JP2002243450A - Angular velocity sensor, acceleration sensor and angular velocity/acceleration sensor - Google Patents
Angular velocity sensor, acceleration sensor and angular velocity/acceleration sensorInfo
- Publication number
- JP2002243450A JP2002243450A JP2001040447A JP2001040447A JP2002243450A JP 2002243450 A JP2002243450 A JP 2002243450A JP 2001040447 A JP2001040447 A JP 2001040447A JP 2001040447 A JP2001040447 A JP 2001040447A JP 2002243450 A JP2002243450 A JP 2002243450A
- Authority
- JP
- Japan
- Prior art keywords
- axis
- angular velocity
- acceleration
- torsion spring
- portions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001133 acceleration Effects 0.000 title claims description 134
- 238000001514 detection method Methods 0.000 claims abstract description 21
- 230000005484 gravity Effects 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 16
- 230000035945 sensitivity Effects 0.000 abstract description 10
- 239000000758 substrate Substances 0.000 description 20
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000005452 bending Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/084—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
Landscapes
- Gyroscopes (AREA)
- Pressure Sensors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、振動子の重り部に
加わった角速度によって発生するコリオリ力を検出して
角速度を求める角速度センサや、振動子の重り部に加わ
った加速度による力を検出して加速度を求める加速度セ
ンサに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an angular velocity sensor for detecting an Coriolis force generated by an angular velocity applied to a weight of a vibrator to obtain an angular velocity, and a force due to acceleration applied to a weight of a vibrator. And an acceleration sensor for obtaining acceleration.
【0002】[0002]
【従来の技術】近年、自動車には安全のためのエアバッ
クや、カーナビゲーションのためのGPS装置を用いる
機会が増えてきている。エアバッグを作動させるために
は事故時の衝撃を測定できる加速度センサが必要であ
り、またGPS装置にはジャイロなどの角速度センサが
必要である。これらの加速度センサや角速度センサをよ
り正確に作動させるためには性能を更に向上させ、ま
た、あらゆる車種に搭載できるようにするために、より
安いコストで製造できるようにすることが不可欠であ
る。また、自動車の用途だけでなく、精密電子機器の衝
撃感知用として加速度センサが用いられたり、角速度セ
ンサはビデオカメラの手ぶれ検知や、船舶、ミサイル、
ロボットなどの姿勢制御などにも用いられ、幅広い用途
がある。2. Description of the Related Art In recent years, the use of airbags for safety and GPS devices for car navigation has been increasing in automobiles. In order to operate the airbag, an acceleration sensor capable of measuring an impact at the time of an accident is required, and an angular velocity sensor such as a gyro is required for the GPS device. In order to operate these acceleration sensors and angular velocity sensors more accurately, it is indispensable to further improve the performance and to manufacture them at a lower cost so that they can be mounted on all types of vehicles. Acceleration sensors are used not only for automobiles but also for impact detection of precision electronic equipment.Angle velocity sensors are used to detect camera shake in video cameras, ships, missiles,
It is also used for attitude control of robots, etc., and has a wide range of applications.
【0003】これらの加速度センサや角速度センサは、
マイクロマシン技術を用いたSi(シリコン)基板加工
による技術開発が盛んに行われている。また、これの加
速度センサや角速度センサは、半導体で用いられている
製造設備を流用でき、一括してバッチ処理できるため生
産効率が良くなり低コスト化が可能である。更に、Si
基板を用いているので、センサとIC回路とを同じSi
基板上に作り込むことができるというメリットもある。
これらの研究は、例えば、精密工学会誌Vol.62.
No.1.1996の「マイクロマシニングの現状と新
たな潮流」(江刺正喜著)などに掲載されている。[0003] These acceleration sensors and angular velocity sensors are:
2. Description of the Related Art Technology development by processing a Si (silicon) substrate using a micromachine technology is actively performed. Further, these acceleration sensors and angular velocity sensors can use the manufacturing equipment used for semiconductors and can perform batch processing collectively, thereby improving production efficiency and reducing costs. Further, Si
Since the substrate is used, the sensor and the IC circuit
There is also an advantage that it can be formed on a substrate.
These studies are described, for example, in Journal of Precision Engineering Vol. 62.
No. 1.1996, “Current Status of Micromachining and New Trends” (authored by Masayoshi Esashi).
【0004】ここで、マイクロマシン技術で作製された
加速度センサの従来例として、「センサ・マイクロマシ
ンと応用システムシンポジウム」(平成12年5月;電
気学会)の報告例を図11及び図12(A),(B)に
示す。Here, as a conventional example of an acceleration sensor manufactured by the micromachine technology, a report example of “Sensor / Micromachine and Application System Symposium” (May 2000; IEEJ) is shown in FIGS. 11 and 12 (A). , (B).
【0005】図11は従来の加速度センサを分解して示
した分解斜視図、図12は従来の加速度センサの動作を
説明するための図であり、(A)はX軸方向(Y軸方
向)の動作を示し、(B)はZ軸方向の動作を示した図
である。FIG. 11 is an exploded perspective view showing a conventional acceleration sensor in an exploded manner, and FIG. 12 is a view for explaining the operation of the conventional acceleration sensor. FIG. 11A shows an X-axis direction (Y-axis direction). (B) is a diagram showing the operation in the Z-axis direction.
【0006】図11に示した従来の加速度センサ100
は、東北大 江刺正喜氏らにより開発されたものであ
り、この加速度センサ100は、下部ガラス101と、
中央部位に形成した重り部102aをX字状のSiビー
ム梁102bで懸架したSiO基板102と、上部ガラ
ス103とを下方から順に3層に積層したものである。A conventional acceleration sensor 100 shown in FIG.
Has been developed by Masayoshi Tohoku Osashi et al. The acceleration sensor 100 has a lower glass 101,
An SiO substrate 102 in which a weight portion 102a formed in a central portion is suspended by an X-shaped Si beam beam 102b, and an upper glass 103 are laminated in three layers from the bottom in this order.
【0007】ここで、下部ガラス101には、X,Y,
Z軸方向の加速度検出用として6つのAl電極101a
と、フィールドスルー電極101bとが膜付けされてい
る。また、SiO基板102内の中央部位には、重り部
102aがX字状のSiビーム梁102bによって揺動
自在に懸架されている。この際、X字状のSiビーム梁
102bは変位可能に周囲をくりぬかれており、このX
字状のSiビーム梁102bの近傍にSi電極102c
が膜付けされている。また、上部ガラス103は内部を
封止するためのものである。Here, X, Y,
Six Al electrodes 101a for detecting acceleration in the Z-axis direction
And a field through electrode 101b. A weight portion 102a is swingably suspended by a X-shaped Si beam beam 102b at a central portion in the SiO substrate 102. At this time, the X-shaped Si beam beam 102b is hollowed out so as to be displaceable.
The Si electrode 102c is located near the V-shaped Si beam beam 102b.
Is filmed. The upper glass 103 is for sealing the inside.
【0008】そして、従来の加速度センサ100は、外
部からの振動などによりSiO基板102内の重り部1
02aに加速度が加わった時に、電極間容量(=Al電
極101aとSi電極102cとの間の容量)が変化
し、そこで生じる容量差から加速度を求めており、X軸
方向(Y軸方向)に対しては図12(A)に示したよう
に重り部102aがX字状のSiビーム梁102bを介
してFx方向(又はFy方向)に変位し、Z軸方向に対
しては図12(B)に示したように重り部102aがS
iビーム梁102bを介してFz方向に変位するので、
3軸加速度センサとして機能している。The conventional acceleration sensor 100 is configured such that the weight portion 1 in the SiO substrate 102 is
When an acceleration is applied to 02a, the interelectrode capacitance (= capacity between the Al electrode 101a and the Si electrode 102c) changes, and the acceleration is obtained from the capacitance difference generated there. On the other hand, as shown in FIG. 12A, the weight portion 102a is displaced in the Fx direction (or the Fy direction) via the X-shaped Si beam beam 102b, and in FIG. As shown in FIG.
Since it is displaced in the Fz direction via the i-beam 102b,
It functions as a three-axis acceleration sensor.
【0009】[0009]
【発明が解決しようとする課題】ところで、上記した従
来の加速度センサ100は、マイクロマシン技術により
SiO基板102が作製されているので小型化が可能な
ものの、外力による重り部102aの変位量は小さく、
感度を上げるのが難しい。このため、加速度検出手段と
しては靜電容量変化を用いる必要があり、下部ガラス1
01とSiO基板102とにそれぞれ別々に電極を膜付
けしなければならず、更に、封止用の上部ガラス103
も積層しなければならないため、加速度センサ100の
構造形態が複雑で、加速度センサ100の製作工数も大
巾にかかってしまうなどの問題点がある。The conventional acceleration sensor 100 described above can be miniaturized because the SiO substrate 102 is manufactured by the micromachine technology, but the displacement of the weight portion 102a due to external force is small.
Difficult to increase sensitivity. For this reason, it is necessary to use the capacitance change as the acceleration detecting means.
01 and the SiO substrate 102 must be separately provided with electrodes, and furthermore, an upper glass 103 for sealing is further provided.
Therefore, there is a problem that the structure of the acceleration sensor 100 is complicated, and the man-hours required for manufacturing the acceleration sensor 100 are large.
【0010】また、従来の加速度センサ100は、加速
度検出のみであり、仮に、角速度も検出できる構造形態
にすると、構造がより複雑になってしまう。Further, the conventional acceleration sensor 100 is only for acceleration detection, and if it is configured to detect angular velocity, the structure becomes more complicated.
【0011】そこで、比較的簡単な構造形態により、低
コストで且つ高感度に角速度の検出が可能な2軸の角速
度センサを、また同様、低コストで且つ高感度に加速度
の検出が可能な3軸の加速度センサが望まれている。更
に、低コストで且つ高感度に角速度の検出と加速度の検
出とを兼用できる角速度/加速度兼用センサも望まれて
いる。Therefore, a two-axis angular velocity sensor capable of detecting angular velocity at low cost and high sensitivity by a relatively simple structure is provided. Similarly, a three-axis angular velocity sensor capable of detecting acceleration at low cost and high sensitivity is provided. There is a need for an axial acceleration sensor. Further, there is a demand for an angular velocity / acceleration sensor that can detect angular velocity and acceleration at low cost and with high sensitivity.
【0012】[0012]
【課題を解決するための手段】本発明は上記課題に鑑み
てなされたものであり、第1の発明は、基台となる固定
部材と、前記固定部材内の中心部位に3次元直交座標空
間のXYZ軸を仮に設定し、重心が3軸の交差点を通る
Z軸上に略位置するように重り部を設け、この重り部の
上方部位から互いに対向して2対で合計4本の捩りバネ
部をX軸とY軸とに対して略対称で且つX軸と略平行に
外側に向かってそれぞれ延出し、且つ、前記4本の捩り
バネ部の延出した各先端部位から合計で4本のアーム部
をY軸とX軸とに対して略対称で且つY軸と略平行に外
側に向かってそれぞれ延出し、更に、前記4本のアーム
部の延出した各先端部位を前記固定部材の互いに対向す
る側面にそれぞれ固定した振動子と、略一定周期の電圧
を印加して前記重り部を前記4本の捩りバネ部及び前記
4本のアーム部を介して振動させるために、前記4本の
アーム部にそれぞれ一体的に設けた4個の振動発生部材
と、角速度が加わった時に前記重り部に加わるコリオリ
力を検出して角速度を求めるために、前記4本の捩じり
バネ部にそれぞれ一体的に設けた4個の振動検出部材と
を備え、角速度検出時に前記4個の振動発生部材を駆動
させて、前記4個の振動検出部材の各出力を組み合わせ
て加減算することで、X軸方向及びY軸方向の角速度を
検出することを特徴とする角速度センサである。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and a first invention is directed to a fixing member serving as a base, and a three-dimensional orthogonal coordinate space provided at a central portion in the fixing member. XYZ axes are temporarily set, and a weight portion is provided so that the center of gravity is substantially located on the Z axis passing through the intersection of the three axes, and a total of four torsion springs of two pairs opposing each other from above the weight portion. Extending outwardly substantially symmetrically with respect to the X-axis and the Y-axis and substantially parallel to the X-axis, and a total of four from each of the four distal end portions of the four torsion spring portions. Of the four arm portions extend outward substantially in parallel to the Y axis substantially symmetrically with respect to the Y axis and the X axis, and further, each extended end portion of the four arm portions is fixed to the fixing member. Vibrators fixed to the opposing side surfaces of the When the angular velocity is applied to the four torsional spring portions and the four arm portions, the four vibrating members provided integrally with the four arm portions are used to vibrate the portion through the four torsion spring portions and the four arm portions. In order to detect the Coriolis force applied to the weight portion and obtain the angular velocity, the four torsion spring portions are provided with four vibration detection members integrally provided, respectively, and when the angular velocity is detected, the four vibration detection members are provided. The angular velocity sensor is characterized in that the vibration generating member is driven, and the outputs of the four vibration detecting members are combined to perform addition and subtraction, thereby detecting the angular velocities in the X-axis direction and the Y-axis direction.
【0013】また、第2の発明は、基台となる固定部材
と、前記固定部材内の中心部位に3次元直交座標空間の
XYZ軸を仮に設定し、重心が3軸の交差点を通るZ軸
上に略位置するように重り部を設け、この重り部の上方
部位から互いに対向して2対で合計4本の捩りバネ部を
X軸とY軸とに対して略対称で且つX軸と略平行に外側
に向かってそれぞれ延出し、且つ、前記4本の捩りバネ
部の延出した各先端部位から合計で4本のアーム部をY
軸とX軸とに対して略対称で且つY軸と略平行に外側に
向かってそれぞれ延出し、更に、前記4本のアーム部の
延出した各先端部位を前記固定部材の互いに対向する側
面にそれぞれ固定した振動子と、加速度が加わった時に
前記重り部に加わる力を検出して加速度を求めるため
に、前記4本の捩じりバネ部にそれぞれ一体的に設けた
4個の振動検出部材とを備え、前記4個の振動検出部材
の各出力を組み合わせて加減算することで、X軸方向及
びY軸方向並びにZ軸方向の加速度を検出することを特
徴とする加速度センサである。According to a second aspect of the present invention, a fixed member serving as a base and an XYZ axis of a three-dimensional orthogonal coordinate space are temporarily set at a central portion in the fixed member, and a Z-axis whose center of gravity passes through an intersection of the three axes. A weight portion is provided so as to be located substantially above, and a total of four torsion spring portions in two pairs facing each other from above the weight portion are substantially symmetric with respect to the X axis and the Y axis, and A total of four arms are extended from the respective distal end portions of the four torsion springs extending substantially parallel outward.
And extending outwardly in a direction substantially parallel to the axis and the X-axis and substantially parallel to the Y-axis. And four vibration detectors provided integrally with the four torsion springs to detect the force applied to the weight when acceleration is applied and to obtain the acceleration. And an acceleration sensor for detecting the acceleration in the X-axis direction, the Y-axis direction, and the Z-axis direction by combining and adding and subtracting the outputs of the four vibration detection members.
【0014】また、第3の発明は、基台となる固定部材
と、前記固定部材内の中心部位に3次元直交座標空間の
XYZ軸を仮に設定し、重心が3軸の交差点を通るZ軸
上に略位置するように重り部を設け、この重り部の上方
部位から互いに対向して2対で合計4本の捩りバネ部を
X軸とY軸とに対して略対称で且つX軸と略平行に外側
に向かってそれぞれ延出し、且つ、前記4本の捩りバネ
部の延出した各先端部位から合計で4本のアーム部をY
軸とX軸とに対して略対称で且つY軸と略平行に外側に
向かってそれぞれ延出し、更に、前記4本のアーム部の
延出した各先端部位を前記固定部材の互いに対向する側
面にそれぞれ固定した振動子と、略一定周期の電圧を印
加して前記重り部を前記4本の捩りバネ部及び前記4本
のアーム部を介して振動させるために、前記4本のアー
ム部にそれぞれ一体的に設けた4個の振動発生部材と、
角速度が加わった時に前記重り部に加わるコリオリ力を
検出して角速度を求める一方、加速度が加わった時に前
記重り部に加わる力を検出して加速度を求めるために、
前記4本の捩じりバネ部にそれぞれ一体的に設けた4個
の振動検出部材と、前記4個の振動検出部材の各出力か
らDC変化分をそれぞれ得るDC変化分生成手段とを備
え、前記4個の振動発生部材を駆動させた状態で角速度
を検出する場合には、前記4個の振動検出部材の各出力
を組み合わせて加減算することで、X軸方向及びY軸方
向の角速度を検出する一方、前記4個の振動発生部材を
駆動させた状態で加速度を検出する場合には、前記DC
変化分生成手段の各出力を組み合わせて加減算すること
で、X軸方向及びY軸方向並びにZ軸方向の加速度を検
出することを特徴とする角速度/加速度兼用センサであ
る。According to a third aspect of the present invention, a fixed member serving as a base and an XYZ axis of a three-dimensional orthogonal coordinate space are temporarily set at a central portion in the fixed member, and a Z-axis whose center of gravity passes through an intersection of the three axes. A weight portion is provided so as to be located substantially above, and a total of four torsion spring portions in two pairs facing each other from above the weight portion are substantially symmetric with respect to the X axis and the Y axis, and A total of four arms are extended from the respective distal end portions of the four torsion springs extending substantially parallel outward.
And extending outwardly in a direction substantially parallel to the axis and the X-axis and substantially parallel to the Y-axis. In order to vibrate the weight portion via the four torsion spring portions and the four arm portions by applying a voltage having a substantially constant period to the vibrators respectively fixed to the four arm portions, Four vibration generating members provided integrally with each other,
To determine the angular velocity by detecting the Coriolis force applied to the weight when the angular velocity is applied, and to determine the acceleration by detecting the force applied to the weight when the acceleration is applied,
Four vibration detecting members provided integrally with the four torsion spring portions, and DC change generating means for obtaining a DC change from each output of the four vibration detecting members, When detecting the angular velocities in a state where the four vibration generating members are driven, the outputs of the four vibration detecting members are combined and added and subtracted to detect the angular velocities in the X-axis direction and the Y-axis direction. On the other hand, when detecting acceleration while driving the four vibration generating members, the DC
An angular velocity / acceleration sensor characterized by detecting accelerations in the X-axis direction, the Y-axis direction, and the Z-axis direction by combining and subtracting the outputs of the change generation means.
【0015】更に、第4の発明は、基台となる固定部材
と、前記固定部材内の中心部位に3次元直交座標空間の
XYZ軸を仮に設定し、重心が3軸の交差点を通るZ軸
上に略位置するように重り部を設け、この重り部の上方
部位から互いに対向して2対で合計4本の捩りバネ部を
X軸とY軸とに対して略対称で且つX軸と略平行に外側
に向かってそれぞれ延出し、且つ、前記4本の捩りバネ
部の延出した各先端部位から合計で4本のアーム部をY
軸とX軸とに対して略対称で且つY軸と略平行に外側に
向かってそれぞれ延出し、更に、前記4本のアーム部の
延出した各先端部位を前記固定部材の互いに対向する側
面にそれぞれ固定した振動子と、略一定周期の電圧を印
加して前記重り部を前記4本の捩りバネ部及び前記4本
のアーム部を介して振動させるために、前記4本のアー
ム部にそれぞれ一体的に設けた4個の振動発生部材と、
角速度が加わった時に前記重り部に加わるコリオリ力を
検出して角速度を求める一方、加速度が加わった時に前
記重り部に加わる力を検出して加速度を求めるために、
前記4本の捩じりバネ部にそれぞれ一体的に設けた4個
の振動検出部材と、角速度検出時には前記4個の振動発
生部材を駆動させ、加速度検出時には前記4個の振動発
生部材を非駆動とするための切り換え手段とを備え、前
記4個の振動検出部材の各出力を組み合わせて加減算す
ることで、X軸方向及びY軸方向の角速度を検出し、又
は、X軸方向及びY軸方向並びにZ軸方向の加速度を検
出することを特徴とする角速度/加速度兼用センサであ
る。In a fourth aspect of the present invention, a fixed member serving as a base and an XYZ axis of a three-dimensional orthogonal coordinate space are temporarily set at a central portion in the fixed member, and a Z-axis whose center of gravity passes through an intersection of the three axes. A weight portion is provided so as to be located substantially above, and a total of four torsion spring portions in two pairs facing each other from above the weight portion are substantially symmetric with respect to the X axis and the Y axis, and A total of four arms are extended from the respective distal end portions of the four torsion springs extending substantially parallel outward.
And extending outwardly in a direction substantially parallel to the axis and the X-axis and substantially parallel to the Y-axis. In order to vibrate the weight portion via the four torsion spring portions and the four arm portions by applying a voltage having a substantially constant period to the vibrators respectively fixed to the four arm portions, Four vibration generating members provided integrally with each other,
To determine the angular velocity by detecting the Coriolis force applied to the weight when the angular velocity is applied, and to determine the acceleration by detecting the force applied to the weight when the acceleration is applied,
Four vibration detecting members provided integrally with the four torsion spring portions, the four vibration generating members are driven when detecting angular velocity, and the four vibration generating members are non-driven when detecting acceleration. Switching means for driving, and detecting the angular velocity in the X-axis direction and the Y-axis direction by combining and subtracting the outputs of the four vibration detection members, or An angular velocity / acceleration sensor that detects acceleration in the direction and the Z-axis direction.
【0016】[0016]
【発明の実施の形態】以下に本発明に係る角速度セン
サ、加速度センサ及び角速度/加速度兼用センサの一実
施例を図1乃至図10を参照して、項目順に詳細に説明
する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an angular velocity sensor, an acceleration sensor and an angular velocity / acceleration sensor according to the present invention will be described below in detail in the order of items with reference to FIGS.
【0017】<角速度センサ>図1は本発明に係る角速
度センサを示した斜視図、図2は図1に示した振動部材
にSi基板を用いた時に、振動部材に形成した4本の捩
じりバネ部上及び4本のアーム部上にそれぞれ膜付けし
た振動発生部材及び振動検出部材を拡大して示した断面
図、図3は図1に示した振動部材に圧電結晶材料基板を
用いた時に、振動部材に形成した4本の捩じりバネ部上
及び4本のアーム部上にそれぞれ膜付けした振動発生部
材及び振動検出部材を拡大して示した断面図、図4は本
発明に係る角速度センサにおいて、振動子の動作を説明
するために模式的に示した図であり、(A)は振動部材
に固着した重り部にコリオリ力CFのX軸方向成分CF
xが加わった状態を示し、(B)は振動部材に固着した
重り部にコリオリ力CFのY軸方向成分CFyが加わっ
た状態を示した図、図5は本発明の変形例の角速度セン
サを示した斜視図である。<Angular Velocity Sensor> FIG. 1 is a perspective view showing an angular velocity sensor according to the present invention. FIG. 2 is a diagram showing four torsional screws formed on the vibration member when the Si substrate is used for the vibration member shown in FIG. FIG. 3 is an enlarged cross-sectional view showing a vibration generating member and a vibration detecting member formed on the resilient portion and the four arm portions, respectively. FIG. 3 shows a case where a piezoelectric crystal material substrate is used for the vibration member shown in FIG. FIG. 4 is an enlarged cross-sectional view of a vibration generating member and a vibration detecting member formed on the four torsion spring portions and the four arm portions formed on the vibration member. In this angular velocity sensor, it is a figure which was shown typically in order to explain operation of a vibrator, and (A) shows X-axis direction component CF of Coriolis force CF in a weight fixed to a vibration member.
(B) shows a state in which the Y-axis direction component CFy of the Coriolis force CF is applied to a weight fixed to the vibration member, and FIG. 5 shows an angular velocity sensor according to a modification of the present invention. It is the perspective view shown.
【0018】図1に示した如く、本発明に係る角速度セ
ンサ10では、基台となる固定部材11が剛性を有する
材料を用いて外観形状を略直方体に形成され、且つ、互
いに対向する側面固定部11a,11b間を凹状に肉抜
きして凹部11cが内部に形成されている。ここで、固
定部材11内の中心部位に3次元直交座標空間のXYZ
軸を仮に設定して以下説明する。As shown in FIG. 1, in the angular velocity sensor 10 according to the present invention, the fixing member 11 serving as a base is formed in a substantially rectangular parallelepiped shape using a rigid material, and is fixed to the side surfaces facing each other. A concave portion 11c is formed inside by hollowing out the space between the portions 11a and 11b. Here, the XYZ of the three-dimensional orthogonal coordinate space is added to the central portion in the fixed member 11.
A description will be given below by temporarily setting the axes.
【0019】また、固定部材11の互いに対向する側面
固定部11a,11b上には、振動子12が揺動自在に
取り付けられている。A vibrator 12 is swingably mounted on the side fixing portions 11a and 11b of the fixing member 11 facing each other.
【0020】上記した振動子12は、薄板状のSi基板
(Siウェハ)を用いた振動部材13の中央部位に重り
取付部13aを略矩形状に形成し、この重り取付部13
aの裏面に略矩形状の重り14を一体的に固着して、両
者13a,14を合わせて重り部とし、且つ、重り14
側を固定部材11の凹部11c内に進入させている。こ
の際、重り取付部13aと重り14とを合わせた重り部
は、その重心Gが3軸の交差点(以下、原点と記す)O
を通るZ軸上に略位置するように設けられており、この
うちZ軸は重力方向と対応している。The above-described vibrator 12 has a weight mounting portion 13a formed in a substantially rectangular shape at the center of a vibration member 13 using a thin Si substrate (Si wafer).
a, a substantially rectangular weight 14 is integrally fixed to the back surface of the a.
The side enters the recess 11 c of the fixing member 11. At this time, the weight of the weight mounting portion 13a and the weight 14 is combined so that the center of gravity G is the intersection of three axes (hereinafter referred to as the origin) O.
Are provided so as to be located substantially on a Z-axis passing through, and the Z-axis corresponds to the direction of gravity.
【0021】また、振動部材13の重り取付部13aの
中心部位を上記した原点Oに設定すると、上記した振動
子12は、振動部材13の重り取付部13a(重り部の
上方部位)から互いに対向して2対で合計4本の捩りバ
ネ部13b1〜13b4をX軸とY軸とに対して略対称
で且つX軸と略平行に外側に向かってそれぞれ延出し、
且つ、4本の捩りバネ部13b1〜13b4の延出した
各先端部位から合計で4本のアーム部13c1〜13c
4をY軸とX軸とに対して略対称で且つY軸と略平行に
外側に向かってそれぞれ延出し、更に、4本のアーム部
13c1〜13c4の延出した各先端部位を固定部材1
1のうちでX軸に対して略平行な側面固定部11a,1
1b上に取り付けている。When the central portion of the weight mounting portion 13a of the vibration member 13 is set at the origin O, the vibrators 12 are opposed to each other from the weight mounting portion 13a of the vibration member 13 (the portion above the weight portion). Then, two pairs of a total of four torsion spring portions 13b1 to 13b4 extend outward substantially symmetrically with respect to the X axis and the Y axis and substantially parallel to the X axis, respectively.
And a total of four arm portions 13c1 to 13c from each of the extending distal end portions of the four torsion spring portions 13b1 to 13b4.
4 extend outwardly substantially symmetrically with respect to the Y-axis and the X-axis and substantially parallel to the Y-axis, and furthermore, each extended end portion of the four arm portions 13c1 to 13c4 is fixed to the fixing member 1.
1, the side fixing portions 11a, 1 substantially parallel to the X-axis.
1b.
【0022】この際、振動部材13に形成した4本の捩
じりバネ部13b1〜13b4のうちで捩じりバネ部1
3b1と捩じりバネ部13b3との対が重り取付部13
aを介してY軸に対して対称となり且つ捩じりバネ部1
3b2と捩じりバネ部13b4との対も重り取付部13
aを介してY軸に対して対称となり、捩じりバネ部の各
対(13b1,13b3),(13b2,13b4)同
士はX軸に対して対称に設けられている。一方、振動部
材13に形成した4本のアーム部13c1〜13c4の
うちで、アーム部13c1とアーム部13c2との対が
X軸に対して対称となり且つアーム部13c3とアーム
部13c4との対もX軸に対して対称となり、アームの
各対(13c1,13c2),(13c3,13c4)
同士はY軸に対して対称に設けられている。At this time, among the four torsion spring portions 13b1 to 13b4 formed on the vibration member 13, the torsion spring portion 1
The pair of 3b1 and the torsion spring portion 13b3
a) and the torsion spring portion 1
The pair of the 3b2 and the torsion spring portion 13b4 is also the weight mounting portion 13.
The pair (13b1, 13b3) and (13b2, 13b4) of the torsion spring portions are provided symmetrically with respect to the X axis through a. On the other hand, of the four arm portions 13c1 to 13c4 formed on the vibration member 13, the pair of the arm portion 13c1 and the arm portion 13c2 is symmetric with respect to the X axis, and the pair of the arm portion 13c3 and the arm portion 13c4 is also Symmetry with respect to the X axis, each pair of arms (13c1, 13c2), (13c3, 13c4)
These are provided symmetrically with respect to the Y axis.
【0023】更に、振動部材13に形成した4本の捩じ
りバネ部13b1〜13b4と4本のアーム部13c1
〜13c4はL字状に交わっていると共に、両部共に巾
狭く且つ薄肉厚で弾性変位可能に形成されている。Further, four torsion spring portions 13b1 to 13b4 formed on the vibration member 13 and four arm portions 13c1
13c4 intersect in an L-shape, and both portions are narrow, thin, and elastically displaceable.
【0024】これにより、振動部材13に形成した重り
取付部13aと重り14とを合わせた重り部は、ある方
向に力が働くと、その上方部位が4本の捩じりバネ部1
3b1〜13b4で接続されているのでそこを支点軸と
して、重り取付部13aと重り14とを合わせた重り部
の重心Gの周りにモーメントが働き、重り14は力の方
向に傾斜する。その時、4本の捩じりバネ部13b1〜
13b4と4本のアーム部13c1〜13c4とに撓み
が発生する構造になっている。With this arrangement, when a force acts in a certain direction, the weight of the weight mounting portion 13a and the weight 14 formed on the vibration member 13 has four torsion springs 1 above.
Since the connection is made by 3b1 to 13b4, a moment acts around the center of gravity G of the weight portion combining the weight mounting portion 13a and the weight 14 with the fulcrum as the fulcrum axis, and the weight 14 tilts in the direction of the force. At that time, the four torsion spring portions 13b1
13b4 and the four arm portions 13c1 to 13c4 are configured to bend.
【0025】この際、重り取付部13aと重り14とを
合わせた重り部の重心Gの位置を、Z軸上で4本の捩じ
りバネ部13b1〜13b4及び4本のアーム部13c
1〜13c4より離れた下方の位置に設定するように重
り14の形状を設計すれば、重り14をより大きく傾け
ることができる。At this time, the position of the center of gravity G of the weight portion, which is the combination of the weight mounting portion 13a and the weight 14, is set on the Z axis by four torsion spring portions 13b1 to 13b4 and four arm portions 13c.
If the shape of the weight 14 is designed so as to be set at a lower position apart from 1 to 13c4, the weight 14 can be further inclined.
【0026】次に、上記した振動部材13の重り取付部
13aの裏面に重り14を固着して揺動自在な振動子1
2を角速度センサとして用いる場合について説明する。Next, a weight 14 is fixed to the back surface of the weight mounting portion 13a of the vibration member 13, and the swingable vibrator 1
The case where 2 is used as an angular velocity sensor will be described.
【0027】まず、振動部材13に形成した4本のアー
ム部13c1〜13c4上には、4個の振動発生部材1
5a〜15dがそれぞれ一体的に膜付けされており、ま
た、振動部材13に形成した4本の捩じりバネ部13b
1〜13b4上には、4個の振動検出部材16a〜16
dがそれぞれ一体的に膜付けされている。First, four vibration generating members 1 are provided on the four arm portions 13c1 to 13c4 formed on the vibration member 13.
5a to 15d are integrally formed with a film, and four torsion spring portions 13b formed on the vibrating member 13.
Four vibration detecting members 16a to 16b are provided on 1 to 13b4.
d are each integrally formed with a film.
【0028】ここで、図2(A)に拡大して示した如
く、上記した振動発生部材15a〜15d及び振動検出
部材16a〜16dは、薄板状のSi基板上に絶縁膜
と、下電極と、圧電膜と、上電極とを順に積層して膜付
けしたものであり、両者は全ての上下電極、圧電材料を
同じものを用いることができ、薄膜プロセスを用いて膜
付け、パターンニングを一括して行える製造上のメリッ
トがある。As shown in FIG. 2A, the vibration generating members 15a to 15d and the vibration detecting members 16a to 16d are composed of an insulating film, a lower electrode, , A piezoelectric film and an upper electrode are laminated in this order, and all the upper and lower electrodes and the piezoelectric material can be made of the same material. There is a manufacturing advantage that can be performed.
【0029】尚、上記した実施例では振動部材13に薄
板状のSi基板を用いたが、薄板状のSi基板に代え
て、振動部材13に水晶、ランガサイトなどの圧電結晶
材料基板を用いた場合には、図3(A)に拡大して示し
た如く、上記した振動発生部材15a〜15d及び振動
検出部材16a〜16dは、圧電結晶材料基板の上下の
面に上電極と、下電極をそれぞれ直接膜付けすれば良い
ものである。Although a thin Si substrate is used for the vibration member 13 in the above-described embodiment, a piezoelectric crystal material substrate such as quartz or langasite is used for the vibration member 13 instead of the thin Si substrate. In this case, as shown in an enlarged manner in FIG. 3A, the vibration generating members 15a to 15d and the vibration detecting members 16a to 16d have an upper electrode and a lower electrode on the upper and lower surfaces of the piezoelectric crystal material substrate. What is necessary is just to apply a film directly to each.
【0030】次に、上記構造による角速度センサ10
は、回転、もしくは振動している物体に角速度が加わっ
たときに発生するコリオリ力CFを測定することで角速
度が得られる。このコリオリ力CFは、 CF=−2mΩV (但し、m:振動子12の質量、Ω:角速度、V:振動
子12の速度)で表せられる。Next, the angular velocity sensor 10 having the above structure
Can be obtained by measuring a Coriolis force CF generated when an angular velocity is applied to a rotating or vibrating object. The Coriolis force CF is expressed as CF = −2 mΩV (where m: mass of the oscillator 12, Ω: angular velocity, V: speed of the oscillator 12).
【0031】そして、振動部材13の重り取付部13a
の裏面に固着した重り14を振動させるためには、振動
発生部材15a〜15dの上下電極を介して全てに同方
向の正弦波の電圧を印加すると、その周波数に応じて重
り14は振動部材13を介して上下振動する。この時、
与える正弦波の周波数はこの構造体が有する共振周波数
以下でなければならない。また、振動子12を共振周波
数で振動させれば、少ない駆動電圧で大きな振動変位を
得ることができる。尚、振動発生部材15a〜15dの
上下電極をいずれか2対ずつ逆位相で電圧を印加すれ
ば、重り14は上下振動ではなく、周知の光偏向器のよ
うに回転振動するが、このような駆動方法でも良い。The weight mounting portion 13a of the vibration member 13
In order to vibrate the weight 14 fixed to the back surface of the oscillating member, a sine wave voltage in the same direction is applied to all of the vibration generating members 15a to 15d via the upper and lower electrodes. Vibrates up and down through. At this time,
The frequency of the applied sine wave must be lower than the resonance frequency of the structure. Further, if the vibrator 12 is vibrated at the resonance frequency, a large vibration displacement can be obtained with a small driving voltage. If a voltage is applied to the upper and lower electrodes of the vibration generating members 15a to 15d in the opposite phase by any two pairs, the weight 14 does not vibrate vertically but rotationally vibrates like a well-known optical deflector. A driving method may be used.
【0032】次に、振動部材13の重り取付部13aの
裏面に固着した重り14が上下振動している時に角速度
が加わった場合について考える。前述したように、振動
部材13に形成した4本の捩じりバネ部13b1〜13
b4に平行な方向をX軸方向、この4本の捩じりバネ部
13b1〜13b4に直交する方向をY軸方向とする
と、まず、X軸周りに角速度が加わった場合、図4
(A)に模式的に示したように、角速度によって生じる
コリオリ力CFのX軸方向成分CFxが重り取付部13
aと重り14とを合わせた重り部の重心Gに対してX軸
方向に働くが、重り部の上方部位は4本の捩じりバネ部
13b1〜13b4で支えられているため、この部分を
支点としてコリオリ力CFのX軸方向成分CFxが重り
部の重心Gに回転のモーメントを与える。この結果、図
示右側の捩じりバネ部(13b1,13b2)は上方向
に、図示左側の捩じりバネ部(13b3,13b4)は
下方向に撓む。この時、4本の捩じりバネ部13b1〜
13b4上にそれぞれ膜付けした振動検出部材16a〜
16dの圧電膜はピエゾ逆電歪効果により4本の捩じり
バネ部13b1〜13b4の撓み量に応じた電圧がそれ
ぞれ発生する。この場合、4本の捩じりバネ部13b1
〜13b4の撓みから発生する振動検出部材16a〜1
6dの各出力をそれぞれ16a,16b,16c,16
dとすると、コリオリ力CFのX軸方向成分CFxによ
り発生するピエゾ出力は、 CFx={(16a+16b)−(16c+16d)} となり、この値を角速度換算してX軸周りの角速度Ωx
を求めることができる。Next, consider a case where an angular velocity is applied when the weight 14 fixed to the back surface of the weight mounting portion 13a of the vibration member 13 is vibrating up and down. As described above, the four torsion spring portions 13b1 to 13b formed on the vibrating member 13
Assuming that a direction parallel to b4 is an X-axis direction and a direction orthogonal to the four torsion spring portions 13b1 to 13b4 is a Y-axis direction, first, when an angular velocity is applied around the X-axis, FIG.
As schematically shown in (A), the X-axis direction component CFx of the Coriolis force CF generated by the angular velocity is equal to the weight mounting portion 13.
a and the weight 14 work in the X-axis direction with respect to the center of gravity G of the weight portion. Since the upper portion of the weight portion is supported by the four torsion spring portions 13b1 to 13b4, this portion is As a fulcrum, the X-axis direction component CFx of the Coriolis force CF gives a rotational moment to the center of gravity G of the weight portion. As a result, the right torsion spring portions (13b1, 13b2) on the right side in the figure are bent upward, and the torsion spring portions (13b3, 13b4) on the left side in the figure are bent downward. At this time, the four torsion spring portions 13b1
13b4, vibration detecting members 16a to
In the piezoelectric film 16d, voltages corresponding to the amounts of bending of the four torsion spring portions 13b1 to 13b4 are generated by the piezoelectric inverse electrostriction effect. In this case, four torsion spring portions 13b1
Detecting members 16a to 16a generated from the flexures to 13b4 to 13b4
6d are output to 16a, 16b, 16c and 16 respectively.
Assuming that d, the piezo output generated by the X-axis direction component CFx of the Coriolis force CF is CFx = {(16a + 16b)-(16c + 16d)}.
Can be requested.
【0033】また、Y軸周りに角速度が加わった場合も
同様、図4(B)に模式的に示したように、角速度によ
って生じるコリオリ力CFのY軸方向成分CFyは重り
取付部13aと重り14とを合わせた重り部の重心Gに
対してY軸方向に働くが、重り部の上方部位は4本の捩
じりバネ部13b1〜13b4で支えられているため、
この部分を支点としてコリオリ力CFのY軸方向成分C
Fyが重り14の重心Gに回転のモーメントを与える。
この結果、捩じりバネ部13b1,13b3は下方向
に、捩じりバネ部13b2,13b4は上方向に撓む。
この場合、コリオリ力CFのY軸方向成分CFyにより
4本の捩じりバネ部13b1〜13b4の撓みから発生
する振動検出部材16a〜16dのピエゾ出力は、 CFy={(16a+16c)−(16b+16d)} となり、この値を角速度換算してY軸周りの角速度Ωy
を求めることができる。Similarly, when an angular velocity is applied around the Y-axis, as shown schematically in FIG. 4B, the Y-axis direction component CFy of the Coriolis force CF generated by the angular velocity is equal to the weight mounting portion 13a. 14, and acts in the Y-axis direction with respect to the center of gravity G of the weight portion, but since the upper portion of the weight portion is supported by four torsion spring portions 13b1 to 13b4,
Using this portion as a fulcrum, the Y-axis direction component C of the Coriolis force CF
Fy gives a moment of rotation to the center of gravity G of the weight 14.
As a result, the torsion spring portions 13b1 and 13b3 bend downward, and the torsion spring portions 13b2 and 13b4 bend upward.
In this case, the piezo output of the vibration detecting members 16a to 16d generated from the bending of the four torsion spring portions 13b1 to 13b4 by the Y-axis component CFy of the Coriolis force CF is CFy = {(16a + 16c) − (16b + 16d).値, and this value is converted into an angular velocity to obtain an angular velocity Ωy around the Y axis.
Can be requested.
【0034】このように、上記した本発明の角速度セン
サ10は、4本の捩じりバネ部13b1〜13b4の撓
みから発生するピエゾ出力を独立に検出し、それぞれの
ピエゾ出力値の加減算により2軸の角速度を高感度に検
出することができる。As described above, the angular velocity sensor 10 of the present invention described above independently detects the piezo outputs generated by the bending of the four torsion spring portions 13b1 to 13b4, and adds and subtracts the respective piezo output values. The angular velocity of the shaft can be detected with high sensitivity.
【0035】尚、上記した本発明の角速度センサ10の
実施形態では、振動部材13の中央部位に形成した重り
取付部13aとこの裏面に固着した重り14とを略矩形
状に形成したが、両者を合わせた重り部の形状は略矩形
に限られるものでもなく、重り部は円形状であってもこ
の重り部の上方部位から互いに対向して2対で合計4本
の捩じりバネ部13b1〜13b4を形成することが可
能である。In the above-described embodiment of the angular velocity sensor 10 of the present invention, the weight mounting portion 13a formed at the center portion of the vibration member 13 and the weight 14 fixed to the back surface thereof are formed in a substantially rectangular shape. The shape of the weighted portion is not limited to a substantially rectangular shape. Even if the weighted portion is circular, two pairs of the torsion spring portions 13b1 are opposed to each other from above the weighted portion. ~ 13b4 can be formed.
【0036】上記構成による本発明の角速度センサ10
は、振動部材13の中央部位に形成した重り取付部13
aの裏面に重り14を固着させて振動子12を揺動自在
に形成しているので、振動部材13は半導体用のSi基
板又は圧電結晶材料基板を用いることができるので、角
速度センサ10を安価に作製することができる。The angular velocity sensor 10 according to the present invention having the above configuration.
Is a weight attachment portion 13 formed at a central portion of the vibration member 13.
Since the vibrator 12 is formed to be swingable by fixing the weight 14 to the back surface of the substrate a, the vibration member 13 can be a semiconductor Si substrate or a piezoelectric crystal material substrate. Can be manufactured.
【0037】次に、本発明の変形例の角速度センサ20
について図5を用いて簡略に説明する。Next, an angular velocity sensor 20 according to a modification of the present invention will be described.
Will be briefly described with reference to FIG.
【0038】図5に示した如く、本発明の変形例の角速
度センサ20は、振動子の形状が、先に図1を用いて説
明した本発明の角速度センサ10の振動子の形状と略同
じに形成されているものの、ここでは単結晶Si材など
を用いて、固定部及び振動子共に全てマイクロマシン技
術により一体的に形成されている。As shown in FIG. 5, the angular velocity sensor 20 of the modified example of the present invention has a vibrator whose shape is substantially the same as the vibrator of the angular velocity sensor 10 of the present invention described above with reference to FIG. However, here, both the fixed portion and the vibrator are integrally formed by a micromachine technique using a single crystal Si material or the like.
【0039】即ち、本発明の変形例の角速度センサ20
は、単結晶Si材などを用いて外観形状が略直方状の枠
体21を形成し、この枠体21の外周部位に沿って固定
枠部21aを四角状に形成すると共に、固定枠部21a
の内側の周辺部位を肉抜きしている。ここで、枠体21
内の中心部位に3次元直交座標空間のXYZ軸を仮に設
定して以下説明する。That is, the angular velocity sensor 20 of the modified example of the present invention
A frame 21 having a substantially rectangular external shape is formed by using a single crystal Si material or the like, and a fixed frame 21a is formed in a square shape along the outer peripheral portion of the frame 21;
The surrounding area inside is cut off. Here, the frame 21
The XYZ axes of the three-dimensional orthogonal coordinate space are temporarily set at the central part in the following description.
【0040】また、固定枠部21aの内側の互いに対向
する側面固定部21a1,21a2側からそれぞれ2本
づつ間隔を離して、合計で4本のアーム部21b1〜2
1b4をY軸に沿って内側に向かって延出させ、更に、
4本のアーム部21b1〜21b4の延出した先端部位
から4本の捩じりバネ部21c1〜21c4をX軸に沿
って内側に向かって延出させ、この4本の捩じりバネ部
21c1〜21c4の延出した先端部位に重量のある重
り部21dを一体に支持している。この際、4本のアー
ム部21b1〜21b4及び4本の捩じりバネ部21c
1〜21c4より重り部21dの重心Gが下方に位置す
るように重り部21dを支持している。従って、枠体2
1の内側の中央部位に重り部21dが位置し、且つ、重
り部21dの重心GはZ軸上にある。また、4本のアー
ム部21b1〜21b4と4本の捩じりバネ部21c1
〜21c4は、L字状に形成されていると共に、各対の
アーム部(21b1,21b2),(21b3,21b
4)はX軸を中心にして互いに対向して対称に設けら
れ、且つ、各対の捩じりバネ部(21c1,21c
3),(21c2,21c4)は、重り部21dを介し
てY軸を中心にして互いに対向して対称に設けられてい
る。更に、重り部21dをX軸,Y軸,Z軸方向に変位
させるために、4本のアーム部21b1〜21b4と4
本の捩じりバネ部21c1〜21c4は巾狭く且つ薄肉
で弾性変位可能に形成されている。Further, two arms are separated from the side fixing portions 21a1 and 21a2 facing each other on the inner side of the fixing frame portion 21a, respectively, so that a total of four arm portions 21b1-2 are formed.
1b4 extends inward along the Y axis,
The four torsion spring portions 21c1 to 21c4 are extended inward along the X axis from the extended end portions of the four arm portions 21b1 to 21b4, and the four torsion spring portions 21c1 are provided. A heavy weight portion 21d is integrally supported on the extended distal end portion of the base member 21c4. At this time, the four arm portions 21b1 to 21b4 and the four torsion spring portions 21c
The weight portion 21d is supported so that the center of gravity G of the weight portion 21d is located lower than 1 to 21c4. Therefore, the frame 2
The weight portion 21d is located at a central portion inside 1 and the center of gravity G of the weight portion 21d is on the Z axis. Also, four arm portions 21b1 to 21b4 and four torsion spring portions 21c1
21c4 are formed in an L-shape and each pair of arm portions (21b1, 21b2), (21b3, 21b).
4) are symmetrically provided facing each other about the X axis, and each pair of torsion spring portions (21c1, 21c)
3) and (21c2, 21c4) are symmetrically provided facing each other about the Y axis via the weight 21d. Further, in order to displace the weight portion 21d in the X-axis, Y-axis, and Z-axis directions, four arm portions 21b1 to 21b4 and 4
The torsion spring portions 21c1 to 21c4 are narrow, thin and elastically displaceable.
【0041】そして、枠体21内に一体形成した4本の
アーム部21b1〜21b4と4本の捩じりバネ部21
c1〜21c4と重り部21dとで振動子を構成してい
る。更に、4本のアーム部21b1〜21b4上には、
先の図2(A)に示したと同様の構造の振動発生部材2
2a〜22dがそれぞれ膜付けされており、また、4本
の捩じりバネ部21c1〜21c4上にも、先の図2
(A)に示したと同様の構造の振動検出部材23a〜2
3dがそれぞれ膜付けされている。The four arms 21b1 to 21b4 integrally formed in the frame 21 and the four torsion springs 21
The vibrator is constituted by c1 to 21c4 and the weight 21d. Furthermore, on the four arm portions 21b1 to 21b4,
The vibration generating member 2 having the same structure as that shown in FIG.
2a to 22d are respectively applied with a film, and the four torsion spring portions 21c1 to 21c4 are also provided on FIG.
(A) Vibration detecting members 23a to 23 having the same structure as shown in FIG.
3d are each provided with a film.
【0042】上記構成による本発明の変形例の角速度セ
ンサ20は、先に説明した本発明の角速度センサ10と
同じ動作で角速度を高感度に検出できると共に、全ての
構成部が一体的に形成されているため、コストは高価と
なるものの、寸法精度を正確に位置出しでき、高品質,
高信頼性の角速度センサ20を提供できる。The angular velocity sensor 20 according to the modified example of the present invention having the above configuration can detect angular velocity with high sensitivity by the same operation as the angular velocity sensor 10 of the present invention described above, and all the components are integrally formed. Therefore, although the cost is expensive, the dimensional accuracy can be accurately determined,
A highly reliable angular velocity sensor 20 can be provided.
【0043】<加速度センサ>図6は本発明に係る加速
度センサを示した斜視図、図7は本発明に係る加速度セ
ンサにおいて、振動子の動作を説明するために模式的に
示した図であり、(A)は振動部材に固着した重りに加
速度による力FのX軸方向成分Fxが加わった状態を示
し、(B)は振動部材に固着した重りに加速度による力
FのY軸方向成分Fyが加わった状態を示し、(C)は
振動部材に固着した重りに加速度による力FのZ軸方向
成分Fzが加わった状態を示した図、図8は本発明の変
形例の加速度センサを示した斜視図である。<Acceleration Sensor> FIG. 6 is a perspective view showing an acceleration sensor according to the present invention, and FIG. 7 is a view schematically showing the operation of a vibrator in the acceleration sensor according to the present invention. (A) shows a state in which the X-axis direction component Fx of the force F due to acceleration is applied to the weight fixed to the vibration member, and (B) shows the state in which the Y-axis direction component Fy of the force F due to acceleration is added to the weight fixed to the vibration member. FIG. 8C shows a state in which a Z-axis direction component Fz of a force F due to acceleration is applied to a weight fixed to a vibration member, and FIG. 8 shows an acceleration sensor according to a modification of the present invention. FIG.
【0044】図6に示した如く、本発明に係る加速度セ
ンサ30は、先に図1を用いて説明した本発明に係る角
速度センサ10と基本的な構造が同じであるものの、こ
の加速度センサ30では、振動子12の振動部材13に
形成した4本のアーム部13c1〜13c4上にそれぞ
れ膜付けした振動発生部材15a〜15dを削除したも
のであるので、説明の便宜上、先に示した構成部材と同
一構成部材に対しては同一の符号を付して説明する。As shown in FIG. 6, the acceleration sensor 30 according to the present invention has the same basic structure as the angular velocity sensor 10 according to the present invention described above with reference to FIG. In this configuration, the vibration generating members 15a to 15d formed on the four arm portions 13c1 to 13c4 formed on the vibration member 13 of the vibrator 12 are omitted, and for convenience of explanation, the constituent members described above are used. The same components as those described above are denoted by the same reference numerals and will be described.
【0045】従って、本発明に係る加速度センサ30で
は、振動子12の振動部材13に形成した4本の捩じり
バネ部13b1〜13b4上に振動検出部材16a〜1
6dのみを膜付けしている。この際、振動検出部材16
a〜16dは4本の捩じりバネ部13b1〜13b4に
連接して4本のアーム部13c1〜13c4上まで延ば
して膜付けしても良く、この場合にはより大きな検出の
出力を得ることが可能である。Accordingly, in the acceleration sensor 30 according to the present invention, the vibration detecting members 16a to 1b are provided on the four torsion spring portions 13b1 to 13b4 formed on the vibrating member 13 of the vibrator 12.
Only 6d is coated. At this time, the vibration detecting member 16
a to 16d may be connected to the four torsion spring portions 13b1 to 13b4 and extended on the four arm portions 13c1 to 13c4 to form a film. In this case, a larger detection output is obtained. Is possible.
【0046】次に、上記構造による加速度度センサ30
は、振動部材13の重り取付部13aの裏面に固着した
重り14に加速度が加わった時、そこに働く力はFは、 F=mα(但し、m:振動子12の質量、α:加速度) なので、加速度は力Fを測定することで求めることがで
きる。Next, the acceleration sensor 30 having the above structure
When acceleration is applied to the weight 14 fixed to the back surface of the weight mounting portion 13a of the vibration member 13, the force acting thereon is F: F = mα (where m: mass of the vibrator 12, α: acceleration) Therefore, the acceleration can be obtained by measuring the force F.
【0047】この際、角速度センサ10の時と同様、振
動部材13に形成した4本の捩じりバネ部13b1〜1
3b4に平行な方向をX軸方向、この4本の捩じりバネ
部13b1〜13b4に直交する方向をY軸方向、振動
子12の上下方向をZ軸方向とする。At this time, as in the case of the angular velocity sensor 10, the four torsion spring portions 13b1 to 13b1 formed on the vibration member 13 are used.
A direction parallel to 3b4 is defined as an X-axis direction, a direction orthogonal to the four torsion spring portions 13b1 to 13b4 is defined as a Y-axis direction, and a vertical direction of the vibrator 12 is defined as a Z-axis direction.
【0048】まず、X軸方向に加速度が加わったとき、
図6(A)に模式的に示したように、加速度によって生
じる力FのX軸方向成分Fxが重り取付部13aと重り
14とを合わせた重り部の重心Gに対してX軸方向に働
くが、重り部の上方部位は4本の捩じりバネ部13b1
〜13b4で支えられているので、角速度センサ10の
時と同様、この部分を支点として重り部の重心Gには回
転モーメントが働き、図示右側の捩じりバネ部(13b
1,13b2)は上方向に、図示左側の捩じりバネ部
(13b3,13b4)は下方向に撓む。この時、4本
の捩じりバネ部13b1〜13b4上にそれぞれ膜付け
した振動検出部材16a〜16dの圧電膜はピエゾ逆電
歪効果により4本の捩じりバネ部13b1〜13b4の
撓み量に応じた電圧がそれぞれ発生する。この場合、4
本の捩じりバネ部13b1〜13b4の撓みから発生す
る振動検出部材16a〜16dの出力をそれぞれ16
a,16b,16c,16dとすると、力FのX軸方向
成分Fxにより発生するピエゾ出力は、 Fx={(16a+16b)−(16c+16d)} となり、この値を加速度換算してX軸方向の加速度αx
を求めることができる。First, when acceleration is applied in the X-axis direction,
As schematically shown in FIG. 6A, the X-axis direction component Fx of the force F generated by the acceleration acts in the X-axis direction with respect to the center of gravity G of the weight portion including the weight mounting portion 13a and the weight 14. However, four torsion springs 13b1 are located above the weight.
13b4, as in the case of the angular velocity sensor 10, a rotational moment acts on the center of gravity G of the weight portion using this portion as a fulcrum, and the torsion spring portion (13b
1, 13b2) flexes upward, and the torsion spring portions (13b3, 13b4) on the left side in the figure flex downward. At this time, the piezoelectric films of the vibration detecting members 16a to 16d respectively formed on the four torsion spring portions 13b1 to 13b4 are bent by the piezoelectric torsion effect of the four torsion spring portions 13b1 to 13b4. , Respectively. In this case, 4
The output of the vibration detecting members 16a to 16d generated from the bending of the torsion spring portions 13b1 to 13b4 is 16
Assuming that a, 16b, 16c, and 16d, the piezo output generated by the X-axis component Fx of the force F is given by Fx = {(16a + 16b)-(16c + 16d)}. αx
Can be requested.
【0049】また、Y軸方向に加速度が加わった時は、
図6(B)に模式的に示したように、加速度によって生
じる力FのY軸方向成分Fyが重り取付部13aと重り
14とを合わせた重り部の重心Gに対してY軸方向に働
くが、重り部の上方部位は4本の捩じりバネ部13b1
〜13b4で支えられているので、角速度センサ10の
時と同様、この部分を支点として重り部の重心Gには回
転モーメントが働き、捩じりバネ部13b1,13b3
は下方向に、捩じりバネ部13b2,13b4は上方向
に撓む。この場合、力FのY軸方向成分Fyにより4本
の捩じりバネ部13b1〜13b4の撓みから発生する
振動検出部材16a〜16dのピエゾ出力は、 Fy={(16a+16c)−(16b+16d)} となり、この値を加速度換算してY軸方向の加速度αy
を求めることができる。When acceleration is applied in the Y-axis direction,
As schematically shown in FIG. 6B, the Y-axis direction component Fy of the force F generated by the acceleration acts in the Y-axis direction with respect to the center G of the weight of the weight mounting portion 13a and the weight 14. However, four torsion springs 13b1 are located above the weight.
13b4, a rotational moment acts on the center of gravity G of the weight portion with this portion as a fulcrum, as in the case of the angular velocity sensor 10, and the torsion spring portions 13b1, 13b3
Is bent downward, and the torsion spring portions 13b2, 13b4 are bent upward. In this case, the piezo outputs of the vibration detection members 16a to 16d generated from the bending of the four torsion spring portions 13b1 to 13b4 due to the Y-axis component Fy of the force F are as follows: Fy = {(16a + 16c)-(16b + 16d)} This value is converted into an acceleration to obtain an acceleration αy in the Y-axis direction.
Can be requested.
【0050】更に、Z軸方向に加速度が加わったとき
は、図6(C)に断面して模式的に示したように、加速
度によって生じる力FのZ軸方向成分Fzが重り取付部
13aと重り14とを合わせた重り部の重心Gに対して
Z軸方向に働くことにより、重り部は上方向(又は下方
向)に動く。この時、4本の捩じりバネ部13b1〜1
3b4は全て上方向(又は下方向)に撓む。この場合、
力FのZ軸方向成分Fzにより4本の捩じりバネ部13
b1〜13b4の撓みから発生する振動検出部材16a
〜16dのピエゾ出力は、 Fz=(16a+16b+16c+16d) となり、この値を加速度換算してZ軸方向の加速度αz
を求めることができる。Further, when acceleration is applied in the Z-axis direction, as schematically shown in a cross section in FIG. 6C, the Z-axis direction component Fz of the force F generated by the acceleration is applied to the weight mounting portion 13a. By acting in the Z-axis direction with respect to the center of gravity G of the weight unit together with the weight 14, the weight unit moves upward (or downward). At this time, the four torsion spring portions 13b1-1
3b4 all bend upward (or downward). in this case,
Four torsion spring portions 13 are generated by the Z-axis component Fz of the force F.
Vibration detecting member 16a generated from bending of b1 to 13b4
The piezo output of .about.16d is expressed as: Fz = (16a + 16b + 16c + 16d).
Can be requested.
【0051】このように、上記した本発明の加速センサ
30は、4本の捩じりバネ部13b1〜13b4の撓み
から発生するピエゾ出力を独立に検出し、それぞれのピ
エゾ出力値の加減算により3軸の加速度を高感度に検出
することができる。As described above, the above-described acceleration sensor 30 of the present invention independently detects the piezo outputs generated by the bending of the four torsion spring portions 13b1 to 13b4, and adds or subtracts the piezo outputs to obtain the three piezo output values. The acceleration of the shaft can be detected with high sensitivity.
【0052】次に、本発明の変形例の加速度センサ40
について図8を用いて簡略に説明する。Next, an acceleration sensor 40 according to a modification of the present invention will be described.
Will be briefly described with reference to FIG.
【0053】図8に示した如く、本発明の変形例の加速
度センサ40は、先に図5を用いて説明した本発明の変
形例の角速度センサ20と基本的な構造が同じであるも
のの、この加速度センサ40では、4本のアーム部21
b1〜21b4上に膜付けした振動発生部材22a〜2
2dを削除したものであるので、同一の符号を付して図
示のみとする。As shown in FIG. 8, the acceleration sensor 40 of the modified example of the present invention has the same basic structure as the angular velocity sensor 20 of the modified example of the present invention described above with reference to FIG. In this acceleration sensor 40, the four arms 21
Vibration generating members 22a-2 formed on films b1-21b4
Since 2d is omitted, the same reference numerals are given and only the illustration is given.
【0054】<角速度/加速度兼用センサ>図9は本発
明に係る角速度/加速度兼用センサを説明するためのブ
ロック図、図10は本発明に係る角速度/加速度兼用セ
ンサにおいて、振動発生部材に正弦波を印加した状態で
加速度を検出する動作を説明するための図である。<Angular Velocity / Acceleration Sensor> FIG. 9 is a block diagram for explaining an angular velocity / acceleration sensor according to the present invention, and FIG. FIG. 9 is a diagram for explaining an operation of detecting acceleration in a state where is applied.
【0055】図9に示した本発明に係る角速度/加速度
兼用センサ50は、先に図1を用いて説明した本発明に
係る角速度センサ10の構造又は図5を用いて説明した
本発明の変形例の角速度センサ20の構造をそのまま適
用して角速度と、加速度とを検出できるように構成した
ものである。The angular velocity / acceleration combined sensor 50 according to the present invention shown in FIG. 9 is a structure of the angular velocity sensor 10 according to the present invention described above with reference to FIG. 1 or a modification of the present invention described with reference to FIG. The configuration is such that the angular velocity and the acceleration can be detected by applying the structure of the angular velocity sensor 20 of the example as it is.
【0056】尚、以下の説明では、本発明に係る角速度
/加速度兼用センサ50として、先に説明した本発明に
係る角速度センサ10を用いた場合について図1を併用
して説明し、本発明の変形例の角速度センサ20を用い
た場合については図9中に振動検出部材23a〜23d
をカッコ内に示して説明を省略する。In the following description, the case where the angular velocity sensor 10 according to the present invention described above is used as the angular velocity / acceleration combined sensor 50 according to the present invention will be described with reference to FIG. FIG. 9 shows vibration detection members 23a to 23d in the case where the angular velocity sensor 20 of the modification is used.
Is shown in parentheses and the description is omitted.
【0057】上記した角速度/加速度兼用センサ50で
は、振動発生部材15a〜15dに同方向の正弦波をそ
れぞれ印加した状態で、角速度と、加速度とを検出して
いるが、振動発生部材15a〜15dに正弦波を印加す
ると、振動部材13の重り取付部13aの裏面に固着し
た重り14が上下に振動するので、4本の捩じりバネ部
13b1〜13b4上にそれぞれ膜付けした振動検出部
材16a〜16dの圧電膜はピエゾ逆電歪効果により4
本の捩じりバネ部13b1〜13b4の撓み量に応じた
電圧がそれぞれ発生する。In the angular velocity / acceleration combined sensor 50 described above, the angular velocity and the acceleration are detected in the state where the sine waves in the same direction are applied to the vibration generating members 15a to 15d, respectively. When a sine wave is applied to the vibration member 13, the weight 14 fixed to the back surface of the weight mounting portion 13 a of the vibration member 13 vibrates up and down, so that the vibration detection members 16 a formed on the four torsion spring portions 13 b 1 to 13 b 4 respectively. The piezoelectric film of ~ 16d is 4
Voltages corresponding to the amount of bending of the torsion spring portions 13b1 to 13b4 are generated.
【0058】ここで、角速度を検出する場合には、前述
したように、4本の捩じりバネ部13b1〜13b4の
撓みから発生する振動検出部材16a〜16dの各出力
をそれぞれ16a,16b,16c,16dとすると、
コリオリ力CFのX軸方向成分CFxにより発生するピ
エゾ出力は、 CFx={(16a+16b)−(16c+16d)} となり、一方、コリオリ力CFのY軸方向成分CFyに
より発生するピエゾ出力は、 CFy={(16a+16c)−(16b+16d)} となるので、CFx,CFyの各値を角速度換算してX
軸,Y軸周りの角速度Ωx,Ωyを求めることがでる。Here, when detecting the angular velocity, as described above, the outputs of the vibration detecting members 16a to 16d generated by the flexure of the four torsion springs 13b1 to 13b4 are output to 16a, 16b, and 16b, respectively. 16c and 16d,
The piezo output generated by the X-axis component CFx of the Coriolis force CF is CFx = {(16a + 16b) − (16c + 16d)}, while the piezo output generated by the Y-axis component CFy of the Coriolis force CF is CFy = {. (16a + 16c) − (16b + 16d)}, so that the values of CFx and CFy are converted into angular velocities and X
The angular velocities Ωx and Ωy around the axes Y and Y can be obtained.
【0059】次に、加速度を検出する場合には、図9に
示した如く、振動検出部材16a〜16dの各出力から
DC変化分をそれぞれ求めるためのDC変化分生成手段
として、減算器51A〜51Dと、HPF(ハイパスフ
ィルタ)52A〜52Dと、位相調整器53A〜53D
とを追加にしている。Next, when the acceleration is detected, as shown in FIG. 9, the subtractors 51A to 51D serve as DC change generating means for obtaining DC changes from the respective outputs of the vibration detecting members 16a to 16d. 51D, HPFs (high-pass filters) 52A to 52D, and phase adjusters 53A to 53D
And have added.
【0060】ここで、図10に示したように、振動発生
部材15a〜15dに正弦波を印加すると、振動検出部
材16a〜16dの出力は、角速度によるコリオリ力の
発生によって角速度成分が得られ、この後、重り取付部
13aと重り14とを合わせた重り部に加速度が加わる
と、加速度による力の発生で、角速度成分がDC(直
流)的に変位し、このDC変化分が加速度成分となるも
のである。Here, as shown in FIG. 10, when a sine wave is applied to the vibration generating members 15a to 15d, the output of the vibration detecting members 16a to 16d obtains an angular velocity component due to the generation of the Coriolis force due to the angular velocity. Thereafter, when an acceleration is applied to the weight portion including the weight attachment portion 13a and the weight 14, the angular velocity component is displaced in a DC (direct current) due to the generation of the force due to the acceleration, and the DC change becomes the acceleration component. Things.
【0061】従って、上記の動作原理から、図9に示し
たように、振動検出部材16a〜16dの各出力を、減
算器51A〜51Dと、HPF(ハイパスフィルタ)5
2A〜52Dとに入力している。そして、HPF52A
〜52Dで角速度成分を取り出して、このHPF52A
〜52Dの各出力を位相調整器53A〜53Dで減算器
51A〜51Dに入力した振動検出部材16a〜16d
からの各出力に対して位相合わせをする。この後、減算
器51A〜51D内では、ここに入力した振動検出部材
16a〜16dからの各出力と、位相調整器53A〜5
3Dからの各出力とを減算することで、加速度による力
の発生で角速度成分がDC(直流)的に変位した時のD
C変化分51a〜51dが得られる。Therefore, based on the above-described operation principle, as shown in FIG. 9, the outputs of the vibration detecting members 16a to 16d are output to the subtracters 51A to 51D and the HPF (high-pass filter) 5.
2A to 52D. And HPF52A
5252D to extract the angular velocity component, and this HPF 52A
The vibration detecting members 16a to 16d input the respective outputs of .about.52D to the subtracters 51A to 51D by the phase adjusters 53A to 53D.
Phase adjustment for each output from. Thereafter, in the subtracters 51A to 51D, the respective outputs from the vibration detecting members 16a to 16d input here and the phase adjusters 53A to 53D.
By subtracting each output from the 3D, the D when the angular velocity component is displaced in a DC (direct current) due to the generation of the force due to the acceleration.
The C variations 51a to 51d are obtained.
【0062】この後、減算器51A〜51Dからの各D
C変化分51a〜51dを組み合わせて加減算器54で
加減算することで、X軸方向及びY軸方向並びにZ軸方
向の加速速度を検出している。即ち、加減算器54で
は、X軸方向のDC変化分DCxと、Y軸方向のDC変
化分DCyと、Z軸方向のDC変化分DCzとを下記の
式からそれぞれ求めている。Thereafter, each D from the subtracters 51A to 51D is output.
Acceleration speeds in the X-axis direction, the Y-axis direction, and the Z-axis direction are detected by adding and subtracting the C variations 51a to 51d in combination with the adder / subtractor 54. That is, the adder / subtractor 54 calculates the DC change DCx in the X-axis direction, the DC change DCy in the Y-axis direction, and the DC change DCz in the Z-axis direction from the following equations.
【0063】 DCx={(51a+51b)−(51c+51d)} DCy={(51a+51c)−(51b+51d)} DCz=(51a+51b+51c+51d) そして、得られたDCx,DCy,DCzの各値を加速
度換算してX軸方向の加速度αx,Y軸方向の加速度α
y,Z軸方向の加速度αzを求めることができる。DCx = {(51a + 51b) − (51c + 51d)} DCy = {(51a + 51c) − (51b + 51d)} DCz = (51a + 51b + 51c + 51d) Then, the obtained DCx, DCy, and DCz values are acceleration-converted to the X-axis. Acceleration αx in the direction, acceleration α in the Y-axis direction
The acceleration αz in the y- and Z-axis directions can be obtained.
【0064】上記した本発明の角速度/加速度兼用セン
サ50は、とくに、加速度検出用として4個の振動検出
部材16a〜16dの各出力からDC変化分を求めるた
めのDC変化分生成手段を追加するだけで、4個の振動
発生部材15a〜15dを駆動させた状態で、角速度と
加速度とを兼用して検出することができる。The above-described angular velocity / acceleration combined sensor 50 of the present invention particularly includes a DC change generation means for obtaining a DC change from each output of the four vibration detecting members 16a to 16d for detecting acceleration. Only when the four vibration generating members 15a to 15d are driven, the angular velocity and the acceleration can be detected together.
【0065】次に、本発明に係る角速度/加速度兼用セ
ンサの変形例について簡略に説明する。この変形例の場
合には、先に図1,図5に示した角速度センサ10,2
0の技術的思想と、先に図6,図7に示した加速度セン
サ30,40の技術的思想とを組み合わせたものであ
る。Next, a modification of the angular velocity / acceleration sensor according to the present invention will be briefly described. In the case of this modification, the angular velocity sensors 10 and 2 previously shown in FIGS.
0 and the technical ideas of the acceleration sensors 30 and 40 previously shown in FIGS. 6 and 7.
【0066】即ち、先に図1,図5に示した角速度セン
サ10,20は、4本のアーム部(13c1〜13c
4),(21b1〜21b4)上にそれぞれ膜付けした
4個の振動発生部材(15a〜15d),(22a〜2
2d)を駆動させた時には、角速度センサ10,20と
して機能し、4個の振動発生部材(15a〜15d),
(22a〜22d)を駆動させない非駆動時には加速度
センサ30,40と等価となるので、図2(B),図3
(B)に示したように、振動発生部材(15a〜15
d),(22a〜22d)の上電極と下電極との間に角
速度検出と加速度検出とを切り換えるための切り換え手
段(スィッチ)SWを設けることにより、同じ構造体で
角速度/加速度兼用センサとしても用いることも可能で
ある。That is, the angular velocity sensors 10 and 20 shown in FIGS. 1 and 5 have four arms (13c1 to 13c).
4), four vibration generating members (15a to 15d) and (22a to 2b) film-coated on (21b1 to 21b4), respectively.
When 2d) is driven, it functions as the angular velocity sensors 10 and 20, and functions as four vibration generating members (15a to 15d),
3A and 3B are equivalent to the acceleration sensors 30 and 40 at the time of non-driving without driving (22a to 22d).
As shown in (B), the vibration generating members (15a to 15a)
d), (22a to 22d) By providing a switching means (switch) SW for switching between angular velocity detection and acceleration detection between the upper electrode and the lower electrode, the same structure can be used as an angular velocity / acceleration combined sensor. It is also possible to use.
【0067】[0067]
【発明の効果】以上詳述した本発明に係る角速度セン
サ、加速度センサ及び角速度/加速度兼用センサにおい
て、請求項1記載の角速度センサによると、とくに、略
一定周期の電圧を印加して振動子の中央部位に形成した
重り部を4本の捩りバネ部及び4本のアーム部を介して
振動させるために、4本のアーム部にそれぞれ一体的に
設けた4個の振動発生部材と、角速度が加わった時に重
り部に加わるコリオリ力を検出して角速度を求めるため
に、4本の捩じりバネ部にそれぞれ一体的に設けた4個
の振動検出部材とを備えているので、4個の振動検出部
材の各出力を組み合わせて加減算することで、X軸方向
及びY軸方向の角速度を高感度に検出することができ、
しかも、構造が非常に簡単で、通常の半導体製造プロセ
スで作製することが可能なので、低コスト化が可能であ
る。According to the angular velocity sensor, acceleration sensor and combined angular velocity / acceleration sensor of the present invention described in detail above, according to the angular velocity sensor of the first aspect, in particular, a voltage of a substantially constant period is applied to the vibrator to apply a voltage to the vibrator. In order to vibrate the weight formed at the central portion through the four torsion springs and the four arms, four vibration generating members integrally provided on the four arms, respectively, and an angular velocity In order to detect the Coriolis force applied to the weight when applied, and to obtain the angular velocity, four torsion springs are provided with four vibration detecting members integrally provided, respectively. By adding and subtracting the outputs of the vibration detection members in combination, the angular velocities in the X-axis direction and the Y-axis direction can be detected with high sensitivity.
Moreover, the structure is very simple, and it can be manufactured by a normal semiconductor manufacturing process, so that the cost can be reduced.
【0068】また、請求項2記載の加速度センサによる
と、とくに、振動子の中央部位に形成した重り部を4本
の捩りバネ部及び4本のアーム部を介して揺動可能に支
持した際、加速度が加わった時に重り部に加わる力を検
出して加速度を求めるために、4本の捩じりバネ部にそ
れぞれ一体的に設けた4個の振動検出部材を備えている
ので、4個の振動検出部材の各出力を組み合わせて加減
算することで、X軸方向及びY軸方向並びにZ軸方向の
加速度を高感度に検出することができ、しかも、構造が
非常に簡単で、通常の半導体製造プロセスで作製するこ
とが可能なので、低コスト化も可能である。According to the acceleration sensor of the second aspect, particularly, when the weight formed at the central portion of the vibrator is swingably supported via the four torsion springs and the four arms. In order to obtain the acceleration by detecting the force applied to the weight portion when the acceleration is applied, the four torsion spring portions are provided with four vibration detecting members integrally provided, respectively. By adding and subtracting the outputs of the respective vibration detecting members, the acceleration in the X-axis direction, the Y-axis direction, and the Z-axis direction can be detected with high sensitivity. Since it can be manufactured by a manufacturing process, cost reduction is also possible.
【0069】また、請求項3記載の角速度/加速度兼用
センサによると、上記した請求項1記載の角速度センサ
の構造を適用し、とくに、加速度検出用として4個の振
動検出部材の各出力からDC変化分を求めるためのDC
変化分生成手段を追加するだけで、4個の振動発生部材
を駆動させた状態で、角速度と加速度とを兼用して検出
することができる。According to a third aspect of the present invention, the structure of the angular velocity sensor according to the first aspect is applied, and in particular, a DC signal is output from each output of the four vibration detecting members for detecting the acceleration. DC to find the change
By simply adding the change generation means, it is possible to detect both the angular velocity and the acceleration while driving the four vibration generating members.
【0070】また、請求項4記載の角速度/加速度兼用
センサによると、上記した請求項1記載の角速度センサ
の構造を適用し、更に、角速度検出時には4個の振動発
生部材を駆動する一方、加速度検出時には4個の振動発
生部材を非駆動とするための切り換え手段を備えたの
で、請求項1記載と同様の効果が得られる上で、使い勝
手の良い角速度/加速度兼用センサを提供できる。Further, according to the angular velocity / acceleration combined sensor according to the fourth aspect, the structure of the angular velocity sensor according to the first aspect is applied. Further, when the angular velocity is detected, the four vibration generating members are driven while the acceleration is detected. Since the switching means for non-driving the four vibration generating members at the time of detection is provided, the same effects as those of the first aspect can be obtained, and a convenient angular velocity / acceleration sensor can be provided.
【図1】本発明に係る角速度センサを示した斜視図であ
る。FIG. 1 is a perspective view showing an angular velocity sensor according to the present invention.
【図2】図1に示した振動部材にSi基板を用いた時
に、振動部材に形成した4本の捩じりバネ部上及び4本
のアーム部上にそれぞれ膜付けした振動発生部材及び振
動検出部材を拡大して示した断面図である。FIG. 2 illustrates a vibration generating member and a vibration film formed on four torsion spring portions and four arm portions formed on the vibration member when a Si substrate is used as the vibration member illustrated in FIG. It is sectional drawing which expanded and showed the detection member.
【図3】図1に示した振動部材に圧電結晶材料基板を用
いた時に、振動部材に形成した4本の捩じりバネ部上及
び4本のアーム部上にそれぞれ膜付けした振動発生部材
及び振動検出部材を拡大して示した断面図である。FIG. 3 is a diagram illustrating a vibration generating member in which a piezoelectric crystal material substrate is used as the vibration member shown in FIG. 1, and a film is formed on each of four torsion springs and four arms formed on the vibration member; FIG. 3 is an enlarged cross-sectional view of a vibration detection member.
【図4】本発明に係る角速度センサにおいて、振動子の
動作を説明するために模式的に示した図である。FIG. 4 is a diagram schematically illustrating an operation of a vibrator in the angular velocity sensor according to the present invention.
【図5】本発明の変形例の角速度センサを示した斜視図
である。FIG. 5 is a perspective view showing an angular velocity sensor according to a modification of the present invention.
【図6】本発明に係る加速度センサを示した斜視図であ
る。FIG. 6 is a perspective view showing an acceleration sensor according to the present invention.
【図7】本発明に係る加速度センサにおいて、振動子の
動作を説明するために模式的に示した図である。FIG. 7 is a diagram schematically illustrating an operation of a vibrator in the acceleration sensor according to the present invention.
【図8】本発明の変形例の加速度センサを示した斜視図
である。FIG. 8 is a perspective view showing an acceleration sensor according to a modification of the present invention.
【図9】本発明に係る角速度/加速度兼用センサを説明
するためのブロック図である。FIG. 9 is a block diagram illustrating an angular velocity / acceleration combined sensor according to the present invention.
【図10】本発明に係る角速度/加速度兼用センサにお
いて、振動発生部材に正弦波を印加した状態で加速度を
検出する動作を説明するための図である。FIG. 10 is a diagram for explaining an operation of detecting acceleration while applying a sine wave to the vibration generating member in the angular velocity / acceleration combined sensor according to the present invention.
【図11】従来の加速度センサを分解して示した分解斜
視図である。FIG. 11 is an exploded perspective view showing a conventional acceleration sensor in an exploded manner.
【図12】従来の加速度センサの動作を説明するための
図である。FIG. 12 is a diagram for explaining the operation of a conventional acceleration sensor.
10…本発明の角速度センサ、11…固定部材、11
a,11b…側面固定部、11c…凹部、12…振動
子、13…振動部材、13a…重り取付部、13b1〜
13b4…4本の捩じりバネ部、13c1〜13c4…
4本のアーム部、15a〜15d…振動発生部材、16
a〜16d…振動検出部材、20…本発明の変形例の角
速度センサ、21…枠体、21a…固定枠部、21a
1,21a2…側面固定部、21b1〜21b4…4本
のアーム部、21c1〜21c4…4本の捩じりバネ
部、22a〜22d…振動発生部材、23a〜23d…
振動検出部材、30…本発明の加速度センサ、40…本
発明の変形例の加速度センサ、50…角速度/加速度兼
用センサ、51A〜51D…減算器、52A〜52D…
HPF(ハイパスフィルタ)、53A〜53D…位相調
整器、54…加減算器。10: angular velocity sensor of the present invention, 11: fixing member, 11
a, 11b: side surface fixing portion, 11c: concave portion, 12: vibrator, 13: vibrating member, 13a: weight mounting portion, 13b1
13b4... Four torsion springs, 13c1 to 13c4.
Four arms, 15a to 15d: vibration generating member, 16
a to 16d: vibration detection member, 20: angular velocity sensor of a modified example of the present invention, 21: frame body, 21a: fixed frame portion, 21a
1, 21a2: Side fixing portion, 21b1 to 21b4, 4 arm portions, 21c1 to 21c4, 4 torsion spring portions, 22a to 22d, vibration generating members, 23a to 23d,
Vibration detection member, 30: Acceleration sensor of the present invention, 40: Acceleration sensor of a modification of the present invention, 50: Angular velocity / acceleration combined sensor, 51A to 51D: Subtractor, 52A to 52D ...
HPF (high-pass filter), 53A to 53D: phase adjuster, 54: adder / subtractor.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 41/08 H01L 41/08 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 41/08 H01L 41/08 Z
Claims (4)
Z軸を仮に設定し、重心が3軸の交差点を通るZ軸上に
略位置するように重り部を設け、この重り部の上方部位
から互いに対向して2対で合計4本の捩りバネ部をX軸
とY軸とに対して略対称で且つX軸と略平行に外側に向
かってそれぞれ延出し、且つ、前記4本の捩りバネ部の
延出した各先端部位から合計で4本のアーム部をY軸と
X軸とに対して略対称で且つY軸と略平行に外側に向か
ってそれぞれ延出し、更に、前記4本のアーム部の延出
した各先端部位を前記固定部材の互いに対向する側面に
それぞれ固定した振動子と、 略一定周期の電圧を印加して前記重り部を前記4本の捩
りバネ部及び前記4本のアーム部を介して振動させるた
めに、前記4本のアーム部にそれぞれ一体的に設けた4
個の振動発生部材と、 角速度が加わった時に前記重り部に加わるコリオリ力を
検出して角速度を求めるために、前記4本の捩じりバネ
部にそれぞれ一体的に設けた4個の振動検出部材とを備
え、 角速度検出時に前記4個の振動発生部材を駆動させて、
前記4個の振動検出部材の各出力を組み合わせて加減算
することで、X軸方向及びY軸方向の角速度を検出する
ことを特徴とする角速度センサ。1. A fixed member serving as a base, and an XY in a three-dimensional rectangular coordinate space at a central portion in the fixed member.
A Z-axis is temporarily set, and a weight portion is provided so that the center of gravity is substantially located on the Z-axis passing through the intersection of the three axes. A total of four torsion spring portions are provided in two pairs facing each other from above the weight portion. Extend outwardly substantially symmetrically with respect to the X-axis and the Y-axis and substantially parallel to the X-axis, and a total of four from each of the extended tip portions of the four torsion spring portions. The arm portions extend outwardly substantially symmetrically with respect to the Y-axis and the X-axis and substantially parallel to the Y-axis, respectively. Further, each of the extended end portions of the four arm portions is connected to the fixing member. Vibrators fixed to the opposing side surfaces, and the four vibrators for applying a voltage having a substantially constant period to vibrate the weight portion through the four torsion spring portions and the four arm portions. 4 provided integrally with each arm
And four vibration detecting members provided integrally with the four torsion spring portions, respectively, in order to detect the Coriolis force applied to the weight portion when the angular velocity is applied and to obtain the angular speed. And driving the four vibration generating members when detecting the angular velocity,
An angular velocity sensor for detecting the angular velocity in the X-axis direction and the Y-axis direction by adding and subtracting the outputs of the four vibration detection members in combination.
Z軸を仮に設定し、重心が3軸の交差点を通るZ軸上に
略位置するように重り部を設け、この重り部の上方部位
から互いに対向して2対で合計4本の捩りバネ部をX軸
とY軸とに対して略対称で且つX軸と略平行に外側に向
かってそれぞれ延出し、且つ、前記4本の捩りバネ部の
延出した各先端部位から合計で4本のアーム部をY軸と
X軸とに対して略対称で且つY軸と略平行に外側に向か
ってそれぞれ延出し、更に、前記4本のアーム部の延出
した各先端部位を前記固定部材の互いに対向する側面に
それぞれ固定した振動子と、 加速度が加わった時に前記重り部に加わる力を検出して
加速度を求めるために、前記4本の捩じりバネ部にそれ
ぞれ一体的に設けた4個の振動検出部材とを備え、 前記4個の振動検出部材の各出力を組み合わせて加減算
することで、X軸方向及びY軸方向並びにZ軸方向の加
速度を検出することを特徴とする加速度センサ。2. A fixed member serving as a base, and XY in a three-dimensional orthogonal coordinate space provided at a central portion in the fixed member.
A Z-axis is temporarily set, and a weight portion is provided so that the center of gravity is substantially located on the Z-axis passing through the intersection of the three axes. A total of four torsion spring portions are provided in two pairs facing each other from above the weight portion. Extend outwardly substantially symmetrically with respect to the X-axis and the Y-axis and substantially parallel to the X-axis, and a total of four from each of the extended tip portions of the four torsion spring portions. The arm portions extend outwardly substantially symmetrically with respect to the Y-axis and the X-axis and substantially parallel to the Y-axis, respectively. Further, each of the extended end portions of the four arm portions is connected to the fixing member. Vibrators respectively fixed to opposing side surfaces, and four torsional spring portions provided integrally with the four torsion spring portions to detect acceleration applied to the weight portion when acceleration is applied and to obtain acceleration. And a combination of the outputs of the four vibration detecting members. By subtraction, the acceleration sensor and detects the acceleration in the X-axis direction and the Y-axis direction and Z axis direction.
Z軸を仮に設定し、重心が3軸の交差点を通るZ軸上に
略位置するように重り部を設け、この重り部の上方部位
から互いに対向して2対で合計4本の捩りバネ部をX軸
とY軸とに対して略対称で且つX軸と略平行に外側に向
かってそれぞれ延出し、且つ、前記4本の捩りバネ部の
延出した各先端部位から合計で4本のアーム部をY軸と
X軸とに対して略対称で且つY軸と略平行に外側に向か
ってそれぞれ延出し、更に、前記4本のアーム部の延出
した各先端部位を前記固定部材の互いに対向する側面に
それぞれ固定した振動子と、 略一定周期の電圧を印加して前記重り部を前記4本の捩
りバネ部及び前記4本のアーム部を介して振動させるた
めに、前記4本のアーム部にそれぞれ一体的に設けた4
個の振動発生部材と、 角速度が加わった時に前記重り部に加わるコリオリ力を
検出して角速度を求める一方、加速度が加わった時に前
記重り部に加わる力を検出して加速度を求めるために、
前記4本の捩じりバネ部にそれぞれ一体的に設けた4個
の振動検出部材と、 前記4個の振動検出部材の各出力からDC変化分をそれ
ぞれ得るDC変化分生成手段とを備え、 前記4個の振動発生部材を駆動させた状態で角速度を検
出する場合には、前記4個の振動検出部材の各出力を組
み合わせて加減算することで、X軸方向及びY軸方向の
角速度を検出する一方、前記4個の振動発生部材を駆動
させた状態で加速度を検出する場合には、前記DC変化
分生成手段の各出力を組み合わせて加減算することで、
X軸方向及びY軸方向並びにZ軸方向の加速度を検出す
ることを特徴とする角速度/加速度兼用センサ。3. A fixed member serving as a base, and XY in a three-dimensional orthogonal coordinate space at a central portion in the fixed member.
A Z-axis is temporarily set, and a weight portion is provided so that the center of gravity is substantially located on the Z-axis passing through the intersection of the three axes. A total of four torsion spring portions are provided in two pairs facing each other from above the weight portion. Extend outwardly substantially symmetrically with respect to the X-axis and the Y-axis and substantially parallel to the X-axis, and a total of four from each of the extended tip portions of the four torsion spring portions. The arm portions extend outwardly substantially symmetrically with respect to the Y-axis and the X-axis and substantially parallel to the Y-axis, respectively. Further, each of the extended end portions of the four arm portions is connected to the fixing member. Vibrators fixed to the opposing side surfaces, and the four vibrators for applying a voltage having a substantially constant period to vibrate the weight portion through the four torsion spring portions and the four arm portions. 4 provided integrally with each arm
In order to obtain the angular velocity by detecting the Coriolis force applied to the weight portion when the angular velocity is applied, and to obtain the acceleration by detecting the force applied to the weight portion when the acceleration is applied,
Four vibration detecting members provided integrally with the four torsion spring portions, and DC change generating means for obtaining a DC change from each output of the four vibration detecting members, When the angular velocities are detected while the four vibration generating members are driven, the angular velocities in the X-axis direction and the Y-axis direction are detected by adding and subtracting the outputs of the four vibration detecting members in combination. On the other hand, when the acceleration is detected in a state where the four vibration generating members are driven, by adding and subtracting the outputs of the DC change generation means in combination,
An angular velocity / acceleration sensor for detecting accelerations in an X-axis direction, a Y-axis direction, and a Z-axis direction.
Z軸を仮に設定し、重心が3軸の交差点を通るZ軸上に
略位置するように重り部を設け、この重り部の上方部位
から互いに対向して2対で合計4本の捩りバネ部をX軸
とY軸とに対して略対称で且つX軸と略平行に外側に向
かってそれぞれ延出し、且つ、前記4本の捩りバネ部の
延出した各先端部位から合計で4本のアーム部をY軸と
X軸とに対して略対称で且つY軸と略平行に外側に向か
ってそれぞれ延出し、更に、前記4本のアーム部の延出
した各先端部位を前記固定部材の互いに対向する側面に
それぞれ固定した振動子と、 略一定周期の電圧を印加して前記重り部を前記4本の捩
りバネ部及び前記4本のアーム部を介して振動させるた
めに、前記4本のアーム部にそれぞれ一体的に設けた4
個の振動発生部材と、 角速度が加わった時に前記重り部に加わるコリオリ力を
検出して角速度を求める一方、加速度が加わった時に前
記重り部に加わる力を検出して加速度を求めるために、
前記4本の捩じりバネ部にそれぞれ一体的に設けた4個
の振動検出部材と、 角速度検出時には前記4個の振動発生部材を駆動させ、
加速度検出時には前記4個の振動発生部材を非駆動とす
るための切り換え手段とを備え、 前記4個の振動検出部材の各出力を組み合わせて加減算
することで、X軸方向及びY軸方向の角速度を検出し、
又は、X軸方向及びY軸方向並びにZ軸方向の加速度を
検出することを特徴とする角速度/加速度兼用センサ。4. A fixed member serving as a base, and an XY in a three-dimensional orthogonal coordinate space at a central portion in the fixed member.
A Z-axis is temporarily set, and a weight portion is provided so that the center of gravity is substantially located on the Z-axis passing through the intersection of the three axes. A total of four torsion spring portions are provided in two pairs facing each other from above the weight portion. Extend outwardly substantially symmetrically with respect to the X-axis and the Y-axis and substantially parallel to the X-axis, and a total of four from each of the extended tip portions of the four torsion spring portions. The arm portions extend outwardly substantially symmetrically with respect to the Y-axis and the X-axis and substantially parallel to the Y-axis, respectively. Further, each of the extended end portions of the four arm portions is connected to the fixing member. Vibrators fixed to the opposing side surfaces, and the four vibrators for applying a voltage having a substantially constant period to vibrate the weight portion through the four torsion spring portions and the four arm portions. 4 provided integrally with each arm
In order to obtain the angular velocity by detecting the Coriolis force applied to the weight portion when the angular velocity is applied, and to obtain the acceleration by detecting the force applied to the weight portion when the acceleration is applied,
Four vibration detecting members provided integrally with the four torsion spring portions, and the four vibration generating members are driven when detecting the angular velocity,
Switching means for non-driving the four vibration generating members at the time of detecting the acceleration, by adding and subtracting the outputs of the four vibration detecting members in combination to obtain angular velocities in the X-axis direction and the Y-axis direction; To detect
Alternatively, the angular velocity / acceleration combined sensor detects accelerations in the X-axis direction, the Y-axis direction, and the Z-axis direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001040447A JP2002243450A (en) | 2001-02-16 | 2001-02-16 | Angular velocity sensor, acceleration sensor and angular velocity/acceleration sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001040447A JP2002243450A (en) | 2001-02-16 | 2001-02-16 | Angular velocity sensor, acceleration sensor and angular velocity/acceleration sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002243450A true JP2002243450A (en) | 2002-08-28 |
Family
ID=18903051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001040447A Pending JP2002243450A (en) | 2001-02-16 | 2001-02-16 | Angular velocity sensor, acceleration sensor and angular velocity/acceleration sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002243450A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005085876A1 (en) * | 2004-03-02 | 2005-09-15 | Matsushita Electric Industrial Co., Ltd. | Vibration piezoelectric acceleration sensor |
JP2005300493A (en) * | 2004-04-16 | 2005-10-27 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor displacement-detecting element and detector |
KR100816049B1 (en) | 2005-09-07 | 2008-03-21 | 가부시끼가이샤 히다치 세이사꾸쇼 | Combined sensor and method for producing the same |
JP2008203070A (en) * | 2007-02-20 | 2008-09-04 | Matsushita Electric Ind Co Ltd | Composite sensor |
JP2009222475A (en) * | 2008-03-14 | 2009-10-01 | Panasonic Corp | Compound sensor |
WO2014175521A1 (en) * | 2013-04-24 | 2014-10-30 | 부산대학교 산학협력단 | Accelerometer using piezoresistor |
KR101461277B1 (en) | 2012-09-21 | 2014-11-12 | 삼성전기주식회사 | Micro Electro Mechanical Systems Component |
KR101462781B1 (en) * | 2013-05-13 | 2014-11-21 | 부산대학교 산학협력단 | Accelerometer for measurement of impact using piezoresistor |
-
2001
- 2001-02-16 JP JP2001040447A patent/JP2002243450A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005085876A1 (en) * | 2004-03-02 | 2005-09-15 | Matsushita Electric Industrial Co., Ltd. | Vibration piezoelectric acceleration sensor |
US7587941B2 (en) | 2004-03-02 | 2009-09-15 | Panasonic Corporation | Vibration piezoelectric acceleration sensor |
JP2005300493A (en) * | 2004-04-16 | 2005-10-27 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor displacement-detecting element and detector |
KR100816049B1 (en) | 2005-09-07 | 2008-03-21 | 가부시끼가이샤 히다치 세이사꾸쇼 | Combined sensor and method for producing the same |
JP2008203070A (en) * | 2007-02-20 | 2008-09-04 | Matsushita Electric Ind Co Ltd | Composite sensor |
JP2009222475A (en) * | 2008-03-14 | 2009-10-01 | Panasonic Corp | Compound sensor |
KR101461277B1 (en) | 2012-09-21 | 2014-11-12 | 삼성전기주식회사 | Micro Electro Mechanical Systems Component |
WO2014175521A1 (en) * | 2013-04-24 | 2014-10-30 | 부산대학교 산학협력단 | Accelerometer using piezoresistor |
KR101462781B1 (en) * | 2013-05-13 | 2014-11-21 | 부산대학교 산학협력단 | Accelerometer for measurement of impact using piezoresistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8096181B2 (en) | Inertial sensor | |
US6848304B2 (en) | Six degree-of-freedom micro-machined multi-sensor | |
JP6300395B2 (en) | Angular velocity sensor with quadrature error compensation | |
US5780740A (en) | Vibratory structure, method for controlling natural frequency thereof, and actuator, sensor, accelerator, gyroscope and gyroscope natural frequency controlling method using vibratory structure | |
EP1245928B1 (en) | Gyroscopic apparatus and electronic apparatus using the same | |
JP6260706B2 (en) | Gyroscope structure and gyroscope with improved quadrature correction | |
JP5205725B2 (en) | Angular velocity sensor | |
US6539801B1 (en) | Z-axis vibratory gyroscope | |
JP2008514968A (en) | Rotational speed sensor | |
KR20090052832A (en) | Rate-of-rotation sensor having a coupling bar | |
JP2006525514A (en) | Microfabricated multi-sensor for uniaxial acceleration detection and biaxial angular velocity detection | |
JP3307906B2 (en) | Micro gyroscope | |
JP2000161962A (en) | Displacement sensor and its manufacture | |
JP2006215016A (en) | Sensor having both functions of gyroscope and accelerometer | |
JP4911690B2 (en) | Vibrating gyro vibrator | |
Baranov et al. | A novel multiple-axis MEMS gyroscope-accelerometer with decoupling frames | |
JP2002243450A (en) | Angular velocity sensor, acceleration sensor and angular velocity/acceleration sensor | |
JP2010008300A (en) | Inertia sensor | |
JP2012242240A (en) | Gyro sensor, electronic apparatus | |
JP4983107B2 (en) | Inertial sensor and method of manufacturing inertial sensor | |
JP3323361B2 (en) | Vibratory gyroscope | |
JP4466283B2 (en) | Gyro sensor | |
JP2012112819A (en) | Vibration gyro | |
JP2009192403A (en) | Angular velocity and acceleration detector | |
JP3873266B2 (en) | 3D angular velocity sensor |