JP2002242830A - Reciprocation type compressor having discharge pulsation reduction structure - Google Patents

Reciprocation type compressor having discharge pulsation reduction structure

Info

Publication number
JP2002242830A
JP2002242830A JP2001372993A JP2001372993A JP2002242830A JP 2002242830 A JP2002242830 A JP 2002242830A JP 2001372993 A JP2001372993 A JP 2001372993A JP 2001372993 A JP2001372993 A JP 2001372993A JP 2002242830 A JP2002242830 A JP 2002242830A
Authority
JP
Japan
Prior art keywords
refrigerant
cross
discharge
flow path
refrigerant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001372993A
Other languages
Japanese (ja)
Inventor
Shoton Jo
承敦 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Gwangju Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Gwangju Electronics Co Ltd filed Critical Samsung Gwangju Electronics Co Ltd
Publication of JP2002242830A publication Critical patent/JP2002242830A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • F04B39/0061Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes using muffler volumes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reciprocation type compressor capable of reducing a discharge pulsation without reducing a compression efficiency. SOLUTION: The reciprocation type compressor is provided with a pair of discharge mufflers 133a, 133b provided at a lower part 130 of a cylinder block; a pair of cooling medium flow passages 137, 138 communicating the respective discharge mufflers 133a, 133b with a cooling medium discharge chamber 62 of a cylinder head 60; a pair of muffler covers 134a, 134b sealingly closing a pair of discharge mufflers 133a, 133b; a connection pipe 136 for connecting a pair of muffler covers 134a, 134b each other; and a cooling medium discharge pipe 35 connected to either of a pair of muffler coves 134a, 134b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は吐出脈動低減構造を
持つ往復動式圧縮機に係り、さらに詳しくは冷媒吐出時
に生ずる脈動を低減できる吐出脈動低減構造を持つ往復
動式圧縮機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reciprocating compressor having a discharge pulsation reducing structure, and more particularly to a reciprocating compressor having a discharge pulsation reducing structure capable of reducing pulsation generated when refrigerant is discharged.

【0002】[0002]

【従来の技術】一般に、往復動式圧縮機は冷蔵庫などの
冷凍装置において冷媒を圧縮するために広く使われてい
る。
2. Description of the Related Art Generally, a reciprocating compressor is widely used for compressing a refrigerant in a refrigerating apparatus such as a refrigerator.

【0003】図1は一般的な往復動式圧縮機の断面図で
ある。図1に示される通り、一般的な往復動式圧縮機
は、上部シェル11及び下部シェル12とからなるケー
ス10と、該ケース10の内部下側に配され冷媒を圧縮
するための部品で構成された圧縮機構部と、この圧縮機
構部を駆動する電動機構部20とを備える。
FIG. 1 is a sectional view of a general reciprocating compressor. As shown in FIG. 1, a general reciprocating compressor includes a case 10 including an upper shell 11 and a lower shell 12, and a component for compressing a refrigerant disposed inside the case 10 at a lower side. And a motor mechanism 20 for driving the compression mechanism.

【0004】前記電動機構部20は固定子21と、該固
定子21との電磁気的相互作用により回転する回転子2
2と、該回転子22の中心部に圧設されたクランクシャ
フト23とからなる。
The electric mechanism 20 includes a stator 21 and a rotor 2 which rotates by electromagnetic interaction with the stator 21.
2 and a crankshaft 23 press-fitted at the center of the rotor 22.

【0005】前記圧縮機構部は、ケース10の内部下側
に設けられれたシリンダーブロック30と、クランクシ
ャフト23の下部に偏心結合された連接棒40と、該連
接棒40の先端に結合されシリンダーブロック30に形
成された圧縮室31内で直線に往復動するピストン50
と、シリンダーブロック30の前面32(図2参照)側
に設けられ圧縮室31を密閉するシリンダーヘッド60
とから構成される。シリンダーヘッド60には冷媒吸入
室61と冷媒吐出室62が上下に画設される。シリンダ
ーヘッド60とシリンダーブロック30の前面32の間
にはバルブ組立体70が配設される。このバルブ組立体
70は冷媒吸入室61及び冷媒吐出室62と圧縮室31
との間における冷媒の流れを断続する。
The compression mechanism includes a cylinder block 30 provided on the lower side of the inside of the case 10, a connecting rod 40 eccentrically connected to a lower portion of the crankshaft 23, and a cylinder block connected to the tip of the connecting rod 40. piston 50 which reciprocates in a straight line in the compression chamber 31 formed in the 30
And a cylinder head 60 provided on the front surface 32 (see FIG. 2) side of the cylinder block 30 to seal the compression chamber 31.
It is composed of A refrigerant suction chamber 61 and a refrigerant discharge chamber 62 are vertically defined in the cylinder head 60. A valve assembly 70 is provided between the cylinder head 60 and the front surface 32 of the cylinder block 30. The valve assembly 70 includes a refrigerant suction chamber 61, a refrigerant discharge chamber 62, and a compression chamber 31.
And interrupts the flow of the refrigerant between them.

【0006】一方、シリンダーヘッド60の上部には冷
媒吸入室61と連通された吸入マフラー80が設置され
る。この吸入マフラー80には凝縮機(図示せず)から
冷媒が吸い込まれる冷媒吸入管81が連結される。
On the other hand, a suction muffler 80 connected to the refrigerant suction chamber 61 is provided above the cylinder head 60. The suction muffler 80 is connected to a refrigerant suction pipe 81 through which a refrigerant is sucked from a condenser (not shown).

【0007】図2は図1の圧縮機において圧縮機構部の
一部を示した分解斜視図、図3は図2の圧縮機構部の一
部を切開して示した底面図である。図2及び図3に示し
た通り、シリンダーブロック30の底面には吐出マフラ
ー33が突設され、この吐出マフラー33はマフラーカ
バー34により密閉される。このマフラーカバー34に
は凝縮機(図示せず)に冷媒を供給する流路になる冷媒
吐出管35が連結される。シリンダーブロック30の前
面32には冷媒流路37により吐出マフラー33と連通
された冷媒吐出孔32aが形成される。
FIG. 2 is an exploded perspective view showing a part of the compression mechanism in the compressor shown in FIG. 1, and FIG. 3 is a bottom view showing a part of the compression mechanism shown in FIG. As shown in FIGS. 2 and 3, a discharge muffler 33 protrudes from the bottom surface of the cylinder block 30, and the discharge muffler 33 is sealed by a muffler cover 34. A refrigerant discharge pipe 35 serving as a flow path for supplying a refrigerant to a condenser (not shown) is connected to the muffler cover 34. A refrigerant discharge hole 32 a is formed in the front surface 32 of the cylinder block 30 and communicates with the discharge muffler 33 through a refrigerant flow path 37.

【0008】一方、バルブ組立体70は吸入バルブ71
aが形成された吸入バルブプレート71と、吐出バルブ
72aが形成された吐出バルブプレート72を備える。
吸入バルブ71aは圧縮室31とシリンダーヘッド60
の冷媒吸入室61との間における冷媒の流れを断続し、
吐出バルブ72aは圧縮室31とシリンダーヘッド60
の冷媒吐出室62との間における冷媒の流れを断続す
る。
On the other hand, the valve assembly 70 includes a suction valve 71
a, and a discharge valve plate 72 on which a discharge valve 72a is formed.
The suction valve 71a is connected to the compression chamber 31 and the cylinder head 60.
Interrupts the flow of refrigerant between the refrigerant suction chamber 61 and
The discharge valve 72a is connected to the compression chamber 31 and the cylinder head 60.
The flow of the refrigerant between the refrigerant discharge chamber 62 and the refrigerant discharge chamber 62 is interrupted.

【0009】前述したような構成において、圧縮機に流
入した冷媒がピストン50により圧縮されてから吐出さ
れる過程は次の通りである。
In the above-described configuration, the process of discharging the refrigerant flowing into the compressor after being compressed by the piston 50 is as follows.

【0010】まず、クランクシャフト23の回転に伴っ
てピストン50が圧縮室31内を下死点側(図1におい
て左側)に退くと、蒸発機(図示せず)から冷媒吸入管8
1に低温低圧状態の冷媒が流入する。冷媒は吸入マフラ
ー80とシリンダーヘッド60の冷媒吸入室61を順次
に通過した後圧縮室31に流入する。その後、クランク
シャフト23がさらに回転してピストン50が圧縮室3
1内を上死点側(図1において右側)に前進すれば、冷媒
は圧縮されて高温高圧状態となる。圧縮された冷媒はシ
リンダーヘッド60の冷媒吐出室62にしばらく滞留し
た後、シリンダーブロック30の前面32の冷媒吐出孔
32aと冷媒流路37を通じて吐出マフラー33に流入
する。それから、高温高圧の冷媒はマフラーカバー34
と連結された冷媒吐出管36を介して凝縮機(図示せず)
方向に吐き出される。
First, when the piston 50 retreats in the compression chamber 31 to the bottom dead center side (left side in FIG. 1) with the rotation of the crankshaft 23, the refrigerant suction pipe 8 is moved from the evaporator (not shown).
The refrigerant in a low-temperature and low-pressure state flows into 1. The refrigerant sequentially flows through the suction muffler 80 and the refrigerant suction chamber 61 of the cylinder head 60, and then flows into the compression chamber 31. After that, the crankshaft 23 further rotates and the piston 50
When the refrigerant advances toward the top dead center side (the right side in FIG. 1) inside the refrigerant, the refrigerant is compressed to be in a high temperature and high pressure state. The compressed refrigerant stays in the refrigerant discharge chamber 62 of the cylinder head 60 for a while, and then flows into the discharge muffler 33 through the refrigerant discharge holes 32 a in the front surface 32 of the cylinder block 30 and the refrigerant flow path 37. Then, the high-temperature and high-pressure refrigerant is supplied to the muffler cover 34.
(Not shown) through a refrigerant discharge pipe 36 connected to the
It is exhaled in the direction.

【0011】しかし、このような往復動式圧縮機では、
圧縮室31内でピストン50の往復動により冷媒を吸入
圧縮した後吐出するものであるため、冷媒が連続的に吐
出できないことにより吐出脈動が生ずるという問題があ
る。このような冷媒の吐出脈動は圧縮機騷音及び振動の
原因になる。特に、冷凍装置の他の部品の固有振動数に
該当する120Hz〜500Hz付近の低周波数帯域か
ら発生する圧縮機騷音は冷凍装置の他の部品と共振作用
が働くことで冷凍装置全体の騷音及び振動を増やす原因
になる。
However, in such a reciprocating compressor,
Since the refrigerant is sucked and compressed by the reciprocating motion of the piston 50 in the compression chamber 31 and then discharged, there is a problem that the discharge pulsation occurs because the refrigerant cannot be continuously discharged. Such discharge pulsation of the refrigerant causes noise and vibration of the compressor. In particular, compressor noise generated from a low frequency band around 120 Hz to 500 Hz, which corresponds to the natural frequency of other components of the refrigeration system, has a resonance effect with other components of the refrigeration system, and the noise of the entire refrigeration system is reduced. And increase vibration.

【0012】このような冷媒の吐出脈動は吐出された冷
媒の流動抵抗を大きくすることで低減できる。すなわ
ち、シリンダーヘッド60の冷媒吐出室62から吐出マ
フラー33間の冷媒流路37の断面積を小さくしたり、
冷媒流路37の長さを伸ばすことで冷媒の吐出脈動は低
減される。しかし、冷媒流路37の断面積があまり小さ
くなれば、冷媒吐出室62と吐出マフラー33との間に
冷媒が円滑に流れず、そのため圧縮機の圧縮効率が低下
する。また、冷媒流路37はシリンダーブロック30の
内部を貫通して形成されるので、その長さを伸ばすのに
限界がある。
[0012] Such discharge pulsation of the refrigerant can be reduced by increasing the flow resistance of the discharged refrigerant. That is, the cross-sectional area of the refrigerant passage 37 between the refrigerant discharge chamber 62 and the discharge muffler 33 of the cylinder head 60 can be reduced,
By increasing the length of the refrigerant channel 37, the discharge pulsation of the refrigerant is reduced. However, if the cross-sectional area of the refrigerant flow path 37 is too small, the refrigerant does not flow smoothly between the refrigerant discharge chamber 62 and the discharge muffler 33, so that the compression efficiency of the compressor decreases. In addition, since the coolant passage 37 is formed to penetrate the inside of the cylinder block 30, there is a limit in extending the length.

【0013】[0013]

【発明が解決しようとする課題】本発明は前述したよう
な問題点を解決するために案出されたものであって、冷
媒の吐出構造を改善することによって圧縮効率を低下さ
せずに吐出脈動を低減できる吐出脈動低減構造を持つ往
復動式圧縮機を提供するところにその目的がある。
SUMMARY OF THE INVENTION The present invention has been devised in order to solve the above-mentioned problems, and it has been proposed to improve the refrigerant discharge structure without lowering the compression efficiency by reducing the compression efficiency. It is an object of the present invention to provide a reciprocating compressor having a discharge pulsation reducing structure capable of reducing pressure.

【0014】[0014]

【課題を解決するための手段】前述した課題を解決する
ため本出願に係る発明は、シリンダーブロックの下部に
設けられた一対の吐出マフラーと、該一対の吐出マフラ
ーのそれぞれとシリンダーヘッドの冷媒吐出室を連通さ
せる第1及び第2冷媒流路と、前記一対の吐出マフラー
をそれぞれ密閉する一対のマフラーカバーと、該一対の
マフラーカバーを相互に連結する連結管と、前記一対の
マフラーカバーのうち前記第2冷媒流路と連通された側
に連結された冷媒吐出管を含む往復動式圧縮機におい
て、前記第1及び第2冷媒流路は前記冷媒吐出室と連結
された冷媒流入側の断面積より前記吐出マフラーと連結
された冷媒流出側の断面積が小さく形成され、排気量に
基づいて前記第1冷媒流路の冷媒流出側の断面積と、前
記第2冷媒流路の冷媒流出側の断面積と、前記連結管の
断面積との間の比率を変更することにより冷媒の吐出脈
動を低減することを要旨とするものである。
In order to solve the above-mentioned problems, the invention according to the present application provides a pair of discharge mufflers provided at a lower portion of a cylinder block, and a refrigerant discharge of each of the pair of discharge mufflers and a cylinder head. First and second refrigerant flow paths for communicating the chambers, a pair of muffler covers for sealing the pair of discharge mufflers, a connecting pipe for connecting the pair of muffler covers to each other, and a pair of the muffler covers. In a reciprocating compressor including a refrigerant discharge pipe connected to a side communicating with the second refrigerant flow path, the first and second refrigerant flow paths may be cut off at a refrigerant inflow side connected to the refrigerant discharge chamber. The cross-sectional area on the refrigerant outflow side connected to the discharge muffler is formed smaller than the area, and the cross-sectional area on the refrigerant outflow side of the first refrigerant flow path and the cooling area of the second refrigerant flow path are determined based on the displacement. And the cross-sectional area of the outflow side, it is an gist reducing the discharge pulsation of the refrigerant by changing the ratio between the cross-sectional area of the connecting pipe.

【0015】ここで、圧縮機の排気量が3.0ccの場
合、前記第1冷媒流路の冷媒流出側の断面直径と、前記
第2冷媒流路の冷媒流出側の断面直径と、前記連結管の
内径は約2:2:1.8の比率で形成されることが望ま
しい。具体的には、前記第1及び第2冷媒流路のそれぞ
れの前記冷媒流入側の断面直径が6.4mmの場合、前
記第1冷媒流路の前記冷媒流出側の断面直径は2.0m
mであり、前記第2冷媒流路の前記冷媒流出側の断面直
径は2.0mmであり、前記連結管の内径は1.78m
mであることが望ましい。
Here, when the displacement of the compressor is 3.0 cc, the cross-sectional diameter of the first refrigerant flow path on the refrigerant outflow side, the cross-sectional diameter of the second refrigerant flow path on the refrigerant outflow side, and the connection Preferably, the inner diameter of the tube is formed in a ratio of about 2: 2: 1.8. Specifically, when the cross-sectional diameter of each of the first and second refrigerant flow paths on the refrigerant inflow side is 6.4 mm, the cross-sectional diameter of the first refrigerant flow path on the refrigerant outflow side is 2.0 m.
M, and wherein the cross-sectional diameter of the refrigerant outflow side of the second refrigerant flow path is 2.0 mm, the inner diameter of the connecting pipe is 1.78m
m is desirable.

【0016】圧縮機の排気量が3.7〜4.3ccの場
合、前記第1冷媒流路の前記冷媒流出側の断面直径と、
前記第2冷媒流路の冷媒流出側の断面直径と、前記連結
管の内径は約2:3.5:1.8の比率で形成される。
具体的には、前記第1及び第2冷媒流路のそれぞれの前
記冷媒流入側の断面直径が6.4mmの場合、前記第1
冷媒流路の前記冷媒流出側の断面直径は2.0mmであ
り、前記第2冷媒流路の前記冷媒流出側の断面直径は
3.5mmであり、前記連結管の内径は1.78である
ことが望ましい。
When the displacement of the compressor is 3.7 to 4.3 cc, the cross-sectional diameter of the first refrigerant flow path on the refrigerant outflow side;
The cross-sectional diameter of the second refrigerant flow path on the refrigerant outflow side and the inner diameter of the connection pipe are formed in a ratio of about 2: 3.5: 1.8.
Specifically, when the cross-sectional diameter of each of the first and second refrigerant channels on the refrigerant inflow side is 6.4 mm,
The cross-sectional diameter of the refrigerant flow path on the refrigerant outflow side is 2.0 mm, the cross-sectional diameter of the second refrigerant flow path on the refrigerant outflow side is 3.5 mm, and the inner diameter of the connection pipe is 1.78. It is desirable.

【0017】圧縮機の排気量が5.2〜6.2ccの場
合、前記第1冷媒流路の冷媒流出側の断面直径と、前記
第2冷媒流路の冷媒流出側の断面直径と、前記連結管の
内径は約2:3.5:2.2の比率で形成される。具体
的には、前記第1及び第2冷媒流路のそれぞれの前記冷
媒流入側の断面直径が6.4mmの場合、前記第1冷媒
流路の前記冷媒流出側の断面直径は2.0mmであり、
前記第2冷媒流路の前記冷媒流出側の断面直径は3.5
mmであり、前記連結管の内径は2.16mmであるこ
とが望ましい。
When the displacement of the compressor is 5.2 to 6.2 cc, the sectional diameter of the first refrigerant flow path on the refrigerant outflow side, the sectional diameter of the second refrigerant flow path on the refrigerant outflow side, and The inner diameter of the connecting pipe is formed in a ratio of about 2: 3.5: 2.2. Specifically, when the cross-sectional diameter of each of the first and second refrigerant flow paths on the refrigerant inflow side is 6.4 mm, the cross-sectional diameter of the first refrigerant flow path on the refrigerant outflow side is 2.0 mm. Yes,
The cross-sectional diameter of the second refrigerant flow path on the refrigerant outflow side is 3.5.
A mm, the inner diameter of the connecting pipe is preferably a 2.16 mm.

【0018】一方、前記一対のマフラーカバーに挿入さ
れた前記連結管の両端部は前記マフラーカバーの内壁に
向けて所定角度に折り曲げられることが望ましい。
On the other hand, it is preferable that both ends of the connection pipe inserted into the pair of muffler covers are bent at a predetermined angle toward the inner wall of the muffler cover.

【0019】[0019]

【発明の実施の形態】以下、添付した図面を参照して本
発明の望ましい実施例を詳細に説明する。但し、本発明
に係る往復動式圧縮機の構成は、圧縮機構部の一部を除
いて図1に示された一般的な圧縮機の構成とほぼ同一で
あるので、その同じ部分については同一の参照符号を付
し、それに対する詳細な説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the configuration of the reciprocating compressor according to the present invention, since except for some of the compression mechanism portion is substantially identical to the structure of a typical compressor shown in FIG. 1, the same for the same parts thereof And a detailed description thereof will be omitted.

【0020】図4は本発明に係る往復動式圧縮機におい
て、圧縮機の一部を示した分解斜視図である。図4に示
されている通り本発明に係る往復動式圧縮機は、シリン
ダーブロック130と、該シリンダーブロック130の
前面132側に設けられたシリンダーヘッド60と、シ
リンダーブロック130とシリンダーヘッド60との間
に介在するバルブ組立体170を備える。
FIG. 4 is an exploded perspective view showing a part of the compressor in the reciprocating compressor according to the present invention. As shown in FIG. 4, the reciprocating compressor according to the present invention includes a cylinder block 130, a cylinder head 60 provided on the front surface 132 side of the cylinder block 130, and a cylinder block 130 and the cylinder head 60. It has a valve assembly 170 interposed therebetween.

【0021】シリンダーブロック130の前面132に
はシリンダーヘッド60の冷媒吐出室62(図1参照)
と連通された一対の第1及び第2冷媒吐出孔132a、
132bが並んで形成される。シリンダーブロック13
0の底面には一対の第1及び第2吐出マフラー133
a、133b(図4参照)が突設される。
On the front side 132 of the cylinder block 130, a refrigerant discharge chamber 62 of the cylinder head 60 (see FIG. 1).
A pair of first and second refrigerant discharge holes 132a communicated with
132b are formed side by side. Cylinder block 13
0 has a pair of first and second discharge mufflers 133 on the bottom surface.
a, 133b (see FIG. 4) are protruded.

【0022】第1及び第2吐出マフラー133a、13
3bには半球形の第1及び第2マフラーカバー134
a、134bが各々設けられ、第1マフラーカバー13
4aと第2マフラーカバー134bは所定の曲率半径を
持つように円弧状に形成された連結管136により連通
される。第1マフラーカバー134aには凝縮機(図示
せず)に冷媒を供給する流路になる冷媒吐出管135が
連結される。
First and second discharge mufflers 133a, 13
3b is a hemispherical first and second muffler cover 134
a, 134b are respectively provided, and the first muffler cover 13 is provided.
The 4a and the second muffler cover 134b are communicated by a connecting pipe 136 formed in an arc shape so as to have a predetermined radius of curvature. A refrigerant discharge pipe 135 serving as a flow path for supplying a refrigerant to a condenser (not shown) is connected to the first muffler cover 134a.

【0023】図5は図4の圧縮機の一部を切開して示し
た図、図6は図5のI−I線断面図である。図5に示し
た通り、第1冷媒吐出孔132aと第1吐出マフラー1
33aはシリンダーブロック130の内部を貫通して形
成された第1冷媒流路137により、第2冷媒吐出孔1
32bと第2吐出マフラー133bは第2冷媒流路13
8により各々連通される。第1及び第2冷媒流路13
7、138はそれぞれ冷媒流入側137a、138aと
冷媒流出側137b、138bを有しており、冷媒流出
側137b、138bの断面積は冷媒流入側137a、
138aの断面積より小さく形成される。
FIG. 5 is a partially cutaway view of the compressor of FIG. 4, and FIG. 6 is a sectional view taken along the line II of FIG. As shown in FIG. 5, the first refrigerant discharge hole 132a and the first discharge muffler 1
Reference numeral 33a denotes a second refrigerant discharge hole 1 formed by a first refrigerant flow passage 137 formed through the inside of the cylinder block 130.
32b and the second discharge muffler 133b
8, respectively. First and second refrigerant flow paths 13
7,138 Each refrigerant inlet side 137a, 138a and the refrigerant outflow side 137b, have 138b, the refrigerant outlet side 137b, the cross-sectional area of 138b is a refrigerant inflow side 137a,
138a is formed smaller than the cross-sectional area.

【0024】一方、図6に示した通り、連結管136の
両端には第1及び第2マフラーカバー134a、134
bの内壁面向きに挿入され、所定の角度に折り曲げられ
た折曲部136aが形成される。したがって、連結管1
36の両端は第1及び第2マフラーカバー134a、1
34bに折曲部136aの長さ分が挿入されることによ
って、これらマフラーカバー134a、134bでさら
に脈動が発生することを防止する。
On the other hand, as shown in FIG. 6, first and second muffler covers 134a, 134 are provided at both ends of the connecting pipe 136.
The bent portion 136a is inserted toward the inner wall surface b and bent at a predetermined angle. Therefore, connecting pipe 1
Both ends of the first and second muffler covers 134a, 134a
By the length of the bent portion 136a is inserted into 34b, to prevent these muffler cover 134a, further pulsation 134b occurs.

【0025】以上のような構成において、圧縮室131
で圧縮された冷媒はシリンダーヘッド60の冷媒吐出室
62(図1参照)にしばらく滞留した後、第1及び第2
冷媒吐出孔132a、132bを通過して各々第1及び
第2冷媒流路137、138の冷媒流入側137a、1
38aに分散流入する。流入した冷媒は断面積が小さな
冷媒流出側137b、138bを通過して流れる間に吐
出脈動が低減され、第1及び第2吐出マフラー133
a、133bに流れ込む。
In the above configuration, the compression chamber 131
The refrigerant compressed in the first and second refrigerants stays in the refrigerant discharge chamber 62 (see FIG. 1) of the cylinder head 60 for a while,
After passing through the refrigerant discharge holes 132a and 132b, the refrigerant inflow sides 137a and 137a of the first and second refrigerant flow paths 137 and 138, respectively.
38a. The discharged pulsation is reduced while the inflowing refrigerant flows through the refrigerant outflow sides 137b and 138b having a small sectional area, and the first and second discharge mufflers 133 are reduced.
a, 133b.

【0026】その後、第2吐出マフラー133bに流入
した冷媒は連結管136を通過して第1吐出マフラー1
33a方向に流れる間に再び脈動が低減させられる。す
なわち、第2吐出マフラー133b内の冷媒は第1吐出
マフラー133a内の冷媒より移動経路が延びることに
よる流動抵抗の増加し、それにより脈動が低減される。
Thereafter, the refrigerant flowing into the second discharge muffler 133b passes through the connecting pipe 136, and flows through the first discharge muffler 133b.
The pulsation is reduced again while flowing in the direction 33a. That is, the flow resistance of the refrigerant in the second discharge muffler 133b due to the movement path extending from the refrigerant in the first discharge muffler 133a is increased, thereby reducing pulsation.

【0027】特に、第1及び第2冷媒流路137、13
8の冷媒流入側137a、138aの断面積が一定であ
る場合において、圧縮機の排気量に基づいて第1冷媒流
路137の冷媒流出側137bの断面積と、第2冷媒流
路138の冷媒流出側138bの断面積と、連結管13
6の断面積との比率を変更することにより冷媒の吐出脈
動を効率よく低減することができる。
In particular, the first and second refrigerant passages 137, 13
8, the cross-sectional area of the refrigerant outlet side 137b of the first refrigerant channel 137 and the refrigerant of the second refrigerant channel 138 are based on the displacement of the compressor when the cross-sectional area of the refrigerant inlet side 137a and 138a is constant. The cross-sectional area of the outflow side 138b and the connecting pipe 13
By changing the ratio with respect to the sectional area of 6, the discharge pulsation of the refrigerant can be efficiently reduced.

【0028】実験結果によれば、第1冷媒流路137の
断面直径及び第2冷媒流路138の断面直径、連結管1
36の内径が各々次の表1の通り形成されると、圧縮機
の効率が低下することなく冷媒の脈動低減効果が大きく
なる。
According to the experimental results, the sectional diameter of the first coolant channel 137 and the sectional diameter of the second coolant channel 138, the connecting pipe 1
When the inner diameter of each of the 36 is formed as shown in the following Table 1, the effect of reducing the pulsation of the refrigerant increases without reducing the efficiency of the compressor.

【0029】[0029]

【表1】 [Table 1]

【0030】ここで、表1中の「GRADE」は排気量
に基づいて圧縮機の仕様を示すものであって、具体的に
は30GRADEは排気量3.0ccの圧縮機を、37
GRADEは排気量3.7ccの圧縮機を各々表す。
Here, "GRADE" in Table 1 indicates the specifications of the compressor based on the displacement. Specifically, 30 GRADE indicates a compressor having a displacement of 3.0 cc, and
GRADE represents a compressor with a displacement of 3.7 cc, respectively.

【0031】前記表1に示す通り、圧縮機の排気量が
3.0ccの場合、第1冷媒流路137の冷媒流出側1
37bの断面直径と、第2冷媒流路138の冷媒流出側
138bの断面直径と、連結管136の内径は約2:
2:1.8の比率で形成される。すなわち、第1及び第
2冷媒流路137、138のそれぞれの冷媒流入側13
7a、138aの断面直径が6.4mmの場合、第1冷
媒流路137の冷媒流出側137bの断面直径は2.0
mm、第2冷媒流路138の冷媒流出側138bの断面
直径は2.0mm、連結管136の内径は1.78mm
で形成される。
As shown in Table 1, when the displacement of the compressor is 3.0 cc, the refrigerant outlet side 1 of the first refrigerant flow path 137
37b, the cross-sectional diameter of the second refrigerant flow path 138 on the refrigerant outflow side 138b, and the inner diameter of the connection pipe 136 are about 2:
It is formed in a ratio of 2: 1.8. That is, the refrigerant inflow side 13 of each of the first and second refrigerant flow paths 137 and 138
7a and 138a, the cross-sectional diameter of the refrigerant outlet side 137b of the first refrigerant flow path 137 is 2.0 mm.
mm, the cross-sectional diameter of the refrigerant outlet side 138b of the second refrigerant flow path 138 is 2.0 mm, and the inner diameter of the connecting pipe 136 is 1.78 mm.
Is formed.

【0032】一方、圧縮機の排気量が3.7〜4.3c
cの場合、第1冷媒流路137の冷媒流出側137bの
断面直径と、第2冷媒流路138の冷媒流出側138b
の断面直径と、連結管136の内径は約2:3.5:
1.8の比率で形成される。すなわち、第1及び第2冷
媒流路137、138のそれぞれの冷媒流入側137
a、138aの断面直径が6.4mmの場合、第1冷媒
流路137の冷媒流出側137bの断面直径は2.0m
m、第2冷媒流路138の冷媒流出側138bの断面直
径は3.5mm、連結管136の内径は1.78で形成
される。このように圧縮機の排気量が3.7〜4.3c
cの場合、第1冷媒流路137の冷媒流出側137bの
断面直径及び連結管136の内径は排気量が3.0cc
の場合と同一であり、第2冷媒流路138の冷媒流出側
138bの断面直径だけが排気量が3.0ccの場合よ
り大きい。
On the other hand, the displacement of the compressor is 3.7 to 4.3c.
In the case of c, the cross-sectional diameter of the refrigerant outlet side 137b of the first refrigerant channel 137 and the refrigerant outlet side 138b of the second refrigerant channel 138
And the inner diameter of the connecting pipe 136 is about 2: 3.5:
It is formed at a ratio of 1.8. That is, the respective refrigerant inflow sides 137 of the first and second refrigerant flow paths 137 and 138
a, 138a has a cross-sectional diameter of 6.4 mm, the cross-sectional diameter of the refrigerant outlet side 137b of the first refrigerant flow path 137 is 2.0 m
m, the cross-sectional diameter of the refrigerant outlet side 138b of the second refrigerant flow path 138 is 3.5 mm, and the inner diameter of the connecting pipe 136 is 1.78. Thus, the displacement of the compressor is 3.7 to 4.3c.
In the case of c, the cross-sectional diameter of the refrigerant outlet side 137b of the first refrigerant flow path 137 and the inner diameter of the connection pipe 136 indicate that the displacement is 3.0 cc
And only the cross-sectional diameter of the refrigerant outlet side 138b of the second refrigerant flow path 138 is larger than the case where the displacement is 3.0 cc.

【0033】また、圧縮機の排気量が5.2〜6.2c
cの場合、第1冷媒流路137の冷媒流出側137bの
断面直径と、第2冷媒流路138の冷媒流出側138b
の断面直径と、連結管の内径は約2:3.5:2.2の
比率で形成される。すなわち、第1及び第2冷媒流路1
37、138のそれぞれの冷媒流入側137a、138
aの断面直径が6.4mmの場合、第1冷媒流路137
の冷媒流出側137bの断面直径は2.0mm、第2冷
媒流路138の前記冷媒流出側138bの断面直径は
3.5mm、連結管136の内径は2.16mmで形成
される。このように、圧縮機の排気量が5.2〜6.2
ccの場合、第1及び第2冷媒流路137、138のそ
れぞれの断面直径は排気量が3.7〜4.3ccの場合
と同一であり、連結管136の内径だけが排気量3.0
ccおよび3.7〜4.3ccの場合より大きい。
Further, the displacement of the compressor is 5.2 to 6.2c.
In the case of c, the cross-sectional diameter of the refrigerant outlet side 137b of the first refrigerant channel 137 and the refrigerant outlet side 138b of the second refrigerant channel 138
And the inner diameter of the connecting pipe are formed in a ratio of about 2: 3.5: 2.2. That is, the first and second refrigerant flow paths 1
37, 138, the respective refrigerant inflow sides 137a, 138
a is 6.4 mm, the first refrigerant flow path 137
The refrigerant outlet side 137b has a cross-sectional diameter of 2.0 mm, the refrigerant outlet side 138b of the second refrigerant channel 138 has a cross-sectional diameter of 3.5 mm, and the connecting pipe 136 has an inner diameter of 2.16 mm. As described above, the displacement of the compressor is 5.2 to 6.2.
In the case of cc, the cross-sectional diameter of each of the first and second refrigerant channels 137 and 138 is the same as in the case where the displacement is 3.7 to 4.3 cc, and only the inner diameter of the connection pipe 136 is the displacement 3.0.
cc and 3.7-4.3 cc.

【0034】このように圧縮機の排気量の増加に応じ
て、第2冷媒流路138の冷媒流出側138bの断面直
径または連結管136の内径を大きくすることにより、
第2冷媒流路138と連結管136を通過して流れる冷
媒の割合が適正となり、これによって圧縮機効率が低下
を防止するものである。
As described above, by increasing the sectional diameter of the refrigerant outlet side 138b of the second refrigerant flow path 138 or the inner diameter of the connection pipe 136 in accordance with the increase in the displacement of the compressor,
The ratio of the refrigerant flowing through the second refrigerant flow path 138 and the connection pipe 136 becomes appropriate, thereby preventing a decrease in compressor efficiency.

【0035】図7は本発明に係る往復動式圧縮機におけ
る冷媒吐出時の脈動波形を表したグラフである。図7に
示す通り、第1冷媒流路137に沿って第1吐出マフラ
ー133aに流入した冷媒の脈動波形(図7中のA)
と、第2冷媒流路138と第2吐出マフラー133b及
び連結管136を順次に通過して第1吐出マフラー13
3aに流入した冷媒の脈動波形(図7中のB)は約90
゜の位相差を持つようになる。この位相差によりこれら
冷媒の脈動波形AとBが第1吐出マフラー内133aで
相互干渉して1つの波形(図7中のC)に結合し、振幅
と周波数が小さくなり、冷媒吐出管135を通して吐出
される。
FIG. 7 is a graph showing a pulsation waveform at the time of refrigerant discharge in the reciprocating compressor according to the present invention. As shown in FIG. 7, the pulsation waveform of the refrigerant flowing into the first discharge muffler 133a along the first refrigerant flow path 137 (A in FIG. 7).
Sequentially passes through the second refrigerant flow path 138, the second discharge muffler 133 b, and the connecting pipe 136.
The pulsation waveform (B in FIG. 7) of the refrigerant flowing into 3a is about 90
It has a phase difference of ゜. Due to this phase difference, the pulsation waveforms A and B of these refrigerants interfere with each other in the first discharge muffler 133a and are combined into one waveform (C in FIG. 7), and the amplitude and frequency are reduced. Discharged.

【0036】図8は本発明に係る往復動式圧縮機の駆動
時の騒音を測定した結果を表したグラフで、前記表1に
おける寸法仕様に基づいた第1冷媒流路137、第2冷
媒流路138、連結管136各々形成して圧縮機の騷音
を測定したものである。図に示されるように、従来の圧
縮機では冷凍装置の他の部品と共振を起こす175Hz
付近の低周波数帯域から発生する騷音は約23dBほど
であったが、本発明に係る圧縮機では冷媒吐出時の脈動
が低減されることによって175Hz付近の周波数帯域
から発生する騷音は約7dB程度にまで著しく減少し
た。
FIG. 8 is a graph showing a result of measuring noise when the reciprocating compressor according to the present invention is driven. The first refrigerant flow path 137 and the second refrigerant flow based on the dimensional specifications in Table 1 are shown. The noise of the compressor was measured by forming the passage 138 and the connecting pipe 136, respectively. As shown in the figure, in the conventional compressor, 175 Hz causing resonance with other components of the refrigeration system
Although noise generated from the low frequency band in the vicinity were approximately 23 dB, noise is a compressor according to the present invention generated from the frequency band around 175Hz by pulsation in the refrigerant discharge is reduced about 7dB To a significant extent.

【0037】一方、第1吐出マフラー133aで合流し
た冷媒は第1マフラーカバー134aと連結された冷媒
吐出管135を通して凝縮機(図示せず)に向けて吐出さ
れる。
On the other hand, the refrigerant joined by the first discharge muffler 133a is discharged toward a condenser (not shown) through a refrigerant discharge pipe 135 connected to the first muffler cover 134a.

【0038】以上では本発明の特定の望ましい実施例に
ついて示しかつ説明した。しかし、本発明は前述した実
施例に限らず特許請求の範囲において請求する本発明の
要旨を逸脱せず当該発明の属する技術分野において通常
の知識を持つ者ならば誰でも多様な変形実施が可能であ
る。
The foregoing has shown and described certain preferred embodiments of the invention. However, the present invention is not limited to the above-described embodiments, and various modifications can be made by anyone having ordinary knowledge in the technical field to which the present invention pertains without departing from the spirit of the present invention. It is.

【0039】[0039]

【発明の効果】以上述べた通り、本発明に係る吐出脈動
低減構造を持つ往復動式圧縮機によれば、第1及び第2
冷媒流路137、138のそれぞれの冷媒流入側137
a、138aの断面積より冷媒流出側137b、138
bの断面積を小さく形成する一方、圧縮機の排気量によ
り第1冷媒流路137の冷媒流出側137bの断面積
と、第2冷媒流路138の冷媒流出側138bの断面積
と、連結管の断面積との比率を変更することにより、圧
縮機の効率を低下させることなく冷媒の吐出脈動を低減
できる。このように冷媒の吐出脈動が低減されることに
伴って圧縮機の騷音及び振動が軽減される。特に、本発
明によれば、低周波帯域の騷音が低減されることによっ
て冷凍装置全体の騷音が軽減される効果がある。
As described above, according to the reciprocating compressor having the discharge pulsation reducing structure according to the present invention, the first and second compressors are provided.
Refrigerant inflow side 137 of each of refrigerant channels 137 and 138
a and 138a, the refrigerant outflow sides 137b and 138
b, the cross-sectional area of the refrigerant outflow side 137b of the first refrigerant flow path 137, the cross-sectional area of the refrigerant outflow side 138b of the second refrigerant flow path 138, and the connecting pipe according to the displacement of the compressor. By changing the ratio to the sectional area of the refrigerant, the discharge pulsation of the refrigerant can be reduced without lowering the efficiency of the compressor. In this way, noise and vibration of the compressor are reduced as the discharge pulsation of the refrigerant is reduced. In particular, according to the present invention, the effect of noise of the entire refrigeration system by the low frequency band noise is reduced can be reduced.

【0040】また、本発明によれば、第1冷媒流路13
7及び第2冷媒流路138を各々通過して第1吐出マフ
ラー133aで合流する冷媒の脈動波形が位相差を持つ
ようになることにより、これら二つの脈動波形が相互に
干渉し、冷媒の吐出脈動が低減するという効果もある。
According to the present invention, the first refrigerant flow path 13
7 and the second refrigerant flow path 138, the pulsation waveforms of the refrigerants that merge at the first discharge muffler 133a have a phase difference, so that these two pulsation waveforms interfere with each other, and the refrigerant discharge There is also an effect that pulsation is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 一般的な往復動式圧縮機の断面図である。FIG. 1 is a sectional view of a general reciprocating compressor.

【図2】 図1の圧縮機において圧縮機構部の一部を示
した分解斜視図である。
FIG. 2 is an exploded perspective view showing a part of a compression mechanism in the compressor of FIG.

【図3】 図2の圧縮機構部の一部を切開して示した底
面図である。
FIG. 3 is a bottom view in which a part of the compression mechanism of FIG. 2 is cut away.

【図4】 本発明に係る往復動式圧縮機において圧縮機
構部の一部を示した分解斜視図である。
FIG. 4 is an exploded perspective view showing a part of a compression mechanism in the reciprocating compressor according to the present invention.

【図5】 図4の圧縮機構部の一部を切開して示した底
面図である。
FIG. 5 is a bottom view in which a part of the compression mechanism of FIG. 4 is cut away.

【図6】 図5のI−I線断面図である。FIG. 6 is a sectional view taken along line II of FIG. 5;

【図7】 本発明に係る往復動式圧縮機における冷媒吐
出時の脈動波形を表したグラフである。
FIG. 7 is a graph showing a pulsation waveform at the time of refrigerant discharge in the reciprocating compressor according to the present invention.

【図8】 本発明に係る往復動式圧縮機の駆動時の騷音
を測定した結果を表したグラフである。
FIG. 8 is a graph showing a result of measuring noise when the reciprocating compressor according to the present invention is driven.

【符号の説明】[Explanation of symbols]

10 ケース 11 上部シェル 12 下部シェル 20 電動機構部 21 固定子 22 回転子 23 クランクシャフト 30 シリンダーブロック 31 圧縮室 32 シリンダーブロック30の前面 32a 冷媒吐出孔 33 吐出マフラー 34 マフラーカバー 35 冷媒吐出管 36 吐出管 37 冷媒流路 40 連接棒 50 ピストン 60 シリンダーヘッド 61 冷媒吸入室 62 冷媒吐出室 70 バルブ組立体 71 吸入バルブプレート 71a 吸入バルブ 72 吐出バルブプレート 72a 吐出バルブ 80 吸入マフラー 81 冷媒吸入管 130 シリンダーブロック 131 圧縮室 132 シリンダーブロックの前面 132a 第1冷媒吐出孔 132b 第2冷媒吐出孔 133a 第1吐出マフラー 133b 第2吐出マフラー 134a 第1マフラーカバー 134b 第2マフラーカバー 135 冷媒吐出管 136 連結管 136a 連結管136の折曲部 137 第1冷媒流路 137a 第1冷媒流路137の冷媒流入側 137b 第1冷媒流路137の冷媒流出側 138 第2冷媒流路 138a 第2冷媒流路138の冷媒流入側 138b 第2冷媒流路138の冷媒流出側 170 バルブ組立体 DESCRIPTION OF SYMBOLS 10 Case 11 Upper shell 12 Lower shell 20 Electric mechanism part 21 Stator 22 Rotor 23 Crankshaft 30 Cylinder block 31 Compression chamber 32 Front surface of cylinder block 30 32a Refrigerant discharge hole 33 Discharge muffler 34 Muffler cover 35 Refrigerant discharge pipe 36 Discharge pipe 37 refrigerant passage 40 connecting rod 50 piston 60 cylinder head 61 refrigerant suction chamber 62 refrigerant discharge chamber 70 valve assembly 71 suction valve plate 71a suction valve 72 discharge valve plate 72a discharge valve 80 suction muffler 81 refrigerant suction pipe 130 cylinder block 131 compression Chamber 132 Front surface of cylinder block 132a First refrigerant discharge hole 132b Second refrigerant discharge hole 133a First discharge muffler 133b Second discharge muffler 134a First muffler cover 34b Second muffler cover 135 Refrigerant discharge pipe 136 Connecting pipe 136a Bend of connecting pipe 136 137 First refrigerant flow path 137a Refrigerant inflow side of first refrigerant flow path 137 137b Refrigerant outflow side of first refrigerant flow path 137 138th 2 refrigerant flow path 138a Refrigerant inflow side of second refrigerant flow path 138 138b Refrigerant outflow side of second refrigerant flow path 138 170 Valve assembly

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 シリンダーブロックの下部に設けられた
一対の吐出マフラーと、該一対の吐出マフラーのそれぞ
れとシリンダーヘッドの冷媒吐出室を連通させる第1及
び第2冷媒流路と、前記一対の吐出マフラーをそれぞれ
密閉する一対のマフラーカバーと、該一対のマフラーカ
バーを相互に連結する連結管と、前記一対のマフラーカ
バーのうち前記第2冷媒流路と連通された側に連結され
た冷媒吐出管を含む往復動式圧縮機において、前記第1
及び第2冷媒流路は前記冷媒吐出室と連結された冷媒流
入側の断面積より前記吐出マフラーと連結された冷媒流
出側の断面積が小さく形成され、排気量に基づいて前記
第1冷媒流路の冷媒流出側の断面積と、前記第2冷媒流
路の冷媒流出側の断面積と、前記連結管の断面積との間
の比率を変更することにより冷媒の吐出脈動を低減する
ことを特徴とする吐出脈動低減構造を持つ往復動式圧縮
機。
1. A pair of discharge mufflers provided at a lower part of a cylinder block, first and second refrigerant flow paths for communicating each of the pair of discharge mufflers with a refrigerant discharge chamber of a cylinder head. a pair of muffler cover enclosing the muffler respectively, connecting tube and the refrigerant discharge pipe connected to the second refrigerant passage and communicated with the side of the pair of muffler cover interconnecting the pair of muffler cover A reciprocating compressor including:
The second refrigerant flow path has a cross-sectional area on the refrigerant outflow side connected to the discharge muffler smaller than a cross-sectional area on the refrigerant inflow side connected to the refrigerant discharge chamber, and the first refrigerant flow based on the displacement. Reducing the discharge pulsation of the refrigerant by changing the ratio between the cross-sectional area of the refrigerant outlet side of the passage, the cross-sectional area of the refrigerant outlet side of the second refrigerant flow path, and the cross-sectional area of the connection pipe. A reciprocating compressor with a characteristic discharge pulsation reduction structure.
【請求項2】 前記第1冷媒流路の冷媒流出側の断面直
径と、前記第2冷媒流路の冷媒流出側の断面直径と、前
記連結管の内径は約2:2:1.8の比率で形成される
ことを特徴とする請求項1に記載の吐出脈動低減構造を
持つ往復動式圧縮機。
2. The cross-sectional diameter of the first refrigerant flow path on the refrigerant outflow side, the cross-sectional diameter of the second refrigerant flow path on the refrigerant outflow side, and the inner diameter of the connecting pipe are about 2: 2: 1.8. The reciprocating compressor having the discharge pulsation reducing structure according to claim 1, wherein the compressor is formed at a ratio.
【請求項3】 前記第1及び第2冷媒流路のそれぞれの
前記冷媒流入側の断面直径は6.4mmであり、前記第
1冷媒流路の前記冷媒流出側の断面直径は2.0mmで
あり、前記第2冷媒流路の前記冷媒流出側の断面直径は
2.0mmであり、前記連結管の内径は1.78mmで
あることを特徴とする請求項2に記載の吐出脈動低減構
造を持つ往復動式圧縮機。
3. The cross-sectional diameter of each of the first and second refrigerant flow paths on the refrigerant inflow side is 6.4 mm, and the cross-sectional diameter of the first refrigerant flow path on the refrigerant outflow side is 2.0 mm. The discharge pulsation reducing structure according to claim 2, wherein a cross-sectional diameter of the second refrigerant flow path on the refrigerant outflow side is 2.0 mm, and an inner diameter of the connection pipe is 1.78 mm. Reciprocating compressor.
【請求項4】 前記第1冷媒流路の前記冷媒流出側の断
面直径と、前記第2冷媒流路の冷媒流出側の断面直径
と、前記連結管の内径は約2:3.5:1.8の比率で
形成されることを特徴とする請求項1に記載の吐出脈動
低減構造を持つ往復動式圧縮機。
4. The cross-sectional diameter of the first refrigerant flow path on the refrigerant outflow side, the cross-sectional diameter of the second refrigerant flow path on the refrigerant outflow side, and the inner diameter of the connecting pipe are about 2: 3.5: 1. The reciprocating compressor having the discharge pulsation reducing structure according to claim 1, wherein the compressor is formed at a ratio of 0.8.
【請求項5】 前記第1及び第2冷媒流路のそれぞれの
前記冷媒流入側の断面直径は6.4mmであり、前記第
1冷媒流路の前記冷媒流出側の断面直径は2.0mmで
あり、前記第2冷媒流路の前記冷媒流出側の断面直径は
3.5mmであり、前記連結管の内径は1.78mmで
あることを特徴とする請求項4に記載の吐出脈動低減構
造を持つ往復動式圧縮機。
5. The cross-sectional diameter of each of the first and second refrigerant flow paths on the refrigerant inflow side is 6.4 mm, and the cross-sectional diameter of the first refrigerant flow path on the refrigerant outflow side is 2.0 mm. 5. The discharge pulsation reducing structure according to claim 4, wherein a cross-sectional diameter of the second refrigerant flow path on the refrigerant outflow side is 3.5 mm, and an inner diameter of the connection pipe is 1.78 mm. 6. Reciprocating compressor.
【請求項6】 前記第1冷媒流路の冷媒流出側の断面直
径と、前記第2冷媒流路の冷媒流出側の断面直径と、前
記連結管の内径は約2:3.5:2.2の比率で形成さ
れることを特徴とする請求項1に記載の吐出脈動低減構
造を持つ往復動式圧縮機。
6. A cross-sectional diameter of the first refrigerant flow path on the refrigerant outflow side, a cross-sectional diameter of the second refrigerant flow path on the refrigerant outflow side, and an inner diameter of the connecting pipe are about 2: 3.5: 2. The reciprocating compressor having the discharge pulsation reducing structure according to claim 1, wherein the compressor is formed at a ratio of 2.
【請求項7】 前記第1及び第2冷媒流路のそれぞれの
前記冷媒流入側の断面直径は6.4mmであり、前記第
1冷媒流路の前記冷媒流出側の断面直径は2.0mmで
あり、前記第2冷媒流路の前記冷媒流出側の断面直径は
3.5mmであり、前記連結管の内径は2.16mmで
あることを特徴とする請求項6に記載の吐出脈動低減構
造を持つ往復動式圧縮機。
7. The cross-sectional diameter of each of the first and second refrigerant flow paths on the refrigerant inflow side is 6.4 mm, and the cross-sectional diameter of the first refrigerant flow path on the refrigerant outflow side is 2.0 mm. The discharge pulsation reducing structure according to claim 6, wherein a cross-sectional diameter of the second refrigerant flow path on the refrigerant outflow side is 3.5 mm, and an inner diameter of the connection pipe is 2.16 mm. Reciprocating compressor.
【請求項8】 前記一対のマフラーカバーに挿入された
前記連結管の両端部は前記マフラーカバーの内壁方向に
所定角度に折曲げられることを特徴とする請求項1に記
載の吐出脈動低減構造を持つ往復動式圧縮機。
8. The discharge pulsation reducing structure according to claim 1, wherein both ends of the connection pipe inserted into the pair of muffler covers are bent at a predetermined angle toward an inner wall of the muffler cover. Reciprocating compressor.
JP2001372993A 2001-01-19 2001-12-06 Reciprocation type compressor having discharge pulsation reduction structure Pending JP2002242830A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20010003270 2001-01-19
KR2001-3270 2001-01-19

Publications (1)

Publication Number Publication Date
JP2002242830A true JP2002242830A (en) 2002-08-28

Family

ID=19704873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372993A Pending JP2002242830A (en) 2001-01-19 2001-12-06 Reciprocation type compressor having discharge pulsation reduction structure

Country Status (3)

Country Link
JP (1) JP2002242830A (en)
KR (1) KR100398678B1 (en)
IT (1) ITMI20020058A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673449A (en) * 2016-03-25 2016-06-15 芜湖欧宝机电有限公司 Noise reduction and energy conservation piston type compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030071228A (en) * 2002-02-28 2003-09-03 삼성광주전자 주식회사 Cylinder assembly for hermetic compressor
KR100504445B1 (en) 2003-03-05 2005-08-01 삼성광주전자 주식회사 A cylinder assembly for compressor, A compressor and A apparatus having refrigerant cycle circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673449A (en) * 2016-03-25 2016-06-15 芜湖欧宝机电有限公司 Noise reduction and energy conservation piston type compressor
CN105673449B (en) * 2016-03-25 2018-06-08 芜湖欧宝机电有限公司 A kind of noise-reduction energy-saving piston compressor

Also Published As

Publication number Publication date
ITMI20020058A1 (en) 2003-07-15
KR100398678B1 (en) 2003-09-19
KR20020062105A (en) 2002-07-25
ITMI20020058A0 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JP2960409B2 (en) Compressor suction muffler
JP3183452B2 (en) Reciprocating compressor
US20060045762A1 (en) Suction muffler for compressor
JPH05231317A (en) Airtight refrigerating compressor
CA2069208C (en) Refrigeration compressor having a contoured piston
JPH0972280A (en) Sealed compressor
US20090175740A1 (en) Compressor
CN1312400C (en) Closed compressor
KR100382453B1 (en) Compressor having disgharge pulsation reducing structure
US20060039808A1 (en) Refrigerant compressor
US6547536B2 (en) Reciprocating compressor having a discharge pulsation
US20040009077A1 (en) Reciprocating compressor having a discharge pulsation reducing structure
US8529224B2 (en) Hermetic compressor having auxiliary communication tube
JP2002242830A (en) Reciprocation type compressor having discharge pulsation reduction structure
JP2003042064A (en) Hermetically closed compressor
KR100436766B1 (en) Reciprocating compressor
KR100308646B1 (en) Suction muffler of a closed compressor
KR0122435Y1 (en) Structure of inhalation valve of a compressor
KR0134144Y1 (en) Reciprocating compressor
KR200160526Y1 (en) Suction muffler suction-pipe connector of a reciprocating compressor
KR200317644Y1 (en) Inlet muffler of a compressor
MXPA96003901A (en) Compressor of the hermetically sell type
KR20070035330A (en) Hermetic type compressor
KR20020034527A (en) Suction muffler of a closed compressor
JPH03225084A (en) Hermetic type motor compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050525