JP2002246158A - Current-carrying heating sheath wire, structure for melting snow on road surface, and construction method for forming structure of melting snow on road surface - Google Patents

Current-carrying heating sheath wire, structure for melting snow on road surface, and construction method for forming structure of melting snow on road surface

Info

Publication number
JP2002246158A
JP2002246158A JP2001265620A JP2001265620A JP2002246158A JP 2002246158 A JP2002246158 A JP 2002246158A JP 2001265620 A JP2001265620 A JP 2001265620A JP 2001265620 A JP2001265620 A JP 2001265620A JP 2002246158 A JP2002246158 A JP 2002246158A
Authority
JP
Japan
Prior art keywords
road surface
current
wire
heating
sheath wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001265620A
Other languages
Japanese (ja)
Inventor
Tadashi Kobori
忠司 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2001265620A priority Critical patent/JP2002246158A/en
Publication of JP2002246158A publication Critical patent/JP2002246158A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a linear heating element having good current carrying efficiency, and provide a structure for melting snow on road surface, including the linear heating element, and a construction method for forming the structure for melting snow on the road surface. SOLUTION: A current-carrying heating sheath wire 1 includes a core wire 2 for current- carrying and heating, an insulation layer 3 of cross-linked polyethylene for coating the core wire 2 for current-carrying and heating, and a sheath material layer 4 of chloroethene containing an infrared element 5 for coating the insulating layer 3. The infrared element is preferably a mixture of 70-95% graphite infrared elements and 5-30% ceramic infrared elements. The structure for melting snow on a road surface is a structure, which a road surface layer 7 is laid on a base 6. The infrared element 5 is mixed in the road surface layer, and the current-carrying heating sheath wire 1 is laid in a boundary part of the base 6 and the road surface layer 7. The construction method for forming the structure for melting snow on a road surface fixes a current-carrying heating sheath wire temporarily fixing member 9, which includes an unevenness part 10 for temporarily fixing the current-carrying heating sheath wire 1 on a thermoplastic resin sheet with a predetermined space on the base, and strikes the road surface layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、降雪地帯の路面に
用いて融雪効果を発揮する通電発熱シース線、融雪路面
構造および融雪路面構造形成工法に関する。なお、本発
明においては、車道、歩道、駐車場、車庫、階段、アプ
ローチ、路肩、飛行場等の表面部分を総称して路面と称
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current-carrying heating sheath wire, a snow melting road surface structure, and a method for forming a snow melting road surface structure which are used on a road surface in a snowfall area to exhibit a snow melting effect. In the present invention, surface portions such as roadways, sidewalks, parking lots, garages, stairs, approaches, road shoulders, and airports are collectively referred to as road surfaces.

【0002】[0002]

【従来の技術】降雪地帯の路面の除雪・融雪には、各種
の方策が採られてきている。その一方策として、路面に
通電発熱体を埋設し、その発熱によって融雪するものが
知られている。通電発熱体として、線状発熱体と面状発
熱体とが用いられる。面状発熱体においては、例えば特
開平10−172725号公報に示されるように、面状
発熱体の外皮を構成する樹脂シート中に保温機能を有す
る遠赤外線放射体および高熱伝導機能を有する遠赤外線
放射体(以下、本発明では合わせて遠赤外線素子とい
う)を含むものも利用されている。
2. Description of the Related Art Various measures have been taken to remove or melt snow on a road surface in a snowfall zone. As one of the measures, a method is known in which a current-carrying heating element is buried on a road surface and the heat is generated to melt snow. A linear heating element and a planar heating element are used as the energizing heating elements. In the sheet heating element, for example, as shown in JP-A-10-172725, a far-infrared radiator having a heat retaining function and a far-infrared ray having a high heat conducting function are provided in a resin sheet constituting an outer cover of the sheet heating element. A device including a radiator (hereinafter, also referred to as a far-infrared device in the present invention) is also used.

【0003】[0003]

【発明が解決しようとする課題】しかし、面状発熱体
は、比較的通電効率がよいものの、路盤から路面表面層
までの道路構造中に面状の異物が存在するのと同じで、
不連続面部分が形成され、その不連続面部分によって道
路構造を構成する層に剥がれが生じ、破損されやすくな
るという欠点が避けられない。線状発熱体は、路面面積
に対する発熱体面積が少なく、通電効率のより一層の向
上が望まれている。道路構造上からの融雪促進方策も試
みられている。近時、道路構造を構成する各層、特に路
面表面層中に、中でも路面表面層の表面近傍に、遠赤外
線素子を混入することが盛んに行われている。混入させ
る遠赤外線素子の種類は多いが、より最適な性能のもの
が探求されている。したがって本発明の課題は、通電効
率のより良い線状発熱体を提供し、併せて線状発熱体を
含む融雪路面構造および融雪路面構造形成工法を提供す
ることにある。
However, although the planar heating element has a relatively good energization efficiency, it is the same as the presence of planar foreign matter in the road structure from the roadbed to the road surface layer.
There is an unavoidable disadvantage that a discontinuous surface portion is formed, and the layer constituting the road structure peels off due to the discontinuous surface portion, and the layer is easily damaged. The linear heating element has a small heating element area with respect to the road surface area, and it is desired to further improve the power supply efficiency. Attempts are being made to promote snow melting from the road structure. 2. Description of the Related Art In recent years, a far-infrared ray element has been actively mixed in each layer constituting a road structure, especially in a road surface layer, especially in the vicinity of the surface of the road surface layer. There are many types of far-infrared elements to be mixed, but those with more optimal performance are being sought. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a linear heating element having better power supply efficiency, and to provide a snow melting road surface structure including a linear heating element and a method for forming a snow melting road surface structure.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明の線状発熱体としての通電発熱シース線は、
通電発熱用芯線と、該通電発熱用芯線を被覆する架橋ポ
リエチレン製の絶縁層と、該絶縁層を被覆する遠赤外線
素子を含有する塩化ビニル製のシース材層とからなる。
前記遠赤外線素子は、グラファイト系遠赤外線素子70
〜95%とセラミックス系遠赤外線素子5〜30%との
混合物であることが望ましい。本発明の融雪路面構造
は、路盤上に路面表面層を敷設した構造であって、該路
面表面層には遠赤外線素子が混入されており、該路盤と
該路面表面層との境界または該路面表面層の下部に上記
の通電発熱シース線が敷設される。そして、本発明の融
雪路面構造形成工法は、通電発熱シース線の固定化向上
を図るため、熱可塑性樹脂シートに所定の間隔をもって
通電発熱シース線を仮止めすることができる凹凸が形成
された通電発熱シース線仮止め部材を路盤に固定して路
面表面層を打設する。
In order to solve the above-mentioned problems, an electric heating sheath wire as a linear heating element according to the present invention comprises:
It comprises a core wire for energizing and heating, an insulating layer made of cross-linked polyethylene for covering the core wire for energizing and heating, and a sheath material layer made of vinyl chloride containing a far-infrared ray element for covering the insulating layer.
The far-infrared device is a graphite-based far-infrared device 70.
It is desirable to be a mixture of about 95% and a ceramic far-infrared element of 5 to 30%. The snowmelt road surface structure of the present invention is a structure in which a road surface layer is laid on a roadbed, wherein a far-infrared ray element is mixed in the road surface layer, and a boundary between the roadbed and the road surface layer or the road surface. The current-carrying sheath wire is laid below the surface layer. The method for forming a snowmelt road surface structure according to the present invention employs an energization method in which irregularities are formed on the thermoplastic resin sheet so that the energization heat generation sheath wires can be temporarily fixed at predetermined intervals in order to improve the fixation of the energization heat generation sheath wires. The heating sheath wire temporary fixing member is fixed to the roadbed, and the road surface layer is cast.

【0005】[0005]

【発明の実施の形態】本発明は、通電発熱体として、面
状発熱体ではなく、線状発熱体を用いる。図1は、本発
明の通電発熱体としての通電発熱シース線の一実施の形
態を示す、各層のそれぞれ一部を順次剥離した説明斜視
図である。路面に埋設する通電発熱体としては、酷寒期
に降り積もる雪を溶かすための熱源となるものであるか
ら、高温になることを必ずしも必要としない。したがっ
て、本発明の通電発熱シース線1を構成する通電発熱用
芯線2としては、抵抗値が0.04〜3Ω/m程度の抵
抗線であれば、いずれも用いられ得る。例えば、各種金
属線が用いられ、中でもニッケルクロム、銅ニッケル合
金等が好ましい。通電発熱用芯線2としては、単線でも
良いし、撚り線でも良い。例えば、芯材線の周りに6本
の撚り線材を巻き付けるケーブルタイプのものでも良
い。撚り線とすることにより、通電発熱用芯線は屈曲性
が増し、路面への敷設に際して取り扱い易くなる。埋設
線であることを考慮すれば、芯材線と撚り線材とは、同
一の抵抗線とすることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a linear heating element is used as an electric heating element instead of a planar heating element. FIG. 1 is an explanatory perspective view showing one embodiment of an energized heating sheath wire as an energizing heating element of the present invention, in which a part of each layer is sequentially peeled off. Since the current-carrying heating element buried on the road surface serves as a heat source for melting snow falling in a severe cold season, it is not always necessary to increase the temperature. Therefore, as the energizing and heating core wire 2 constituting the energizing and heating sheath wire 1 of the present invention, any resistance wire having a resistance value of about 0.04 to 3 Ω / m can be used. For example, various metal wires are used, and among them, nickel chromium, copper nickel alloy and the like are preferable. The conductive heating core wire 2 may be a single wire or a stranded wire. For example, a cable type in which six stranded wires are wound around a core wire may be used. By using a stranded wire, the electric heating and heating core wire has increased flexibility and is easy to handle when laid on a road surface. Considering that the wire is a buried wire, the core wire and the stranded wire can be the same resistance wire.

【0006】例えば、.銅ニッケル合金(ニッケル約
50%)の0.32mm線材を芯材線と撚り線材6本と
の7本による撚り線(見掛け外径1.0mm)とする
と、導体抵抗値は870Ω/km(20℃)、.同材
の0.50mm線材の7本撚り線(見掛け外径1.5m
m)とすると、導体抵抗値は360Ω/kmとなる。
.合金を銅ニッケル合金(ニッケル約10%)とし、
0.5mm線材の7本撚り線(見掛け外径1.5mm)
とすると、導体抵抗値は73Ω/kmとなる。敷設幅1
mで、蛇行配線のピッチ間隔を50mm、蛇行幅950
mmとし、定格電圧200Vとした場合、例えば前記
の撚り線では、設計基準130W/m 2で面積4.2
2、設計基準150w/m2で3.9m2、設計基準1
70W/m 2、設計基準200W/m2で3.4m2とな
る。
For example,. Copper nickel alloy (about nickel
50%) 0.32mm wire with core wire and 6 stranded wires
And a stranded wire (apparent outer diameter 1.0 mm)
And the conductor resistance value is 870Ω / km (20 ° C.),. Same material
0.50mm wire rod with 7 strands (1.5m outer diameter)
m), the conductor resistance value is 360 Ω / km.
. The alloy is a copper-nickel alloy (about 10% nickel)
Seven stranded wires of 0.5mm wire (appearance outer diameter 1.5mm)
Then, the conductor resistance value is 73Ω / km. Laying width 1
m, the pitch interval of the meandering wiring is 50 mm, and the meandering width is 950.
mm and a rated voltage of 200 V, for example,
Stranded wire, the design standard 130W / m TwoWith an area of 4.2
mTwo, Design standard 150w / mTwoAt 3.9mTwo, Design criteria 1
70W / m Two, Design standard 200W / mTwo3.4m atTwoTona
You.

【0007】通電発熱用芯線2は、絶縁層3で被覆され
る。絶縁層3としては、電気絶縁性、耐熱性、耐候性等
に優れ、硬度等を満足する各種の合成樹脂が利用可能で
ある。本発明では、架橋ポリエチレンを利用する。絶縁
層3の厚みは、特に制限はないが、0.5〜1.5mm
とすることが好ましく、例えば肉厚0.8mmとするこ
とができる。通電発熱シース線1は、通行する車両等か
ら繰り返し応力が加えられるので、外表面にシース材層
4を持つことが望ましい。シース材素材としては、柔軟
性、高弾性、耐熱性、耐候性、内層の絶縁被覆材との接
着性等が要求され、例えば、ふっ素樹脂、けい素ゴム、
耐熱ビニル系樹脂またはそれらの混合物等が例示され得
る。路面表面層にアスファルトを用いることが多いこと
を勘案して、また、後述する遠赤外線素子を混入させる
ときの分散性をも勘案して、本発明ではシース材層素材
として、塩化ビニルを用いる。
[0007] The heating and heating core wire 2 is covered with an insulating layer 3. As the insulating layer 3, various synthetic resins which are excellent in electrical insulation, heat resistance, weather resistance and the like and satisfy hardness and the like can be used. In the present invention, a crosslinked polyethylene is used. The thickness of the insulating layer 3 is not particularly limited, but is 0.5 to 1.5 mm.
It is preferable that the thickness be, for example, 0.8 mm. Since the current-carrying sheath wire 1 is repeatedly subjected to stress from a passing vehicle or the like, it is desirable to have the sheath material layer 4 on the outer surface. As the sheath material, flexibility, high elasticity, heat resistance, weather resistance, adhesiveness with the inner insulating coating material, etc. are required, for example, fluorine resin, silicon rubber,
Examples thereof include a heat-resistant vinyl resin or a mixture thereof. In view of the fact that asphalt is often used for the road surface layer, and also in consideration of dispersibility when mixing a far-infrared ray element described later, vinyl chloride is used as the sheath material layer material in the present invention.

【0008】通電発熱シース線1の通電融雪効率を向上
させるために、上述のシース材層4中に遠赤外線素子5
を混入させる。遠赤外線素子は、外部からの熱を吸収
し、遠赤外線を放射するもので、放射される遠赤外線に
より水分中のクラスターが破壊されることにより雪・氷
が効率的に溶かされる。遠赤外線素子としては、各種の
ものが知られており、いずれも基本的に利用可能であ
る。例えば、SiO2・Al23・Fe23・TiO2
MnO・CaO・MgO等のセラミックス系のもの、前
記のセラミックス系のものに金属ゲルマニウムまたは酸
化ゲルマニウムを配合して成形焼結したもの、黒鉛を高
温で熱処理したグラファイト系のもの等が例示され得
る。例えば特公平4−10197号公報にも、各種の遠
赤外線放射体が示されている。
In order to improve the current-carrying snow-melting efficiency of the current-carrying sheath wire 1, a far-infrared element 5
Is mixed. The far-infrared element absorbs heat from the outside and emits far-infrared rays. The emitted far-infrared rays destroy clusters in water, so that snow and ice are efficiently melted. Various types of far-infrared devices are known, and any of them can be basically used. For example, SiO 2 · Al 2 O 3 · Fe 2 O 3 · TiO 2 ·
Examples include ceramic-based materials such as MnO.CaO.MgO, those obtained by blending metal germanium or germanium oxide with the above-mentioned ceramic-based materials, molding and sintering, and graphite-based materials obtained by heat-treating graphite at a high temperature. For example, Japanese Patent Publication No. 4-10197 discloses various far-infrared radiators.

【0009】セラミックス系のものの中では、特にアル
ミナ65%、シリカ35%の組成を基本とする焼結粉砕
された粉粒体が好適である。グラファイト系のものの中
では、特に、電極用グラファイトを用いて、500〜1
000℃で1500〜2000Vの高電圧を加えて0.
5〜1時間処理し、粒径150μm以下の粉粒体とした
ものが好適である。電極用グラファイトとしては、バー
ジン材料を用いる外、電極成形に際して出る削り屑や、
電極棒及び電極板の回収品も好適に利用できる。バージ
ン材料と削り屑・回収品とを適宜の割合で混合して用い
ることができることはいうまでもない。
Among ceramics, powders obtained by sintering and pulverization based on a composition of 65% alumina and 35% silica are particularly preferred. Among graphite-based materials, in particular, graphite for electrodes is used, and
Apply a high voltage of 1500 to 2000 V at 000 ° C.
It is preferable that the powder is treated for 5 to 1 hour to obtain a powder having a particle size of 150 μm or less. As graphite for electrodes, besides using virgin material, shavings generated during electrode molding,
Collected products of the electrode rod and the electrode plate can also be suitably used. It goes without saying that the virgin material and the shavings / recovered product can be mixed and used at an appropriate ratio.

【0010】シース材層4に混入される遠赤外線素子5
は、単一のものでも良く、また、複合しても用いられ得
る。複合材としては、組合せは適宜選択し得るが、上述
の好適なグラファイト系のものと上述の好適なセラミッ
クス系のものとの組合せが好適であり、その割合はグラ
ファイト系遠赤外線素子70〜95%、セラミックス系
遠赤外線素子5〜30%が好ましく、前者80〜90
%、後者10〜20%が特に好ましい。シース材層4の
厚みは、特性上からはより厚いことが好ましいが、肉厚
が2.2mmを超えるとコスト高となり、また、屈曲性
が低下して作業効率が低下することから、2.2mm以
下とすることが好ましい。例えばシース厚2.2mmと
することで、シース材層2.0mm品に比して、シース
材表面の表面温度が通電15分後で3〜4℃程度(約1
2%)高くなる。
[0010] Far-infrared ray element 5 mixed in sheath material layer 4
May be used alone or in combination. As the composite material, a combination can be appropriately selected, but a combination of the above-mentioned suitable graphite-based material and the above-mentioned suitable ceramic-based material is preferable, and the ratio thereof is 70 to 95% of the graphite-based far-infrared device. The ceramic far-infrared ray element is preferably 5 to 30%, and the former is 80 to 90%.
%, And the latter 10 to 20% are particularly preferred. The thickness of the sheath material layer 4 is preferably thicker from the viewpoint of characteristics. However, if the thickness exceeds 2.2 mm, the cost increases, and the bending efficiency decreases to lower the work efficiency. It is preferable to set it to 2 mm or less. For example, by setting the sheath thickness to 2.2 mm, the surface temperature of the sheath material surface is about 3 to 4 ° C. (about 1
2%) higher.

【0011】本発明の通電発熱シース線の発熱特性を例
示すると、表1に示すとおりである。表1には、用いた
通電発熱シース線は、後述する実施例1として用いたも
ので、定格145Wとして通電した場合、および、後述
する実施例2として用いたもので、定格170Wとして
通電した場合、の2例について示す。なお、表1に示し
た温度は、雰囲気が大気中無風状態で周囲温度14℃で
通電したときの、通電発熱シース線の表面温度である。
The heating characteristics of the current-carrying sheath wire of the present invention are shown in Table 1 as an example. In Table 1, the energized heat-generating sheath wire used was used in Example 1 described later, and was energized with a rating of 145 W, and used in Example 2 described below, and was energized with a rating of 170 W , Are shown. The temperature shown in Table 1 is the surface temperature of the energized heat-generating sheath wire when energized at an ambient temperature of 14 ° C. in an airless state in the atmosphere.

【0012】[0012]

【表1】 [Table 1]

【0013】通電発熱シース線1は、路面に埋設され
る。図2に、本発明の融雪路面構造の一実施の形態を、
部分的に断面を示す説明図として示す。路面は、基本的
に路盤6および路面表面層7からなる。本発明では、通
電発熱シース線1が埋設され、あるいは下面に通電発熱
シース線1が接する層を路面表面層7と呼び、その路面
表面層7より下の層を路盤6と呼ぶこととする。したが
って、路盤6は、その施工態様によって、加熱アスファ
ルト安定処理を施した層である場合、コンクリート等を
打った場合、橋梁や高架橋等にあっては鉄板構造物であ
る場合や鉄板構造物上にコンクリート等を打設した場
合、等を指し、路面表面層7は、アスファルト一層の場
合、コンクリート一層の場合、それらの性状を異ならせ
て二層とする場合、アスファルト層とコンクリート層と
の二層とする場合、基層と透水性を付与した高機能舗装
層との二層からなる場合、さらにそれらの表面にタイル
を貼った場合、等々を全て一括して指す。
The energized heating sheath wire 1 is embedded in the road surface. FIG. 2 shows an embodiment of the snow melting road surface structure of the present invention,
It is shown as an explanatory view partially showing a cross section. The road surface basically includes a roadbed 6 and a road surface layer 7. In the present invention, a layer in which the energized heating sheath wire 1 is buried or whose lower surface is in contact with the energized heating sheath wire 1 is referred to as a road surface layer 7, and a layer below the road surface layer 7 is referred to as a roadbed 6. Therefore, depending on the construction mode, the roadbed 6 is a layer subjected to the heating asphalt stabilization treatment, a concrete layer is hit, a bridge or a viaduct is an iron plate structure, or a steel plate structure. When the concrete or the like is cast, it refers to, for example, the road surface layer 7 is composed of one layer of asphalt, one layer of concrete, two layers of different properties, and two layers of an asphalt layer and a concrete layer. In this case, the term refers to a case where the base material is composed of two layers of a base layer and a high-performance pavement layer provided with water permeability, a case where a tile is attached to the surface thereof, and the like.

【0014】本発明の通電発熱シース線1は、従来の、
遠赤外線素子の用いられていない通電発熱線と同様、路
盤6と路面表面層7との境界に埋設され、あるいは、路
面表面部7の下部に埋設される。路盤6と路面表面層7
との境界に埋設された場合でも、線状発熱体であるの
で、路盤6と路面表面層7との接触面積が十分にとれ、
接続態様に支障を来すことがない。埋設された本発明の
通電発熱シース線1より上部の路面表面層7の厚さは、
敷設当初には6〜15cm程度であることが好ましい。
路面表面層7は、車両等の通行にしたがって徐々に削ら
れ補修されるに際して、通電発熱シース線1に影響を及
ぼさないようにするためである。より好ましくは、7〜
10cmである。
The energized heating sheath wire 1 according to the present invention comprises a conventional
Like the energized heating wire in which the far-infrared ray element is not used, it is buried at the boundary between the roadbed 6 and the road surface layer 7 or buried under the road surface portion 7. Subbase 6 and road surface layer 7
Even when buried at the boundary of the road surface, since it is a linear heating element, a sufficient contact area between the roadbed 6 and the road surface layer 7 can be obtained.
It does not hinder the connection mode. The thickness of the road surface layer 7 above the buried current-carrying sheath wire 1 of the present invention is:
It is preferable that it is about 6 to 15 cm at the beginning of the laying.
The road surface layer 7 is provided so as not to affect the energized heating sheath wire 1 when the road surface layer 7 is gradually cut and repaired as the vehicle passes. More preferably, 7 to
10 cm.

【0015】路面表面での融雪等を効率的に行わせるた
めに、路面表面層7には遠赤外線素子8を混入させる。
遠赤外線素子8を混入させることによって、降雪前の日
照・外気温を融雪に有利に利用でき、また、路面に埋設
した通電発熱体からの熱を融雪に有効かつ効率的に利用
できる。路面表面層7に混入させる遠赤外線素子8とし
ては、先にシース材層4に混入させるものとして例示し
た遠赤外線素子5が用いられ得る。経済性を考慮する
と、グラファイト系遠赤外線素子、中でも上述の好適で
あるとした焼結粉砕されたグラファイト系粉粒体が、こ
こでも好適に利用できる。
In order to efficiently melt snow on the road surface, a far-infrared ray element 8 is mixed into the road surface layer 7.
By mixing the far-infrared element 8, the sunshine and the outside air temperature before snowfall can be advantageously used for melting snow, and the heat from the current-carrying heating element buried on the road surface can be effectively and efficiently used for melting snow. As the far-infrared ray element 8 to be mixed into the road surface layer 7, the far-infrared ray element 5 exemplified as one previously mixed into the sheath material layer 4 can be used. In view of economics, graphite-based far-infrared devices, particularly the above-mentioned preferred sintered and pulverized graphite-based particles, can also be suitably used here.

【0016】路面表面部7に混入させる遠赤外線素子8
は、細骨材として砂の代替使用が可能で、その量は、5
〜30%混入させることができる。好ましくは、7〜1
5%である。なお、路盤6の少なくとも上層部分にも、
同様の遠赤外線素子8を混入させることもできる。路盤
6にも遠赤外線素子8を混入させることによって、通電
発熱体から下方に移行する熱の一部が、遠赤外線放射と
なって上方に向かうことが期待できる。
A far-infrared element 8 to be mixed with the road surface 7
Can substitute for sand as fine aggregate, and the amount is 5
Up to 30%. Preferably, 7-1
5%. In addition, at least in the upper layer portion of the roadbed 6,
A similar far-infrared element 8 can be mixed. By mixing the far-infrared ray element 8 into the roadbed 6, it is expected that a part of the heat that moves downward from the energized heating element will travel upward as far-infrared radiation.

【0017】本発明の通電発熱シース線を路盤上に、蛇
行配線し仮止めして、路面表面層を打設する。蛇行配線
し仮止めするには適宜の手段が用いられ得るが、図3に
示すような通電発熱シース線仮止め部材9を図4に示す
ように用いることが好適である。好ましい通電発熱シー
ス線仮止め部材9は、塩化ビニル、ポリスチレン、ポリ
プロピレン、ポリエチレン、ABS等の熱可塑性樹脂シ
ートに、通電発熱シース線1を仮止めするに足る間隔を
残して凹部10(図3では、逆向きに示しているので、
凸部に見える)を形成したものである。残された間隔部
分が、通電発熱シース線1の係止溝11となる。凹部1
0の長さは、蛇行配線する場合の通電発熱シース線1
(図2中の切り欠き表示部参照)の平行配線部分の間隔
とする。凹部10の幅は適宜とする。凹部10の深さを
通電発熱シース線1の太さ程度とすれば、通電発熱シー
ス線1は路盤6に接する位置に配線することができ、凹
部10の深さを調節することにより、路面表面層7中に
埋め込まれる路盤6からの高さが調節される。
The energized heat-generating sheath wire of the present invention is meandered and temporarily fixed on a roadbed to form a road surface layer. Appropriate means may be used for the meandering wiring and temporary fixing, but it is preferable to use a current-carrying sheath wire temporary fixing member 9 as shown in FIG. 4 as shown in FIG. Preferably, the electrically conductive heating sheath wire temporary fixing member 9 is formed in a concave portion 10 (FIG. 3 in FIG. 3) on a thermoplastic resin sheet of vinyl chloride, polystyrene, polypropylene, polyethylene, ABS, or the like, leaving a sufficient space for temporarily fixing the electrically conductive heating sheath wire 1. , Because it is shown in the opposite direction,
(Which looks like a convex part). The remaining space becomes the locking groove 11 of the energized heating sheath wire 1. Recess 1
The length of 0 is the heating and heating sheath wire 1 for meandering wiring.
(Refer to the cutout display section in FIG. 2). The width of the recess 10 is appropriate. If the depth of the recess 10 is about the thickness of the energized heating sheath wire 1, the energized heating sheath wire 1 can be wired at a position in contact with the roadbed 6, and by adjusting the depth of the recess 10, the surface of the road surface can be adjusted. The height from the roadbed 6 embedded in the layer 7 is adjusted.

【0018】通電発熱シース線仮止め部材9には、強度
を必要とした場合、フランジ部12を設けることが好ま
しい。なお、フランジ部12と係止溝11とは、直接隣
接しても良いし、凹部10の壁と同一の平面を介して離
隔して設けられても良い(図3では、後者の場合が示さ
れている)。通電発熱シース線仮止め部材9の凹部10
間に形成した係止溝11に通電発熱シース線1を挟むこ
とにより通電発熱シース線1の配線態様を容易に決める
ことができ、凹部10の底に釘等を用いて通電発熱シー
ス線仮止め部材9を路盤6に固定することにより、通電
発熱シース線1の蛇行配線の仮止めが極めて簡易になし
得る。
When the strength is required, it is preferable to provide a flange portion 12 for the electrically-heated sheath wire temporary fixing member 9. The flange portion 12 and the locking groove 11 may be directly adjacent to each other, or may be provided separately from each other via the same plane as the wall of the concave portion 10 (the latter case is shown in FIG. 3). Has been). Concave portion 10 of electrically heated sheath wire temporary fixing member 9
By sandwiching the energized heating sheath wire 1 in the locking groove 11 formed therebetween, the wiring mode of the energized heating sheath wire 1 can be easily determined, and the energized heating sheath wire is temporarily fixed using a nail or the like at the bottom of the concave portion 10. By fixing the member 9 to the roadbed 6, temporary fixing of the meandering wiring of the energized heating sheath wire 1 can be performed extremely easily.

【0019】通電発熱シース線仮止め部材9として熱可
塑性樹脂シート、特に塩化ビニルシートを用いることに
より、例えば路面表面層7にアスファルト材を用いる場
合には、アスファルト材を固着するための加熱によって
熱可塑性樹脂シートは軟化し形状崩壊することにより、
アスファルト中で連続性を阻害するような異物として振
る舞うことがなくなる。通電発熱シース線1を蛇行配線
して敷設する場合、通電発熱シース線1の平行度、間隔
等を調節するために、通電発熱シース線仮止め部材9と
ともに、熱可塑性樹脂シートの細幅テープと粘着テープ
で通電発熱シース線1を貼り合わせて、図4に示すよう
に、通電発熱シース線仮止めテープ部材13として用い
ることもできる。通電発熱シース線仮止めテープ部材1
3も、通電発熱シース線仮止め部材9と同様に、アスフ
ァルト材を固着するための加熱によって溶けて、アスフ
ァルトと混合分散するものであることが好ましい。
By using a thermoplastic resin sheet, in particular, a vinyl chloride sheet, as the electric heating sheath wire temporary fixing member 9, for example, when asphalt material is used for the road surface layer 7, heat is applied by heating for fixing the asphalt material. The plastic resin sheet softens and collapses in shape,
It does not behave as a foreign substance in the asphalt that would impair continuity. When the energized heating sheath wire 1 is laid in a meandering wiring, in order to adjust the parallelism, spacing, etc. of the energized heating sheath wire 1, together with the energized heating sheath wire temporary fixing member 9, a narrow tape of a thermoplastic resin sheet is used. As shown in FIG. 4, the energized heating sheath wire 1 can be used as a temporary fixing tape member 13 as shown in FIG. Electric heating sheath wire temporary fixing tape member 1
Like the electrically-heated sheath wire temporary fixing member 3, it is also preferable that the material 3 be melted by heating for fixing the asphalt material and mixed and dispersed with the asphalt.

【0020】蛇行配線させるための仮止め部材の他の実
施の態様として、図5に示すような通電発熱シース線仮
止め部材14も好適に用いられる。通電発熱シース線仮
止め部材14は、長尺の平板部15に、適宜の間隔をも
って凹溝部15を形成したものである。凹溝部に通電発
熱シース線1を嵌め合わせる。適宜の平板部箇所に釘等
を用いて通電発熱シース線仮止め部材14を路盤6に固
定することにより、通電発熱シース線1の蛇行配線の仮
止めが極めて簡易になし得ることは、通電発熱シース線
仮止め部材9の場合と同様である。長尺平板状の通電発
熱シース線仮止め部材14を用いることによって、図6
に示すように、通電発熱シース線1を間隔を設けて蛇行
配線した状態で、巻き取ることが可能となるので、蛇行
配線を工場等の施工現場と離れた場所で施工し、施工現
場に容易に運搬することができ、施工現場での敷設をさ
らに効率化することができる。
As another embodiment of the temporary fixing member for the meandering wiring, an electric heating sheath wire temporary fixing member 14 as shown in FIG. 5 is preferably used. The energized heating sheath wire temporary fixing member 14 is formed by forming a concave groove portion 15 at an appropriate interval on a long flat plate portion 15. The electric heating sheath wire 1 is fitted into the concave groove. The temporary fixing of the meandering wiring of the current-carrying sheath wire 1 can be extremely easily performed by fixing the current-carrying sheath wire temporary fixing member 14 to the roadbed 6 using a nail or the like at an appropriate flat portion. This is the same as the case of the sheath wire temporary fixing member 9. By using a long flat plate-shaped current-carrying sheath wire temporary fixing member 14, FIG.
As shown in the figure, winding can be performed in a state in which the energized heat-generating sheath wires 1 are arranged in a meandering manner at intervals, so that the meandering wiring can be constructed in a place apart from the construction site such as a factory, and can be easily installed in the construction site. And laying at the construction site can be made more efficient.

【0021】[0021]

【実施例・比較例】以下に、本発明の実施例、比較例を
示すが、これらは本発明を制限するものではない。 [実施例1]通電発熱シース線用の抵抗線として、直径
0.32mmの銅ニッケル合金(ニッケル約50%)線
7本での撚り線(見掛け外径0.96mm)を用意す
る。絶縁層用の樹脂として、ポリエチレンを用意する。
シース材層用素材として、重合度1300の塩化ビニル
樹脂に、グラファイト系遠赤外線素子粉末(固定炭素9
9.00以上、灰分0.1%以下、真比重1.7g/c
3、粒径150μm以下(内、45μm以下58.8
%)であって、1750Vの電圧を掛けながら600℃
で処理し粉砕したもの)85%、セラミックス系遠赤外
線素子[アルミナ65%、シリカ35%の焼結粉砕した
粉粒体で、粒径5.27μm以下(内、最大分布粒径
1.69μm(23.4%))]15%の割合で混合し
た混合遠赤外線素子粉粒体を20%混入させた組成物
を、2軸押出機で造粒した。
Examples and Comparative Examples Examples and comparative examples of the present invention are shown below, but these are not intended to limit the present invention. [Example 1] A stranded wire (apparent outer diameter 0.96 mm) of seven copper nickel alloy (about 50% nickel) wires having a diameter of 0.32 mm is prepared as a resistance wire for a current-carrying sheath wire. Polyethylene is prepared as a resin for the insulating layer.
As a sheath material layer material, a graphite-based far-infrared device powder (fixed carbon 9
9.00 or more, ash content 0.1% or less, true specific gravity 1.7 g / c
m 3 , particle size 150 μm or less (including 58.8 μm or less 58.8)
%) And 600 ° C. while applying a voltage of 1750V.
85% ceramics far-infrared device [65% alumina and 35% silica particles are sintered and pulverized and have a particle size of 5.27 μm or less (including a maximum distribution particle size of 1.69 μm). 23.4%))]] A composition containing 20% of the mixed far-infrared ray element powder mixed at a ratio of 15% was granulated by a twin-screw extruder.

【0022】通電発熱用芯線を中心とし、その周囲をポ
リエチレンで絶縁層見掛け肉厚0.8mm(外径2.5
mm)で押出被覆を行い、その後電子架橋を行った。更
に、この架橋済み通電発熱用芯線の最外層に複合遠赤外
線素子入り塩化ビニル製シース材層肉厚2mm(外径
6.5mm)となるように押出被覆を行い、通電発熱シ
ース線を製造した。塩化ビニルシート(0.50mm
厚)に、凹部間に形成した係止溝中心線間隔50mm、
係止溝幅約6.4mmとなるように、幅約17mmで深
さ約15mmの凹部を一列に連続して成形した通電発熱
シース線仮止め部材を用意した。
An insulating layer having an apparent thickness of 0.8 mm (outer diameter of 2.5
mm), followed by electronic crosslinking. Further, the outermost layer of the crosslinked electric heating core wire was extruded and coated so as to have a composite far infrared ray element-containing vinyl chloride sheath material layer having a thickness of 2 mm (outer diameter 6.5 mm), thereby producing an electric heating sheath wire. . PVC sheet (0.50mm
Thickness), the center line spacing of the locking grooves formed between the concave portions is 50 mm,
A current-carrying sheath wire temporary fixing member was prepared by continuously forming a recess having a width of about 17 mm and a depth of about 15 mm in a row so as to have a locking groove width of about 6.4 mm.

【0023】厚さ80mmの加熱アスファルト安定処理
した路盤上に、前記通電発熱シース線仮止め部材2個1
組を用いて、実施例1で製造した通電発熱シース線を道
路車線幅に蛇行配線し、通電発熱シース線仮止め部材の
適宜の凹部に釘で固定した。通電発熱シース線は、路盤
から約5mm浮き上がった位置に配置された。アスファ
ルトに混入する細骨材としての砂の10%を実施例1で
使用したのと同じグラファイト系遠赤外線素子で代替し
て、前記釘で固定した通電発熱シース線仮止め部材の上
から高機能アスファルト舗装を施した。高機能アスファ
ルト舗装の厚みは、路盤上90mmとした。高機能アス
ファルト舗装の内部を調べたところ、通電発熱シース線
は仮止め配置した位置にきちんと止まっており、通電発
熱シース線仮止め部材は軟化崩壊して原形を留めておら
ず、その周辺のアスファルト舗装の性能に、他の部分と
比較して、格別の相違は見られなかった。
On the roadbed stabilized with heated asphalt having a thickness of 80 mm, the two temporary fixing members for the current-carrying sheath wire are placed.
Using the set, the energized heating sheath wire manufactured in Example 1 was meandered to the width of the road lane, and was fixed to an appropriate recess of the energized heating sheath wire temporary fixing member with a nail. The energized heating sheath wire was disposed at a position of approximately 5 mm above the roadbed. 10% of the sand as fine aggregate mixed in the asphalt was replaced with the same graphite-based far-infrared ray element as used in Example 1, and a high performance was obtained from above the temporary fixing member of the current-carrying sheath wire fixed with the nail. Asphalt pavement. The thickness of the high-performance asphalt pavement was 90 mm on the roadbed. When examining the inside of the high-performance asphalt pavement, the energized heating sheath wire was properly stopped at the position where it was temporarily fixed, and the energized heating sheath wire temporary fixing member softened and collapsed and did not retain its original shape. No significant differences were found in the performance of the pavement compared to the other parts.

【0024】[実施例2]実施例1における、通電発熱
シース線用の抵抗線として、直径0.5mm線(撚り線
の見掛け外径1.5mmとなる)、シース材層肉厚2.
2mm(通電発熱シース線の外径7.5mm)、通電発
熱シース線仮止め部材として、塩化ビニールシート
(0.5mm厚・幅30mm)に、凹溝部の中心線間隔
50mmの凹溝を形成した図5に示す形態のものを使用
した外は、実施例1と同様にして、通電発熱シース線を
備えた融雪路面構造を形成した。高機能アスファルト舗
装の内部を調べた結果は、実施例1と同様であった。
[Example 2] In Example 1, a 0.5 mm diameter wire (having an apparent outer diameter of a stranded wire of 1.5 mm) and a sheath material layer thickness of 2 mm were used as the resistance wire for the current-carrying sheath wire.
A groove having a center line spacing of 50 mm was formed in a vinyl chloride sheet (0.5 mm thick, 30 mm width) as a temporary fixing member of 2 mm (outer diameter of the current-carrying sheath wire) and a current-carrying sheath wire. Except for using the one shown in FIG. 5, a snow melting road surface structure provided with an energized heating sheath wire was formed in the same manner as in Example 1. The result of examining the inside of the high-performance asphalt pavement was the same as in Example 1.

【0025】[比較例1〜4]比較例として、以下のも
のを準備した。 比較例1=遠赤外線素子を用いずシース材層厚さを1.
2mmとした外は実施例1と同様にして製造した通電発
熱線を用いて実施例2と同様に敷設した例。 比較例2=面状発熱体を用いて、路面表面層10cmを
遠赤外線素子入り高機能アスファルトで敷設した例。 比較例3=他社通電発熱シース線を用いて、路面表面層
7cm(表層部4cmは遠赤外線素子入り高機能アスフ
ァルト使用)を敷設した例。 比較例4=発熱体を使用せずに、路面表面層9cmを高
機能アスファルトで敷設した例。 実施例1〜2、比較例1〜4で得られた融雪路面構造に
つき、外気温2℃、積雪量2cm/hの条件で、通電融
雪比較試験を行った。実験結果を表2に示す。なお、表
2中、「素子」は「遠赤外線素子」を意味する。
Comparative Examples 1 to 4 The following were prepared as comparative examples. Comparative Example 1 = Thickness of sheath material layer without using far-infrared ray element
An example of laying out in the same manner as in the second embodiment using a current-carrying heating wire manufactured in the same manner as in the first embodiment except that the width is set to 2 mm. Comparative Example 2 = An example in which a road surface layer of 10 cm was laid with high-performance asphalt containing a far-infrared ray element using a planar heating element. Comparative Example 3 = An example in which a road surface layer of 7 cm (high-functional asphalt containing a far-infrared ray element is used for a surface layer of 4 cm) was laid using another company's current-carrying sheath wire. Comparative Example 4 = An example in which a 9 cm road surface layer was laid with high-performance asphalt without using a heating element. With respect to the snowmelt road surface structures obtained in Examples 1 and 2 and Comparative Examples 1 to 4, an electric current melting test was carried out under the conditions of an external temperature of 2 ° C. and an amount of snow of 2 cm / h. Table 2 shows the experimental results. In Table 2, “element” means “far-infrared ray element”.

【0026】[0026]

【表2】 [Table 2]

【0027】表2に示す試験結果と記載を省略した一連
の試験結果から、以下のことがいえる。 1.遠赤外線素子を通電発熱シース線と路面表面層に混
入した実施例1、2の融雪効果が顕著である。 2.遠赤外線素子を路面表面層に混入するだけでも、大
きな融雪効果が見られた。 3.シース線仮止め部材を使用した施工は、シース線の
ズレ防止が図られ、施工も容易であった。 4.本発明の通電発熱シース線を用いた融雪路面構造体
の設計基準は、1時間当たり平均降雪量〜2cm・最低
気温平均値−3℃で130W/m2、2.5mm・−5
℃で150W/m2、3cm・−7℃で170W/m2
3〜cm・−10℃で200W/m2、が実現できる。
因みに、比較例3に用いた他社線状発熱体シース品の設
計基準は、カタログによれば、〜2cm・−6℃で20
0W/m2、2.5cm・−10℃で250W/m2、3
cm・−15℃で300W/m2となっている。
From the test results shown in Table 2 and a series of test results whose description is omitted, the following can be said. 1. The snow melting effect of Examples 1 and 2 in which the far-infrared ray element was mixed into the energized heating sheath wire and the road surface layer was remarkable. 2. Even when the far-infrared ray element was simply mixed into the road surface layer, a large snow melting effect was observed. 3. The construction using the sheath wire temporary fixing member prevented displacement of the sheath wire and was easy to perform. 4. The design criteria for the snowmelt road surface structure using the current-carrying heat-generating sheath wire of the present invention are as follows: average snowfall per hour to 2 cm, minimum temperature average value -3 ° C, 130 W / m 2 , 2.5 mm · -5
℃ with 150W / m 2, 170W / m 2 in 3cm · -7 ℃,
200 W / m 2 at 3 to cm · −10 ° C. can be realized.
By the way, according to the catalog, the design standard of the linear heating element sheath product of the other company used in Comparative Example 3 is 20 cm at cm2 cm · −6 ° C.
0W / m 2, 250W / m 2, 3 in the 2.5cm · -10 ℃
It is 300 W / m 2 at cm · −15 ° C.

【0028】[0028]

【発明の効果】本発明の通電発熱シース線を用いること
によって、路面の融雪において通電発熱体としての効率
を大幅に向上させ、消費電力の低減を図ることができ
る。また、通電発熱シース線仮止め部材を用いて、迅速
・容易に融雪路面構造を形成することができる。
By using the current-carrying sheath wire of the present invention, the efficiency of the current-carrying heating element in snow melting on the road surface can be greatly improved, and power consumption can be reduced. Further, the snow melting road surface structure can be formed quickly and easily by using the energized heating sheath wire temporary fixing member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の通電発熱シース線の1実施の形態の
各層のそれぞれ一部を順次剥離した説明斜視図である。
FIG. 1 is an explanatory perspective view of one embodiment of an energized heating sheath wire of the present invention, in which a part of each layer is sequentially peeled off.

【図2】 本発明の融雪路面構造の一実施の形態を示
す、部分的に断面を含む説明図である。
FIG. 2 is an explanatory view showing a snow melting road surface structure according to an embodiment of the present invention, partially including a cross section.

【図3】 本発明の融雪路面構造形成工法に用いる通電
発熱シース線仮止め部材の1例を、使用状態と逆向きに
して示す説明図である。
FIG. 3 is an explanatory view showing one example of a current-carrying sheath wire temporary fixing member used in the snow melting road surface structure forming method of the present invention in a direction opposite to a used state.

【図4】 通電発熱シース線仮止め部材に通電発熱シー
ス線を仮止めして路盤にセッティングした状態を示す説
明図である。
FIG. 4 is an explanatory diagram showing a state in which an energized heating sheath wire is temporarily fixed to an energized heating sheath wire temporary fixing member and set on a roadbed.

【図5】 本発明の通電発熱シース線仮止め部材の他の
実施の形態を示す説明図である。
FIG. 5 is an explanatory view showing another embodiment of a temporary fixing member for an energized heating sheath wire of the present invention.

【図6】 図5に示す通電発熱シース線仮止め部材を用
いる場合の施工態様を示す説明図である。
FIG. 6 is an explanatory view showing a construction mode in a case where the energized heating sheath wire temporary fixing member shown in FIG. 5 is used.

【符号の説明】[Explanation of symbols]

1:通電発熱シース線 2:通電発熱用芯線 3:絶縁層 4:シース材層 5:遠赤外線素子 6:路盤 7:路面表面層 8:遠赤外線素子 9:通電発熱シース線仮止め部材 10:凹部 11:係止溝 12:フランジ部 13:通電発熱シース線仮止めテープ部材 14:通電発熱シース線仮止め部材 15:平板部 16:凹溝部 1: energized heating sheath wire 2: energized heating core wire 3: insulating layer 4: sheath material layer 5: far-infrared ray element 6: roadbed 7: road surface layer 8: far-infrared ray element 9: energized heating sheath wire temporary fixing member 10: Concave portion 11: Locking groove 12: Flange portion 13: Temporary fixing member for energized heating sheath wire 14: Temporary fixing member for energized heating sheath line 15: Flat plate portion 16: Depressed groove portion

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 通電発熱用芯線と、該通電発熱用芯線を
被覆する架橋ポリエチレン製の絶縁層と、該絶縁層を被
覆する遠赤外線素子を含有する塩化ビニル製のシース材
層とからなることを特徴とする通電発熱シース線。
An electric heating and heating core wire, a cross-linked polyethylene insulating layer covering the electric heating and heating core wire, and a vinyl chloride sheath material layer containing a far-infrared ray element covering the insulating layer. A current-carrying sheath wire.
【請求項2】 前記遠赤外線素子が、グラファイト系遠
赤外線素子70〜95%とセラミックス系遠赤外線素子
5〜30%との混合物である請求項1に記載の通電発熱
シース線。
2. The current-carrying sheath wire according to claim 1, wherein the far-infrared device is a mixture of 70 to 95% of a graphite-based far-infrared device and 5 to 30% of a ceramic-based far-infrared device.
【請求項3】 路盤上に路面表面層を敷設した路面構造
であって、該路面表面層には遠赤外線素子が混入されて
おり、該路盤と該路面表面層との境界または該路面表面
層の下部に請求項1または請求項2に記載の通電発熱シ
ース線が敷設されていることを特徴とする融雪路面構
造。
3. A road surface structure in which a road surface layer is laid on a roadbed, wherein a far-infrared ray element is mixed in the road surface layer, and a boundary between the roadbed and the road surface layer or the road surface layer. A snow melting road surface structure, characterized in that the energized heat-generating sheath wire according to claim 1 or 2 is laid at a lower portion of the road.
【請求項4】 熱可塑性樹脂シートに所定の間隔をもっ
て通電発熱シース線を仮止めすることができる凹凸が形
成された通電発熱シース線仮止め部材を路盤に固定し、
この上に路面表面層を打設して請求項3の融雪路面構造
を形成することを特徴とする融雪路面構造形成工法。
4. An electric heating sheath wire temporary fixing member formed with irregularities capable of temporarily fixing an electric heating sheath wire at a predetermined interval on a thermoplastic resin sheet is fixed to a roadbed,
4. A method for forming a snow-melt road surface structure according to claim 3, wherein a road surface layer is formed thereon.
JP2001265620A 2000-12-13 2001-09-03 Current-carrying heating sheath wire, structure for melting snow on road surface, and construction method for forming structure of melting snow on road surface Pending JP2002246158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265620A JP2002246158A (en) 2000-12-13 2001-09-03 Current-carrying heating sheath wire, structure for melting snow on road surface, and construction method for forming structure of melting snow on road surface

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000379422 2000-12-13
JP2000-379422 2000-12-13
JP2001265620A JP2002246158A (en) 2000-12-13 2001-09-03 Current-carrying heating sheath wire, structure for melting snow on road surface, and construction method for forming structure of melting snow on road surface

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003020376A Division JP2003278107A (en) 2000-12-13 2003-01-29 Energization heating sheath line for laying on snow melting road surface

Publications (1)

Publication Number Publication Date
JP2002246158A true JP2002246158A (en) 2002-08-30

Family

ID=26605785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265620A Pending JP2002246158A (en) 2000-12-13 2001-09-03 Current-carrying heating sheath wire, structure for melting snow on road surface, and construction method for forming structure of melting snow on road surface

Country Status (1)

Country Link
JP (1) JP2002246158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219222A (en) * 2015-05-19 2016-12-22 株式会社都ローラー工業 Linear heater and planar heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219222A (en) * 2015-05-19 2016-12-22 株式会社都ローラー工業 Linear heater and planar heater

Similar Documents

Publication Publication Date Title
EP1325665B1 (en) Carbon fiber-embedded heating paper and sheet heater comprising such a heating paper
US6054692A (en) Heating device, heat storing type heat generating body and protective sheet for the heating device
US7060950B1 (en) Heating element, a thawing mat and a hot mat comprising the heating element
KR102183076B1 (en) Road pavement method using carbon nanotube planar heating element
US6971819B2 (en) Electrically conductive pavement mixture
CA2097205C (en) Snow melting device
JP2002246158A (en) Current-carrying heating sheath wire, structure for melting snow on road surface, and construction method for forming structure of melting snow on road surface
JP2003278107A (en) Energization heating sheath line for laying on snow melting road surface
TW530112B (en) Process, plant and bitumen-polymer based strip for surface and environmental heating of building structures and infrastructures
JPH0282485A (en) Flat ceramic compound element
KR102186970B1 (en) Base slab construction method using electric heater for heating and heating element manufacturing method using of the same
US20220046764A1 (en) Concrete Heating System
JP3113442B2 (en) Road surface snow melting equipment
JP4129438B2 (en) Buried heating element and asphalt pavement structure
JP3289041B2 (en) Exothermic coarse particles and exothermic structures using the same
KR102606677B1 (en) CNT (Carbon Nano-Tube) material high-efficiency snow melting heating cable
JP6639998B2 (en) Snow melting heater
JP3239123U (en) Snow/ice melting device
KR102563278B1 (en) Conductive Composites Module to Prevent Freezing of Road And Method for Manufacturing the Same
JPH10168433A (en) Snow-thawing antifreeze material and snow-thawing antifreeze coating material, sheet, tile, panel, exterior material, roofing material, road and defroster containing the same
JP2004103402A (en) Ceramic carbon heater and its manufacturing method
JPH0246552B2 (en) JUSETSUKOZOTAIOYOBISONOSEIZOHOHO
JP3044340B2 (en) Road surface heating method
JPH07106057A (en) Heating unit
JPS5915107A (en) Snow melting apparatus utilizing induction heating