JP2002242702A - Cooling structure for wall surface of gas turbine combustor - Google Patents

Cooling structure for wall surface of gas turbine combustor

Info

Publication number
JP2002242702A
JP2002242702A JP2001037473A JP2001037473A JP2002242702A JP 2002242702 A JP2002242702 A JP 2002242702A JP 2001037473 A JP2001037473 A JP 2001037473A JP 2001037473 A JP2001037473 A JP 2001037473A JP 2002242702 A JP2002242702 A JP 2002242702A
Authority
JP
Japan
Prior art keywords
cooling air
shielding member
heat shielding
heat
penetrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001037473A
Other languages
Japanese (ja)
Inventor
Tetsuo Itsura
哲雄 五良
Hiroyuki Nishida
啓之 西田
Takeshi Kitamura
剛 北村
Masaaki Negoro
正明 根来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001037473A priority Critical patent/JP2002242702A/en
Publication of JP2002242702A publication Critical patent/JP2002242702A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent local temperature rises of the interior wall of a combustor downstream of a combustor penetrating member. SOLUTION: A structure is provided with a combustor inner-cylinder shell 55 and a cylindrical heat insulating member 155 positioned inside the shell. On a heat insulating member 155D located downstream of the penetrating member 159 penetrating both the shell and the heat insulating member, a line of pin fins 155P is positioned which is composed of columnar protrusions protruding perpendicularly from the downstream outer peripheral part of the penetrating member. Since the line of pin fins 155P has a greater efficiency of heat transfer to and from cooling air than a fin-ring channel 155b provided in the portion 155U of the heat insulating member upstream of the penetrating member, the cooling ability of the heat insulating member increases at the downstream portion of the penetrating member so that, even if a vortex of combustion gas is generated on the wall surface of the heat insulating member downstream of the penetrating member by the presence of the penetrating member and causes a local increase in heat load on the wall surface, local temperature rises of the wall surface of the heat insulating member are prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンに関
し、詳細にはガスタービン燃焼器の壁面冷却構造に関す
る。
The present invention relates to a gas turbine, and more particularly, to a wall cooling structure of a gas turbine combustor.

【0002】[0002]

【従来の技術】ガスタービン燃焼器壁は、高温の燃焼ガ
スと直接接触する部分であるため、壁面冷却のための種
々の手段が講じられている。通常、燃焼器の壁面冷却は
対流冷却とフィルム冷却とを併用した冷却空気による複
合冷却が行われる。
2. Description of the Related Art Since a wall of a gas turbine combustor is a part which is in direct contact with a high-temperature combustion gas, various means for cooling the wall are taken. Normally, the wall cooling of the combustor is performed by combined cooling using cooling air that combines convection cooling and film cooling.

【0003】図1は、冷却空気を使用した複合冷却を行
なうガスタービン燃焼器の一例を示す断面図である。図
1において、燃焼器1は、メインノズル33から供給さ
れた燃料を燃焼させる燃焼室としての内部空間を有する
内筒5bと、内筒で燃焼により発生した燃焼ガスをター
ビン第1段静翼に供給する出口51を有する、尾筒5a
とを接合した構成とされている。燃料は、メインノズル
33から予め空気と混合した予混合気として内筒5bに
噴射され、内筒5b内でパイロットノズル31により生
成したパイロット炎により着火されて内筒内に予混合炎
を生成する。
FIG. 1 is a cross-sectional view showing an example of a gas turbine combustor that performs combined cooling using cooling air. In FIG. 1, a combustor 1 supplies an inner cylinder 5b having an internal space as a combustion chamber for burning fuel supplied from a main nozzle 33, and combustion gas generated by combustion in the inner cylinder to a turbine first stage stationary blade. Transition piece 5a having outlet 51
Are joined. The fuel is injected into the inner cylinder 5b from the main nozzle 33 as a premixed air previously mixed with air, and is ignited by the pilot flame generated by the pilot nozzle 31 in the inner cylinder 5b to generate a premixed flame in the inner cylinder. .

【0004】図10は、内筒5bの従来の壁面冷却方法
を説明する、内筒5b部の壁面拡大断面図である。図1
0に示すように、内筒5b部の壁面は、実際には複数の
径の異なる円筒状シェル55を軸線方向にそれぞれ段付
部を介して接合した構成とされる。それぞれの段付部シ
ェルは内筒を形成する構造材として機能しており、各段
付部シェル55内側には燃焼室壁面を構成する熱遮蔽部
材155が配置されている。熱遮蔽部材155は、内筒
構造材であるシェル55を内筒内部の火炎から保護し、
強度低下を防止するためのものである。
FIG. 10 is an enlarged sectional view of a wall surface of the inner cylinder 5b for explaining a conventional wall cooling method for the inner cylinder 5b. Figure 1
As shown in FIG. 0, the wall surface of the inner cylinder 5b is actually formed by joining a plurality of cylindrical shells 55 having different diameters in the axial direction via stepped portions. Each stepped shell functions as a structural material forming an inner cylinder, and a heat shield member 155 constituting a combustion chamber wall surface is arranged inside each stepped shell 55. The heat shielding member 155 protects the shell 55, which is a structural material of the inner cylinder, from the flame inside the inner cylinder,
This is for preventing a reduction in strength.

【0005】従来、熱遮蔽部材155としては、外周に
軸線方向の多数の溝155bを形成した円筒形状のフィ
ンリングが使用されている。図11は、図10のXI−
XI線に沿った断面を示す。フィンリング155は円筒
状の基板の外周に軸線方向に多数の溝155bを機械加
工により形成したものである。図10に示すように、フ
ィンリング155は、それぞれの段付部小径側(燃料ノ
ズル側)端部でシェル55にロウ付け等により固定され
てシェル55内に保持されている。
Conventionally, as the heat shielding member 155, a cylindrical fin ring having a large number of axial grooves 155b formed on the outer periphery is used. FIG. 11 is a cross-sectional view of FIG.
2 shows a cross section along the line XI. The fin ring 155 is formed by forming a large number of grooves 155b in the axial direction on the outer periphery of a cylindrical substrate by machining. As shown in FIG. 10, the fin rings 155 are fixed to the shell 55 by brazing or the like at the ends of the stepped portions on the small-diameter side (the fuel nozzle side) and are held in the shell 55.

【0006】冷却空気は、ケーシング7(図1)内から
段付部シェル55(図10では55aで示す)の小径側
端部の周上に設けられた複数の入口57からシェルとフ
ィンリング155との間に流入し、フィンリング155
外周の軸線方向溝を通過してフィンリング155自体を
対流冷却し、出口59から隣接する段付部シェル55
(図10では55bで示す)のフィンリング内面に沿っ
て軸線方向に放出する。これにより、隣接する段付部シ
ェル55bの燃焼室壁面(すなわちフィンリング155
b内面)のフィルム冷却が行なわれる。
The cooling air is supplied from the inside of the casing 7 (FIG. 1) to the shell and the fin ring 155 through a plurality of inlets 57 provided on the periphery of the small-diameter end of the stepped shell 55 (indicated by 55a in FIG. 10). Fin ring 155
The fin ring 155 itself is convectively cooled through the outer circumferential axial groove, and the adjacent stepped shell 55
(Indicated by 55b in FIG. 10) in the axial direction along the inner surface of the fin ring. Thereby, the combustion chamber wall surface of the adjacent stepped portion shell 55b (that is, the fin ring 155) is formed.
The film cooling of (b inner surface) is performed.

【0007】[0007]

【発明が解決しようとする課題】ところが、図10に示
すような従来の燃焼器壁面冷却構造では、燃焼器壁面の
冷却は概ね良好に行われるものの、フィンリングを貫通
する部材が存在すると、その燃焼ガス流れ方向下流側で
は熱遮蔽部材(フィンリング)の温度が局所的に上昇し
てしまい極端な場合には熱遮蔽部材の焼損が発生すると
いう問題が生じることが判明している。
However, in the conventional combustor wall cooling structure as shown in FIG. 10, although cooling of the combustor wall is generally performed well, if there is a member penetrating through the fin ring, the cooling is not performed. It has been found that the temperature of the heat shielding member (fin ring) locally increases on the downstream side in the combustion gas flow direction, and in extreme cases, a problem occurs in that the heat shielding member is burned.

【0008】図12は、この問題を説明する図10と同
様な断面図である。ガスタービン燃焼器には、内筒(シ
ェル)55と熱遮蔽部材(フィンリング)155とを貫
通して燃焼室内に延びる部材が設けられる場合がある。
例えば、図1では予混合燃焼を行う燃焼器を示したが、
これとは異なる形式の拡散燃焼を行う燃焼器ではメイン
ノズルで形成された拡散炎に二次燃焼空気を供給するた
めに、図12に示すように内筒55と熱遮蔽部材155
とを貫通し、内筒外部と燃焼室とを連通する管状の貫通
部材(スクープ)159が設けられる。スクープは、内
筒外部のケーシング内の高圧の燃焼用空気を燃焼室内の
拡散炎に二次空気として供給するものである。
FIG. 12 is a sectional view similar to FIG. 10 for explaining this problem. The gas turbine combustor may be provided with a member that extends through the inner cylinder (shell) 55 and the heat shielding member (fin ring) 155 into the combustion chamber.
For example, FIG. 1 shows a combustor that performs premix combustion,
In order to supply secondary combustion air to the diffusion flame formed by the main nozzle in a combustor that performs diffusion combustion of a different type from the above, as shown in FIG.
And a tubular penetrating member (scoop) 159 that communicates with the outside of the inner cylinder and the combustion chamber is provided. The scoop supplies high-pressure combustion air in a casing outside the inner cylinder to the diffusion flame in the combustion chamber as secondary air.

【0009】また、スクープ以外にも、ガスタービン始
動時に燃焼室内の燃料に着火するためのイグナイタ(点
火栓)を燃焼室内に挿通するためのイグナイタチューブ
や、図1の燃焼器を周方向に複数個配置した構成のガス
タービンでは、隣接する燃焼器を相互に接続して一方か
ら他方へ火炎を伝播させるためのクロスファイアチュー
ブ(連結管)等が用いられるため、燃焼器内筒と熱遮蔽
部材とを貫通する貫通部材が種々存在する。このような
貫通部材159が熱遮蔽部材155の内周面に存在する
と、貫通部材159部分の直下流側では、図12に示す
ように燃焼ガス流れの渦ができてしまい、局所的に燃焼
ガスと熱遮蔽部材との間の熱伝達が乱流熱伝達となるた
め、貫通部材直下流側では局所的に熱伝達率が増大して
熱遮蔽部材の熱負荷が増大する。また、熱遮蔽部材15
5内周面を冷却空気によりフィルム冷却している場合に
は、貫通部材159直下流側部分では貫通部材の開口か
らの流れに阻止されて冷却空気が到達しなくなりフィル
ム冷却が行われなくなるため、熱遮蔽部材155壁面の
熱負荷は更に上昇することになる。
In addition to the scoop, a plurality of igniter tubes for inserting an igniter (ignition plug) for igniting fuel in the combustion chamber at the time of starting the gas turbine into the combustion chamber, and a plurality of combustors in FIG. In a gas turbine having a configuration in which a plurality of gas turbines are arranged, a cross-fire tube (connecting pipe) or the like for connecting adjacent combustors to each other and propagating a flame from one to the other is used. There are various types of penetrating members penetrating through. When such a penetrating member 159 is present on the inner peripheral surface of the heat shielding member 155, a vortex of the combustion gas flow is generated immediately downstream of the penetrating member 159 as shown in FIG. Since the heat transfer between the heat shield member and the heat shield member is turbulent heat transfer, the heat transfer coefficient locally increases immediately downstream of the penetrating member, and the heat load of the heat shield member increases. Further, the heat shielding member 15
5 When the film is cooled on the inner peripheral surface by the cooling air, the flow from the opening of the penetrating member is blocked at the portion immediately downstream of the penetrating member 159, so that the cooling air does not reach and the film cooling is not performed. The heat load on the wall surface of the heat shielding member 155 will further increase.

【0010】このため、貫通部材159下流側ではフィ
ンリング方式の対流冷却だけでは熱遮蔽部材155の局
所的熱負荷の増大を吸収することができなくなり、熱遮
蔽部材の局所的温度上昇が生じ、部材の焼損などが生じ
る可能性が高くなる。
For this reason, on the downstream side of the penetrating member 159, the fin-ring type convection cooling alone cannot absorb the increase in the local heat load of the heat shielding member 155, and the local temperature rise of the heat shielding member occurs. There is a high possibility that the members will burn out.

【0011】本発明は上記問題に鑑み、ガスタービン燃
焼器のスクープなどの貫通部材下流側での熱遮蔽部材の
局所的な熱負荷増大を吸収し、熱遮蔽部材の局所的温度
上昇が生じることを防止可能なガスタービン燃焼器壁面
冷却構造を提供することを目的としている。
In view of the above problems, the present invention absorbs a local increase in heat load of a heat shielding member downstream of a penetrating member such as a scoop of a gas turbine combustor, and causes a local temperature increase of the heat shielding member. It is an object of the present invention to provide a gas turbine combustor wall cooling structure capable of preventing the occurrence of the above problem.

【0012】[0012]

【課題を解決するための手段】請求項1に記載の発明に
よれば、燃焼室を構成する内部空間を有する円筒状の内
筒と、前記内筒の内面に全周にわたって取り付けられ、
内部を軸線方向に燃焼ガスが流れる円筒状の燃焼室壁を
構成する熱遮蔽部材と、前記熱遮蔽部材と内筒との間を
内筒軸線方向に流れる冷却空気と前記熱遮蔽部材との間
の熱交換を促進する熱交換手段と、前記内筒と前記熱遮
蔽部材とを貫通して内筒外部から燃焼室内に開口する管
状の貫通部材とを備えたガスタービン燃焼器壁面冷却構
造であって、前記熱交換手段は、前記貫通部材の燃焼ガ
ス流れ方向下流側部分での冷却空気と熱遮蔽部材との間
の熱伝達率が、前記貫通部材の燃焼ガス流れ方向上流側
での冷却空気と熱遮蔽部材との間の熱伝達率より大きく
なるように設定されていることを特徴とする、ガスター
ビン燃焼器壁面冷却構造が提供される。
According to the first aspect of the present invention, a cylindrical inner cylinder having an internal space forming a combustion chamber is attached to the inner surface of the inner cylinder over the entire circumference,
A heat shielding member constituting a cylindrical combustion chamber wall in which combustion gas flows in the axial direction inside, and between the cooling air flowing between the heat shielding member and the inner cylinder in the axial direction of the inner cylinder and the heat shielding member. A gas turbine combustor wall cooling structure, comprising: a heat exchange means for promoting heat exchange of the gas turbine; and a tubular penetration member penetrating through the inner cylinder and the heat shielding member and opening into the combustion chamber from outside the inner cylinder. The heat exchange means may be configured such that the heat transfer coefficient between the cooling air and the heat shielding member at the downstream portion of the through member in the combustion gas flow direction is such that the cooling air at the upstream side of the through member in the combustion gas flow direction. A heat transfer coefficient between the gas turbine combustor and the heat shield member.

【0013】すなわち、請求項1のガスタービン燃焼器
壁面冷却構造では、熱交換手段の貫通部材の燃焼ガス流
れ方向下流側部分では、上流側部分よりも冷却空気と熱
遮蔽部材との間の熱伝達率が大きく設定されているた
め、貫通部下流側の熱遮蔽部材に対する冷却能力が増大
する。このため、貫通部材下流側で熱遮蔽部材の熱負荷
が局所的に増大した場合でも熱遮蔽部材の温度を低く維
持することができる。
[0013] That is, in the gas turbine combustor wall cooling structure of the first aspect, the heat exchange means has a lower portion between the cooling air and the heat shielding member in the downstream portion of the penetrating member in the flow direction of the combustion gas than in the upstream portion. Since the transmissivity is set to be large, the cooling capacity for the heat shielding member on the downstream side of the penetrating portion increases. Therefore, even when the heat load of the heat shielding member locally increases on the downstream side of the penetrating member, the temperature of the heat shielding member can be kept low.

【0014】請求項2に記載の発明によれば、前記貫通
部材の燃焼ガス流れ方向下流側の熱交換手段は、前記熱
遮蔽部材外周部から直角方向に突出する複数の突起から
なるピンフィン列を備えた、請求項1に記載のガスター
ビン燃焼器壁面冷却構造が提供される。
According to the second aspect of the present invention, the heat exchange means on the downstream side of the penetrating member in the flow direction of the combustion gas includes a pin fin array comprising a plurality of projections projecting at right angles from the outer periphery of the heat shielding member. A gas turbine combustor wall cooling structure according to claim 1 comprising:

【0015】すなわち、請求項2のガスタービン燃焼器
壁面冷却構造では、熱交換手段は貫通部材の燃焼ガス流
れ方向下流側部分にピンフィン列を備えている。ピンフ
ィン冷却は、例えばフィンリング冷却に較べて熱伝達率
が大きいため、貫通部下流側の熱遮蔽部材に対する冷却
能力が増大し、貫通部材下流側ので熱遮蔽部材の熱負荷
が局所的に増大した場合でも熱遮蔽部材の温度を低く維
持することが可能となる。
That is, in the gas turbine combustor wall cooling structure of the second aspect, the heat exchange means includes a pin fin row at a downstream portion of the penetrating member in the flow direction of the combustion gas. Pin fin cooling, for example, has a higher heat transfer coefficient than fin ring cooling, so the cooling capacity for the heat shield member downstream of the penetrating portion increases, and the heat load of the heat shield member locally increases downstream of the penetrating member. Even in this case, the temperature of the heat shielding member can be kept low.

【0016】請求項3に記載の発明によれば、前記貫通
部材の燃焼ガス流れ方向下流側の熱交換手段は、記熱遮
蔽部材中に内筒軸線に沿った方向に延びる複数の管状の
内部冷却空気通路を備え、前記内部冷却空気通路は前記
貫通部材の燃焼ガス流れ方向下流側の熱遮蔽部材外周部
に開口する冷却空気入口と、前記熱遮蔽部材の下流側端
部に開口する冷却空気出口とを備え、前記内部冷却空気
通路を流れた冷却空気は前記冷却空気出口から前記内筒
内周面に沿って燃焼室内に流入する、請求項1に記載の
ガスタービン燃焼器壁面冷却構造が提供される。
According to the third aspect of the present invention, the heat exchange means on the downstream side of the penetrating member in the combustion gas flow direction has a plurality of tubular internal parts extending in the heat shielding member in a direction along the inner cylinder axis. A cooling air passage, wherein the internal cooling air passage is provided at a cooling air inlet opening at an outer peripheral portion of the heat shielding member on the downstream side in the combustion gas flow direction of the penetrating member, and a cooling air opening at a downstream end of the heat shielding member. The gas turbine combustor wall cooling structure according to claim 1, further comprising an outlet, wherein the cooling air flowing through the internal cooling air passage flows into the combustion chamber from the cooling air outlet along the inner peripheral surface of the inner cylinder. Provided.

【0017】すなわち、請求項3に記載のガスタービン
燃焼器壁面冷却構造では、熱交換手段は貫通部材の燃焼
ガス流れ方向下流側部分に、熱遮蔽部材中に形成された
管状の内部冷却空気通路を備えている。内部冷却通路に
よる冷却は、例えばフィンリング冷却に較べて熱伝達率
が大きいため、貫通部下流側の熱遮蔽部材に対する冷却
能力が増大し、貫通部材下流側ので熱遮蔽部材の熱負荷
が局所的に増大した場合でも熱遮蔽部材の温度を低く維
持することができる。
That is, in the gas turbine combustor wall cooling structure according to the third aspect, the heat exchange means is a tubular internal cooling air passage formed in the heat shielding member at a downstream portion of the penetrating member in the flow direction of the combustion gas. It has. The cooling by the internal cooling passage has a higher heat transfer coefficient than, for example, fin ring cooling, so that the cooling capacity for the heat shielding member on the downstream side of the penetrating portion increases, and the heat load of the heat shielding member on the downstream side of the penetrating member is locally reduced. Even when the temperature increases, the temperature of the heat shielding member can be kept low.

【0018】請求項4に記載の発明によれば、前記貫通
部材の燃焼ガス流れ方向下流側の熱交換手段は、熱遮蔽
部材の外周部に設けられた軸線方向に延びる複数の溝
と、該溝内に溝横断方向に対して斜めに延設された突起
からなる斜めタービュレータとを備えた、請求項1に記
載のガスタービン燃焼器壁面冷却構造が提供される。
According to the fourth aspect of the present invention, the heat exchanging means on the downstream side in the combustion gas flow direction of the penetrating member includes a plurality of axially extending grooves provided on the outer peripheral portion of the heat shielding member. 2. The gas turbine combustor wall cooling structure according to claim 1, further comprising: an oblique turbulator including a projection extending obliquely in a groove transverse direction in the groove. 3.

【0019】すなわち、請求項4のガスタービン燃焼器
壁面冷却構造では、熱交換手段は貫通部材の燃焼ガス流
れ方向下流側部分の熱遮蔽部材の外周部に軸方向溝と斜
めタービュレータとを備えている。斜めタービュレータ
を備えたことにより、溝内を流れる冷却空気流はタービ
ュレータ通過時に渦を発生し、冷却空気と熱遮蔽部材外
周との間の熱伝達は乱流熱伝達になる。このため、例え
ばフィンリングのみによる冷却を行った場合に較べて熱
伝達率が増大し、貫通部下流側の熱遮蔽部材に対する冷
却能力が増大するため、貫通部材下流側ので熱遮蔽部材
の熱負荷が局所的に増大した場合でも熱遮蔽部材の温度
を低く維持することが可能となる。
That is, in the gas turbine combustor wall cooling structure according to the fourth aspect, the heat exchange means includes an axial groove and an oblique turbulator on the outer peripheral portion of the heat shielding member on the downstream side in the combustion gas flow direction of the penetrating member. I have. By providing the oblique turbulator, the cooling air flow flowing in the groove generates a vortex when passing through the turbulator, and the heat transfer between the cooling air and the outer periphery of the heat shielding member becomes turbulent heat transfer. For this reason, for example, the heat transfer coefficient is increased as compared with the case where cooling is performed only by the fin ring, and the cooling capacity for the heat shielding member on the downstream side of the penetrating portion is increased. Can be kept low even when the temperature increases locally.

【0020】請求項5に記載の発明によれば、前記貫通
部材の燃焼ガス流れ方向上流側の熱交換手段は、熱遮蔽
部材の外周部に全周にわたって設けられた軸線方向に延
びる複数の溝を備えた、請求項1に記載のガスタービン
燃焼器壁面冷却構造が提供される。
According to the fifth aspect of the present invention, the heat exchange means on the upstream side of the penetrating member in the combustion gas flow direction includes a plurality of axially extending grooves provided all around the outer periphery of the heat shielding member. The gas turbine combustor wall cooling structure according to claim 1, comprising:

【0021】すなわち、請求項5に記載のガスタービン
燃焼器壁面冷却構造では、貫通部材の燃焼ガス流れ方向
上流側の冷却手段は、フィンリングを備えている。貫通
部材上流側部分では、下流側部分のように貫通部材によ
る熱遮蔽部材の局所的熱負荷増大が生じないため、フィ
ンリングを用いた冷却を行うことにより十分に熱遮蔽部
材の壁温を低く維持することが可能となる。
That is, in the gas turbine combustor wall cooling structure according to the fifth aspect, the cooling means on the upstream side in the combustion gas flow direction of the penetrating member includes a fin ring. In the upstream part of the penetrating member, since the local heat load of the heat shielding member does not increase due to the penetrating member unlike the downstream part, the wall temperature of the heat shielding member is sufficiently lowered by performing cooling using the fin ring. It can be maintained.

【0022】請求項6に記載の発明によれば、燃焼室を
構成する内部空間を有する円筒状の内筒と、前記内筒の
内面に全周にわたって取り付けられ、内部を軸線方向に
燃焼ガスが流れる円筒状の燃焼室壁を構成する熱遮蔽部
材と、前記熱遮蔽部材と内筒との間を内筒軸線方向に冷
却空気が流れる冷却空気通路と、を備えたガスタービン
燃焼器壁面冷却構造であって、前記内筒と前記熱遮蔽部
材とを貫通して内筒外部から燃焼室内に開口する管状の
貫通部材とを備えたガスタービン燃焼器壁面冷却構造で
あって、前記冷却空気通路は、前記冷却空気の一部を、
前記熱遮蔽部材の前記貫通部材の燃焼ガス流れ方向下流
側部分から前記熱遮蔽部材内周面に沿って流すフィルム
冷却空気供給口と、を備えたことを特徴とする、ガスタ
ービン燃焼器壁面冷却構造が提供される。
According to the sixth aspect of the present invention, a cylindrical inner cylinder having an internal space constituting a combustion chamber, and the inner cylinder is attached to the inner surface of the inner cylinder over the entire circumference, and the combustion gas flows in the interior in the axial direction. A gas turbine combustor wall cooling structure, comprising: a heat shielding member forming a flowing cylindrical combustion chamber wall; and a cooling air passage through which cooling air flows in the axial direction of the inner cylinder between the heat shielding member and the inner cylinder. A gas turbine combustor wall cooling structure including a tubular through member that penetrates through the inner cylinder and the heat shielding member and opens into the combustion chamber from outside the inner cylinder, wherein the cooling air passage is , A part of the cooling air,
A film cooling air supply port for flowing along the inner peripheral surface of the heat shield member from a downstream portion of the heat shield member in the combustion gas flow direction of the penetrating member. A structure is provided.

【0023】すなわち、請求項6に記載のガスタービン
燃焼器壁面冷却構造では、貫通部材の燃焼ガス流れ方向
下流側部分から熱遮蔽部材内周面に沿って冷却空気が供
給される。このため、貫通部材下流側に形成される燃焼
ガスと熱遮蔽部材内周面との間に冷却空気フィルムが形
成され、熱遮蔽部材の局所的温度上昇が防止される。
That is, in the gas turbine combustor wall cooling structure according to the sixth aspect, the cooling air is supplied from the downstream portion of the penetrating member in the combustion gas flow direction along the inner peripheral surface of the heat shielding member. For this reason, a cooling air film is formed between the combustion gas formed on the downstream side of the penetrating member and the inner peripheral surface of the heat shielding member, thereby preventing a local temperature rise of the heat shielding member.

【0024】請求項7に記載の発明によれば、前記フィ
ルム冷却空気供給手段は、前記熱遮蔽部材の前記貫通部
材貫通部の、前記貫通部材外周の燃焼ガス流れ方向下流
側表面と前記熱遮蔽部材との間隙からなる冷却空気供給
口と、前記貫通部材の開口周囲に設けられ、前記冷却空
気通路から前記冷却空気供給口を通って燃焼室内に流入
する冷却空気を熱遮蔽部材内周面に沿って燃焼ガス流れ
方向下流側に向けて流す偏向手段と、を備えた請求項6
に記載のガスタービン燃焼器壁面冷却構造。
According to the seventh aspect of the present invention, the film cooling air supply means includes a heat-shielding member which is provided between the heat-shielding member and the through-member penetrating portion, on the downstream side of the outer periphery of the penetrating member in the flow direction of the combustion gas. A cooling air supply port formed of a gap with a member, and cooling air provided around the opening of the penetrating member and flowing into the combustion chamber from the cooling air passage through the cooling air supply port to the heat shield member inner peripheral surface. Deflecting means for flowing along the downstream side in the combustion gas flow direction.
2. The gas turbine combustor wall cooling structure according to 1.

【0025】すなわち、請求項7に記載のガスタービン
燃焼器壁面冷却構造では、フィルム冷却空気供給手段
は、貫通部材開口周囲の燃焼ガス流れ方向下流側から冷
却空気を導入し、偏向手段によってこの冷却空気を熱遮
蔽部材内周面に沿って流すようにしている。このため、
貫通部材直下流部分から燃焼ガスと熱遮蔽部材内周面と
の間に冷却空気フィルムが形成され、熱遮蔽部材の局所
的温度上昇が防止される。
That is, in the gas turbine combustor wall cooling structure according to the seventh aspect, the film cooling air supply means introduces cooling air from the downstream side in the combustion gas flow direction around the opening of the penetrating member, and the cooling air is supplied by the deflection means. The air is caused to flow along the inner peripheral surface of the heat shielding member. For this reason,
A cooling air film is formed between the combustion gas and the inner peripheral surface of the heat shield member from a portion immediately downstream of the penetrating member, thereby preventing a local temperature rise of the heat shield member.

【0026】請求項8に記載の発明によれば、前記冷却
空気通路は、前記貫通部材の燃焼ガス流れ方向下流側の
前記熱遮蔽部材中に内筒軸線に沿った方向に延びる複数
の管状の内部冷却空気通路と、前記貫通部材の燃焼ガス
流れ方向下流側の熱遮蔽部材外周部に開口する前記内部
冷却空気通路への冷却空気入口とを備え、前記フィルム
冷却空気供給手段は、前記、前記熱遮蔽部材の前記貫通
部材下流側の内周面に開口し、前記内部冷却空気通路内
の冷却空気を燃焼室内に放出するフィルム冷却空気供給
口と、を備えた請求項6に記載のガスタービン燃焼器壁
面冷却構造が提供される。
According to the invention described in claim 8, the cooling air passage has a plurality of tubular members extending in the direction along the inner cylinder axis in the heat shielding member on the downstream side in the combustion gas flow direction of the penetrating member. An internal cooling air passage, and a cooling air inlet to the internal cooling air passage that is opened at an outer peripheral portion of the heat shielding member on the downstream side of the through member in the combustion gas flow direction, and wherein the film cooling air supply means includes: The gas turbine according to claim 6, further comprising: a film cooling air supply port that opens on an inner peripheral surface of the heat shielding member on the downstream side of the penetrating member and that discharges cooling air in the internal cooling air passage into a combustion chamber. A combustor wall cooling structure is provided.

【0027】すなわち、請求項8に記載のガスタービン
燃焼器壁面冷却構造では、貫通部材の燃焼ガス流れ方向
下流側の熱遮蔽部材中には管状の内部冷却空気通路が形
成されており、この冷却空気通路内の冷却空気が熱遮蔽
部材に設けた開口から放出されて冷却空気フィルムを形
成する。これにより、熱遮蔽部材の内部冷却空気通路に
よる冷却能力の向上とフィルム冷却による熱遮蔽部材壁
面の局所的熱負荷増大の防止との両方が同時に可能とな
るため、熱遮蔽部材の局所的温度上昇が防止される。
That is, in the gas turbine combustor wall cooling structure according to the eighth aspect, a tubular internal cooling air passage is formed in the heat shielding member on the downstream side in the combustion gas flow direction of the penetrating member. Cooling air in the air passage is discharged from an opening provided in the heat shielding member to form a cooling air film. As a result, both the improvement of the cooling capacity by the internal cooling air passage of the heat shielding member and the prevention of the local heat load increase of the heat shielding member wall surface by the film cooling can be performed at the same time. Is prevented.

【0028】[0028]

【発明の実施の形態】以下、添付図面を用いて本発明の
実施形態について説明する。 (1)第1の実施形態 図2、図3は、本発明のガスタービン燃焼器壁面冷却構
造の第1の実施形態を示す図12と同様な断面図であ
る。図2において、55は内筒シェル、155は熱遮蔽
部材を示す。また、159は、クロスファイアチュー
ブ、スクープなどの貫通部材を示すのは、図12と同様
である。本実施形態では、図2に示すように熱遮蔽部材
155の貫通部材159上流側部分155Uは、全周に
わたって外周に軸線方向に溝155bが形成されたフィ
ンリングとされている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. (1) First Embodiment FIGS. 2 and 3 are sectional views similar to FIG. 12 showing a first embodiment of a gas turbine combustor wall cooling structure of the present invention. In FIG. 2, 55 indicates an inner cylinder shell, and 155 indicates a heat shielding member. Reference numeral 159 denotes a penetrating member such as a cross fire tube and a scoop, similar to FIG. In the present embodiment, as shown in FIG. 2, the upstream portion 155U of the penetrating member 159 of the heat shielding member 155 is a fin ring in which a groove 155b is formed in the outer periphery along the entire circumference.

【0029】図3は、図2のIII−III線に沿った
断面を示す。貫通部材159下流側の熱遮蔽部材部分1
55Dには、熱遮蔽部材外周から垂直に突出する円柱形
状の突起155Pが多数配列された、いわゆるピンフィ
ン構造とされている。図2に示すように、本実施形態で
は冷却空気は、熱遮蔽部材の上流側部分では、シェル5
5の全周にわたって設けられた複数の冷却空気入口57
からシェルと熱遮蔽部材との間の環状空間に流入し、フ
ィンリングの溝155bを通過して熱遮蔽部材の上流側
部分155Uを冷却する。また、貫通部材159の熱遮
蔽部材貫通部では、冷却空気の一部は、貫通部材159
と熱遮蔽部材上流側部分155Uとの間に形成された半
環状の空隙159aを通って燃焼室内に流入する。
FIG. 3 shows a cross section along the line III-III in FIG. Heat shielding member portion 1 downstream of penetrating member 159
55D has a so-called pin fin structure in which a large number of cylindrical projections 155P projecting vertically from the outer periphery of the heat shielding member are arranged. As shown in FIG. 2, in the present embodiment, the cooling air is supplied to the shell 5 in the upstream portion of the heat shielding member.
5, a plurality of cooling air inlets 57 provided over the entire circumference.
Flows into the annular space between the shell and the heat shield member, passes through the groove 155b of the fin ring, and cools the upstream portion 155U of the heat shield member. Further, in the heat shielding member penetrating portion of the penetrating member 159, a part of the cooling air is supplied to the penetrating member 159.
And flows into the combustion chamber through a semi-annular space 159a formed between the heat shield member upstream portion 155U.

【0030】一方、貫通部材下流側では、冷却空気はシ
ェル55貫通部の貫通部材159外周の下流側半分の周
囲に形成された半環状空隙159bを通ってシェルと熱
遮蔽部材下流側部分155Dとの間の環状空間に流入
し、熱遮蔽部材下流側部分155外周に配置されたピン
フィン列155Pに流入し、内筒軸線方向にピンフィン
列内を流れて熱遮蔽部材端部から下流側の熱遮蔽部材内
壁面に沿って流出する。ピンフィン列は、小さい径の多
数の円柱列から構成されているため、ピンフィン列を通
過する冷却空気との伝熱面積は、フィンリングに較べて
極めて大きくなっている。このため、熱遮蔽部材の貫通
部材159下流側部分155Dでは上流側部分155U
に較べて、冷却空気と熱遮蔽部材との間の熱伝達率が大
幅に大きくなる。このため、貫通部材159下流側の熱
遮蔽部材155D内周面に燃焼ガスの渦が発生し、熱負
荷が局所的に増大するような場合にも、熱遮蔽部材の冷
却が十分に行われるようになり、局所的な温度上昇が生
じない。
On the other hand, on the downstream side of the penetrating member, the cooling air passes through a semi-annular space 159b formed around the downstream half of the outer periphery of the penetrating member 159 of the shell 55 penetrating portion, and the cooling air flows into the shell and the heat shielding member downstream portion 155D. And flows into the pin fin row 155P arranged on the outer periphery of the heat shielding member downstream portion 155, flows in the pin fin row in the axial direction of the inner cylinder, and flows downstream from the end of the heat shielding member. It flows out along the inner wall surface of the member. Since the pin fin row is composed of a large number of column rows having a small diameter, the heat transfer area with the cooling air passing through the pin fin row is much larger than that of the fin ring. For this reason, the upstream portion 155U is used in the downstream portion 155D of the penetration member 159 of the heat shielding member.
The heat transfer coefficient between the cooling air and the heat shielding member is greatly increased. For this reason, even when eddies of the combustion gas are generated on the inner peripheral surface of the heat shield member 155D on the downstream side of the penetrating member 159, and the heat load locally increases, the heat shield member is sufficiently cooled. And no local temperature rise occurs.

【0031】なお、ピンフィン列は熱遮蔽部材の下流側
部分155の外周のうち、貫通部材159の直下流側部
分のみに設け、外周の残りの部分はフィンリングの溝1
55bを上流側部材155Uから延長させても良い。し
かし、フィンリング溝155bは機械加工で形成するの
に対し、ピンフィン列は精密鋳造により熱遮蔽部材とと
もに容易に形成することができ、フィンリング溝の加工
コストより低コストで形成可能である。このため、熱遮
蔽部材の上流側部分155Uと下流側部分155Dとを
別体に形成し、下流側部分155Dには全周にわたって
外周にピンフィン列を形成しておき、フィンリング溝1
55bを形成した上流側部分155Uと下流側部分15
5Dとを軸線方向にロウ付け等により一体に接合して熱
遮蔽部材155を形成するようにしてもよい。フィンリ
ング溝155bを熱遮蔽部材に形成した場合には、溝1
55bの両側には軸線方向に熱遮蔽部材外周に厚肉部が
形成されることになる。このため、溝155bを熱遮蔽
部材の全長にわたって形成すると軸線方向の温度勾配に
より厚肉部に比較的大きな熱応力が発生する場合があ
る。これに対して、ピンフィン列は厚肉部が軸線方向に
連続していないため、軸線方向に大きな温度勾配があっ
ても熱応力が発生することはない。このため、上記のよ
うに熱遮蔽部材の下流側部分155D外周全体にわたっ
てピンフィン列を形成することにより、熱遮蔽部材に生
じる熱応力が低減されるという副次的な効果をも得るこ
とができる。
The pin fin row is provided only on the portion of the outer periphery of the downstream portion 155 of the heat shielding member, which is directly downstream of the penetrating member 159, and the remaining portion of the outer periphery is formed by the groove 1 of the fin ring.
55b may be extended from the upstream member 155U. However, while the fin ring groove 155b is formed by machining, the pin fin row can be easily formed together with the heat shielding member by precision casting, and can be formed at a lower cost than the processing cost of the fin ring groove. For this reason, the upstream portion 155U and the downstream portion 155D of the heat shielding member are formed separately, and the downstream portion 155D is formed with a pin fin row on the entire periphery thereof, and the fin ring groove 1 is formed.
55b and the downstream portion 15
The heat shield member 155 may be formed by joining the 5D and the 5D integrally by brazing or the like in the axial direction. When the fin ring groove 155b is formed in the heat shielding member, the groove 1
On both sides of 55b, thick portions are formed on the outer periphery of the heat shielding member in the axial direction. Therefore, if the groove 155b is formed over the entire length of the heat shielding member, a relatively large thermal stress may be generated in the thick portion due to a temperature gradient in the axial direction. On the other hand, in the pin fin row, since the thick portion is not continuous in the axial direction, no thermal stress is generated even if there is a large temperature gradient in the axial direction. Therefore, by forming the pin fin array over the entire outer periphery of the downstream portion 155D of the heat shielding member as described above, a secondary effect that thermal stress generated in the heat shielding member is reduced can also be obtained.

【0032】(2)第2の実施形態 図4は、本発明のガスタービン燃焼器壁面冷却構造の第
2の実施形態を示す、図2と同様な内筒壁の拡大断面図
である。本実施形態では、熱遮蔽部材155の貫通部材
159下流側部分155Dの冷却方法がピンフィン列の
代りに熱遮蔽部材中に軸線方向に延設された内部冷却空
気通路である点が上述の第1の実施形態と相違してい
る。
(2) Second Embodiment FIG. 4 is an enlarged sectional view of the inner cylinder wall similar to FIG. 2 showing a second embodiment of the gas turbine combustor wall cooling structure of the present invention. In the present embodiment, the first cooling method described above is characterized in that the cooling method of the downstream portion 155D of the penetrating member 159 of the heat shielding member 155 is an internal cooling air passage extending in the axial direction in the heat shielding member instead of the pin fin row. Is different from the embodiment of FIG.

【0033】図5は、本実施形態の熱遮蔽部材155の
下流側部分155Dの構成を示す図である。本実施形態
の熱遮蔽部材下流側部分155Dは、比較的板圧の厚い
円筒状部材とされ、円筒壁内部に軸線方向に配列された
多数の断面矩形の冷却空気通路551を有している。本
実施形態では熱遮蔽部材155の下流側部分155D
は、例えば、2つの円筒状部材550aと550bとを
ロウ付け等により接合することにより形成される。内側
の円筒状部材550aは、外周に軸線方向に延びる断面
矩形の溝が形成されており、外側の円筒状部材550b
は平坦な内周面を有している。このため、内側円筒状部
材550aを外側円筒状部材550a内に挿入し、内側
円筒状部材外周面550aと外側円筒状部材550b内
周面とをロウ付け等により接合して熱遮蔽部材155を
構成することにより、内側の円筒状部材550aの外周
の溝の上部が外側の円筒状部材550bにより覆われ
て、熱遮蔽部材内に、互いに独立した断面矩形の管状の
内部冷却空気通路551が多数形成される。
FIG. 5 is a diagram showing the configuration of the downstream portion 155D of the heat shielding member 155 of this embodiment. The downstream portion 155D of the heat shielding member of this embodiment is a cylindrical member having a relatively large plate pressure, and has a large number of cooling air passages 551 having a rectangular cross section arranged in the axial direction inside the cylindrical wall. In this embodiment, the downstream portion 155D of the heat shielding member 155 is used.
Is formed, for example, by joining two cylindrical members 550a and 550b by brazing or the like. The inner cylindrical member 550a has a groove with a rectangular cross section extending in the axial direction on the outer periphery, and the outer cylindrical member 550b
Has a flat inner peripheral surface. Therefore, the inner cylindrical member 550a is inserted into the outer cylindrical member 550a, and the outer peripheral surface 550a of the inner cylindrical member and the inner peripheral surface of the outer cylindrical member 550b are joined by brazing or the like to form the heat shielding member 155. By doing so, the upper part of the outer circumferential groove of the inner cylindrical member 550a is covered by the outer cylindrical member 550b, and a large number of independent tubular internal cooling air passages 551 having a rectangular cross section are formed in the heat shielding member. Is done.

【0034】図4に示すように、熱遮蔽部材155の下
流側部分155Dは、第1の実施形態と同様にフィンリ
ング冷却構造を有する上流側部分155Uと接合され、
熱遮蔽部材155を形成する。また、本実施形態では、
このようにして組立てられた熱遮蔽部材155をシェル
55に接合する際に、熱遮蔽部材下流側部分155Dの
外周に耐熱材料からなるシールリング553を介挿す
る。シールリング553は、冷却空気が外側円筒状部材
550bの外周とシェル55内周との間の間隙を通って
流れることを阻止する目的で設けられている。
As shown in FIG. 4, a downstream portion 155D of the heat shielding member 155 is joined to an upstream portion 155U having a fin ring cooling structure as in the first embodiment.
The heat shielding member 155 is formed. In this embodiment,
When joining the heat shield member 155 assembled in this manner to the shell 55, a seal ring 553 made of a heat-resistant material is inserted around the outer periphery of the heat shield member downstream portion 155D. The seal ring 553 is provided for the purpose of preventing cooling air from flowing through a gap between the outer circumference of the outer cylindrical member 550b and the inner circumference of the shell 55.

【0035】本実施形態では冷却空気は、熱遮蔽部材の
上流側部分では、シェル55の全周にわたって設けられ
た複数の冷却空気入口57からシェルと熱遮蔽部材との
間の環状空間に流入し、フィンリングの溝155bを通
過して熱遮蔽部材の上流側部分155Uを冷却する。ま
た、貫通部材159の熱遮蔽部材貫通部では、冷却空気
の一部は、貫通部材159と熱遮蔽部材上流側部分15
5Uとの間に形成された半環状の空隙159aを通って
燃焼室内に流入する。一方、貫通部材下流側では、冷却
空気はシェル55貫通部の貫通部材159外周の下流側
半分の周囲に形成された半環状空隙159bを通ってシ
ェルと熱遮蔽部材下流側部分155Dとの間の環状空間
に流入し、外側円筒状部材550b外周上の各内部冷却
空気通路部分に穿設された冷却空気入口550cから各
冷却空気通路551に流入する。そして、冷却空気は、
各冷却空気通路551内を流れ、熱遮蔽部材下流側部分
155Dを対流冷却した後、下流側部分155D端部か
ら、隣接するシェルの熱遮蔽部材内周面に沿って軸線方
向に放出する。
In this embodiment, the cooling air flows into the annular space between the shell and the heat shielding member from a plurality of cooling air inlets 57 provided over the entire periphery of the shell 55 in the upstream portion of the heat shielding member. Then, the upstream portion 155U of the heat shielding member is cooled by passing through the groove 155b of the fin ring. Further, in the heat-shielding member penetrating portion of the penetrating member 159, a part of the cooling air is supplied to the penetrating member 159 and the heat-shielding member upstream portion
The air flows into the combustion chamber through the semi-annular space 159a formed between 5U. On the other hand, on the downstream side of the penetrating member, the cooling air passes through a semi-annular space 159b formed around the downstream half of the outer periphery of the penetrating member 159 of the shell 55 penetrating portion, and the cooling air flows between the shell and the heat shielding member downstream portion 155D. It flows into the annular space, and flows into each cooling air passage 551 from a cooling air inlet 550c formed in each internal cooling air passage on the outer periphery of the outer cylindrical member 550b. And the cooling air is
After flowing through each cooling air passage 551 and convectively cooling the downstream portion 155D of the heat shield member, the heat is discharged from the end of the downstream portion 155D in the axial direction along the inner peripheral surface of the heat shield member of the adjacent shell.

【0036】図11に示すように、フィンリング冷却構
造をとった場合には、フィンリング155外周とシェル
55内周との間に熱膨張を考慮して間隙155cが必要
となる。この間隙155cはフィンリングの加工精度や
取付け誤差を考慮するとかなり大きく設定する必要があ
る。このため、フィンリング冷却構造では、供給された
冷却空気のかなりの部分ががフィンリング溝155bを
通らずに、フィンリングの冷却に寄与しないまま間隙1
55cを通って流れることになり、冷却空気とフィンリ
ング間の熱伝達率を十分に高くできない場合がある。
As shown in FIG. 11, when the fin ring cooling structure is adopted, a gap 155c is required between the outer periphery of the fin ring 155 and the inner periphery of the shell 55 in consideration of thermal expansion. The gap 155c needs to be set considerably large in consideration of the processing accuracy of the fin ring and the mounting error. For this reason, in the fin ring cooling structure, a considerable portion of the supplied cooling air does not pass through the fin ring groove 155b and the gap 1 does not contribute to the cooling of the fin ring.
As a result, the heat transfer coefficient between the cooling air and the fin rings may not be sufficiently increased.

【0037】本実施形態では、熱遮蔽部材下流側部分1
55Dの外側円筒状部材550b外周にはシールリング
553が設けられているため、外側円筒状部材550b
の外周面とシェル55内周面との間から燃焼室内に冷却
空気が洩れることが防止されるため、シェル内に流入し
た冷却空気は全て内部冷却空気通路551内を流れるよ
うになる。このため、下流側部分155Dでは、冷却空
気と熱遮蔽部材155との間の熱伝達率は上流側部分1
55Uにおける熱伝達率より大幅に増大するようにな
る。これにより、本実施形態では、貫通部材159下流
側に燃焼ガスの渦が発生して熱遮蔽部材下流側部分15
5Dで局所的に熱負荷が増大した場合でも、十分に熱遮
蔽部材の壁温を低く維持することが可能となっている。
In this embodiment, the downstream portion 1 of the heat shielding member
Since the seal ring 553 is provided on the outer periphery of the outer cylindrical member 550b of the outer cylindrical member 550b
The cooling air is prevented from leaking into the combustion chamber from between the outer peripheral surface of the shell 55 and the inner peripheral surface of the shell 55, so that all the cooling air flowing into the shell flows through the internal cooling air passage 551. Therefore, in the downstream portion 155D, the heat transfer coefficient between the cooling air and the heat shielding member 155 is lower than the upstream portion 1
It becomes much larger than the heat transfer coefficient at 55U. As a result, in the present embodiment, a vortex of the combustion gas is generated on the downstream side of the penetrating member 159 and the downstream portion 15 of the heat shielding member is formed.
Even when the heat load locally increases in 5D, it is possible to sufficiently keep the wall temperature of the heat shielding member low.

【0038】なお、図2の実施形態では、内部冷却空気
通路551に流入した冷却空気は全て熱遮蔽部材155
端部から次のシェルの熱遮蔽部材壁面に沿って放出して
いるが、本実施形態においても後述する第5の実施形態
のように、内側円筒状部材550aに設けたフィルム冷
却空気供給口から管状内部空気通路551内の冷却空気
を燃焼室に噴射して内側円筒状部材550aの内周面を
フィルム冷却するようにすれば、更に確実に熱遮蔽部材
壁温(内側円筒状部材壁温)の局所的温度上昇を防止す
ることが可能となる。
In the embodiment shown in FIG. 2, all the cooling air flowing into the internal cooling air passage 551 is
It is released from the end along the heat shield member wall surface of the next shell, but also in the present embodiment, as in the fifth embodiment described later, from the film cooling air supply port provided in the inner cylindrical member 550a. If the cooling air in the tubular internal air passage 551 is injected into the combustion chamber to cool the inner peripheral surface of the inner cylindrical member 550a by film, the wall temperature of the heat shielding member (the wall temperature of the inner cylindrical member) can be further assured. Can be prevented from locally increasing in temperature.

【0039】(3)第3の実施形態 図6は、本発明のガスタービン燃焼器壁面冷却構造の第
3の実施形態を示す、図2と同様な内筒壁の拡大断面図
である。本実施形態では、熱遮蔽部材155の貫通部材
159下流側部分155Dにも、上流側部分155Uと
同様に外周部に軸線方向に延びる溝165が形成されて
いる。しかし、上流側部分155Uでは溝155bは単
純なフィンリング溝とされているのに対して、本実施形
態では下流側部分155Dの溝165は、上流側部分1
55Uの溝155bより溝幅が広く、更に溝内に斜めタ
ービュレータ167が形成されている点が上述した第1
と第2の実施形態と相違している。図7は、図6のVI
I−VII線に沿った断面を示す。斜めタービュレータ
167は、図7に示すように、溝165横断方向に対し
て斜め方向に所定の角度θをなすように延設された複数
の隆起からなっている。
(3) Third Embodiment FIG. 6 is an enlarged sectional view of the inner cylinder wall similar to FIG. 2, showing a third embodiment of the gas turbine combustor wall cooling structure of the present invention. In the present embodiment, a groove 165 extending in the axial direction is formed in the outer peripheral portion of the heat-shielding member 155 at the outer peripheral portion also at the downstream portion 155D of the penetrating member 159 similarly to the upstream portion 155U. However, while the groove 155b is a simple fin ring groove in the upstream portion 155U, the groove 165 of the downstream portion 155D is
The first point is that the groove width is wider than the groove 155b of 55U, and the oblique turbulator 167 is formed in the groove.
This is different from the second embodiment. FIG. 7 shows VI of FIG.
5 shows a cross section along the line I-VII. As shown in FIG. 7, the oblique turbulator 167 is formed of a plurality of protrusions extending so as to form a predetermined angle θ in an oblique direction with respect to a direction transverse to the groove 165.

【0040】このように、斜めタービュレータ167を
溝165内に配置すると、溝165内を流れる冷却空気
が斜タービュレータ167を乗越える際に乱れを生じ、
タービュレータ167下流側に冷却空気の渦が発生す
る。斜めタービュレータ167は、横断方向に対して角
度を持って形成されているため、上記により発生した冷
却空気の渦は、図7に示すように斜めタービュレータ1
67の背面に沿って溝165内を移動するようになる。
このように、冷却空気の渦が発生すると渦の発生箇所で
は冷却空気と熱遮蔽部材155との間の熱伝達は乱流熱
伝達となり、熱伝達率は層流熱伝達の場合に較べて大幅
に増大する。しかも、斜めタービュレータ167では、
発生した渦が各タービュレータ167の背面に沿って広
い範囲を移動することになるため、全体として熱伝達率
は大きく増大するようになる。このため、貫通部材15
9下流側の熱遮蔽部材155D内周面に燃焼ガスの渦が
発生し、熱負荷が局所的に増大するような場合にも、熱
遮蔽部材の冷却が十分に行われるようになり、局所的な
温度上昇が生じない。
As described above, when the oblique turbulator 167 is disposed in the groove 165, the cooling air flowing in the groove 165 becomes turbulent when passing over the oblique turbulator 167.
A vortex of cooling air is generated downstream of the turbulator 167. Since the oblique turbulator 167 is formed at an angle with respect to the transverse direction, the vortex of the cooling air generated as described above causes the oblique turbulator 1 as shown in FIG.
It moves inside the groove 165 along the back surface of 67.
As described above, when the vortex of the cooling air is generated, the heat transfer between the cooling air and the heat shielding member 155 is turbulent heat transfer at the location where the vortex is generated, and the heat transfer coefficient is significantly larger than that in the case of the laminar heat transfer. To increase. Moreover, in the oblique turbulator 167,
Since the generated vortex moves over a wide range along the back surface of each turbulator 167, the overall heat transfer coefficient greatly increases. Therefore, the penetrating member 15
9 Even when the vortex of the combustion gas is generated on the inner peripheral surface of the heat shield member 155D on the downstream side, and the heat load is locally increased, the heat shield member is sufficiently cooled, and the heat shield member is locally cooled. No significant temperature rise occurs.

【0041】なお、本実施形態では、溝165と斜めタ
ービュレータ167とは精密鋳造などにより熱遮蔽部材
下流側部分155Dに一体に形成され、フィンリング構
造の熱遮蔽部材上流側部分155Uとロウ付け等により
接合される。
In this embodiment, the groove 165 and the oblique turbulator 167 are formed integrally with the heat shielding member downstream portion 155D by precision casting or the like, and are brazed to the heat shielding member upstream portion 155U of the fin ring structure. Are joined.

【0042】(4)第4の実施形態 次に本発明の第4の実施形態について説明する。上述し
た第1から第3の実施形態では、いずれも貫通部材の燃
焼ガス流れ方向下流側で熱遮蔽部材の外周部を流れる冷
却空気と熱遮蔽部材との間の熱伝達率を増大させて熱遮
蔽部材の冷却能力を増大させることにより、貫通部材下
流側での燃焼ガスによる渦の発生により生じる熱遮蔽部
材内周面の熱負荷の局所的増大を吸収していた。これに
対して、本実施形態では貫通部材下流側での渦発生によ
る熱遮蔽部材内周面の熱負荷の局所的増大そのものを防
止する点が前述の各実施形態と相違している。
(4) Fourth Embodiment Next, a fourth embodiment of the present invention will be described. In the above-described first to third embodiments, the heat transfer rate between the cooling air flowing through the outer peripheral portion of the heat shielding member and the heat shielding member on the downstream side in the combustion gas flow direction of the penetrating member is increased. By increasing the cooling capacity of the shielding member, a local increase in the heat load on the inner peripheral surface of the heat shielding member caused by the generation of the vortex by the combustion gas downstream of the penetrating member has been absorbed. On the other hand, the present embodiment is different from the above-described embodiments in that the local increase in the heat load on the inner peripheral surface of the heat shielding member due to the generation of the vortex on the downstream side of the penetrating member is prevented.

【0043】図8は、本実施形態を示す図2と同様な内
筒壁の拡大断面図である。本実施形態では、熱遮蔽部材
155外周面は、図12の従来のものと同様に、貫通部
材159の下流側部分155Dも含めて全長にわたって
フィン溝155bが形成されている。しかし、本実施形
態では熱遮蔽部材155とシェル55との間を流れる冷
却空気の一部を貫通部材159の熱遮蔽部材155下流
側から燃焼室に放出し、熱遮蔽部材155の貫通部材下
流側部分155D内壁に沿って流すフィルム冷却空気供
給手段が設けられている点が図12の冷却構造と相違し
ている。
FIG. 8 is an enlarged sectional view of the inner cylindrical wall similar to FIG. 2 showing the present embodiment. In the present embodiment, the fin groove 155b is formed on the outer peripheral surface of the heat shielding member 155 over the entire length including the downstream portion 155D of the penetrating member 159, similarly to the conventional one in FIG. However, in the present embodiment, a part of the cooling air flowing between the heat shielding member 155 and the shell 55 is discharged from the downstream side of the heat shielding member 155 of the penetrating member 159 to the combustion chamber, and the downstream side of the penetrating member of the heat shielding member 155. The point that a film cooling air supply means flowing along the inner wall of the portion 155D is provided is different from the cooling structure of FIG.

【0044】本実施形態では、フィルム冷却空気供給手
段は、熱遮蔽部材155の貫通部材159貫通部の、貫
通部材外周と熱遮蔽部材155との間に設けられた冷却
空気供給口としての半環状の空隙171と、貫通部材1
59の燃焼室内突出部先端の外周下流側に設けられた半
円形のリップ(偏向板)173とから構成されている。
本実施形態では、貫通部材159上流側の熱遮蔽板と貫
通部材外周部との間は耐熱性のシール部材175により
シールされており、貫通部材159上流側からは冷却空
気が燃焼室に流出しないようにされている。
In this embodiment, the film cooling air supply means is a semi-annular cooling air supply port provided between the outer periphery of the penetrating member and the heat shielding member 155 in the penetrating portion of the penetrating member 159 of the heat shielding member 155. Gap 171 and the penetrating member 1
And a semicircular lip (deflecting plate) 173 provided on the outer peripheral downstream side of the tip of the projecting portion of the combustion chamber 59.
In the present embodiment, the space between the heat shield plate on the upstream side of the penetrating member 159 and the outer peripheral portion of the penetrating member is sealed by a heat-resistant seal member 175, and the cooling air does not flow into the combustion chamber from the upstream side of the penetrating member 159. It has been like that.

【0045】図8において、シェル55全周にわたって
設けられた冷却空気入口57からシェル55と熱遮蔽部
材155との間に流入した冷却空気の大部分は、図12
と同様フィンリング溝155b内を流れて熱遮蔽部材1
55をその外周から冷却するが、この冷却空気の一部は
貫通部材159外周下流側と熱遮蔽部材との間の半環状
の空隙171から燃焼室に放出される。この冷却空気流
は、貫通部材159の燃焼室突出端(開口)近傍に熱遮
蔽部材155内周面にほぼ平行に配置された偏向板17
3により向きを変えて、偏向板173と熱遮蔽部材15
5内周面との間の空隙から内周面に沿って下流側に向け
て流れる。このため、貫通部材159下流側には熱遮蔽
部材内周面に沿った冷却空気のフィルムが形成される。
In FIG. 8, most of the cooling air flowing between the shell 55 and the heat shielding member 155 from the cooling air inlet 57 provided around the entire circumference of the shell 55 is shown in FIG.
Flows in the fin ring groove 155b and heat shield member 1
55 is cooled from the outer periphery thereof, and a part of the cooling air is discharged to the combustion chamber from a semi-annular space 171 between the outer periphery downstream of the penetrating member 159 and the heat shielding member. This cooling air flow is applied to the deflecting plate 17 which is disposed in the vicinity of the protruding end (opening) of the penetration member 159 near the inner peripheral surface of the heat shielding member 155.
3, the deflection plate 173 and the heat shielding member 15
5 flows downstream from the gap between the inner peripheral surface and the inner peripheral surface. Therefore, a film of cooling air is formed on the downstream side of the penetrating member 159 along the inner peripheral surface of the heat shielding member.

【0046】前述したように、貫通部材159の下流側
で熱遮蔽部材壁面の熱負荷が増大するのは、燃焼ガスの
渦が発生することに加えて、貫通部材上流側から供給さ
れる冷却空気フィルムが貫通部材突出部に阻止されて下
流側に届かなくなるためである。本実施形態では、上記
のように貫通部材下流側に直接冷却空気を供給してフィ
ルム冷却を行うようにしたことにより、貫通部材下流側
には低圧部分が生じないため貫通部材下流側に燃焼ガス
が巻込まれて渦が発生することが防止されるとともに、
貫通部材下流側の熱遮蔽部材壁面には冷却空気のフィル
ムが形成されるようになる。このため、貫通部材の存在
により局部的に熱遮蔽部材内壁の熱負荷が増大すること
が防止されるようになり、熱遮蔽部材の局部的温度上昇
が生じなくなる。
As described above, the heat load on the heat shielding member wall surface on the downstream side of the penetrating member 159 is increased due to the generation of the vortex of the combustion gas and the cooling air supplied from the upstream side of the penetrating member. This is because the film is blocked by the penetrating member projection and cannot reach the downstream side. In the present embodiment, since the film cooling is performed by directly supplying the cooling air to the downstream side of the penetrating member as described above, the low pressure portion does not occur on the downstream side of the penetrating member, so that the combustion gas is downstream of the penetrating member. Is prevented from being caught and vortices are generated,
A film of cooling air is formed on the heat shield member wall surface on the downstream side of the penetrating member. Therefore, the heat load on the inner wall of the heat shielding member is prevented from locally increasing due to the presence of the penetrating member, and the local temperature rise of the heat shielding member does not occur.

【0047】(5)第5の実施形態 次に、本発明の第5の実施形態について説明する。本実
施形態においても、第4の実施形態と同様に貫通部材下
流側の熱遮蔽部材壁面にフィルム冷却空気を供給するこ
とにより、貫通部材による燃焼ガスの渦の発生の防止
と、熱遮蔽部材壁面のフィルム冷却とを行う点は同様で
あるが、フィルム冷却用の冷却空気の供給方法が第4の
実施形態とは異なっている。
(5) Fifth Embodiment Next, a fifth embodiment of the present invention will be described. Also in the present embodiment, the film cooling air is supplied to the heat shielding member wall surface on the downstream side of the penetrating member in the same manner as in the fourth embodiment, thereby preventing the generation of the vortex of the combustion gas by the penetrating member and the heat shielding member wall surface. Is the same as that of the fourth embodiment, but the method of supplying cooling air for cooling the film is different from that of the fourth embodiment.

【0048】図9は、本実施形態を示す図8と同様な内
筒壁の拡大図である。図9に示すように、本実施形態の
熱遮蔽部材155の貫通部材下流側部分155Dは、前
述の第2の実施形態と同様の構成とされており、熱遮蔽
部材中に管状の軸線方向内部冷却空気通路551が形成
された構成となっている。しかし、本実施形態では外側
円筒状部材550b外周とシェル55との間をシールす
るシールリング553は、熱遮蔽部材155の下流側端
部近傍に設けられており、貫通部材159下流側の部分
の各内部冷却空気通路551には、シールリング553
上流側の部分に外側円筒状部材550bに穿設された複
数の冷却空気入口550cが設けられており、更に内側
円筒状部材550aには、各冷却空気通路551内の冷
却空気を燃焼室に放出する複数の冷却空気出口550d
が、各冷却空気通路551に沿って穿設されている。
FIG. 9 is an enlarged view of the inner cylinder wall similar to FIG. 8 showing this embodiment. As shown in FIG. 9, the downstream portion 155 </ b> D of the penetrating member of the heat shielding member 155 of the present embodiment has the same configuration as that of the above-described second embodiment. The cooling air passage 551 is formed. However, in the present embodiment, the seal ring 553 that seals between the outer periphery of the outer cylindrical member 550b and the shell 55 is provided near the downstream end of the heat shielding member 155, and is provided on the downstream side of the penetrating member 159. Each internal cooling air passage 551 has a seal ring 553.
A plurality of cooling air inlets 550c perforated in the outer cylindrical member 550b are provided in an upstream portion, and the inner cylindrical member 550a discharges cooling air in each cooling air passage 551 to the combustion chamber. Cooling air outlets 550d
Are formed along each cooling air passage 551.

【0049】本実施形態では、冷却空気入口550cか
ら貫通部材159下流に位置する各冷却空気通路551
に流入した冷却空気は、複数の冷却空気出口550dか
ら貫通部材159下流の燃焼室に放出される。このた
め、上記第4の実施形態と同様に、貫通部材による燃焼
ガスの渦発生防止と熱遮蔽部材壁面のフィルム冷却とが
可能となり貫通部材下流側での熱遮蔽部材壁面の局所的
な熱負荷の増大が防止される。また、本実施形態では、
前述の第2の実施形態と同様に冷却能力の大きい管状内
部冷却空気通路551を貫通部下流側の熱遮蔽部材部分
155Dに設けているため、上記熱負荷増大防止に加え
て熱遮蔽部材155の冷却能力も増大するため、熱遮蔽
部材の温度上昇を確実に防止することが可能となる。
In this embodiment, each cooling air passage 551 located downstream from the cooling air inlet 550c and the penetrating member 159 is provided.
Is discharged from the plurality of cooling air outlets 550d to the combustion chamber downstream of the penetrating member 159. For this reason, similarly to the fourth embodiment, it is possible to prevent the generation of the vortex of the combustion gas by the penetrating member and to cool the film of the heat shielding member wall surface, and the local heat load on the heat shielding member wall surface downstream of the penetrating member is achieved. Is prevented from increasing. In this embodiment,
Since the tubular internal cooling air passage 551 having a large cooling capacity is provided in the heat shielding member portion 155D on the downstream side of the penetrating portion similarly to the second embodiment described above, the heat shielding member 155 can be formed in addition to the above-described heat load increase prevention. Since the cooling capacity also increases, it is possible to reliably prevent the temperature of the heat shielding member from rising.

【0050】[0050]

【発明の効果】各請求項に記載の発明によれば、ガスタ
ービン燃焼器の熱遮蔽部材を貫通する貫通部材の存在に
より貫通部材下流側で熱遮蔽部材の温度が局所的に上昇
することを防止できるという共通の効果を奏する。すな
わち、請求項1から5の発明では、貫通部材下流側の熱
遮蔽部材と冷却空気との間の熱伝達率を貫通部材上流側
の熱遮蔽部材の熱伝達率より大きくしたことにより、貫
通部材下流側の熱遮蔽部材の冷却能力が増大するため、
貫通部材下流側での熱遮蔽部材の局所的温度上昇が防止
される。
According to the present invention, the temperature of the heat shielding member locally increases downstream of the penetrating member due to the presence of the penetrating member penetrating the heat shielding member of the gas turbine combustor. It has the common effect that it can be prevented. In other words, according to the first to fifth aspects of the present invention, the heat transfer coefficient between the heat shield member on the downstream side of the penetrating member and the cooling air is made larger than the heat transfer coefficient of the heat shield member on the upstream side of the penetrating member. Because the cooling capacity of the downstream heat shielding member increases,
A local temperature rise of the heat shield member on the downstream side of the penetrating member is prevented.

【0051】また、請求項6から8の発明では、貫通部
材下流側の熱遮蔽部材壁面にフィルム冷却空気を供給す
るようにしたことにより、貫通部材下流側の熱遮蔽部材
壁面で局所的に熱負荷が増大することが防止されるた
め、貫通部材下流側での熱遮蔽部材の局所的温度上昇が
防止される。
According to the present invention, the film cooling air is supplied to the wall of the heat shielding member on the downstream side of the penetrating member, so that the heat is locally heated on the wall of the heat shielding member on the downstream side of the penetrating member. Since the load is prevented from increasing, a local temperature rise of the heat shielding member on the downstream side of the penetrating member is prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】空気冷却ガスタービン燃焼器の一例を示す断面
図である。
FIG. 1 is a sectional view showing an example of an air-cooled gas turbine combustor.

【図2】本発明のガスタービン燃焼器壁面冷却構造の第
1の実施形態を示す断面図である。
FIG. 2 is a sectional view showing a first embodiment of the gas turbine combustor wall cooling structure of the present invention.

【図3】図2のIII−III線に沿った断面図であ
る。
FIG. 3 is a sectional view taken along line III-III of FIG. 2;

【図4】本発明のガスタービン燃焼器壁面冷却構造の第
2の実施形態を示す断面図である。
FIG. 4 is a sectional view showing a second embodiment of the gas turbine combustor wall cooling structure of the present invention.

【図5】第2の実施形態の管状内部冷却空気通路を説明
する図である。
FIG. 5 is a diagram illustrating a tubular internal cooling air passage according to a second embodiment.

【図6】本発明のガスタービン燃焼器壁面冷却構造の第
3の実施形態を示す断面図である。
FIG. 6 is a sectional view showing a third embodiment of the gas turbine combustor wall cooling structure of the present invention.

【図7】図6のVII−VII線に沿った断面図であ
る。
FIG. 7 is a sectional view taken along the line VII-VII in FIG. 6;

【図8】本発明のガスタービン燃焼器壁面冷却構造の第
4の実施形態を示す断面図である。
FIG. 8 is a sectional view showing a fourth embodiment of the gas turbine combustor wall cooling structure of the present invention.

【図9】本発明のガスタービン燃焼器壁面冷却構造の第
5の実施形態を示す断面図である。
FIG. 9 is a sectional view showing a fifth embodiment of the gas turbine combustor wall cooling structure of the present invention.

【図10】従来のガスタービン燃焼器壁面冷却構造を示
す断面図である。
FIG. 10 is a sectional view showing a conventional gas turbine combustor wall cooling structure.

【図11】図10のXI−XI線に沿った断面図であ
る。
FIG. 11 is a sectional view taken along the line XI-XI in FIG. 10;

【図12】従来技術の問題点を説明する図10と同様な
断面図である。
FIG. 12 is a cross-sectional view similar to FIG. 10, illustrating a problem of the related art.

【符号の説明】[Explanation of symbols]

1…ガスタービン燃焼器 5b…内筒 55…シェル 155…熱遮蔽部材 155P…ピンフィン列 159…貫通部材 551…管状内部冷却空気通路 DESCRIPTION OF SYMBOLS 1 ... Gas turbine combustor 5b ... Inner cylinder 55 ... Shell 155 ... Heat shielding member 155P ... Pin fin row 159 ... Penetrating member 551 ... Tubular internal cooling air passage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 剛 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 根来 正明 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsuyoshi Kitamura 2-1-1 Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. No. 1 Inside the Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 燃焼室を構成する内部空間を有する円筒
状の内筒と、 前記内筒の内面に全周にわたって取り付けられ、内部を
軸線方向に燃焼ガスが流れる円筒状の燃焼室壁を構成す
る熱遮蔽部材と、 前記熱遮蔽部材と内筒との間を内筒軸線方向に流れる冷
却空気と前記熱遮蔽部材との間の熱交換を促進する熱交
換手段と、 前記内筒と前記熱遮蔽部材とを貫通して内筒外部から燃
焼室内に開口する管状の貫通部材とを備えたガスタービ
ン燃焼器壁面冷却構造であって、 前記熱交換手段は、前記貫通部材の燃焼ガス流れ方向下
流側部分での冷却空気と熱遮蔽部材との間の熱伝達率
が、前記貫通部材の燃焼ガス流れ方向上流側での冷却空
気と熱遮蔽部材との間の熱伝達率より大きくなるように
設定されていることを特徴とする、ガスタービン燃焼器
壁面冷却構造。
1. A cylindrical inner cylinder having an internal space forming a combustion chamber, and a cylindrical combustion chamber wall attached to the inner surface of the inner cylinder over the entire circumference and through which combustion gas flows in an axial direction. A heat shielding member, heat exchange means for promoting heat exchange between the cooling air flowing in the axial direction of the inner cylinder between the heat shielding member and the inner cylinder, and the heat shielding member, A tubular through-hole member that penetrates through the shielding member and opens into the combustion chamber from the outside of the inner cylinder, wherein the heat exchange means is located downstream of the through-member in the combustion gas flow direction. The heat transfer coefficient between the cooling air and the heat shielding member at the side portion is set to be larger than the heat transfer coefficient between the cooling air and the heat shielding member on the upstream side in the combustion gas flow direction of the penetrating member. Gas turbine combustion characterized by being Wall cooling structure.
【請求項2】 前記貫通部材の燃焼ガス流れ方向下流側
の熱交換手段は、前記熱遮蔽部材外周部から直角方向に
突出する複数の突起からなるピンフィン列を備えた、請
求項1に記載のガスタービン燃焼器壁面冷却構造。
2. The heat exchanger according to claim 1, wherein the heat exchange means on the downstream side in the combustion gas flow direction of the penetrating member includes a pin fin array comprising a plurality of projections projecting at right angles from the outer periphery of the heat shielding member. Gas turbine combustor wall cooling structure.
【請求項3】 前記貫通部材の燃焼ガス流れ方向下流側
の熱交換手段は、 前記熱遮蔽部材中に内筒軸線に沿った方向に延びる複数
の管状の内部冷却空気通路を備え、前記内部冷却空気通
路は前記貫通部材の燃焼ガス流れ方向下流側の熱遮蔽部
材外周部に開口する冷却空気入口と、前記熱遮蔽部材の
下流側端部に開口する冷却空気出口とを備え、前記内部
冷却空気通路を流れた冷却空気は前記冷却空気出口から
前記内筒内周面に沿って燃焼室内に流入する、請求項1
に記載のガスタービン燃焼器壁面冷却構造。
3. The heat exchange means on the downstream side of the penetrating member in the direction of combustion gas flow includes a plurality of tubular internal cooling air passages extending in a direction along an inner cylinder axis in the heat shielding member. The air passage includes a cooling air inlet opening at an outer peripheral portion of the heat shielding member on the downstream side in the combustion gas flow direction of the penetrating member, and a cooling air outlet opening at a downstream end of the heat shielding member. The cooling air flowing through the passage flows into the combustion chamber from the cooling air outlet along the inner peripheral surface of the inner cylinder.
2. The gas turbine combustor wall cooling structure according to 1.
【請求項4】 前記貫通部材の燃焼ガス流れ方向下流側
の熱交換手段は、熱遮蔽部材の外周部に設けられた軸線
方向に延びる複数の溝と、該溝内に溝横断方向に対して
斜めに延設された突起からなる斜めタービュレータとを
備えた、請求項1に記載のガスタービン燃焼器壁面冷却
構造。
4. A heat exchange means on the downstream side of the penetrating member in the combustion gas flow direction includes a plurality of axially extending grooves provided on an outer peripheral portion of the heat shielding member, and a plurality of grooves in the grooves in a direction transverse to the grooves. The gas turbine combustor wall cooling structure according to claim 1, further comprising an oblique turbulator including a projection extending obliquely.
【請求項5】 前記貫通部材の燃焼ガス流れ方向上流側
の熱交換手段は、熱遮蔽部材の外周部に全周にわたって
設けられた軸線方向に延びる複数の溝を備えた、請求項
1から4のいずれか1項に記載のガスタービン燃焼器壁
面冷却構造。
5. The heat exchange means on the upstream side of the penetrating member in the direction of combustion gas flow includes a plurality of axially extending grooves provided over the entire outer peripheral portion of the heat shielding member. The gas turbine combustor wall cooling structure according to any one of the above items.
【請求項6】 燃焼室を構成する内部空間を有する円筒
状の内筒と、 前記内筒の内面に全周にわたって取り付けられ、内部を
軸線方向に燃焼ガスが流れる円筒状の燃焼室壁を構成す
る熱遮蔽部材と、 前記熱遮蔽部材と内筒との間を内筒軸線方向に冷却空気
が流れる冷却空気通路と、 前記内筒と前記熱遮蔽部材とを貫通して内筒外部から燃
焼室内に開口する管状の貫通部材とを備えたガスタービ
ン燃焼器壁面冷却構造であって、 前記冷却空気通路は、前記冷却空気の一部を、前記熱遮
蔽部材の前記貫通部材の燃焼ガス流れ方向下流側部分か
ら前記熱遮蔽部材内周面に沿って流すフィルム冷却空気
供給手段を備えたことを特徴とする、ガスタービン燃焼
器壁面冷却構造。
6. A cylindrical inner cylinder having an internal space constituting a combustion chamber, and a cylindrical combustion chamber wall attached to the inner surface of the inner cylinder over the entire circumference and through which combustion gas flows in an axial direction. A heat shielding member, a cooling air passage through which cooling air flows in the axial direction of the inner cylinder between the heat shielding member and the inner cylinder, and a combustion chamber that penetrates the inner cylinder and the heat shielding member from outside the inner cylinder. And a tubular through-hole member that opens into the gas turbine combustor wall cooling structure, wherein the cooling air passage partially transfers the cooling air downstream of the heat shielding member in the combustion gas flow direction of the through-hole member. A gas turbine combustor wall cooling structure, characterized by comprising film cooling air supply means flowing from a side portion along the inner peripheral surface of the heat shielding member.
【請求項7】 前記フィルム冷却空気供給手段は、前記
熱遮蔽部材の前記貫通部材貫通部の、前記貫通部材外周
の燃焼ガス流れ方向下流側表面と前記熱遮蔽部材との間
隙からなる冷却空気供給口と、前記貫通部材の開口周囲
に設けられ、前記冷却空気通路から前記冷却空気供給口
を通って燃焼室内に流入する冷却空気を熱遮蔽部材内周
面に沿って燃焼ガス流れ方向下流側に向けて流す偏向手
段と、を備えた請求項6に記載のガスタービン燃焼器壁
面冷却構造。
7. The cooling air supply means, comprising: a cooling air supply comprising a gap between the outer surface of the through member penetrating portion of the heat shielding member on the downstream side of the outer periphery of the penetrating member in the flow direction of combustion gas and the heat shielding member. Port, provided around the opening of the penetrating member, the cooling air flowing into the combustion chamber from the cooling air passage through the cooling air supply port to the downstream side in the combustion gas flow direction along the heat shield member inner peripheral surface. The gas turbine combustor wall cooling structure according to claim 6, further comprising: a deflecting unit that flows toward the gas turbine combustor.
【請求項8】 前記冷却空気通路は、前記貫通部材の燃
焼ガス流れ方向下流側の前記熱遮蔽部材中に内筒軸線に
沿った方向に延びる複数の管状の内部冷却空気通路と、
前記貫通部材の燃焼ガス流れ方向下流側の熱遮蔽部材外
周部に開口する前記内部冷却空気通路への冷却空気入口
とを備え、前記フィルム冷却空気供給手段は、前記、前
記熱遮蔽部材の前記貫通部材下流側の内周面に開口し、
前記内部冷却空気通路内の冷却空気を燃焼室内に放出す
るフィルム冷却空気供給口と、を備えた請求項6に記載
のガスタービン燃焼器壁面冷却構造。
8. The cooling air passage has a plurality of tubular internal cooling air passages extending in a direction along an inner cylinder axis in the heat shielding member on a downstream side of the through member in a combustion gas flow direction;
A cooling air inlet to the internal cooling air passage opening at an outer peripheral portion of the heat shielding member on the downstream side in the combustion gas flow direction of the penetrating member, wherein the film cooling air supply means includes: Open to the inner peripheral surface on the downstream side of the member,
The gas turbine combustor wall cooling structure according to claim 6, further comprising: a film cooling air supply port that discharges cooling air in the internal cooling air passage into a combustion chamber.
JP2001037473A 2001-02-14 2001-02-14 Cooling structure for wall surface of gas turbine combustor Withdrawn JP2002242702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001037473A JP2002242702A (en) 2001-02-14 2001-02-14 Cooling structure for wall surface of gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001037473A JP2002242702A (en) 2001-02-14 2001-02-14 Cooling structure for wall surface of gas turbine combustor

Publications (1)

Publication Number Publication Date
JP2002242702A true JP2002242702A (en) 2002-08-28

Family

ID=18900594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001037473A Withdrawn JP2002242702A (en) 2001-02-14 2001-02-14 Cooling structure for wall surface of gas turbine combustor

Country Status (1)

Country Link
JP (1) JP2002242702A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198727A (en) * 2006-01-25 2007-08-09 Rolls Royce Plc Wall elements for gas turbine engine combustors
JP2007218252A (en) * 2006-01-25 2007-08-30 Rolls Royce Plc Wall element for combustion device of gas turbine engine
WO2009041435A1 (en) * 2007-09-25 2009-04-02 Mitsubishi Heavy Industries, Ltd. Cooling structure for gas-turbine combustor
US7900459B2 (en) 2004-12-29 2011-03-08 United Technologies Corporation Inner plenum dual wall liner
KR101089804B1 (en) 2008-11-17 2011-12-08 한전케이피에스 주식회사 Cooling device for gas turbine combustor protect and method of embody same
JP2012219668A (en) * 2011-04-06 2012-11-12 Mitsubishi Heavy Ind Ltd Cooling structure, gas turbine combustor and manufacturing method of cooling structure
JP2017180303A (en) * 2016-03-30 2017-10-05 株式会社Ihi Combustion device and gas turbine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7900459B2 (en) 2004-12-29 2011-03-08 United Technologies Corporation Inner plenum dual wall liner
JP2007198727A (en) * 2006-01-25 2007-08-09 Rolls Royce Plc Wall elements for gas turbine engine combustors
JP2007218252A (en) * 2006-01-25 2007-08-30 Rolls Royce Plc Wall element for combustion device of gas turbine engine
WO2009041435A1 (en) * 2007-09-25 2009-04-02 Mitsubishi Heavy Industries, Ltd. Cooling structure for gas-turbine combustor
JP2009079789A (en) * 2007-09-25 2009-04-16 Mitsubishi Heavy Ind Ltd Cooling structure of gas turbine combustor
US8813502B2 (en) 2007-09-25 2014-08-26 Mitsubishi Heavy Industries, Ltd. Cooling structure of gas turbine combustor
KR101089804B1 (en) 2008-11-17 2011-12-08 한전케이피에스 주식회사 Cooling device for gas turbine combustor protect and method of embody same
JP2012219668A (en) * 2011-04-06 2012-11-12 Mitsubishi Heavy Ind Ltd Cooling structure, gas turbine combustor and manufacturing method of cooling structure
JP2017180303A (en) * 2016-03-30 2017-10-05 株式会社Ihi Combustion device and gas turbine

Similar Documents

Publication Publication Date Title
US6282905B1 (en) Gas turbine combustor cooling structure
JP5411467B2 (en) Fuel nozzle and diffusion tip for the fuel nozzle
JP4433529B2 (en) Multi-hole membrane cooled combustor liner
JP5391225B2 (en) Combustor liner cooling and related methods at the transition duct interface.
US8127553B2 (en) Zero-cross-flow impingement via an array of differing length, extended ports
JP4156245B2 (en) Slot-cooled combustor liner
US8544277B2 (en) Turbulated aft-end liner assembly and cooling method
JP2001289062A (en) Wall surface cooling structure for gas turbine combustor
JP4675071B2 (en) Combustor dome assembly of a gas turbine engine having an improved deflector plate
EP2211105A2 (en) Turbulated combustor aft-end liner assembly and related cooling method
JP6118024B2 (en) Combustor nozzle and method of manufacturing combustor nozzle
EP2971971B1 (en) Check valve for propulsive engine combustion chamber
EP2728263B1 (en) A combustor
JP2009085222A (en) Rear end liner assembly with turbulator and its cooling method
JP2005345093A (en) Method and device for cooling combustor liner and transition component of gas turbine
JP2016011828A (en) Combustor cooling structure
JP2009019869A (en) Apparatus/method for cooling combustion chamber/venturi in low nox combustor
JP3590666B2 (en) Gas turbine combustor
CN107917423B (en) Burner wall element and method for producing the same
EP1262715A2 (en) Pilot nozzle for a gas turbine combustor and supply path converter
CA2936200C (en) Combustor cooling system
JP2002242702A (en) Cooling structure for wall surface of gas turbine combustor
KR101911162B1 (en) Gas turbine combustor
JP2009079483A (en) Gas turbine combustor
JP5718796B2 (en) Gas turbine combustor with sealing member

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060315

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513