chlorine concentration was 0.5 mgCl / L. After 30 days, the general bacteria count in the cooling water was 10 2 CFU / mL, and the corrosion rate of the low carbon steel test piece was 40 mdd. Table 1 shows the results of Example 1 and Comparative Examples 1 and 2.

【0009】[0009]

【表1】 [Table 1]

【0010】第1表に見られるように、補給水に食塩水
電解次亜塩素酸発生装置により発生させた次亜塩素酸を
含有する塩素水を添加し、さらに循環水を電解槽に通水
して次亜塩素酸を発生させた実施例1においては、冷却
水中の一般細菌数が少なく、スライム防止効果が十分に
発現することが予測され、また、低炭素鋼試験片の腐食
速度も小さい。これに対して、循環水を電解槽に通水し
て次亜塩素酸を発生させる操作を行わなかった比較例で
は、補給水中の塩化物イオン濃度を実施例1と同じにす
ると、循環水中の残留塩素濃度が低くなり、低炭素鋼試
験片の腐食速度は大きくないが、一般細菌数が多く、ス
ライムの発生が予測される。一方、補給水中の塩化物イ
オン濃度を高くして、循環水中の残留塩素濃度を実施例
1と同じにすると、冷却水中の一般細菌数は少なくなる
が、低炭素鋼試験片の腐食速度が大きく、冷却水系にお
ける金属部材の腐食の進行が速いことが予測される。
As shown in Table 1, chlorine water containing hypochlorous acid generated by a saline electrolysis hypochlorous acid generator is added to make-up water, and circulating water is passed through the electrolytic cell. In Example 1 in which hypochlorous acid was generated, the number of general bacteria in the cooling water was small, and it was predicted that the slime prevention effect was sufficiently exhibited, and the corrosion rate of the low carbon steel test piece was also low. . On the other hand, in the comparative example in which the operation of generating hypochlorous acid by passing the circulating water through the electrolytic cell was not performed, when the chloride ion concentration in the makeup water was the same as in Example 1, Although the residual chlorine concentration is low and the corrosion rate of the low carbon steel test piece is not high, the number of general bacteria is large and the generation of slime is expected. On the other hand, when the chloride ion concentration in the makeup water is increased and the residual chlorine concentration in the circulating water is made the same as in Example 1, the number of general bacteria in the cooling water decreases, but the corrosion rate of the low carbon steel specimen increases. It is expected that corrosion of the metal member in the cooling water system progresses rapidly.

【0011】[0011]

【発明の効果】本発明のスライム防止方法によれば、冷
却水系において、抗菌剤などを使用することなく、金属
部材の腐食を抑えて、しかもスライムの発生を効果的に
防止することができる
According to the slime prevention method of the present invention, the corrosion of metal members can be suppressed and the generation of slime can be effectively prevented in a cooling water system without using an antibacterial agent or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明方法の実施の一態様の工程系統
図である。
FIG. 1 is a process flow chart of an embodiment of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 冷却塔 2 ピット 3 循環ポンプ 4 送り配管 5 熱交換器 6 戻り配管 7 バイパス配管 8 電解槽 Reference Signs List 1 cooling tower 2 pit 3 circulation pump 4 feed pipe 5 heat exchanger 6 return pipe 7 bypass pipe 8 electrolytic cell

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 560 C02F 1/50 560F 1/46 1/46 Z 1/76 1/76 A Fターム(参考) 4D050 AA08 AB06 BB06 BD04 BD06 CA10 4D061 DA05 DB02 EA03 EA04 EB05 EB14 EB17 EB19 EB27 EB28 EB30 FA16 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C02F 1/50 560 C02F 1/50 560F 1/46 1/46 Z 1/76 1/76 A F term (reference) 4D050 AA08 AB06 BB06 BD04 BD06 CA10 4D061 DA05 DB02 EA03 EA04 EB05 EB14 EB17 EB19 EB27 EB28 EB30 FA16

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】開放循環冷却水系の冷却水に塩素を添加し
てスライムを防止する方法において、冷却水系に補給さ
れる補給水に食塩水を電解して残留塩素を発生させた塩
素水を添加するとともに、濃縮された冷却水を電解し、
残留塩素を発生させることを特徴とする冷却水系のスラ
イム防止方法。
Claims: 1. A method for preventing slime by adding chlorine to cooling water in an open circulation cooling water system, wherein chlorine water is produced by electrolyzing a saline solution to make-up water supplied to the cooling water system to generate residual chlorine. And electrolyze the concentrated cooling water,
A method for preventing slime in a cooling water system, comprising generating residual chlorine.
JP2001046409A 2001-02-22 2001-02-22 Cooling water slime prevention method Expired - Fee Related JP4013486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001046409A JP4013486B2 (en) 2001-02-22 2001-02-22 Cooling water slime prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001046409A JP4013486B2 (en) 2001-02-22 2001-02-22 Cooling water slime prevention method

Publications (2)

Publication Number Publication Date
JP2002248478A true JP2002248478A (en) 2002-09-03
JP4013486B2 JP4013486B2 (en) 2007-11-28

Family

ID=18908041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001046409A Expired - Fee Related JP4013486B2 (en) 2001-02-22 2001-02-22 Cooling water slime prevention method

Country Status (1)

Country Link
JP (1) JP4013486B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121969A (en) * 2002-10-01 2004-04-22 Kurita Water Ind Ltd Cooling water treatment method
JP2006300421A (en) * 2005-04-21 2006-11-02 Sanyo Electric Co Ltd Refrigerating device
JP2007064534A (en) * 2005-08-30 2007-03-15 Sanyo Electric Co Ltd Air conditioner
JP2007205591A (en) * 2006-01-31 2007-08-16 Miura Co Ltd Operating method of cooling tower
JP2012115720A (en) * 2010-11-29 2012-06-21 Hakuto Co Ltd Biocidal method of circulating water system in open type water cooling tower

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121969A (en) * 2002-10-01 2004-04-22 Kurita Water Ind Ltd Cooling water treatment method
JP2006300421A (en) * 2005-04-21 2006-11-02 Sanyo Electric Co Ltd Refrigerating device
JP4703246B2 (en) * 2005-04-21 2011-06-15 三洋電機株式会社 Refrigeration equipment
JP2007064534A (en) * 2005-08-30 2007-03-15 Sanyo Electric Co Ltd Air conditioner
JP4688613B2 (en) * 2005-08-30 2011-05-25 三洋電機株式会社 Air conditioner
JP2007205591A (en) * 2006-01-31 2007-08-16 Miura Co Ltd Operating method of cooling tower
JP2012115720A (en) * 2010-11-29 2012-06-21 Hakuto Co Ltd Biocidal method of circulating water system in open type water cooling tower

Also Published As

Publication number Publication date
JP4013486B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
JP4116949B2 (en) Electrochemical sterilization and sterilization method
Kraft Electrochemical water disinfection: a short review
US20090120805A1 (en) Use of an anode for elimination or reduction of microbial impurities in liquids
US20030052062A1 (en) Nitrogen treating method and nitrogen treating system
JP2006098003A (en) Electrolytic treating method and electrolytic treating device for circulating type cooling water system
JP4117607B2 (en) Cooling water treatment method
JP4013486B2 (en) Cooling water slime prevention method
KR20030009158A (en) Hypochlorous Acid Generating Method and Device
JP4394941B2 (en) Electrolytic ozonizer
JP4098617B2 (en) Sterilization method
KR100768096B1 (en) Apparatus for purifying water and method thereof
JP3685384B2 (en) Slime prevention method
JPH07155765A (en) Production of electrolyzed water and device therefor
JP3422366B2 (en) Cooling water slime prevention method
JP2006289298A (en) Water treatment method and water treatment device
JP2001310187A (en) Slime preventing method
JP2002239557A (en) Method for preventing slime in cooling water system
JP4251059B2 (en) Bactericidal electrolyzed water production equipment
JP6300252B1 (en) Water treatment system, electrode corrosion inhibiting method and electrode corrosion inhibiting device for water treatment system
JP3928455B2 (en) Water treatment method for cooling water system
JP2019076813A (en) Seawater treatment method, seawater treatment apparatus, and antifouling apparatus of seawater utilization structure
JP3521896B2 (en) Water treatment method for cooling water system
EP1394119A1 (en) Method and apparatus for generating ozone by electrolysis
JP2007260492A (en) Electrolyzing method of water
JP2004033992A (en) Method and apparatus for treating waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140921

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees