JP2002247807A - Rotating machine, failure detecting method therefor generator, rotating machine, and failure detecting method therefor - Google Patents

Rotating machine, failure detecting method therefor generator, rotating machine, and failure detecting method therefor

Info

Publication number
JP2002247807A
JP2002247807A JP2001041096A JP2001041096A JP2002247807A JP 2002247807 A JP2002247807 A JP 2002247807A JP 2001041096 A JP2001041096 A JP 2001041096A JP 2001041096 A JP2001041096 A JP 2001041096A JP 2002247807 A JP2002247807 A JP 2002247807A
Authority
JP
Japan
Prior art keywords
stator
hydrogen
dissolved
gas
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001041096A
Other languages
Japanese (ja)
Other versions
JP3791339B2 (en
Inventor
Kazuo Goto
和夫 後藤
Tadashi Shimamoto
理司 島本
Tatsuro Ishizuka
達郎 石塚
Hideo Takagi
秀雄 高城
Mamoru Hirota
広田  守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001041096A priority Critical patent/JP3791339B2/en
Publication of JP2002247807A publication Critical patent/JP2002247807A/en
Application granted granted Critical
Publication of JP3791339B2 publication Critical patent/JP3791339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect leakage from a hydrogen gas system. SOLUTION: A device of measuring the dissolved hydrogen concentration of cooling water is mounted inside the cooling piping system to monitor hydrogen gas leakage into a stator winding coil cooling piping system. By continuously measuring the dissolved hydrogen concentration of cooling water for a stator winding coil during running, hydrogen gas leakage into the stator winding coil cooling piping system is monitored from a change in the dissolved hydrogen concentration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転機,発電機、
或いは、回転機又は発電機の異常検出方法に関する。
TECHNICAL FIELD The present invention relates to a rotating machine, a generator,
Alternatively, the present invention relates to a method for detecting abnormality of a rotating machine or a generator.

【0002】[0002]

【従来の技術】タービン発電機等の回転機は、磁束を介
して固定子と回転子を相対的に回転させている。回転機
においては、容量が大きくなるほど、磁束が大きくな
り、鉄損或いは銅損などによる発熱量が大きくなる。性
能確保或いは小型化のためには、効率的な冷却が必要と
なってくる。そのため、一般には、水素ガス等の気体媒
体に圧力を掛けて回転機の機内に充満させ、この気体媒
体を冷却及び循環させることによって、回転機の機内を
冷却する。さらに、固定子巻線コイル等の部材は発熱が
大きく冷却が不充分となりやすいので、純水等の液体冷
却媒体を循環させる。これによって、固定子巻線コイル
等の発熱部材を集中的に冷却する。
2. Description of the Related Art A rotating machine such as a turbine generator relatively rotates a stator and a rotor via a magnetic flux. In a rotating machine, as the capacity increases, the magnetic flux increases, and the amount of heat generated by iron loss or copper loss increases. Efficient cooling is required to ensure performance or reduce size. Therefore, in general, the inside of the rotating machine is cooled by applying pressure to a gas medium such as hydrogen gas to fill the inside of the rotating machine, and cooling and circulating the gas medium. Further, since the members such as the stator winding coils generate a large amount of heat and are likely to be insufficiently cooled, a liquid cooling medium such as pure water is circulated. Thereby, the heat generating members such as the stator winding coils are intensively cooled.

【0003】ところで、液体冷却通路は経年変化等によ
り劣化する。特に、固定子巻線コイルの絶縁を維持する
ための絶縁ホースと呼ばれる部分は劣化が心配される部
材である。一般に、水素等の気体冷却媒体と純水等の液
体冷却媒体を比較すると、気体冷却媒体の圧力が高くな
るように維持しているので、若干の亀裂が発生しても、
圧力差の関係上、液体冷却媒体が噴出することは無い。
したがって、劣化が進み亀裂等が大きくなると、重症の
部類に至ることとなり、この状態にまで放置されると、
危険な状態となることが多い。また、大掛かりな補修が
必要となり、回転機の停止が必要となる。
Incidentally, the liquid cooling passage deteriorates due to aging and the like. In particular, a portion called an insulating hose for maintaining the insulation of the stator winding coil is a member that may be deteriorated. In general, when comparing a gas cooling medium such as hydrogen and a liquid cooling medium such as pure water, since the pressure of the gas cooling medium is maintained to be high, even if a slight crack occurs,
Due to the pressure difference, there is no ejection of the liquid cooling medium.
Therefore, when deterioration progresses and cracks and the like become large, it will lead to a severe category, and if left to this state,
Often dangerous. In addition, extensive repairs are required, and the rotating machine must be stopped.

【0004】そこで、液体冷却媒体の循環系統の途中に
断面積の大きな容器を配置し、そこで冷却水の流速を減
速し、さらに、バッフルの拡散作用によって、冷却水に
混入した水素ガスを分離し、その分離された水素ガス量
を検出することが、例えば、特開昭51−98079号
公報に記載のように、知られている。すなわち、もし、
循環系統のどこかに亀裂等が発生すれば、純水に水素が
多く混入すると考えたのである。
Therefore, a vessel having a large cross-sectional area is arranged in the middle of the circulation system of the liquid cooling medium, where the flow rate of the cooling water is reduced, and the hydrogen gas mixed into the cooling water is separated by the diffusion effect of the baffle. It is known to detect the separated hydrogen gas amount, for example, as described in JP-A-51-98079. That is, if
It was thought that if a crack or the like occurred somewhere in the circulation system, a large amount of hydrogen would be mixed into pure water.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
従来技術では、混入した水素を分離して水素濃度を検出
しているので、水素が液体媒体中に気泡として生成する
までは、検知できない。液体冷却媒体が循環している循
環系統等に亀裂等が生じ、気体冷却媒体が液体冷却媒体
中に溶けこむと、初期段階では、気泡は生じない。すな
わち、飽和量に達するまでは、外見上、何の変化も生じ
ない。また、例え、気泡が発生する段階まで進んだとし
ても、一般的には気泡が所定の量に達するまでは検出す
ることができない。すなわち、上記の従来技術では、液
体媒体に混入した気泡がかなりの量に達するまでは、異
常と検知することができない。すなわち、上記の従来技
術では、亀裂等がかなり進行した段階となるまで、異常
と判断することはできない。
However, in the above-mentioned prior art, since the concentration of hydrogen is detected by separating the mixed hydrogen, it cannot be detected until hydrogen is generated as bubbles in the liquid medium. When a crack or the like is generated in a circulation system or the like in which the liquid cooling medium is circulating, and the gas cooling medium dissolves in the liquid cooling medium, no bubbles are generated in an initial stage. That is, no apparent change occurs until the saturation amount is reached. Further, even if the process proceeds to the stage where bubbles are generated, it is generally not possible to detect the bubbles until the bubbles reach a predetermined amount. That is, in the above-described conventional technology, it cannot be detected as abnormal until the amount of bubbles mixed in the liquid medium reaches a considerable amount. That is, according to the above-described conventional technique, it cannot be determined that there is an abnormality until the crack or the like has progressed considerably.

【0006】本発明の目的は、上記の問題点を克服し
て、液体冷却媒体の通路における異常を、早期の段階で
検出することが可能な回転機或いは発電機を提供するこ
とにある。或いは、それらの異常検出方法を提供するこ
とにある。
An object of the present invention is to provide a rotating machine or a generator capable of overcoming the above problems and detecting an abnormality in the passage of the liquid cooling medium at an early stage. Another object is to provide a method for detecting such abnormalities.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明では、固定子の固定子巻線に冷却水を供給
する配管と、枠体内に冷却用の水素を供給する水素供給
手段を有し、さらに、冷却水の溶存水素濃度を検出する
溶存水素濃度検出手段を有するように構成した。
According to the present invention, a pipe for supplying cooling water to a stator winding of a stator and a hydrogen supply for supplying hydrogen for cooling into a frame are provided. Means for detecting the concentration of dissolved hydrogen in the cooling water.

【0008】或いは、液体内の溶存酸素濃度を検出する
溶存酸素濃度検出手段を有するように構成した。或い
は、液体内の気体濃度を検出する溶存濃度検出手段を有
するように構成した。
Alternatively, the apparatus is configured to have a dissolved oxygen concentration detecting means for detecting the dissolved oxygen concentration in the liquid. Alternatively, it is configured to have a dissolved concentration detecting means for detecting a gas concentration in the liquid.

【0009】或いは、回転子を固定子に対向させ、回転
子を回転することによって発電し、固定子の固定子巻線
を液体で冷却し、枠体内を冷却気体で冷却し、液体内の
冷却気体の溶存量を検出し、この検出から異常検出する
ように構成した。
Alternatively, electric power is generated by rotating the rotor with the rotor facing the stator, cooling the stator windings of the stator with a liquid, cooling the frame with a cooling gas, and cooling the liquid inside the liquid. It is configured to detect the dissolved amount of gas and to detect abnormalities from this detection.

【0010】或いは、回転子を固定子に対向させ、回転
子を回転することによって発電し、固定子の固定子巻線
を液体で冷却し、枠体内を水素で冷却し、液体内の水素
溶存量を検出し、この検出から異常検出するように構成
した。
[0010] Alternatively, electric power is generated by rotating the rotor with the rotor facing the stator, cooling the stator windings of the stator with liquid, cooling the inside of the frame with hydrogen, and dissolving hydrogen in the liquid. The amount was detected, and an abnormality was detected from the detection.

【0011】或いは、回転子と固定子を相対的に回転さ
せ、固定子或いは回転子の少なくとも一部を液体で冷却
し、液体内の気体の溶存を検出し、これに基づいて異常
を検出するように構成した。
Alternatively, the rotor and the stator are relatively rotated, and at least a part of the stator or the rotor is cooled with a liquid, and the dissolution of gas in the liquid is detected, and an abnormality is detected based on the dissolved gas. It was configured as follows.

【0012】[0012]

【発明の実施の形態】本発明の実施例を図面を用いて説
明する。図2は本発明に係る水素ガス冷却タービン発電
機本体1の全体斜視図である。発電機1の機内16に
は、固定子2と回転子3が対向配置され、固定子2には
固定子コイル6が巻き回されている。機外から回転力が
与えられ、回転子3が回転すると発電する。
Embodiments of the present invention will be described with reference to the drawings. FIG. 2 is an overall perspective view of the hydrogen gas cooled turbine generator main body 1 according to the present invention. The stator 2 and the rotor 3 are arranged opposite to each other in the interior 16 of the generator 1, and the stator coil 6 is wound around the stator 2. When a rotating force is applied from outside the machine and the rotor 3 rotates, power is generated.

【0013】図3は図2の水素ガス冷却タービン発電機
本体の断面図である。発電機1の機内16は水素ガスが
加圧充満され、機内16は冷却される。水素ガスは後述
する冷却水よりも十分に高い圧力に維持されている。固
定子2の固定子巻線コイル6は他部材と比較して発熱が
大きい。そのため、冷却配管系統10(入口側)より、
絶縁ホース11(入口側)を介して、冷却水を固定子2
の固定子巻線コイル6に供給し冷却する。なお、絶縁ホ
ース11(出口側)及び冷却配管系統10(出口側)よ
り、排出される。
FIG. 3 is a sectional view of the hydrogen gas-cooled turbine generator main body of FIG. The interior 16 of the generator 1 is filled with hydrogen gas under pressure, and the interior 16 is cooled. Hydrogen gas is maintained at a pressure sufficiently higher than cooling water described later. The stator winding coil 6 of the stator 2 generates more heat than other members. Therefore, from the cooling piping system 10 (inlet side),
Cooling water is supplied to the stator 2 through the insulating hose 11 (inlet side).
And cooled to the stator winding coil 6. It is discharged from the insulating hose 11 (outlet side) and the cooling pipe system 10 (outlet side).

【0014】図1に冷却系統図を示す。上述の通り、回
転子3または固定子2を冷却する媒体は2種類あり、そ
れぞれの詳細を順を追って説明する。まず、2種類のう
ち1つは、機内16における固定子2と回転子3を冷却
する水素ガスである。冷却用の水素ガスは水素ガス配管
4にて機内16に供給され機内16で循環される。
FIG. 1 shows a cooling system diagram. As described above, there are two types of media for cooling the rotor 3 or the stator 2, and the details of each type will be described in order. First, one of the two types is hydrogen gas for cooling the stator 2 and the rotor 3 in the in-machine 16. The hydrogen gas for cooling is supplied to the inside 16 of the apparatus via the hydrogen gas pipe 4 and circulated in the inside 16 of the apparatus.

【0015】もう1つは冷却水で、固定子巻線コイル6
と水配管等で連結された冷却器7や循環ポンプ8を介し
て、固定子巻線コイル6の中空素線内に循環して、発熱
した固定子巻線コイル6を冷却する。
The other is cooling water, and the stator winding coil 6
The heat is circulated through the hollow wire of the stator winding coil 6 through a cooler 7 and a circulation pump 8 connected by a water pipe or the like to cool the heated stator winding coil 6.

【0016】固定子巻線コイル6の冷却配管系統10に
は、電気的絶縁を要求される絶縁ホース11があり、ま
た固定子巻線コイル6の端部には冷却配管系統10と接
続する冷却水室があり、接続には金属接合方式が採用さ
れる。
The cooling piping system 10 for the stator winding coil 6 has an insulating hose 11 which is required to be electrically insulated, and the end of the stator winding coil 6 has a cooling pipe connected to the cooling piping system 10. There is a water chamber, and metal connection is adopted for connection.

【0017】この金属接合方式は、固定子巻線コイル6
の構成部材の銅系ろう材で接合されることが多く、この
接合部が永年運転により冷却水にて腐食作用を受けて、
水冷却配管系統10と機内16との間に貫通孔部が発生
する可能性がある。このとき、機内冷却する水素ガス5
の方の加圧力が高いためにこの貫通孔部を介して、水冷
却配管系統10内に水素が侵入して冷却水中に溶解し、
冷却水9中の溶存水素濃度(DH)を大きくする。ま
た、冷却水中への空気の混入による溶存酸素濃度(D
O)も、溶存水素濃度(DH)と対比して変化する。こ
れらの溶存水素濃度(DH)や溶存酸素濃度(DO)の
検出器14,15は水冷却配管系統10内に設置され
る。
This metal bonding method uses a stator winding coil 6
It is often joined with the copper brazing material of the component member, and this joint is corroded by cooling water due to long-term operation,
There is a possibility that a through hole is generated between the water cooling piping system 10 and the inside 16 of the machine. At this time, hydrogen gas 5
Because of the higher pressure, hydrogen enters the water cooling piping system 10 through this through-hole and dissolves in the cooling water,
The dissolved hydrogen concentration (DH) in the cooling water 9 is increased. In addition, the dissolved oxygen concentration (D
O) also changes in comparison with the dissolved hydrogen concentration (DH). The detectors 14 and 15 for the dissolved hydrogen concentration (DH) and the dissolved oxygen concentration (DO) are installed in the water cooling piping system 10.

【0018】水冷却配管系統10内には貯水槽12に連
結した大気開放管13があり、水冷却配管系統10内に
侵入した余剰気体(冷却水素ガスや空気など)を発電機
1の機外に排出する。水素ガス5の水冷却配管系統10
内への侵入による冷却水への飽和溶解度以上の水素ガス
5は、貯水槽12に連結した大気開放管13から排出さ
れる。大気開放管13の途中には、大気に放出される余
剰気体に含まれる水素及び酸素を検出するため、水素ガ
ス検出器19及び酸素ガス検出器20が設けらている。
The water cooling pipe system 10 has an open-to-atmosphere pipe 13 connected to a water storage tank 12 for discharging excess gas (cooling hydrogen gas, air, etc.) entering the water cooling pipe system 10 outside the generator 1. To be discharged. Water cooling piping system 10 for hydrogen gas 5
The hydrogen gas 5 having a solubility equal to or higher than the saturation solubility in the cooling water due to intrusion into the inside is discharged from the open-to-atmosphere pipe 13 connected to the water storage tank 12. A hydrogen gas detector 19 and an oxygen gas detector 20 are provided in the middle of the open-to-atmosphere pipe 13 in order to detect hydrogen and oxygen contained in excess gas released to the atmosphere.

【0019】貯水槽12の大気17には含有酸素気体が
充満される(以下、通気方式と略称する)。含有酸素気
体の充満は以下の方法で行われる。負荷変動のある運転
においては負荷の大きさによって冷却水温度が変化し、
このために貯水槽12内の大気17もこの熱影響を受け
て膨張と収縮を繰り返す。膨張時には大気17の一部が
大気開放管13から機外に排出される。収縮時には反対
に、機外の大気(空気)がこの貯水槽12内に大気開放管
13を介して吸入されて、貯水槽12内の大気17の成
分となる。この負荷変動が大きいほど貯水槽12内の大
気17には、機外の空気がより多く混入されて空気成分
が増加して主成分となる。負荷変動が少ない場合には、
この大気17中に含有酸素気体の充満を図るために、強
制的に貯水槽12内の大気17内に直接、あるいは冷却
水中に酸素又は空気等の含有酸素気体を注入する方法が
採られる。
The atmosphere 17 of the water storage tank 12 is filled with a contained oxygen gas (hereinafter abbreviated as a ventilation system). The filling of the contained oxygen gas is performed by the following method. In operation with load fluctuation, the cooling water temperature changes depending on the size of the load,
For this reason, the atmosphere 17 in the water storage tank 12 is also affected by this heat and repeats expansion and contraction. At the time of expansion, a part of the atmosphere 17 is exhausted from the atmosphere opening pipe 13 to the outside of the machine. On the contrary, at the time of contraction, the atmosphere (air) outside the machine is sucked into the water storage tank 12 through the air release pipe 13 and becomes a component of the atmosphere 17 in the water storage tank 12. The larger the load fluctuation, the more the outside air is mixed into the atmosphere 17 in the water storage tank 12, and the air component increases to become the main component. If the load fluctuation is small,
In order to fill the atmosphere 17 with the oxygen gas contained therein, a method of forcibly injecting an oxygen gas such as oxygen or air directly into the atmosphere 17 in the water storage tank 12 or into the cooling water is adopted.

【0020】図4に、溶存水素濃度検出器(DH)1
4,溶存酸素濃度検出器(DO)15の詳細を示す。冷
却水は枠体22の内部に導かれる。枠体22の内部に導
かれた冷却水において、冷却水中に溶存する水素はテフ
ロン(登録商標)膜23を通過する。テフロン膜23を
通過すると、そこは、電解液24が満たされている。テ
フロン膜23を通過した水素(H2)は、白金(Pt)製
アノード25の表面で酸化され電子を放出する(H2
2H++2e-)。水素濃度に比例した電流がカソード2
6(Ag/AgCl)に流れ、塩化銀(AgCl)が還
元される(2AgCl+2e-→2Ag+2Cl-)。電
解液24によって、塩化水素が生成される(2H++2
Cl-→2HCl)。アノード25とカソード26の間
の電流値が計測され、水素の溶存濃度が測定される。な
お、この例では、溶存水素の量の測定を説明したが、溶
存酸素の量の測定も同様である。詳細は省略する。
FIG. 4 shows a dissolved hydrogen concentration detector (DH) 1
4, details of the dissolved oxygen concentration detector (DO) 15 are shown. The cooling water is guided inside the frame 22. In the cooling water guided to the inside of the frame 22, hydrogen dissolved in the cooling water passes through the Teflon (registered trademark) film 23. After passing through the Teflon film 23, it is filled with the electrolyte solution 24. The hydrogen (H 2 ) that has passed through the Teflon film 23 is oxidized on the surface of the platinum (Pt) anode 25 to emit electrons (H 2
2H + + 2e ). The current proportional to the hydrogen concentration is
6 (Ag / AgCl), and silver chloride (AgCl) is reduced (2AgCl + 2e → 2Ag + 2Cl ). Hydrogen chloride is generated by the electrolytic solution 24 (2H + +2
Cl → 2HCl). The current value between the anode 25 and the cathode 26 is measured, and the dissolved concentration of hydrogen is measured. In this example, the measurement of the amount of dissolved hydrogen has been described, but the measurement of the amount of dissolved oxygen is the same. Details are omitted.

【0021】上述の通り、水冷却配管系統10と機内1
6との間に貫通孔部が発生すると、水冷却配管系統10
内に水素が侵入して冷却水中に溶解し、異常状態となる
が、この異常状態の検出について、図5を用いて説明す
る。まず、ステップ101で、溶存水素濃度検出器14
の出力より、冷却水の溶存水素濃度が1400ppb(飽
和溶解度)以上であるか判断する。1400ppb 以下で
あれば、異常なしと判断し、フローを終了する。冷却水
の溶存水素濃度(DH)が1400ppb 以上であれば、
さらに、ステップ102で、冷却水の溶存酸素濃度(D
O)が50ppb以下であるか判断する。冷却水の溶存酸
素濃度(DO)が50ppb 以上であれば、異常なしと判
断し、フローを終了する。一方、冷却水の溶存酸素濃度
(DO)が50ppb 以下であれば、異常と判断し、ステ
ップ103で、異常を示すランプを点灯させる。このフ
ローは、所定間隔毎(例えば、100ミリ秒毎)に制御
コンピュータが実行する。なお、判断に用いた溶存水素
及び溶存酸素の数値は、冷却水温度がほぼ43℃〜44
℃での場合である。冷却水温度が高かった場合或いは低
かった場合は、当然、その温度の飽和量相当の値とな
る。
As described above, the water cooling piping system 10 and the in-machine 1
When a through hole is generated between the water cooling piping system 10 and
Hydrogen enters the inside and dissolves in the cooling water, resulting in an abnormal state. Detection of this abnormal state will be described with reference to FIG. First, in step 101, the dissolved hydrogen concentration detector 14
It is determined whether or not the dissolved hydrogen concentration of the cooling water is 1400 ppb (saturated solubility) or more from the output of. If it is 1400 ppb or less, it is determined that there is no abnormality, and the flow ends. If the dissolved hydrogen concentration (DH) of the cooling water is 1400 ppb or more,
Further, in step 102, the dissolved oxygen concentration (D
O) is determined to be 50 ppb or less. If the dissolved oxygen concentration (DO) of the cooling water is 50 ppb or more, it is determined that there is no abnormality, and the flow ends. On the other hand, if the dissolved oxygen concentration (DO) of the cooling water is 50 ppb or less, it is determined that there is an abnormality, and in step 103, a lamp indicating the abnormality is turned on. This flow is executed by the control computer at predetermined intervals (for example, every 100 milliseconds). In addition, the numerical values of the dissolved hydrogen and the dissolved oxygen used in the determination are based on the fact that the cooling water temperature is approximately 43 ° C. to 44 ° C.
It is the case in ° C. When the cooling water temperature is high or low, the cooling water temperature naturally has a value corresponding to the saturation amount.

【0022】なお、本実施例では、これらの数値はリレ
ーの警報値の絶対値として設定するには分圧,温度,機
器の配管等のパッキング等からの空気の漏れ浸入などを
を考慮すると、一時的に、理論とおりに決められない。
そこで通気方式,非通気方式ではその機器の運転状態か
らみてDO,DHの警報値をその機器ごとに、その癖を
把握して決める。ここでの警報設定値はそのように数値
は一応の目安値である。
In the present embodiment, these values are set as the absolute values of the alarm values of the relay in consideration of the partial pressure, temperature, leakage and intrusion of air from the packing of equipment piping and the like. Temporarily, can not be determined as the theory.
Therefore, in the ventilation method and the non-ventilation method, the alarm values of DO and DH are determined for each device by grasping the habits in view of the operation state of the device. The alarm set value here is such a numerical value as a tentative reference value.

【0023】そこで、例えば、所定値を例えば1分以上
継続した場合に、次のステップに進むとしても良い。さ
らには、所定値と比較する代わりに、各ステップにおい
て、勾配或いは増減量を所定の値と比較して、異常を判
断しても良い。
Therefore, for example, when the predetermined value is continued for, for example, one minute or more, the process may proceed to the next step. Further, instead of comparing with a predetermined value, in each step, the abnormality may be determined by comparing the gradient or the amount of increase or decrease with the predetermined value.

【0024】図5に示した異常判断の具体例を図6を用
いて説明する。水冷却配管系統10内の接続部で異常が
発生して、水素ガス5が水冷却配管系統10内に侵入し
た場合の水素ガス漏洩前後の溶存水素濃度(DH)及び
溶存酸素濃度(DO)の変化状況を示す。溶存水素濃度
(DH)や溶存酸素濃度(DO)はコイル入り口側での
測定値である。溶存水素濃度(DH)や溶存酸素濃度
(DO)はその時の冷却水温度によって測定値が異なる
ので各実施例ともほぼ同一温度の場合を示している。
A specific example of the abnormality judgment shown in FIG. 5 will be described with reference to FIG. When an abnormality occurs in the connection portion in the water cooling piping system 10 and the hydrogen gas 5 enters the water cooling piping system 10, the dissolved hydrogen concentration (DH) and the dissolved oxygen concentration (DO) before and after the hydrogen gas leaks are reduced. Show the change situation. The dissolved hydrogen concentration (DH) and the dissolved oxygen concentration (DO) are measured values at the coil entrance side. Since the measured values of the dissolved hydrogen concentration (DH) and the dissolved oxygen concentration (DO) are different depending on the cooling water temperature at that time, each embodiment shows a case where the temperature is almost the same.

【0025】水素ガス5の漏洩が無く正常な状態では、
溶存酸素濃度(DO)はほぼ飽和溶解度(5000ppb
)となっている。逆に、溶存水素濃度(DH)は非常
に低い値(50ppb )となっている。すなわち、水素ガ
ス5洩漏が発生する前には、溶存水素濃度(DH)や溶
存酸素濃度(DO)の検出値や、大気開放管13に並列
系統で接続したガス検出器19,20での水素ガス、ま
たは酸素ガス検出値は一定である。
In a normal state without leakage of hydrogen gas 5,
Dissolved oxygen concentration (DO) is almost saturated solubility (5000 ppb)
). Conversely, the dissolved hydrogen concentration (DH) is very low (50 ppb). That is, before the hydrogen gas 5 leaks and leaks, the detected values of the dissolved hydrogen concentration (DH) and the dissolved oxygen concentration (DO), and the hydrogen detected by the gas detectors 19 and 20 connected to the open-to-atmosphere pipe 13 in a parallel system. The gas or oxygen gas detection value is constant.

【0026】しかし、水素ガス5が水冷却配管系統10
内に侵入した時点から、溶存水素濃度(DH)が急増加
し、溶存酸素濃度(DO)が急減少する。溶存酸素濃度
(DH)は非常に低い値(50PPB)まで減少し、逆
に、溶存水素濃度(DO)はほぼ飽和溶解度(1400P
PB)まで上昇する。
However, the hydrogen gas 5 is supplied to the water cooling piping system 10
The dissolved hydrogen concentration (DH) sharply increases and the dissolved oxygen concentration (DO) sharply decreases from the time of intrusion into the inside. Dissolved oxygen concentration (DH) decreases to a very low value (50 PPB), and conversely, dissolved hydrogen concentration (DO) increases to almost saturated solubility (1400 PB).
PB).

【0027】さらに、漏洩が継続すると、大気開放管1
3に並列系統で接続したガス検出器19,20での水素
ガス検出値が急増加し、酸素ガス検出値が急減少する。
Further, when the leakage continues, the atmosphere opening pipe 1
The detected value of hydrogen gas in the gas detectors 19 and 20 connected in parallel to 3 is rapidly increased, and the detected value of oxygen gas is rapidly reduced.

【0028】このことから水冷却配管系統10内の接続
部での水素ガス漏洩現象は、冷却水中の溶存水素濃度
(DH)や溶存酸素濃度(DO)の検出値の絶対値の傾
向管理や大気開放管13からの排気ガス中の水素ガス、
または酸素ガス検出値の傾向管理によって明確に判断で
きる事がわかる。
From this, the hydrogen gas leaking phenomenon at the connection part in the water cooling piping system 10 is caused by the tendency management of the absolute values of the detected values of the dissolved hydrogen concentration (DH) and the dissolved oxygen concentration (DO) in the cooling water and the air. Hydrogen gas in the exhaust gas from the open pipe 13,
Alternatively, it can be seen that the judgment can be made clearly by managing the tendency of the oxygen gas detection value.

【0029】以上のことから、水素ガス5の水冷却配管
系統10内への漏洩侵入は、水冷却配管系統10内への
溶存水素濃度検出器14の設置並びに溶存酸素濃度検出
器15の併設にて、水素ガス漏洩監視することにより、
高信頼保全性を確保できる。
From the above, the leakage and intrusion of the hydrogen gas 5 into the water cooling piping system 10 is caused by the installation of the dissolved hydrogen concentration detector 14 and the installation of the dissolved oxygen concentration detector 15 in the water cooling piping system 10. By monitoring hydrogen gas leakage,
High reliability maintenance can be secured.

【0030】なお、図5に示されるフローチャートにお
いて、溶存水素濃度(DH)のみにより異常を判断して
も良いし、溶存酸素濃度(DO)のみを用いて異常を判
断しても良いことは、言うまでも無い。 [第2の実施例]次に、第2の実施例を説明する。第2
の実施例では、貯水槽12における大気17の充満する
気体が異なっている。その他の構成は同様である。冷却
水中の溶存水素濃度(DH)や溶存酸素濃度(DO)
は、貯水槽12内における大気17の組成成分の分圧に
したがってその値が左右される。この大気17を構成す
る成分の違いによって発電機の運転形態が2つに分類さ
れる。第1の実施例は、いわゆる、通気方式であった。
In the flowchart shown in FIG. 5, the abnormality may be determined only by the dissolved hydrogen concentration (DH), or the abnormality may be determined only by the dissolved oxygen concentration (DO). Needless to say. [Second Embodiment] Next, a second embodiment will be described. Second
In the embodiment, the gas filled with the atmosphere 17 in the water tank 12 is different. Other configurations are the same. Dissolved hydrogen concentration (DH) and dissolved oxygen concentration (DO) in cooling water
Depends on the partial pressure of the constituent components of the atmosphere 17 in the water tank 12. The operation modes of the generator are classified into two according to the difference in the components constituting the atmosphere 17. The first embodiment is a so-called ventilation system.

【0031】これに対して、第2の実施例では、いわゆ
る非通気方式であり、運転中に大気17中に含有酸素気
体を極力少なくする方式である。ここではに対処して非
通気方式と略称する。水素ガス冷却タービン発電機の場
合、絶縁ホース11を透過した水素ガスが冷却水中に溶
解する。特に負荷変動の無い場合、長時間運転されると
この溶解した水素ガスは、この過飽和分が貯水槽12内
の大気17中に放出され、貯水槽12内の大気17は水
素ガスが主成分となって構成されるようになる。貯水槽
12内の大気17内に酸素ガスが多く混在するようであ
れば、貯水槽12内の大気17中に酸素不純物の無い水
素ガスや窒素ガスなどの強制的に直接、あるいは冷却水
を介して注入する方法が採られる。
On the other hand, in the second embodiment, a so-called non-venting system is used, in which oxygen gas contained in the atmosphere 17 during operation is reduced as much as possible. Here, the method is abbreviated as a non-venting method. In the case of a hydrogen gas-cooled turbine generator, the hydrogen gas that has passed through the insulating hose 11 dissolves in the cooling water. In particular, when there is no load fluctuation, when the hydrogen gas is operated for a long time, the supersaturated portion of the dissolved hydrogen gas is released into the atmosphere 17 in the water tank 12, and the air 17 in the water tank 12 is mainly composed of hydrogen gas. Will be composed. If a large amount of oxygen gas is mixed in the atmosphere 17 in the water storage tank 12, the air 17 in the water storage tank 12 is forcibly directly supplied with hydrogen gas or nitrogen gas having no oxygen impurities or directly through cooling water. Injection method is adopted.

【0032】異常検出を図7を用いて説明する。まず、
ステップ201で、溶存酸素濃度検出器14の出力よ
り、冷却水の溶存酸素濃度が10PPB以下であるか判
断する。10PPB以上であれば、異常なしと判断し、
フローを終了する。冷却水の溶存酸素濃度が10PPB
以下であれば、さらに、ステップ202で、冷却水の溶
存水素濃度が1420PPB以上であるか判断する。冷
却水の溶存水素濃度が1420PPB以下であれば、異
常なしと判断し、フローを終了する。一方、冷却水の溶
存水素濃度が1420PPB以上であれば、異常と判断
し、ステップ203で、異常を示すランプを点灯させ
る。このフローは、所定間隔毎(例えば、100ミリ秒
毎)に制御コンピュータが実行する。なお、判断に用い
た溶存水素及び溶存酸素の数値は、冷却水温度がほぼ4
3℃〜44℃での場合である。冷却水温度が高かった場
合或いは低かった場合は、当然、その温度の飽和溶解度
相当の値となる。
The abnormality detection will be described with reference to FIG. First,
In step 201, it is determined from the output of the dissolved oxygen concentration detector 14 whether the dissolved oxygen concentration of the cooling water is 10 PPB or less. If it is 10PPB or more, it is determined that there is no abnormality,
End the flow. The dissolved oxygen concentration of the cooling water is 10PPB
If not, it is further determined in step 202 whether the dissolved hydrogen concentration of the cooling water is 1420 PPB or more. If the dissolved hydrogen concentration of the cooling water is 1420 PPB or less, it is determined that there is no abnormality, and the flow ends. On the other hand, if the dissolved hydrogen concentration of the cooling water is equal to or greater than 1420 PPB, it is determined that an abnormality has occurred, and in step 203, a lamp indicating the abnormality is turned on. This flow is executed by the control computer at predetermined intervals (for example, every 100 milliseconds). Note that the values of dissolved hydrogen and dissolved oxygen used in the judgment were that the cooling water temperature was approximately 4%.
This is the case at 3 ° C to 44 ° C. When the cooling water temperature is high or low, the cooling water naturally has a value corresponding to the saturation solubility at that temperature.

【0033】具体的な例について、図8を用いて説明す
る。機内16が正常であると、溶存水素濃度は1400
〜1430ppb に維持されている。また、溶存酸素濃度
は50ppb に維持される。ここで、水素ガスの漏洩が起
こると、溶存水素濃度は上昇し、溶存酸素濃度は下降す
る。溶存水素濃度が1420PPB〜1450ppbに達
し、且つ、溶存酸素濃度が10ppb を下回る。
A specific example will be described with reference to FIG. If the cabin 16 is normal, the dissolved hydrogen concentration will be 1400
It is maintained at ~ 1430 ppb. The dissolved oxygen concentration is maintained at 50 ppb. Here, when hydrogen gas leaks, the dissolved hydrogen concentration increases and the dissolved oxygen concentration decreases. The dissolved hydrogen concentration reaches 1420 ppb to 1450 ppb, and the dissolved oxygen concentration falls below 10 ppb.

【0034】なお、図7に示されるフローチャートにお
いて、溶存水素濃度(DH)のみにより異常を判断して
も良いし、溶存酸素濃度(DO)のみを用いて異常を判
断しても良いことは、言うまでも無い。
In the flowchart shown in FIG. 7, the abnormality may be determined only by the dissolved hydrogen concentration (DH), or the abnormality may be determined only by the dissolved oxygen concentration (DO). Needless to say.

【0035】ところで、第1の実施例と同様に、これら
の数値はリレーの警報値の絶対値として設定するには分
圧,温度,機器の配管等のパッキング等からの空気の漏
れ浸入などをを考慮すると、一時的に、理論とおりに決
められない。そこで通気方式,非通気方式ではその機器
の運転状態からみてDO,DHの警報値をその機器ごと
に、その癖を把握して決める。ここでの警報設定値はそ
のように数値は一応の目安値である。
As in the first embodiment, these values are set as the absolute value of the alarm value of the relay by controlling the partial pressure, the temperature, the leakage of air from the packing of the equipment piping, and the like. Considering that, temporarily, it can not be determined as the theory. Therefore, in the ventilation method and the non-ventilation method, the alarm values of DO and DH are determined for each device by grasping the habits in view of the operation state of the device. The alarm set value here is such a numerical value as a tentative reference value.

【0036】そこで、例えば、所定値を例えば1分以上
継続した場合に、次のステップの進むとしても良い。さ
らには、所定値と比較する代わりに、各ステップにおい
て、勾配或いは増減量を所定の値と比較して、異常を判
断しても良い。 [第3の実施例]次に、図9及び図10を用いて、第3
の実施例を説明する。第1の実施例及び第2の実施例で
は、溶存水素濃度検出器14及び溶存酸素濃度検出器1
5を用いたが、第3の実施例では、腐食電位を用いて、
水素ガス漏洩を検出する。その他の部分は同様である。
Therefore, for example, when the predetermined value is continued for, for example, one minute or more, the next step may be advanced. Further, instead of comparing with a predetermined value, in each step, the abnormality may be determined by comparing the gradient or the amount of increase or decrease with the predetermined value. [Third embodiment] Next, a third embodiment will be described with reference to FIGS.
An example will be described. In the first embodiment and the second embodiment, the dissolved hydrogen concentration detector 14 and the dissolved oxygen concentration detector 1
5 was used, but in the third embodiment, using the corrosion potential,
Detect hydrogen gas leakage. Other parts are the same.

【0037】この異常検出については、上述の非通気方
式で特に効果が大きい(もちろん通気方式でも可能であ
ることは言うまでも無い)。いわゆる非通気方式では水
素ガス5漏洩が発生する前の溶存水素濃度(DH)や溶
存酸素濃度(DO)の検出値を、水素ガス5漏洩後の場
合と比較すると、図6の場合に比べてそれらの絶対値に
大きな差とならない。このように検出値の絶対値の傾向
管理だけでは水素ガス5漏洩の有無の明確な判断が難し
い事がある。このような場合には、強制的に貯水槽12
内の大気17内に直接、あるいは冷却水中に窒素ガス等
の非酸素含有ガスを注入し、図9に示すような腐食電位
計21を水冷却配管系統10に設置して、腐食電位を測
定することにより、冷却水中の水素濃度を検出する。
Regarding this abnormality detection, the above-mentioned non-venting method is particularly effective (it goes without saying that the ventilation method is also possible). In the so-called non-venting method, when the detected values of the dissolved hydrogen concentration (DH) and the dissolved oxygen concentration (DO) before the hydrogen gas 5 leaks are compared with the case after the hydrogen gas 5 leaks, compared with the case of FIG. There is no significant difference between their absolute values. As described above, it is sometimes difficult to clearly determine whether or not the hydrogen gas 5 has leaked only by managing the absolute value of the detected value. In such a case, the water tank 12
A non-oxygen-containing gas such as nitrogen gas is directly injected into the atmosphere 17 or into the cooling water, and a corrosion potential meter 21 as shown in FIG. 9 is installed in the water cooling piping system 10 to measure the corrosion potential. Thus, the hydrogen concentration in the cooling water is detected.

【0038】腐食電位については図2に示す溶存水素濃
度検出器14と溶存酸素濃度検出器15と同様に、冷却
配管と並行に標準電極22を設置したバイパス管と繋げ
て測定する。図9に示すように、標準電極22を取り付
けて、腐食電位測定用金属23の腐食電位を測定した。
この場合、溶存水素濃度(DH)を増加させながらこの
時の腐食電位(SHE;標準水素電極)を測定した。こ
の測定値を、図10に示される対象に基づいて、水素濃
度を求める。
As with the dissolved hydrogen concentration detector 14 and the dissolved oxygen concentration detector 15 shown in FIG. 2, the corrosion potential is measured by connecting to a bypass pipe provided with a standard electrode 22 in parallel with the cooling pipe. As shown in FIG. 9, the standard electrode 22 was attached, and the corrosion potential of the metal 23 for corrosion potential measurement was measured.
In this case, the corrosion potential (SHE; standard hydrogen electrode) at this time was measured while increasing the dissolved hydrogen concentration (DH). From the measured values, the hydrogen concentration is determined based on the target shown in FIG.

【0039】これは溶液中に水素が侵入し、水素濃度が
変化するに連れ、腐食電位も図10に示すように変化す
ることを利用する方法である。これにより水素ガス5が
水冷却配管系統10内に侵入した時点から腐食電位が変
化して、水素ガスの漏洩を感度良く検出できる。
This is a method utilizing the fact that hydrogen penetrates into the solution and the corrosion potential changes as shown in FIG. 10 as the hydrogen concentration changes. Thus, the corrosion potential changes from the time when the hydrogen gas 5 enters the water cooling piping system 10, and the leakage of the hydrogen gas can be detected with high sensitivity.

【0040】同様に、腐食電位計を水冷却配管系統10
に設置して、腐食電位を測定評価することにより、水素
ガス漏洩監視法を補強することができる。
Similarly, the corrosion potential meter is connected to the water cooling piping system 10.
By measuring and evaluating the corrosion potential, the hydrogen gas leakage monitoring method can be reinforced.

【0041】溶存水素濃度が1400PPB以上となっ
たとき(通気方式)、或いは、溶存水素濃度が10PP
B以下となったとき(非通気方式)、異常と判断でき
る。同様に、異なる腐食電位計を用いて、溶存酸素濃度
を検出し、図5或いは図7に示されるフローを用いて異
常検出を行っても良い。 [第4の実施例]次に、表1に基づいて、第4の実施例
を説明する。第1の実施例及び第2の実施例では、溶存
水素濃度検出器14及び溶存酸素濃度検出器15を用い
たが、第4の実施例では、大気開放管13の気体成分
(分圧)を測定することによって、溶存水素濃度及び溶
存酸素濃度を測定するのである。その他の部分は同様で
ある。
When the dissolved hydrogen concentration becomes 1400 PPB or more (venting method) or when the dissolved hydrogen concentration becomes 10 PPB
When the value becomes B or less (non-ventilated method), it can be determined that an abnormality has occurred. Similarly, the concentration of dissolved oxygen may be detected using different corrosion potentiometers, and the abnormality may be detected using the flow shown in FIG. 5 or FIG. [Fourth Embodiment] Next, a fourth embodiment will be described with reference to Table 1. In the first embodiment and the second embodiment, the dissolved hydrogen concentration detector 14 and the dissolved oxygen concentration detector 15 are used, but in the fourth embodiment, the gas component (partial pressure) of the open-to-atmosphere pipe 13 is determined. By measuring, the concentration of dissolved hydrogen and the concentration of dissolved oxygen are measured. Other parts are the same.

【0042】すなわち、大気開放管13に並列系統で水
素ガス検出器19及び酸素ガス検出器20が設置されて
いるので、それらのガス成分濃度にて冷却水中の溶存水
素濃度(DH)や溶存酸素濃度(DO)の検出と同様に
水素ガスの侵入の有無が判断できる。さらに、固定子巻
線コイルの冷却配管系統内の貯水槽に連結した大気開放
管に水素ガス並びに酸素ガス検出器を設定して、これら
のガス濃度分布を測定評価することにより、水素ガス漏
洩監視法を補強することができる。
That is, since the hydrogen gas detector 19 and the oxygen gas detector 20 are installed in the open-to-atmosphere pipe 13 in a parallel system, the dissolved hydrogen concentration (DH) and the dissolved oxygen As in the detection of the concentration (DO), it can be determined whether hydrogen gas has entered. Furthermore, hydrogen gas and oxygen gas detectors are set in the open-to-atmosphere pipe connected to the water storage tank in the cooling pipe system of the stator winding coil, and hydrogen gas leakage monitoring is performed by measuring and evaluating these gas concentration distributions. The law can be reinforced.

【0043】まず、大気開放管13の気相中の水素濃度
及び酸素濃度を測定する。そして、これらの濃度より分
圧を求める。表1に基づき、温度に対する溶解する気体
のグラム数を換算する。分圧値及び溶解グラム数を乗じ
て、冷却水中の溶存水素濃度及び溶存酸素濃度を求め
る。
First, the hydrogen concentration and the oxygen concentration in the gas phase of the open-to-atmosphere tube 13 are measured. Then, a partial pressure is determined from these concentrations. Based on Table 1, convert the number of grams of dissolved gas to temperature. The dissolved hydrogen concentration and the dissolved oxygen concentration in the cooling water are determined by multiplying the partial pressure value and the number of dissolved grams.

【0044】[0044]

【表1】 [Table 1]

【0045】表2を例に具体的な例を説明する。温度を
20度(摂氏)と仮定する。このときに、表1より、1
00グラムの水に溶解する水素は0.00016グラムであ
り、溶解する酸素は0.004339グラムである。一方、大気
開放管13の水素及び酸素が、それぞれ、1%及び19
%であれば(窒素79%)、分圧は、それぞれ、0.2
及び0.01である。したがって、冷却水中の溶存濃度
はそれぞれ、溶存水素濃度は0.1603PPMであ
り、溶存酸素濃度は8.678PPMである。
A specific example will be described using Table 2 as an example. Assume the temperature is 20 degrees Celsius. At this time, from Table 1, 1
Hydrogen dissolved in 00 grams of water is 0.00016 grams and dissolved oxygen is 0.004339 grams. On the other hand, hydrogen and oxygen in the atmosphere open pipe 13 are 1% and 19%, respectively.
% (79% nitrogen), the partial pressures are each 0.2
And 0.01. Therefore, the dissolved concentration in the cooling water is 0.1603 PPM, and the dissolved oxygen concentration is 8.678 PPM.

【0046】[0046]

【表2】 [Table 2]

【0047】以上の実施例1〜実施例4によれば、固定
子巻線コイルの冷却媒体として純水を使用し、且つ固定
子並びに回転子等の発熱構造材料の冷却媒体として、水
素ガスを使用した水素ガス冷却タービン発電機におい
て、固定子巻線コイルの冷却配管系統内への水素ガス漏
洩監視用に、固定子巻線コイルの冷却媒体である冷却水
中の溶存水素濃度検出器を冷却配管系統内に設置、ある
いは溶存酸素濃度検出器を併設設置、さらには冷却配管
系統内の貯水槽に連結した大気開放管に水素ガス並びに
酸素ガス検出器を設置することにより、高信頼保全性を
確保した水素ガス冷却タービン発電機の水素ガス漏洩監
視法を提供することができる。
According to the first to fourth embodiments, pure water is used as the cooling medium for the stator winding coil, and hydrogen gas is used as the cooling medium for the heat generating structural materials such as the stator and the rotor. In the hydrogen gas-cooled turbine generator used, a cooling pipe for the dissolved hydrogen concentration detector in the cooling water, which is the cooling medium for the stator winding coil, is used to monitor the leakage of hydrogen gas into the cooling pipe system of the stator winding coil. High reliability maintenance is ensured by installing in the system or installing a dissolved oxygen concentration detector, and installing hydrogen gas and oxygen gas detectors in the open air pipe connected to the water storage tank in the cooling piping system The present invention can provide a hydrogen gas leakage monitoring method for a hydrogen gas cooled turbine generator.

【0048】[0048]

【発明の効果】以上の説明のとおり、本発明によれば、
液体冷却媒体の通路における異常を、早期の段階で検出
することが可能となる。
As described above, according to the present invention,
An abnormality in the passage of the liquid cooling medium can be detected at an early stage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水冷却系統図である。FIG. 1 is a diagram of a water cooling system.

【図2】水素ガス冷却タービン発電機本体斜視図であ
る。
FIG. 2 is a perspective view of a hydrogen gas cooled turbine generator main body.

【図3】水素ガス冷却タービン発電機本体断面図であ
る。
FIG. 3 is a sectional view of a hydrogen gas cooled turbine generator main body.

【図4】溶存水素ガス検出器の詳細図である。FIG. 4 is a detailed view of a dissolved hydrogen gas detector.

【図5】異常検出のフローチャート図である。FIG. 5 is a flowchart of abnormality detection.

【図6】異常状態の説明図である。FIG. 6 is an explanatory diagram of an abnormal state.

【図7】第2の実施例における異常状態の説明図であ
る。
FIG. 7 is an explanatory diagram of an abnormal state in the second embodiment.

【図8】第2の実施例における異常状態の説明図であ
る。
FIG. 8 is an explanatory diagram of an abnormal state in the second embodiment.

【図9】腐食電位計の詳細図である。FIG. 9 is a detailed view of a corrosion electrometer.

【図10】腐食電位計の出力図である。FIG. 10 is an output diagram of the corrosion electrometer.

【符号の説明】[Explanation of symbols]

1…発電機、2…固定子、3…回転子、4…水素ガス配
管、5…水素ガス、6…固定子巻線コイル、7…冷却
器、8…循環ポンプ、9…冷却水、10…水冷却配管系
統、11…絶縁ホース、12…貯水槽、13…大気開放
管、14…溶存水素濃度検出器、15…溶存酸素濃度検
出器、16…機内、17…大気、18…水素ガスボン
ベ、19…水素ガス検出器、20…酸素ガス検出器、2
1…電位差計、22…標準電極、23…腐食電位測定用
金属、24…配管及び貯水タンク。
DESCRIPTION OF SYMBOLS 1 ... Generator, 2 ... Stator, 3 ... Rotor, 4 ... Hydrogen gas piping, 5 ... Hydrogen gas, 6 ... Stator winding coil, 7 ... Cooler, 8 ... Circulation pump, 9 ... Cooling water, 10 ... water cooling piping system, 11 ... insulation hose, 12 ... water storage tank, 13 ... atmosphere open pipe, 14 ... dissolved hydrogen concentration detector, 15 ... dissolved oxygen concentration detector, 16 ... in-machine, 17 ... atmosphere, 18 ... hydrogen gas cylinder , 19 ... hydrogen gas detector, 20 ... oxygen gas detector, 2
1 ... Potentiometer, 22 ... Standard electrode, 23 ... Metal for corrosion potential measurement, 24 ... Piping and water storage tank.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石塚 達郎 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立事業所内 (72)発明者 高城 秀雄 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立事業所内 (72)発明者 広田 守 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5H609 BB03 BB12 BB19 BB24 PP02 PP05 PP06 PP07 PP09 QQ03 QQ04 QQ07 QQ10 RR37 RR50 SS19  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tatsuro Ishizuka 3-1-1, Sachimachi, Hitachi-City, Ibaraki Pref. Hitachi, Ltd. Hitachi Works, Ltd. (72) Hideo Takagi 3-Chome, Sachicho, Hitachi-City, Ibaraki No. 1 Hitachi, Ltd. Hitachi Works (72) Inventor Mamoru Hirota 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Research Laboratory, Hitachi Ltd. F-term (reference) 5H609 BB03 BB12 BB19 BB24 PP02 PP05 PP06 PP07 PP09 QQ03 QQ04 QQ07 QQ10 RR37 RR50 SS19

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】枠体に固定された固定子と、前記枠内で前
記固定子と対向して回転する回転子と、前記固定子の固
定子巻線に冷却水を供給する配管と、前記枠体内に冷却
用の水素を供給する水素供給手段とを備えた発電機にお
いて、前記冷却水の溶存水素濃度を検出する溶存水素濃
度検出手段を有することを特徴とする発電機。
A stator fixed to a frame, a rotor rotating in the frame facing the stator, a pipe for supplying cooling water to a stator winding of the stator, A generator comprising: a hydrogen supply unit that supplies hydrogen for cooling into a frame; and a dissolved hydrogen concentration detection unit that detects a dissolved hydrogen concentration of the cooling water.
【請求項2】請求項1において、前記冷却水には有酸素
気体が供給されることを特徴とする発電機。
2. The generator according to claim 1, wherein an aerobic gas is supplied to the cooling water.
【請求項3】前記有酸素気体は有酸素気体が充満された
貯水槽により供給されることを特徴とする発電機。
3. The generator according to claim 1, wherein the oxygen gas is supplied from a water tank filled with the oxygen gas.
【請求項4】請求項1乃至3において、前記検出された
溶存水素濃度に基づいて、異常を検出する異常検出手段
を有することを特徴とする発電機。
4. The power generator according to claim 1, further comprising an abnormality detecting means for detecting an abnormality based on the detected dissolved hydrogen concentration.
【請求項5】請求項4において、前記異常検出は前記溶
存水素濃度を所定値と比較することを特徴とする発電
機。
5. The power generator according to claim 4, wherein the abnormality is detected by comparing the dissolved hydrogen concentration with a predetermined value.
【請求項6】請求項5において、前記所定値は飽和溶解
度に相当する値であることを特徴とする発電機。
6. The generator according to claim 5, wherein the predetermined value is a value corresponding to a saturation solubility.
【請求項7】請求項4において、前記溶存水素濃度の増
加量或いは増加速度に基づいて異常検出することを特徴
とする発電機。
7. The power generator according to claim 4, wherein an abnormality is detected based on an increase amount or an increase speed of the dissolved hydrogen concentration.
【請求項8】請求項1乃至7において、前記冷却水は第
1の絶縁ホースを介して前記固定子巻線に供給され、さ
らに、第2の絶縁ホースを介して排出され、前記第1の
絶縁ホースと前記第2の絶縁ホースの間に前記溶存水素
検出手段を配したことを特徴とする発電機。
8. The method according to claim 1, wherein the cooling water is supplied to the stator winding via a first insulating hose, further discharged through a second insulating hose, and the cooling water is supplied to the stator winding. A generator, wherein the dissolved hydrogen detection means is provided between an insulating hose and the second insulating hose.
【請求項9】請求項1において、前記冷却水の溶存酸素
濃度を検出する溶存酸素濃度検出手段を有することを特
徴とする発電機。
9. The generator according to claim 1, further comprising a dissolved oxygen concentration detecting means for detecting a dissolved oxygen concentration of the cooling water.
【請求項10】請求項9において、前記検出された溶存
水素濃度及び溶存酸素濃度に基づいて、異常を検出する
検出手段を有することを特徴とする発電機。
10. The power generator according to claim 9, further comprising a detecting means for detecting an abnormality based on the detected dissolved hydrogen concentration and dissolved oxygen concentration.
【請求項11】枠体に固定された固定子と、前記枠内で
前記固定子と対向して回転する回転子と、前記固定子の
固定子巻線に冷却水を供給する配管と、前記枠体内に冷
却用の水素を供給する水素供給手段を備えた発電機にお
いて、前記液体内の前記溶存酸素濃度を検出する溶存酸
素濃度検出手段を有することを特徴とする発電機。
11. A stator fixed to a frame, a rotor rotating in the frame facing the stator, a pipe for supplying cooling water to a stator winding of the stator, A generator comprising a hydrogen supply means for supplying hydrogen for cooling into a frame, comprising a dissolved oxygen concentration detecting means for detecting the dissolved oxygen concentration in the liquid.
【請求項12】前記冷却水に有水素気体が供給されるこ
とを特徴とする発電機。
12. A power generator wherein a hydrogen gas is supplied to the cooling water.
【請求項13】請求項12において、前記有水素気体が
充満した貯水槽により、前記有水素気体が冷却水に供給
されることを特徴とする発電機。
13. The power generator according to claim 12, wherein the hydrogen gas is supplied to the cooling water by a water tank filled with the hydrogen gas.
【請求項14】請求項13において、前記検出された溶
存水素濃度に基づいて異常を検出する異常検出手段を有
することを特徴とする発電機。
14. The power generator according to claim 13, further comprising abnormality detecting means for detecting an abnormality based on the detected dissolved hydrogen concentration.
【請求項15】請求項9乃至11において、前記溶存酸
素濃度検出器は、腐食電位測定型であることを特徴とす
る発電機。
15. A power generator according to claim 9, wherein said dissolved oxygen concentration detector is of a corrosion potential measurement type.
【請求項16】請求項9乃至11において、前記配管よ
り大気に開放された気体成分を検出する検出器を有し、
前記検出器より、前記溶存酸素濃度を測定することを特
徴とする発電機。
16. A detector according to claim 9, further comprising a detector for detecting a gas component released from the pipe to the atmosphere,
A generator, wherein the dissolved oxygen concentration is measured by the detector.
【請求項17】請求項16において、前記溶存酸素濃度
は、放出された水素の分圧より測定することを特徴とす
る発電機。
17. The power generator according to claim 16, wherein the dissolved oxygen concentration is measured from a partial pressure of released hydrogen.
【請求項18】枠体に固定された固定子と、前記固定子
枠内で前記固定子と対向して回転する回転子を有し、前
記固定子の固定子巻線に液体を供給して冷却し、前記固
定子枠内に水素を供給して冷却し、前記回転子を回転す
ることによって発電する発電機において、前記液体内の
溶存水素を検出する溶存水素検出手段を有することを特
徴とする発電機。
18. A stator fixed to a frame, and a rotor that rotates in the stator frame so as to face the stator, and supplies a liquid to a stator winding of the stator. Cooling, supplying hydrogen into the stator frame, cooling, and generating electricity by rotating the rotor, wherein the generator has dissolved hydrogen detection means for detecting dissolved hydrogen in the liquid. Generator.
【請求項19】枠体に固定された固定子と、前記固定子
枠内で前記固定子と対向して回転する回転子を有し、前
記固定子の固定子巻線を液体で冷却し、前記枠体内を冷
却気体で冷却し、前記回転子を回転することによって発
電する発電機において、前記液体内の前記冷却気体の溶
存を検出する気体溶存検出手段を有することを特徴とす
る発電機。
19. A stator fixed to a frame, and a rotor rotating in the stator frame so as to face the stator, wherein a stator winding of the stator is cooled with a liquid, A generator for cooling the inside of the frame with a cooling gas and generating electric power by rotating the rotor, comprising a gas dissolved detection unit for detecting the dissolved gas in the liquid.
【請求項20】枠体に固定された固定子と、前記固定子
枠内で前記固定子と対向して回転する回転子を有し、前
記固定子或いは回転子の少なくとも一部を液体で冷却
し、前記回転子と前記固定子を相対的に回転する回転機
において、前記液体内の前記気体濃度を検出する溶存濃
度検出手段を有することを特徴とする回転機。
20. A stator fixed to a frame, and a rotor rotating in the stator frame so as to face the stator, wherein at least a part of the stator or the rotor is cooled by a liquid. A rotating machine for relatively rotating the rotor and the stator, further comprising a dissolved concentration detecting means for detecting the gas concentration in the liquid.
【請求項21】回転子を固定子に対向させ、前記回転子
を回転することによって発電し、前記固定子の固定子巻
線を液体で冷却し、前記枠体内を冷却気体で冷却し、前
記液体内の前記冷却気体の溶存量を検出し、この検出か
ら異常検出する発電機の異常検出方法。
21. A method in which a rotor is opposed to a stator, power is generated by rotating the rotor, a stator winding of the stator is cooled with a liquid, and the frame is cooled with a cooling gas. An abnormality detection method for a generator in which a dissolved amount of the cooling gas in a liquid is detected and an abnormality is detected from the detection.
【請求項22】回転子を固定子に対向させ、前記回転子
を回転することによって発電し、前記固定子の固定子巻
線を液体で冷却し、前記枠体内を水素で冷却し、前記液
体内の水素溶存量を検出し、この検出から異常検出する
発電機の異常検出方法。
22. A method in which a rotor is opposed to a stator, power is generated by rotating the rotor, a stator winding of the stator is cooled with a liquid, and the inside of the frame is cooled with hydrogen. An abnormality detection method for a generator that detects the amount of dissolved hydrogen in the reactor and detects an abnormality based on this detection.
【請求項23】回転子と固定子を相対的に回転させ、前
記固定子或いは前記回転子の少なくとも一部を液体で冷
却し、前記液体内の前記気体の溶存を検出し、これに基
づいて異常を検出する回転機の異常検出方法。
23. The rotor and the stator are relatively rotated, at least a part of the stator or the rotor is cooled by a liquid, and the dissolution of the gas in the liquid is detected. An abnormality detection method for rotating machines that detects abnormalities.
JP2001041096A 2001-02-19 2001-02-19 Rotating machine and method for detecting abnormality of rotating machine Expired - Lifetime JP3791339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001041096A JP3791339B2 (en) 2001-02-19 2001-02-19 Rotating machine and method for detecting abnormality of rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001041096A JP3791339B2 (en) 2001-02-19 2001-02-19 Rotating machine and method for detecting abnormality of rotating machine

Publications (2)

Publication Number Publication Date
JP2002247807A true JP2002247807A (en) 2002-08-30
JP3791339B2 JP3791339B2 (en) 2006-06-28

Family

ID=18903590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001041096A Expired - Lifetime JP3791339B2 (en) 2001-02-19 2001-02-19 Rotating machine and method for detecting abnormality of rotating machine

Country Status (1)

Country Link
JP (1) JP3791339B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529879A (en) * 2017-07-06 2019-10-17 フラマトム ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for decontamination of metal surfaces in nuclear power plants
CN113984855A (en) * 2021-10-22 2022-01-28 福建福清核电有限公司 Method and device for measuring concentration of target gas in radioactive waste gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529879A (en) * 2017-07-06 2019-10-17 フラマトム ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for decontamination of metal surfaces in nuclear power plants
US11244770B2 (en) 2017-07-06 2022-02-08 Framatome Gmbh Method of decontaminating a metal surface in a nuclear power plant
CN113984855A (en) * 2021-10-22 2022-01-28 福建福清核电有限公司 Method and device for measuring concentration of target gas in radioactive waste gas
CN113984855B (en) * 2021-10-22 2024-01-23 福建福清核电有限公司 Method and device for measuring concentration of target gas in radioactive waste gas

Also Published As

Publication number Publication date
JP3791339B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP5818907B2 (en) Equipment and hot water heating / heating system
JP6173462B2 (en) Anti-corrosion performance deterioration detection device, hot-water supply heating system and equipment
KR101426371B1 (en) Apparatus for monitoring coolant leakage into the generator
JP4905846B2 (en) Fuel cell system and method for repairing electrolyte membrane thereof
EP1686608A1 (en) X-ray apparatus
JP5239112B2 (en) Fuel cell system
JP2002247807A (en) Rotating machine, failure detecting method therefor generator, rotating machine, and failure detecting method therefor
US6662633B2 (en) Method and apparatus for locating internal transfer leaks within fuel cell stacks
JP2005135711A (en) Abnormality-detecting device and fuel cell system
KR20090018739A (en) A method and apparatus for monitoring hydrogen leakage into the generator stator cooling water system
JP2006309948A (en) Fuel cell system
JP2005285489A (en) Fuel cell system
JPH10302823A (en) Fuel cell characteristic diagnostic method and fuel cell operating method
KR20090018741A (en) A method and apparatus for monitoring hydrogen leakage into the generator stator cooling water system
JP2006216310A (en) Gas leakage detection device
JP4547603B2 (en) Fuel cell deterioration judgment device
JP5229364B2 (en) Fuel cell system
JPH0785883A (en) Abnormality detecting device and control device for abnormal time
JP2010103063A (en) Fuel cell system and method for detecting cross leak using the same
JP2004039398A (en) Fuel cell system
JPH02307051A (en) Method and instrument for measuring dissolved gaseous hydrogene in insulating oil
WO2024017208A1 (en) Oxygen treatment system and control method therefor
JP2010257859A (en) Fuel cell system
JP2006253083A (en) Fuel cell system
JP4373818B2 (en) Stator cooling water supply device for rotating electrical machines

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R151 Written notification of patent or utility model registration

Ref document number: 3791339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term