JP2002231285A - Solid polymer fuel cell system - Google Patents
Solid polymer fuel cell systemInfo
- Publication number
- JP2002231285A JP2002231285A JP2001020725A JP2001020725A JP2002231285A JP 2002231285 A JP2002231285 A JP 2002231285A JP 2001020725 A JP2001020725 A JP 2001020725A JP 2001020725 A JP2001020725 A JP 2001020725A JP 2002231285 A JP2002231285 A JP 2002231285A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- polymer electrolyte
- cell system
- electrolyte fuel
- condensed water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃料電池排ガスと
燃料電池冷却水の一部から、イオン交換水と熱の回収を
効果的に行う固体高分子型燃料電池システムに関する。The present invention relates to a polymer electrolyte fuel cell system for effectively recovering ion-exchanged water and heat from fuel cell exhaust gas and a part of fuel cell cooling water.
【0002】[0002]
【従来の技術】近年、高効率のエネルギ変換装置とし
て、燃料電池システムが脚光を浴びている。燃料電池シ
ステムは、幾つかのタイプのものが稼動または研究開発
中であるが、その中でも電解質としてプロトンを用いた
固体高分子型燃料電池がコンパクトな構造で、高出力密
度が得られ、かつ簡易なシステムで運転が可能なことか
ら、定置用分散電源だけでなく宇宙用や車両用、さらに
は家庭用などの電力供給源として注目されている。2. Description of the Related Art In recent years, fuel cell systems have been spotlighted as high-efficiency energy conversion devices. Several types of fuel cell systems are in operation or under research and development. Among them, polymer electrolyte fuel cells using protons as the electrolyte have a compact structure, high power density, and are simple. Since it can be operated by a simple system, it is attracting attention as a power supply source not only for stationary distributed power sources but also for space, vehicles, and households.
【0003】また、燃料電池システムは、電気化学反応
の際、生成される熱を巧みに活用する、いわゆるコジェ
ネレーションシステムとしての期待も大きい。[0003] In addition, fuel cell systems are expected to be so-called cogeneration systems that skillfully utilize the heat generated during electrochemical reactions.
【0004】このように、期待の大きい燃料電池システ
ム、特に固体高分子型燃料電池システムは、主として燃
料電池本体、燃料改質システム、電力制御システム、熱
および水等のエネルギ源回収システム等で構成されてい
る。[0004] As described above, a fuel cell system with high expectations, particularly a polymer electrolyte fuel cell system, is mainly composed of a fuel cell body, a fuel reforming system, a power control system, an energy source recovery system such as heat and water, and the like. Have been.
【0005】燃料電池本体は、プロトン導電性の固体高
分子膜を触媒層付きのガス拡散電極で挟む膜電球複合体
を備えるとともに、その両外側に集電体としてのガス供
給溝を備えたガス透過性の低い材料からなるセパレータ
とを交互に積層状に配置して構成されている。[0005] The fuel cell body has a membrane bulb composite in which a proton conductive solid polymer membrane is sandwiched between gas diffusion electrodes with a catalyst layer, and a gas supply groove as a current collector on both outer sides thereof. It is configured by alternately arranging separators made of a material having low permeability in a laminated manner.
【0006】また、ガス拡散電極には、片面が燃料極、
残りの片面が酸化剤極を備えており、水素を主成分とす
る燃料ガスと空気とがセパレータのガス供給溝を介して
それぞれを区分けして供給されている。供給されている
ガスは、一般的に理論流量よりも多く流れている。そし
て、固体高分子型燃料電池本体は、直流電源として電気
化学的に電力を発生させている。The gas diffusion electrode has a fuel electrode on one side,
The remaining one side is provided with an oxidizer electrode, and a fuel gas containing hydrogen as a main component and air are separately supplied through a gas supply groove of a separator. The supplied gas generally flows more than the theoretical flow rate. The polymer electrolyte fuel cell body electrochemically generates electric power as a DC power supply.
【0007】また、燃料改質システムは、都市ガス等の
炭化水素系燃料から水素を主成分とする燃料ガスを生成
するシステムであり、都市ガス等に含まれている硫黄分
を水添脱硫等の手段で除去した後、触媒を用いて化学反
応により、例えば水蒸気を加えて炭化水素系燃料を水素
主成分の燃料ガスに改質させている。その際、反応ガス
には、一酸化炭素(CO)が多く含まれているので固体
高分子型燃料電池本体の触媒を被毒させることがある。[0007] A fuel reforming system is a system for generating a fuel gas containing hydrogen as a main component from a hydrocarbon fuel such as a city gas. After the removal, the hydrocarbon-based fuel is reformed into a fuel gas containing hydrogen as a main component by adding steam, for example, by a chemical reaction using a catalyst. At that time, since the reaction gas contains a large amount of carbon monoxide (CO), the catalyst of the polymer electrolyte fuel cell body may be poisoned.
【0008】このため、燃料改質システムは、COシフ
ト反応器やCO選択酸化器を備え、CO濃度を数十pp
mに低減して固体高分子型燃料電池本体に供給してい
る。For this reason, the fuel reforming system is provided with a CO shift reactor and a CO selective oxidizer, and has a CO concentration of several tens pp.
m and supply it to the polymer electrolyte fuel cell body.
【0009】また、電力制御システムは、固体高分子型
燃料電池本体で電気化学的に生成された直流電圧をチョ
ッパ回路等により昇圧し、さらにインバータにより交流
電圧に変換し、電力として供給する際、負荷調整を行っ
ている。Further, the power control system increases the DC voltage electrochemically generated in the polymer electrolyte fuel cell main body by a chopper circuit or the like, further converts the DC voltage into an AC voltage by an inverter, and supplies the AC power. The load is being adjusted.
【0010】また、熱およびイオン交換水等のエネルギ
源回収システムは、固体高分子型燃料電池本体や燃料改
質システムから供給された排ガスに含まれている水蒸気
を分離させ、その際に熱とイオン交換水とを回収してい
る。An energy source recovery system for heat and ion-exchanged water separates water vapor contained in exhaust gas supplied from a polymer electrolyte fuel cell main unit or a fuel reforming system. Ion-exchanged water is recovered.
【0011】なお、固体高分子型燃料電池システムの別
の例として燃料に純水素を使用する場合もある。この場
合、純水素を使用する関係上、燃料改質システムは不要
となり、エネルギ源回収システムは、固体高分子型燃料
電池本体からだけ供給される熱やイオン交換水を回収し
ている。As another example of the polymer electrolyte fuel cell system, pure hydrogen may be used as the fuel. In this case, the use of pure hydrogen eliminates the need for a fuel reforming system, and the energy source recovery system recovers heat and ion exchange water supplied only from the polymer electrolyte fuel cell body.
【0012】ところで、従来の固体高分子型燃料電池シ
ステムは、図20に示すように、燃料改質システム1、
燃料電池本体2、気液分離器3、凝縮熱交換器4、ブロ
ア5を備え、燃料改質システム1で、例えばCH4やC
3H8等の炭化水素系燃料を水素に改質して燃料電池本
体2の燃料極2aに供給している。As shown in FIG. 20, a conventional polymer electrolyte fuel cell system has a fuel reforming system 1,
The fuel cell main body 2, the gas-liquid separator 3, condensing heat exchanger 4 comprises a blower 5, in the fuel reforming system 1, for example, CH 4 and C
Hydrocarbon fuel such as 3 H 8 is reformed into hydrogen and supplied to the fuel electrode 2 a of the fuel cell body 2.
【0013】また、固体高分子型燃料電池システムは、
ブロア5からの空気の一部を燃料電池本体2の空気極2
bに供給するとともに、残りを燃料改質システム1の燃
焼部1aに供給している。[0013] Further, the polymer electrolyte fuel cell system comprises:
Part of the air from the blower 5 is supplied to the air electrode 2 of the fuel cell body 2.
b, and the remainder is supplied to the combustion section 1a of the fuel reforming system 1.
【0014】燃料電池本体2は、燃料極2aに供給され
た水素と、空気極2bに供給された空気とを反応させ、
電気化学的に直流電力を発生させている。The fuel cell main body 2 reacts the hydrogen supplied to the fuel electrode 2a with the air supplied to the air electrode 2b,
DC power is generated electrochemically.
【0015】直流電力の発生後、燃料極2aから出た排
ガスには、飽和水蒸気を多く含むものの、炭酸ガスや未
反応の水素も含まれている。このため、固体高分子型燃
料電池システムは、排ガスを気液分離器3に供給する
際、排ガスの中から水素とイオン交換水および炭酸ガス
とを分離させ、分離させた水素をブロア5からの空気と
ともに燃料改質システム1の燃焼部1aに供給し、ここ
で燃焼ガスを生成して炭化水素系燃料を水素に改質させ
る一方、燃焼ガス生成後の排ガスに含まれる水蒸気や炭
酸ガスを、空気極2bからの水蒸気とともに凝縮熱交換
器4に供給して熱源とし、例えば水道水W等の被加熱源
と熱交換させ、その水道水Wに熱を与えて温水にし、そ
の温水を、例えば給湯に利用している。After the generation of DC power, the exhaust gas discharged from the fuel electrode 2a contains a large amount of saturated water vapor, but also contains carbon dioxide gas and unreacted hydrogen. Therefore, when supplying the exhaust gas to the gas-liquid separator 3, the polymer electrolyte fuel cell system separates hydrogen from the exhaust gas into ion-exchanged water and carbon dioxide gas, and separates the separated hydrogen from the blower 5. The air is supplied to the combustion section 1a of the fuel reforming system 1 together with the air, where the combustion gas is generated to reform the hydrocarbon-based fuel into hydrogen. The water is supplied to the condensation heat exchanger 4 together with the water vapor from the air electrode 2b to serve as a heat source. The heat is exchanged with a source to be heated such as tap water W, and the tap water W is heated to make hot water. We use for hot water supply.
【0016】また、気液分離器3で分離させた炭酸ガス
を含む凝縮水は、凝縮熱交換器4に設けたバブリング室
8に供給され、ここでブロア5から供給される空気の気
泡の浄化能力により炭酸ガスが分離・吸収される。The condensed water containing carbon dioxide gas separated by the gas-liquid separator 3 is supplied to a bubbling chamber 8 provided in the condensing heat exchanger 4, where the air bubbles supplied from the blower 5 are purified. Carbon dioxide is separated and absorbed depending on the capacity.
【0017】また、固体高分子型燃料電池システムの別
の例では、例えば、図21に示すように、直接接触式凝
縮熱交換器6と間接接触式凝縮熱交換器7とを備え、気
液分離器8で水素と炭酸ガスを含む水蒸気とに分離させ
た燃料極2aからの排ガスのうち、分離させた炭酸ガス
を含む水蒸気を直接接触式凝縮熱交換器6に設けたバブ
リング室8に供給し、ここでブロア5から供給される空
気の気泡の浄化能力により炭酸ガスを分離・吸収させて
いる。炭酸ガスを分離した凝縮水は、ポンプ9を介して
間接接触式凝縮熱交換器7に供給され、ここで、例えば
水道水Wと熱交換し、水道水Wに熱を与えて温水にした
後、直接接触式熱交換器6に戻され、燃料改質システム
1の燃焼部1aからの炭酸ガスを含む水蒸気と空気極2
bからの水蒸気との合流水と直接接触による熱交換を行
い、合流水の熱を回収している。In another example of the polymer electrolyte fuel cell system, for example, as shown in FIG. 21, a direct contact type condensing heat exchanger 6 and an indirect contact type condensing heat exchanger 7 are provided. Of the exhaust gas from the fuel electrode 2 a separated into hydrogen and water vapor containing carbon dioxide gas by the separator 8, the separated water vapor containing carbon dioxide gas is supplied to the bubbling chamber 8 provided in the direct contact condensing heat exchanger 6. Here, carbon dioxide gas is separated and absorbed by the ability to purify air bubbles supplied from the blower 5. The condensed water from which the carbon dioxide gas has been separated is supplied to an indirect contact type condensing heat exchanger 7 via a pump 9, where it exchanges heat with, for example, tap water W and gives heat to the tap water W to make it hot water. Is returned to the direct contact heat exchanger 6 and steam containing carbon dioxide gas from the combustion section 1a of the fuel reforming system 1 and the air electrode 2
The heat exchange by direct contact with the combined water with the steam from b is performed to recover the heat of the combined water.
【0018】このように、従来の固体高分子型燃料電池
システムは、電気化学的に直流電力を発生させる際に生
成される水蒸気等の熱を巧みに回収してエネルギの有効
利用を行っている。As described above, in the conventional polymer electrolyte fuel cell system, heat such as water vapor generated when electrochemically generating DC power is skillfully recovered and energy is effectively used. .
【0019】[0019]
【発明が解決しようとする課題】図20および図21で
示した従来の固体高分子型燃料電池システムでは、燃料
極2aから出る排ガスの中に、未反応の水素のほかに炭
酸ガスや水蒸気もしくは水が含まれているため、その水
等が燃料改質システムの燃焼部に入り、火炎が消える危
険性があった。このため、凝縮熱交換器4で熱やイオン
交換水等のエネルギ源を回収する際、炭酸ガスを除去す
るバブリング装置や未反応の水素や水蒸気水とを分離さ
せる気液分離器3を別々に設けていた。In the conventional polymer electrolyte fuel cell system shown in FIG. 20 and FIG. 21, in addition to unreacted hydrogen, carbon dioxide gas, water vapor, Since water is contained, the water or the like enters the combustion section of the fuel reforming system, and there is a risk that the flame may be extinguished. For this reason, when an energy source such as heat or ion-exchanged water is recovered by the condensing heat exchanger 4, a bubbling device for removing carbon dioxide gas and a gas-liquid separator 3 for separating unreacted hydrogen or steam water are separately provided. Had been provided.
【0020】しかし、バブリング装置や気液分離器3を
別々に設けた場合、固体高分子型燃料電池システムは、
多くの設置面積を確保しなければならない。このため固
体高分子型燃料電池システムには、バブリング装置や気
液分離器3を凝縮熱交換器4に組み込んで一体的にした
コンパクト化への実現が求められていた。However, when the bubbling device and the gas-liquid separator 3 are separately provided, the polymer electrolyte fuel cell system
Many installation areas must be secured. For this reason, the polymer electrolyte fuel cell system has been required to realize a compact size by integrating the bubbling device and the gas-liquid separator 3 into the condensing heat exchanger 4.
【0021】また、特に直接接触式凝縮熱交換器6の場
合、回収エネルギを用いて温水利用する際、水蒸気等の
凝縮水がイオン交換水であるため、必然的に間接接触式
凝縮熱交換器は7が必要になり、コンパクト化の点から
何らかの対策が求められていた。In particular, in the case of the direct contact type condensing heat exchanger 6, when hot water is used by using the recovered energy, the condensed water such as steam is ion-exchanged water. 7 was required, and some measures were required from the point of size reduction.
【0022】本発明は、このような事情に基づいてなさ
れたもので、コンパクト化を図って少ない設置面積でも
容易に設置できるようにした固体高分子型燃料電池シス
テムを提供することを目的とする。The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a polymer electrolyte fuel cell system which is compact and can be easily installed with a small installation area. .
【0023】[0023]
【課題を解決するための手段】本発明に係る固体高分子
型燃料電池システムは、上述の目的を達成するために、
請求項1に記載したように、電解質膜に固体高分子を用
いた燃料電池本体に、気液分離器、凝縮熱交換器を組み
合せた固体高分子型燃料電池システムにおいて、前記凝
縮熱交換器は外側に外部ケーシングを、内側に内部ケー
シングを備えて二重容器にするとともに、前記外部ケー
シングと前記内部ケーシングとの間に形成した気液分離
部と、前記内部ケーシングの内側のうち、頭部側に形成
した凝縮部と、底部側に形成した凝縮水貯水部とを備え
るとともに、前記気液分離部と前記凝縮水貯水部とを互
いに接続させる構成にしたものである。SUMMARY OF THE INVENTION A polymer electrolyte fuel cell system according to the present invention has the following objects.
As described in claim 1, in a polymer electrolyte fuel cell system in which a gas-liquid separator and a condensing heat exchanger are combined with a fuel cell body using a solid polymer for an electrolyte membrane, the condensing heat exchanger is An outer casing on the outside and an inner casing on the inner side are provided as a double container, and a gas-liquid separator formed between the outer casing and the inner casing, and a head side of the inner casing. And a condensed water storage part formed on the bottom side, and the gas-liquid separation part and the condensed water storage part are connected to each other.
【0024】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項2に
記載したように、凝縮部と凝縮水貯水部との間には透孔
板を備えたものである。Further, in order to achieve the above object, the polymer electrolyte fuel cell system according to the present invention has a through hole between the condensing section and the condensed water storage section. It has a plate.
【0025】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項3に
記載したように、凝縮部は、伝熱管を収容し、伝熱管の
管外に熱媒を、伝熱管の管内に冷却水を流して熱交換さ
せるものである。In order to achieve the above object, the polymer electrolyte fuel cell system according to the present invention, as described in claim 3, wherein the condensing section houses the heat transfer tube, and the tube of the heat transfer tube is provided. The heat exchange is performed by flowing a heat medium to the outside and cooling water in the heat transfer tubes.
【0026】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項4に
記載したように、伝熱管は、凝縮部の軸方向に向って蛇
行状に配置したものである。In the polymer electrolyte fuel cell system according to the present invention, in order to achieve the above object, the heat transfer tube is formed in a meandering shape in the axial direction of the condensing section. It is arranged in.
【0027】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項5に
記載したように、伝熱管は、螺旋状に形成するととも
に、凝縮部の軸方向に向って蛇行状に配置したものであ
る。Further, in the polymer electrolyte fuel cell system according to the present invention, in order to achieve the above object, the heat transfer tube is formed in a spiral shape and the condensing section is formed. They are arranged in a meandering manner in the axial direction.
【0028】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項6に
記載したように、螺旋状に形成した伝熱管は、中心軸に
支柱を備えたものである。Further, in the polymer electrolyte fuel cell system according to the present invention, in order to achieve the above-mentioned object, the heat transfer tube formed in a spiral shape has a column on a central axis. It is provided.
【0029】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項7に
記載したように、凝縮部は、軸方向に向って蛇行状に延
びる伝熱管を収容するとともに、前記伝熱管の中間部分
に軸方向に向って仕切手段を備えたものである。Further, in the polymer electrolyte fuel cell system according to the present invention, in order to achieve the above object, as described in claim 7, the condensing section has a transmission extending in a meandering shape in the axial direction. A heat pipe is accommodated, and a partitioning means is provided at an intermediate portion of the heat transfer pipe in an axial direction.
【0030】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項8に
記載したように、仕切手段は、網目状で構成したもので
ある。Further, in the polymer electrolyte fuel cell system according to the present invention, in order to achieve the above-mentioned object, the partition means is formed in a mesh shape as described in claim 8.
【0031】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項9に
記載したように、仕切手段は、孔あき板で構成したもの
である。Further, in the polymer electrolyte fuel cell system according to the present invention, in order to achieve the above object, the partition means is constituted by a perforated plate.
【0032】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項10
に記載したように、孔あき板は、孔の密度分布を異なら
しめたことを特徴とするものである。In order to achieve the above object, the polymer electrolyte fuel cell system according to the present invention has a tenth aspect.
As described above, the perforated plate is characterized in that the density distribution of the holes is different.
【0033】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項11
に記載したように、気液分離部は、入口を外部ケーシン
グの底部側に備えるとともに、出口を前記外部ケーシン
グの頭部側に備えたものである。In order to achieve the above object, the polymer electrolyte fuel cell system according to the present invention has an eleventh aspect.
As described in the above, the gas-liquid separation unit has an inlet on the bottom side of the outer casing and an outlet on the head side of the outer casing.
【0034】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項12
に記載したように、凝縮水貯水部は、気液分離部からの
凝縮水と凝縮部からの凝縮水とを合流させて一旦溜める
とともに、貯水室と前記合流凝縮水に含まれる炭酸ガス
を除去するバブリング室とを備えたものである。Further, the polymer electrolyte fuel cell system according to the present invention is intended to achieve the above object.
As described in the above, the condensed water storage unit combines and temporarily stores the condensed water from the gas-liquid separation unit and the condensed water from the condensing unit, and removes carbon dioxide contained in the water storage chamber and the combined condensed water. And a bubbling chamber.
【0035】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項13
に記載したように、貯水室およびバブリング室は、互い
を仕切板で区画するとともに、各室を区画する仕切板の
開口を、凝縮水が蛇行状に流れるように、互い違いに配
置したものである。In order to achieve the above object, the polymer electrolyte fuel cell system according to the present invention has the following features.
As described in the above, the water storage chamber and the bubbling chamber are each partitioned by a partition plate, and the openings of the partition plates that partition each chamber are alternately arranged so that condensed water flows in a meandering shape. .
【0036】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項14
に記載したように、バブリング室を区画する仕切板は、
折曲げ部を境に内部ケーシングに向って傾斜状に延びる
天上板を備えたものである。In order to achieve the above object, the polymer electrolyte fuel cell system according to the present invention has the following features.
As described in, the partition plate that partitions the bubbling chamber,
It is provided with a top plate that extends in an inclined manner toward the inner casing from the bent portion.
【0037】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項15
に記載したように、天上板は長孔を備えたものである。In order to achieve the above object, the polymer electrolyte fuel cell system according to the present invention has the following features.
As described in the above, the ceiling plate has a long hole.
【0038】また、本発明に係る固体高分子型燃料電池
システムは、上述の目的を達成するために、請求項16
に記載したように、バブリング室は、空気を気泡にして
凝縮水に含まれる炭酸ガスを除去するバブリングストー
ンを収容したものである。Further, the polymer electrolyte fuel cell system according to the present invention has the above-mentioned structure.
As described above, the bubbling chamber accommodates a bubbling stone that removes carbon dioxide contained in condensed water by forming air bubbles.
【0039】[0039]
【発明の実施の形態】以下、本発明に係る固体高分子型
燃料電池システムの実施形態を図面および図面に付した
符号を引用して説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a polymer electrolyte fuel cell system according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.
【0040】図1〜図3は、本発明に係る固体高分子型
燃料電池システムに適用する凝縮熱交換器の第1実施形
態を示す概略図である。なお、図1〜図3中、図1は本
発明に係るは固体高分子型燃料電池システムに適用する
凝縮熱交換器の正面断面図、図2は図1のA−A矢視方
向から見た平面図、図3は図2のB−B矢視方向から見
た側面図である。FIGS. 1 to 3 are schematic views showing a first embodiment of a condensing heat exchanger applied to a polymer electrolyte fuel cell system according to the present invention. 1 to 3, FIG. 1 is a front sectional view of a condensing heat exchanger applied to a polymer electrolyte fuel cell system according to the present invention, and FIG. 2 is a view from the direction of arrows AA in FIG. FIG. 3 is a side view as seen from the direction of arrows BB in FIG.
【0041】本実施形態に係る凝縮熱交換器は、外部ケ
ーシング10の内側に内部ケーシング11を備え圧力容
器として形成し、外部ケーシング10と内部ケーシング
11との間に気液分離部12を設けるとともに、内部ケ
ーシング11の内側のうち、頭部側に凝縮部13を、ま
た、底部側に凝縮水貯水部14とバブリング部15とを
それぞれ設けた構成になっている。The condensing heat exchanger according to the present embodiment has an inner casing 11 inside an outer casing 10 and is formed as a pressure vessel, and a gas-liquid separator 12 is provided between the outer casing 10 and the inner casing 11. In the inside of the inner casing 11, a condensing portion 13 is provided on the head side, and a condensed water reservoir 14 and a bubbling portion 15 are provided on the bottom side.
【0042】外部ケーシング10は、その底部側に設け
られ、例えば、燃料電池本体の燃料極(ともに図示せ
ず)に接続させる燃料極用入口16と、その頭部側に設
けられ、例えば燃料改質システムの燃焼部(ともに図示
せず)に接続させる燃焼部用出口17とを備え、燃料極
からの未反応な水素、炭酸ガス、水蒸気および水を含む
排ガスを燃料極用入口16を介して気液分離部12に案
内し、ここで密度差を利用して水素や水蒸気と水とに気
液分離させ、分離させた水素等を燃焼部用出口17を介
して燃焼部に供給する一方、分離させた水を底部に一旦
溜めた後、配管18a,18b,18cを介して凝縮水
貯水部14に供給するようになっている。その際、水の
供給は、外部ケーシング10と内部ケーシング11の圧
力差を利用して行われる。The outer casing 10 is provided on the bottom side thereof, for example, a fuel electrode inlet 16 connected to a fuel electrode (both not shown) of the fuel cell body, and provided on the head side thereof, for example. Outlet 17 connected to a combustion section (both not shown) of the fuel system, and exhaust gas containing unreacted hydrogen, carbon dioxide, water vapor and water from the anode is passed through the anode inlet 16. It is guided to the gas-liquid separation unit 12, where it is subjected to gas-liquid separation into hydrogen or water vapor and water by utilizing the density difference, and the separated hydrogen or the like is supplied to the combustion unit through the combustion unit outlet 17, while After temporarily storing the separated water at the bottom, the separated water is supplied to the condensed water reservoir 14 via the pipes 18a, 18b, 18c. At that time, the supply of water is performed using a pressure difference between the outer casing 10 and the inner casing 11.
【0043】また、内部ケーシング11は、頭部側に凝
縮部13を、底部側に凝縮水貯水部14およびバブリン
グ部15をそれぞれ備え、凝縮部13と凝縮水貯水部1
4とを図4に示すように、例えば、D径、φ3−4P、
厚さt8mmの透孔板(パンチングメタル)24で区分
けしている。The inner casing 11 has a condensing section 13 on the head side and a condensed water storage section 14 and a bubbling section 15 on the bottom side, respectively.
4 as shown in FIG. 4, for example, D diameter, φ3-4P,
It is divided by a perforated plate (punched metal) 24 having a thickness of t8 mm.
【0044】また、内部ケーシング11側は、例えば、
燃料電池本体の空気極(ともに図示せず)および燃料改
質システムの燃焼部のそれぞれから供給された炭酸ガス
を含む水蒸気を凝縮部13に案内する酸化剤排ガス用入
口19と、凝縮部13で熱交換後の酸化剤排ガスを外部
に供給する酸化剤排ガス用出口20とのそれぞれを凝縮
部13に備えている。The inner casing 11 side is, for example,
An oxidant exhaust gas inlet 19 for guiding steam containing carbon dioxide gas supplied from an air electrode (both not shown) of the fuel cell body and a combustion section of the fuel reforming system to the condensation section 13, and a condenser section 13. The oxidizing exhaust gas outlet 20 for supplying the oxidizing exhaust gas after the heat exchange to the outside is provided in the condenser 13.
【0045】また、凝縮部13は、例えば、SUS31
6製、口径1/8インチの伝熱管21を複数本、例えば
少なくとも2本以上を並列蛇行状に配置し、伝熱管入口
22から案内された、例えば、水道水を蛇行させる間に
管外を流れる酸化剤排ガスからの熱が与えられて温水に
なり、その温水を伝熱管出口23を介して外部に、例え
ば給湯として供給するようになっている。The condensing section 13 is made of, for example, SUS31
A plurality of heat transfer tubes 21 having a diameter of 1/8 inch, for example, at least two or more tubes are arranged in a parallel meandering manner, and the outside of the tube is guided while being meandered from, for example, tap water introduced from the heat transfer tube inlet 22. Heat from the flowing oxidant exhaust gas is given to become hot water, and the hot water is supplied to the outside through the heat transfer pipe outlet 23, for example, as hot water supply.
【0046】一方、内部ケーシング11側を、凝縮部1
3と透孔板24で区分けした凝縮水貯水部14およびバ
ブリング部15は凝縮水(イオン交換水)を一旦溜めて
蛇行状に流れるように、第1貯水室25を区画する第1
仕切板26、第2貯水部27とバブリング室28とを区
画する第2仕切板29、バブリング室28と第3貯水室
30とを区画する第3仕切板31とを備えるとともに、
各仕切板26,29,31の開口端の位置を互い違いに
異ならしめている。On the other hand, the inner casing 11 side is
The first condensed water storage section 14 and the bubbling section 15 divided by the perforated plate 24 and the third condensed water (ion exchange water) temporarily store the first water storage chamber 25 so as to flow in a meandering manner.
A partition plate 26, a second partition plate 29 for partitioning the second water storage section 27 and the bubbling chamber 28, and a third partition plate 31 for partitioning the bubbling chamber 28 and the third water storage chamber 30;
The positions of the open ends of the partition plates 26, 29, 31 are alternately different.
【0047】また、第2仕切板29は、折曲げ部32を
境に外部ケーシング10の燃料極用入口16に向って傾
斜状に延びる天上板33を備えている。この天上板33
は、例えば、図5に示すように、口径1.5mm、長さ
11mm、厚さ0.8mmの長孔34を備えている。The second partition plate 29 is provided with a ceiling plate 33 which extends obliquely toward the fuel electrode inlet 16 of the outer casing 10 with the bent portion 32 as a boundary. This ceiling plate 33
For example, as shown in FIG. 5, a long hole 34 having a diameter of 1.5 mm, a length of 11 mm, and a thickness of 0.8 mm is provided.
【0048】また、バブリング室28には、例えばφ1
/4インチの空気管35に接続された、例えば鑑賞魚用
のバブリングストーン36を収容し、バブリングストー
ン36から吹き出す気泡により凝縮水に含まれる炭酸ガ
スを分離・吸収するようになっている。このバブリング
ストーン36は、アルミナ焼結体で作製され、耐熱性、
耐薬品性に優れ、コンタミ等にも充分対処できるように
なっている。なお、第3貯水室30は、凝縮水供給管3
7を備え、バブリング室28で炭酸ガスを除去したし凝
縮水を燃料電池本体や燃料改質システム等に供給してい
る。In the bubbling chamber 28, for example, φ1
For example, a bubbling stone 36 for appreciation fish connected to a / 4 inch air pipe 35 is accommodated, and carbon dioxide contained in condensed water is separated and absorbed by bubbles blown out of the bubbling stone 36. The bubbling stone 36 is made of an alumina sintered body, and has heat resistance,
It has excellent chemical resistance and can cope with contamination. The third water storage chamber 30 is provided with the condensed water supply pipe 3.
The bubbling chamber 28 removes carbon dioxide gas and supplies condensed water to a fuel cell body, a fuel reforming system, and the like.
【0049】このような構成を備えた凝縮熱交換器にお
いて、燃料電池本体の燃料極から供給された未反応の水
素、水蒸気および水を含む排ガスは、燃料極用入口16
を介して気液分離部12に供給され、ここで密度差を利
用して水素等と水とに分離される。分離後の水素は燃料
部用出口17を介して燃料改質システムの燃焼部に供給
される一方、水は配管18a,18b,18cを介して
凝縮水貯水部14に供給される。その際、気液分離部1
2は、凝縮部13および凝縮水貯水部14の外側に位置
させた断熱層の役割を果しているので、凝縮部13から
外部への放熱を防止させることができる。また、気液分
離部12は、配管18a,18b,18cを介して凝縮
水貯水部14に接続させているので、分離後の水を確実
に凝縮水貯水部14に供給することができる。In the condensing heat exchanger having such a configuration, the exhaust gas containing unreacted hydrogen, water vapor and water supplied from the fuel electrode of the fuel cell body is supplied to the fuel electrode inlet 16.
Is supplied to the gas-liquid separation unit 12 through which the water is separated into hydrogen or the like and water using the density difference. The separated hydrogen is supplied to the combustion section of the fuel reforming system via the fuel section outlet 17, while the water is supplied to the condensed water storage section 14 via the pipes 18 a, 18 b, 18 c. At that time, the gas-liquid separation unit 1
2 plays a role of a heat insulating layer located outside the condensing section 13 and the condensed water storage section 14, so that heat radiation from the condensing section 13 to the outside can be prevented. In addition, since the gas-liquid separation unit 12 is connected to the condensed water storage unit 14 via the pipes 18a, 18b, 18c, the separated water can be reliably supplied to the condensed water storage unit 14.
【0050】一方、燃料電池本体の空気極および燃料改
質システムの燃焼部から酸化剤排ガス用入口19を介し
て凝縮部13に供給された炭酸ガス、水蒸気を含む温度
約110℃(露点約75℃)の酸化剤排ガスは、蛇行状
に配置された少なくとも2本以上の伝熱管21の管外を
流れる間に、伝熱管入口22から管内を流れる、例え
ば、水道水と熱交換し、その水道水を温度約40℃の温
水にする。温水は、伝熱管出口23を介して外部に給湯
として供給される。On the other hand, the temperature containing carbon dioxide and water vapor supplied from the air electrode of the fuel cell body and the combustion section of the fuel reforming system to the condensing section 13 through the oxidant exhaust gas inlet 19 is about 110 ° C. (dew point about 75 ° C.). C) while flowing outside the at least two or more heat transfer tubes 21 arranged in a meandering manner, flows through the tube from the heat transfer tube inlet 22, for example, exchanges heat with tap water, and exchanges the tap water. The water is warmed to a temperature of about 40 ° C. The hot water is supplied to the outside through the heat transfer tube outlet 23 as hot water.
【0051】また、水道水と熱交換後の酸化剤排ガス
は、熱を失ってガスと凝縮水とを生成し、そのガスを酸
化剤排ガス用出口20を介して外部に排出するととも
に、その凝縮水を透孔板24および天上板33を介して
凝縮水貯水部14に集められ、ここで気液分離部12か
らの水と合流される。The oxidant exhaust gas that has undergone heat exchange with tap water loses heat to generate gas and condensed water, and the gas is discharged to the outside via the oxidant exhaust gas outlet 20 and the condensate is discharged. Water is collected in the condensed water storage unit 14 via the perforated plate 24 and the top plate 33, where it is combined with the water from the gas-liquid separation unit 12.
【0052】合流凝縮水は、第1貯水室25から第2貯
水室27を介してバブリング室28に蛇行状に流れ、バ
ブリング室28で空気管35からバブリングストーン3
6を介して供給された空気の気泡により炭酸ガスを分離
・吸収して電気伝導度を低くさせ、第3貯水室30に供
給される。第3貯水室30に集められ、炭酸ガスの溶解
度を低くさせた合流凝縮水は、凝縮水供給管37を介し
て燃料改質システム等に供給される。The combined condensed water flows in a meandering manner from the first water storage chamber 25 to the bubbling chamber 28 via the second water storage chamber 27, and in the bubbling chamber 28, from the air pipe 35 to the bubbling stone 3.
The carbon dioxide gas is separated and absorbed by the air bubbles supplied through 6 to lower the electric conductivity, and is supplied to the third water storage chamber 30. The combined condensed water collected in the third water storage chamber 30 and having reduced solubility of carbon dioxide gas is supplied to a fuel reforming system or the like via a condensed water supply pipe 37.
【0053】このように、本実施形態は、外側に気液分
離部12を備え、内側の頭部側に凝縮部13を備えると
ともに、その底部側に凝縮水貯水部14を備え、ガスの
気液分離、ガスと水との熱交換、凝縮水の処理を一つの
容器内で多目的に処理させたので、凝縮熱交換器を大幅
にコンパクト化して少ない設置面積でも充分に設置する
ことができる。As described above, in the present embodiment, the gas-liquid separation unit 12 is provided on the outside, the condensation unit 13 is provided on the inside head side, and the condensed water storage unit 14 is provided on the bottom side. Since liquid separation, heat exchange between gas and water, and treatment of condensed water are versatilely processed in one vessel, the condensing heat exchanger can be made much more compact and can be installed sufficiently with a small installation area.
【0054】図6〜図8は、本発明に係る固体高分子型
燃料電池システムに適用する凝縮熱交換器の第2実施形
態を示す概略図である。なお、図6〜図8中、図6は本
発明に係る固体高分子型燃料電池システムに適用する凝
縮熱交換器の正面断面図、図7は図6のC−C矢視方向
から見た平面図、図8は図7のD−D矢視方向から見た
側面図である。なお、第1実施形態の構成部分と同一部
分には同一符号を付す。FIGS. 6 to 8 are schematic views showing a second embodiment of the condensation heat exchanger applied to the polymer electrolyte fuel cell system according to the present invention. 6 to 8, FIG. 6 is a front sectional view of a condensing heat exchanger applied to the polymer electrolyte fuel cell system according to the present invention, and FIG. 7 is viewed from the direction of arrows CC in FIG. FIG. 8 is a plan view, and FIG. 8 is a side view as seen from the direction of arrows DD in FIG. The same components as those of the first embodiment are denoted by the same reference numerals.
【0055】本実施形態に係る凝縮熱交換器は、凝縮部
13に収容し、その軸方向に向って蛇行状に配置した伝
熱管21の中間部分に管軸方向に沿ってエキスパンドメ
タル板38を設けたものである。このエキスパンドメタ
ル板38は、図9に示すように、網目状(SW4.0m
m,LW8.0mm,t0.8mm)になっている。In the condensation heat exchanger according to the present embodiment, an expanded metal plate 38 is accommodated in the condensing section 13 and arranged along the pipe axis direction at an intermediate portion of the heat transfer pipe 21 arranged in a meandering shape in the axial direction. It is provided. The expanded metal plate 38 has a mesh shape (SW 4.0 m) as shown in FIG.
m, LW 8.0 mm, t 0.8 mm).
【0056】従来、酸化剤排ガス用入口19を介して凝
縮部13に案内される酸化剤排ガスは、温度約110℃
であるから、凝縮水貯水部14の凝縮水が蒸発する可能
性がある。蒸発量が増えると、その分、凝縮部13の負
荷が大きくなる。Conventionally, the oxidant exhaust gas guided to the condenser 13 through the oxidant exhaust gas inlet 19 has a temperature of about 110 ° C.
Therefore, the condensed water in the condensed water reservoir 14 may evaporate. As the amount of evaporation increases, the load on the condenser 13 increases accordingly.
【0057】本実施形態は、このような点に着目したも
ので、伝熱管21の管軸方向に沿ってエキスパンドメタ
ル板38を設け、伝熱管21の熱交換中により多くの凝
縮水を生成させ、その凝縮水を凝縮水貯水部14に落下
させ、凝縮水貯水部14に滞留する凝縮水の蒸発を防止
させたものである。In this embodiment, attention is paid to such a point, and an expanded metal plate 38 is provided along the tube axis direction of the heat transfer tube 21 to generate more condensed water during heat exchange of the heat transfer tube 21. The condensed water is allowed to fall into the condensed water storage part 14 to prevent the condensed water remaining in the condensed water storage part 14 from evaporating.
【0058】したがって、本実施形態によれば、エキス
パンドメタル板38により伝熱管21の熱交換中、より
多くの凝縮水を生成して凝縮水貯水部14に落下させ、
この間にエキスパンドメタル板38をウェット状態に
し、ガスの流速を高めるとともに、ガスに含まれる水蒸
気をより早く拡散させるので、伝熱性能を向上させるこ
とができる。さらに、エキスパンドメタル板38は、内
部ケーシング11に固設させたので、内部ケーシング1
1の強度を増加させることができる。Therefore, according to the present embodiment, during the heat exchange of the heat transfer tubes 21 by the expanded metal plate 38, more condensed water is generated and dropped into the condensed water storage section 14,
During this time, the expanded metal plate 38 is brought into a wet state, the gas flow rate is increased, and the water vapor contained in the gas is diffused more quickly, so that the heat transfer performance can be improved. Further, since the expanded metal plate 38 is fixed to the inner casing 11,
1 can be increased.
【0059】図10〜図12は、本発明に係る固体高分
子型燃料電池システムに適用する凝縮熱交換器の第3実
施形態を示す概略図である。なお、図10〜図12中、
図10は本発明に係る固体高分子型燃料電池システムに
適用する凝縮熱交換器の正面断面図、図11は図10の
E−E矢視方向から見た平面図、図12は図11のF−
F矢視方向から見た側面図である。なお、第1実施形態
の構成部分と同一部分には同一符号を付す。FIGS. 10 to 12 are schematic views showing a third embodiment of the condensing heat exchanger applied to the polymer electrolyte fuel cell system according to the present invention. In addition, in FIGS.
10 is a front sectional view of a condensing heat exchanger applied to the polymer electrolyte fuel cell system according to the present invention, FIG. 11 is a plan view seen from the direction of arrows EE in FIG. 10, and FIG. F-
It is the side view seen from the arrow F direction. The same components as those of the first embodiment are denoted by the same reference numerals.
【0060】本実施形態に係る凝縮熱交換器は、第2実
施形態と同様に、凝縮部13に収容し、その軸方向に向
って蛇行状に配置した伝熱管21の中間部分に管軸方向
に沿ってエキスパンドメタル板38を設けるとともに、
凝縮水貯水部14に何も付属物を収容しないより一層広
い貯水室39に形成したものである。なお、エキスパン
ドメタル板38は、第2実施形態と同様に、網目状(S
W4.0mm,LW8.0mm,t0.8mm)になっ
ている。バブリング室を設けていないのは、本実施形態
では燃料として純水素を用いる場合に適用されるからで
ある。The condensing heat exchanger according to the present embodiment is housed in the condensing part 13 and disposed in the middle part of the heat transfer tube 21 arranged in a meandering shape in the axial direction, similarly to the second embodiment. Along with the expanded metal plate 38,
The condensed water storage section 14 is formed in a wider water storage chamber 39 in which no accessories are stored. The expanded metal plate 38 has a mesh shape (S) as in the second embodiment.
W 4.0 mm, LW 8.0 mm, t 0.8 mm). The reason why the bubbling chamber is not provided is that the present embodiment is applied when pure hydrogen is used as the fuel.
【0061】このように、本実施形態は、凝縮部13に
エキスパンドメタル板38を設け、伝熱管21の熱交換
中に生成される凝縮水をより多く凝縮水貯水部14の貯
水室39に落下させるとともに、貯水室39の容積をよ
り大きくさせたので、より多くの凝縮水を処理すること
ができる。より大きい容積の貯水室39は、純水素の燃
料を用いる場合、有効である。As described above, in the present embodiment, the expanded metal plate 38 is provided in the condensing section 13, and more condensed water generated during the heat exchange of the heat transfer tubes 21 falls into the water storage chamber 39 of the condensed water storage section 14. In addition, since the volume of the water storage chamber 39 is increased, more condensed water can be treated. The larger water storage chamber 39 is effective when using pure hydrogen fuel.
【0062】図13〜図15は、本発明に係る固体高分
子型燃料電池システムに適用する凝縮熱交換器の第4実
施形態を示す概略図である。なお、図13〜図15中、
図13は本発明に係る固体高分子型燃料電池システムに
適用する凝縮熱交換器の正面断面図、図14は図13の
G−G矢視方向から見た平面図、図15は図14のH−
H矢視方向から見た側面図である。なお、第1実施形態
の構成部分と同一部分には同一符号を付す。FIGS. 13 to 15 are schematic views showing a fourth embodiment of the condensing heat exchanger applied to the polymer electrolyte fuel cell system according to the present invention. 13 to 15,
13 is a front sectional view of a condensing heat exchanger applied to the polymer electrolyte fuel cell system according to the present invention, FIG. 14 is a plan view seen from the direction of arrows GG in FIG. 13, and FIG. H-
It is the side view seen from the arrow H direction. The same components as those of the first embodiment are denoted by the same reference numerals.
【0063】本実施形態に係る凝縮熱交換器は、外部ケ
ーシング10の中心軸線と内部ケーシング10の中心軸
線とを互いに偏位させたものである。In the condensing heat exchanger according to the present embodiment, the center axis of the outer casing 10 and the center axis of the inner casing 10 are deviated from each other.
【0064】本実施形態に係る凝縮熱交換器は、内部ケ
ーシング11の凝縮部13に収容した伝熱管21,21
を螺旋状(スパイラル)に形成するとともに、螺旋状に
形成した伝熱管21,21を凝縮部13の軸方向に向っ
て蛇行状に配置する一方、蛇行状に配置した伝熱管2
1,21の中間部分にパンチングメタル板40を設置し
たものである。このパンチングメタル板40は、図16
に示すように、孔41(φ3−4P,t0.8mm)の
分布を「無」領域Rと「密」領域Sとに分けて交互に形
成している。The condensing heat exchanger according to the present embodiment comprises heat transfer tubes 21, 21 accommodated in a condensing portion 13 of an inner casing 11.
Are formed in a spiral shape, and the heat transfer tubes 21 and 21 formed in a spiral shape are arranged in a meandering manner in the axial direction of the condensing portion 13, while the heat transfer tubes 2 arranged in a meandering shape
A punched metal plate 40 is provided at an intermediate portion between the reference numerals 1 and 21. This punched metal plate 40
As shown in (1), the distribution of the holes 41 (φ3-4P, t0.8 mm) is alternately formed in a “none” region R and a “dense” region S.
【0065】このように、本実施形態は、螺旋状に形成
した伝熱管21,21を蛇行状に配置する一方、蛇行状
に配置した伝熱管21,21の間に孔41の密度分布を
「無」領域Rと「密」領域Sとに分けて交互に異ならし
めたパンチングメタル板40を設置し、伝熱管21,2
1の螺旋状の形成と、蛇行状の配置による伝熱面積の増
加と相俟ってパンチングメタル板40の孔41の密度分
布を粗、密にしてガスの流れを良好にし、水蒸気を拡散
させたので、より熱交換率を高めることができ、より多
くの熱エネルギを回収することができる。As described above, in the present embodiment, while the heat transfer tubes 21 and 21 formed in a spiral shape are arranged in a meandering shape, the density distribution of the holes 41 between the heat transfer tubes 21 and 21 arranged in a meandering shape is set to “ A punching metal plate 40 is provided, which is divided into a “no” region R and a “dense” region S, and is alternately different.
The density distribution of the holes 41 of the punched metal plate 40 is made coarse and dense to improve the gas flow, and to diffuse the water vapor, together with the spiral formation of No. 1 and the increase in the heat transfer area due to the meandering arrangement. Therefore, the heat exchange rate can be further increased, and more heat energy can be recovered.
【0066】図17〜図19は、本発明に係る固体高分
子型燃料電池システムに適用する凝縮熱交換器の第2実
施形態を示す概略図である。なお、図17〜図19中、
図17は本発明に係る固体高分子型燃料電池システムに
適用する凝縮熱交換器の正面断面図、図18は図17の
I−I矢視方向から見た平面図、図19は図18のJ−
J矢視方向から見た側面図である。なお、第1実施形態
の構成部分と同一部分には同一符号を付す。FIGS. 17 to 19 are schematic views showing a second embodiment of the condensing heat exchanger applied to the polymer electrolyte fuel cell system according to the present invention. 17 to 19,
FIG. 17 is a front sectional view of a condensing heat exchanger applied to the polymer electrolyte fuel cell system according to the present invention, FIG. 18 is a plan view seen from the direction of arrows II in FIG. 17, and FIG. J-
It is the side view seen from the arrow J direction. The same components as those of the first embodiment are denoted by the same reference numerals.
【0067】本実施形態に係る凝縮熱交換器は、第4実
施形態と同様に内部ケーシング11の凝縮部13に収容
する伝熱管21,21を螺旋状(スパイラル)に形成す
るとともに、螺旋状に形成した伝熱管21,21を蛇行
状に配置し、蛇行状に配置した伝熱管21,21の間に
パンチングメタル板40を設置する一方、螺旋状の伝熱
管21,21の中心部の軸方向に沿って支柱42を備え
たものである。In the condensing heat exchanger according to this embodiment, similarly to the fourth embodiment, the heat transfer tubes 21 and 21 housed in the condensing portion 13 of the inner casing 11 are formed in a spiral shape, and are formed in a spiral shape. The formed heat transfer tubes 21 and 21 are arranged in a meandering shape, and a punched metal plate 40 is installed between the heat transfer tubes 21 and 21 arranged in a meandering shape, while the axial direction of the center of the spiral heat transfer tubes 21 and 21 is set. Are provided along the support.
【0068】このように、本実施形態は、螺旋状の伝熱
管21,21の中央部の軸方向に沿って支柱42を備
え、ガスの通路面積を少なくしてガスの流速を増加させ
たので、ガスな含まれる水蒸気の拡散を促進させて伝熱
性能を向上させることができる。また、内部ケーシング
11に支柱42を固設させたので、内部ケーシング11
の強度を高めることができる。As described above, in the present embodiment, the pillars 42 are provided along the axial direction of the central portions of the spiral heat transfer tubes 21 and 21 to reduce the gas passage area and increase the gas flow velocity. In addition, the heat transfer performance can be improved by promoting the diffusion of the water vapor contained in the gas. Further, since the column 42 is fixed to the inner casing 11, the inner casing 11
Can be increased in strength.
【0069】[0069]
【発明の効果】以上説明のとおり、本発明に係る固体高
分子型燃料電池システムに適用する凝縮熱交換器は、ケ
ーシングを二重筒に形成し、外部ケーシングと内部ケー
シングとの間に気液分離部を備え、内部ケーシング側の
頭部に凝縮部を備え、内部ケーシング側の底部側に凝縮
水貯水部をそれぞれ備えたので、一つのケーシングの多
機能化を図ってコンパクトにすることができ、設置面積
を少なくすることができる。As described above, in the condensation heat exchanger applied to the polymer electrolyte fuel cell system according to the present invention, the casing is formed as a double cylinder, and gas-liquid is provided between the outer casing and the inner casing. A separate section is provided, a condensing section is provided on the head on the inner casing side, and a condensed water storage section is provided on the bottom side on the inner casing side, so that one casing can be made multifunctional and compact. The installation area can be reduced.
【0070】また、本発明に係る固体高分子型燃料電池
システムに適用する凝縮器は、凝縮部に収容する伝熱管
の伝熱係数を向上させる手段を備えたので、燃料電池本
体等から出る熱エネルギを充分に回収することができ
る。Further, since the condenser applied to the polymer electrolyte fuel cell system according to the present invention is provided with means for improving the heat transfer coefficient of the heat transfer tube housed in the condensing section, the heat generated from the fuel cell body or the like can be improved. Energy can be sufficiently recovered.
【0071】また、本発明に係る固体高分子型燃料電池
システムに適用する凝縮器は、気液分離部を凝縮水貯水
部に接続させて凝縮水をより多く処理させるとともに、
凝縮水貯水部に凝縮水に含まれる炭酸ガスを除去する手
段を備えたので、凝縮水を再び燃料改質システム等に充
分に利用することができる。In the condenser applied to the polymer electrolyte fuel cell system according to the present invention, the gas-liquid separation unit is connected to the condensed water storage unit to process more condensed water.
Since the condensed water reservoir is provided with a means for removing carbon dioxide contained in the condensed water, the condensed water can be sufficiently used again in a fuel reforming system or the like.
【図1】本発明に係る固体高分子型燃料電池システムに
適用する凝縮熱交換器の第1実施形態を示す正面断面
図。FIG. 1 is a front sectional view showing a first embodiment of a condensation heat exchanger applied to a polymer electrolyte fuel cell system according to the present invention.
【図2】図1のA−A矢視方向から見た平面図。FIG. 2 is a plan view seen from the direction of arrows AA in FIG. 1;
【図3】図2のB−B矢視方向から見た側面図。FIG. 3 is a side view as seen from the direction of arrows BB in FIG. 2;
【図4】凝縮熱交換器の第1実施形態における凝縮部に
適用する透孔板を示す概念図。FIG. 4 is a conceptual diagram showing a perforated plate applied to a condensing section in the first embodiment of the condensing heat exchanger.
【図5】凝縮熱交換器の第1実施形態における凝縮水貯
水部に適用する仕切板を示す概念図。FIG. 5 is a conceptual diagram showing a partition plate applied to a condensed water reservoir in the first embodiment of the condensing heat exchanger.
【図6】本発明に係る固体高分子型燃料電池システムに
適用する凝縮熱交換器の第2実施形態を示す正面断面
図。FIG. 6 is a front sectional view showing a second embodiment of the condensation heat exchanger applied to the polymer electrolyte fuel cell system according to the present invention.
【図7】図6のC−C矢視方向から見た平面図。FIG. 7 is a plan view seen from the direction of arrows CC in FIG. 6;
【図8】図7のD−D矢視方向から見た側面図。FIG. 8 is a side view as seen from the direction of arrows DD in FIG. 7;
【図9】凝縮熱交換器の第2実施形態における凝縮部に
適用するエキスパンドメタル板を示す概念図。FIG. 9 is a conceptual diagram showing an expanded metal plate applied to a condensing section in a second embodiment of the condensing heat exchanger.
【図10】本発明に係る固体高分子型燃料電池システム
に適用する凝縮熱交換器の第3実施形態を示す正面断面
図。FIG. 10 is a front sectional view showing a third embodiment of the condensation heat exchanger applied to the polymer electrolyte fuel cell system according to the present invention.
【図11】図10のE−E矢視方向から見た平面図。FIG. 11 is a plan view seen from the direction of arrows EE in FIG. 10;
【図12】図11のF−F矢視方向から見た側面図。FIG. 12 is a side view as seen from the direction of arrows FF in FIG. 11;
【図13】本発明に係る固体高分子型燃料電池システム
に適用する凝縮熱交換器の第4実施形態を示す正面断面
図。FIG. 13 is a front sectional view showing a fourth embodiment of the condensing heat exchanger applied to the polymer electrolyte fuel cell system according to the present invention.
【図14】図13のG−G矢視方向から見た平面図。FIG. 14 is a plan view seen from the direction of arrows GG in FIG. 13;
【図15】図14のH−H矢視方向から見た側面図。FIG. 15 is a side view as seen from the direction of arrows HH in FIG. 14;
【図16】凝縮熱交換器の第4実施形態における凝縮部
に適用するパンチングメタル板を示す概念図。FIG. 16 is a conceptual diagram showing a punched metal plate applied to a condensing section in a fourth embodiment of the condensing heat exchanger.
【図17】本発明に係る固体高分子型燃料電池システム
に適用する凝縮熱交換器の第5実施形態を示す正面断面
図。FIG. 17 is a front sectional view showing a fifth embodiment of the condensing heat exchanger applied to the polymer electrolyte fuel cell system according to the present invention.
【図18】図17のI−I矢視方向から見た平面図。FIG. 18 is a plan view as seen from the direction of arrows II in FIG. 17;
【図19】図18のJ−J矢視方向から見た側面図。FIG. 19 is a side view as seen from the direction of arrows JJ in FIG. 18;
【図20】従来の固体高分子型燃料電池システムを示す
概略系統図。FIG. 20 is a schematic system diagram showing a conventional polymer electrolyte fuel cell system.
【図21】従来の他の固体高分子型燃料電池システムを
示す概略系統図。FIG. 21 is a schematic system diagram showing another conventional polymer electrolyte fuel cell system.
1 燃料改質システム 1a 燃料部 2 燃料電池本体 2a 燃料極 2b 空気極 3 気液分離器 4 凝縮熱交換器 5 ブロア 6 直接接触式凝縮熱交換器 7 間接接触式凝縮熱交換器 8 バブリング室 9 ポンプ 10 外部ケーシング 11 内部ケーシング 12 気液分離部 13 凝縮部 14 凝縮水貯水部 15 バブリング部 16 燃料極用入口 17 燃焼部用出口 18a,18b,18c 配管 19 酸化剤排ガス用入口 20 酸化剤排ガス用出口 21 伝熱管 22 伝熱管入口 23 伝熱管出口 24 透孔板 25 第1貯水室 26 第1仕切板 27 第2貯水室 28 バブリング室 29 第2仕切板 30 第3貯水室 31 第3仕切板 32 折曲げ部 33 天上板 34 長孔 35 空気管 36 バブリングストーン 37 凝縮水供給管 38 エキスパンドメタル板 39 貯水室 40 パンチングメタル板 41 孔 42 支柱 DESCRIPTION OF SYMBOLS 1 Fuel reforming system 1a Fuel part 2 Fuel cell main body 2a Fuel electrode 2b Air electrode 3 Gas-liquid separator 4 Condensing heat exchanger 5 Blower 6 Direct contact condensing heat exchanger 7 Indirect contact condensing heat exchanger 8 Bubbling chamber 9 Pump 10 Outer casing 11 Inner casing 12 Gas-liquid separation unit 13 Condensing unit 14 Condensed water storage unit 15 Bubbling unit 16 Fuel electrode inlet 17 Combustion unit outlet 18a, 18b, 18c Pipe 19 Oxidant exhaust gas inlet 20 Oxidant exhaust gas Outlet 21 Heat transfer tube 22 Heat transfer tube inlet 23 Heat transfer tube outlet 24 Perforated plate 25 First water storage room 26 First partition plate 27 Second water storage room 28 Bubbling room 29 Second partition plate 30 Third water storage room 31 Third partition plate 32 Folded part 33 Top plate 34 Slot 35 Air pipe 36 Bubbling stone 37 Condensed water supply pipe 38 Expanded metal plate 3 9 water storage room 40 perforated metal plate 41 hole 42 support
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3L103 AA05 BB50 CC02 CC26 DD06 DD38 5H026 AA06 5H027 AA06 BA01 BA05 BA16 DD06 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3L103 AA05 BB50 CC02 CC26 DD06 DD38 5H026 AA06 5H027 AA06 BA01 BA05 BA16 DD06
Claims (16)
本体に、気液分離器、凝縮熱交換器を組み合せた固体高
分子型燃料電池システムにおいて、前記凝縮熱交換器は
外側に外部ケーシングを、内側に内部ケーシングを備え
て二重容器にするとともに、前記外部ケーシングと前記
内部ケーシングとの間に形成した気液分離部と、前記内
部ケーシングの内側のうち、頭部側に形成した凝縮部
と、底部側に形成した凝縮水貯水部とを備えるととも
に、前記気液分離部と前記凝縮水貯水部とを互いに接続
させる構成にしたことを特徴とする固体高分子型燃料電
池システム。1. A polymer electrolyte fuel cell system in which a gas-liquid separator and a condensing heat exchanger are combined with a fuel cell body using a solid polymer for an electrolyte membrane, wherein the condensing heat exchanger has an outer casing on the outside. Is provided with an inner casing on the inside to form a double container, a gas-liquid separator formed between the outer casing and the inner casing, and a condensation formed on the head side of the inside of the inner casing. And a condensed water storage section formed on the bottom side, and wherein the gas-liquid separation section and the condensed water storage section are connected to each other.
を備えたことを特徴とする請求項1記載の固体高分子型
燃料電池システム。2. The polymer electrolyte fuel cell system according to claim 1, wherein a perforated plate is provided between the condensing section and the condensed water storage section.
外に熱媒を、伝熱管の管内に冷却水を流して熱交換させ
ることを特徴とする請求項1記載の固体高分子型燃料電
池システム。3. The solid high-condensation unit according to claim 1, wherein the condensing section accommodates the heat transfer tube, and causes a heat medium to flow outside the heat transfer tube and a cooling water to flow inside the heat transfer tube to perform heat exchange. Molecular fuel cell system.
状に配置したことを特徴とする請求項3記載の固体高分
子型燃料電池システム。4. The polymer electrolyte fuel cell system according to claim 3, wherein the heat transfer tubes are arranged in a meandering manner in the axial direction of the condenser.
凝縮部の軸方向に向って蛇行状に配置したことを特徴と
する請求項3記載の固体高分子型燃料電池システム。5. The heat transfer tube is formed in a spiral shape,
4. The polymer electrolyte fuel cell system according to claim 3, wherein the condensing section is arranged in a meandering manner in the axial direction.
柱を備えたことを特徴とする請求項5記載の固体高分子
型燃料電池システム。6. The polymer electrolyte fuel cell system according to claim 5, wherein the spirally formed heat transfer tube has a support on a central axis.
る伝熱管を収容するとともに、前記伝熱管の中間部分に
軸方向に向って仕切手段を備えたことを特徴とする請求
項1〜6記載の固体高分子型燃料電池システム。7. The condensing section accommodates a heat transfer tube extending in a meandering shape in the axial direction, and has a partitioning means in an intermediate portion of the heat transfer tube in the axial direction. 7. The polymer electrolyte fuel cell system according to any one of claims 6 to 6.
徴とする請求項7記載の固体高分子型燃料電池システ
ム。8. The polymer electrolyte fuel cell system according to claim 7, wherein the partition means is formed in a mesh shape.
特徴とする請求項7記載の固体高分子型燃料電池システ
ム。9. The polymer electrolyte fuel cell system according to claim 7, wherein the partitioning means comprises a perforated plate.
めたことを特徴とする請求項9記載の固体高分子型燃料
電池システム。10. The polymer electrolyte fuel cell system according to claim 9, wherein the perforated plate has a different density distribution of holes.
の底部側に備えるとともに、出口を前記外部ケーシング
の頭部側に備えたことを特徴とする請求項1記載の固体
高分子型燃料電池システム。11. The polymer electrolyte fuel cell according to claim 1, wherein the gas-liquid separation unit has an inlet on a bottom side of the outer casing and an outlet on a head side of the outer casing. system.
縮水と凝縮部からの凝縮水とを合流させて一旦溜めると
ともに、貯水室と前記合流凝縮水に含まれる炭酸ガスを
除去するバブリング室とを備えたことを特徴とする請求
項1記載の固体高分子型燃料電池システム。12. The condensed water storage unit combines and temporarily stores condensed water from the gas-liquid separation unit and condensed water from the condensation unit, and removes carbon dioxide contained in the water storage chamber and the combined condensed water. The polymer electrolyte fuel cell system according to claim 1, further comprising a bubbling chamber.
仕切板で区画するとともに、各室を区画する仕切板の開
口を、凝縮水が蛇行状に流れるように、互い違いに配置
したことを特徴とする請求項11記載の固体高分子型燃
料電池システム。13. The water storage chamber and the bubbling chamber are separated from each other by a partition plate, and the openings of the partition plates that partition the respective chambers are alternately arranged so that condensed water flows in a meandering manner. The polymer electrolyte fuel cell system according to claim 11, wherein
曲げ部を境に内部ケーシングに向って傾斜状に延びる天
上板を備えたことを特徴とする請求項12記載の固体高
分子型燃料電池システム。14. The polymer electrolyte fuel cell according to claim 12, wherein the partition plate for partitioning the bubbling chamber includes a top plate that extends in an inclined manner toward the inner casing with the bent portion as a boundary. system.
る請求項13記載の固体高分子型燃料電池システム。15. The polymer electrolyte fuel cell system according to claim 13, wherein the top plate has a long hole.
縮水に含まれる炭酸ガスを除去するバブリングストーン
を収容したことを特徴とする請求項11記載の固体高分
子型燃料電池システム。16. The polymer electrolyte fuel cell system according to claim 11, wherein the bubbling chamber contains a bubbling stone for removing carbon dioxide contained in condensed water by forming air bubbles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001020725A JP4625585B2 (en) | 2001-01-29 | 2001-01-29 | Polymer electrolyte fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001020725A JP4625585B2 (en) | 2001-01-29 | 2001-01-29 | Polymer electrolyte fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002231285A true JP2002231285A (en) | 2002-08-16 |
JP4625585B2 JP4625585B2 (en) | 2011-02-02 |
Family
ID=18886394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001020725A Expired - Fee Related JP4625585B2 (en) | 2001-01-29 | 2001-01-29 | Polymer electrolyte fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4625585B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005032673A (en) * | 2003-07-11 | 2005-02-03 | Osaka Gas Co Ltd | Fuel cell system |
CN1298069C (en) * | 2003-08-26 | 2007-01-31 | 京瓷株式会社 | Container for fael cell,fuel cell and electronic apparatus |
JP2010281508A (en) * | 2009-06-04 | 2010-12-16 | Corona Corp | Heat exchanging device |
JP2011023168A (en) * | 2009-07-14 | 2011-02-03 | Honda Motor Co Ltd | Fuel cell system |
KR101336658B1 (en) * | 2010-12-22 | 2013-12-04 | 지에스칼텍스 주식회사 | apparatus for preventing exhaust noise of fuel cell system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0652879A (en) * | 1992-07-30 | 1994-02-25 | Toshiba Corp | Exhaust gas treatment device of fuel cell power generating unit |
JPH08124590A (en) * | 1994-10-20 | 1996-05-17 | Toshiba Corp | Carbon dioxide separator device for fuel cell |
JPH10199558A (en) * | 1997-01-17 | 1998-07-31 | Nippon Telegr & Teleph Corp <Ntt> | Direct contact type heat exchanger system for fuel cell |
JPH1186888A (en) * | 1997-09-10 | 1999-03-30 | Toshiba Corp | Fused carbonate fuel cell power generation plant |
JP2000030726A (en) * | 1998-07-07 | 2000-01-28 | Matsushita Electric Ind Co Ltd | Solid polymer fuel cell system |
JP2000260456A (en) * | 1999-03-08 | 2000-09-22 | Sanyo Electric Co Ltd | Fuel cell |
-
2001
- 2001-01-29 JP JP2001020725A patent/JP4625585B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0652879A (en) * | 1992-07-30 | 1994-02-25 | Toshiba Corp | Exhaust gas treatment device of fuel cell power generating unit |
JPH08124590A (en) * | 1994-10-20 | 1996-05-17 | Toshiba Corp | Carbon dioxide separator device for fuel cell |
JPH10199558A (en) * | 1997-01-17 | 1998-07-31 | Nippon Telegr & Teleph Corp <Ntt> | Direct contact type heat exchanger system for fuel cell |
JPH1186888A (en) * | 1997-09-10 | 1999-03-30 | Toshiba Corp | Fused carbonate fuel cell power generation plant |
JP2000030726A (en) * | 1998-07-07 | 2000-01-28 | Matsushita Electric Ind Co Ltd | Solid polymer fuel cell system |
JP2000260456A (en) * | 1999-03-08 | 2000-09-22 | Sanyo Electric Co Ltd | Fuel cell |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005032673A (en) * | 2003-07-11 | 2005-02-03 | Osaka Gas Co Ltd | Fuel cell system |
JP4592265B2 (en) * | 2003-07-11 | 2010-12-01 | 大阪瓦斯株式会社 | Fuel cell system |
CN1298069C (en) * | 2003-08-26 | 2007-01-31 | 京瓷株式会社 | Container for fael cell,fuel cell and electronic apparatus |
JP2010281508A (en) * | 2009-06-04 | 2010-12-16 | Corona Corp | Heat exchanging device |
JP2011023168A (en) * | 2009-07-14 | 2011-02-03 | Honda Motor Co Ltd | Fuel cell system |
KR101336658B1 (en) * | 2010-12-22 | 2013-12-04 | 지에스칼텍스 주식회사 | apparatus for preventing exhaust noise of fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JP4625585B2 (en) | 2011-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6451466B1 (en) | Functional integration of multiple components for a fuel cell power plant | |
JP4243592B2 (en) | Fuel cell system | |
JP4351643B2 (en) | Fuel cell system reformer and fuel cell system | |
JP4624670B2 (en) | Integration of the functions of many components of a fuel cell power plant | |
JPH09106826A (en) | Fuel gas supply method for fuel cell | |
CN101180759B (en) | Fuel cell system | |
JPH08273687A (en) | Supply gas humidifier of fuel cell | |
JP2006076879A (en) | Reformer and fuel cell system utilizing the same | |
JP2009099437A (en) | Fuel cell module | |
US7081312B1 (en) | Multiple stage combustion process to maintain a controllable reformation temperature profile | |
US20070042237A1 (en) | Mixed reactant fuel cell system with vapor recovery and method of recovering vapor | |
JP2006073518A (en) | Stack for fuel cell | |
JPH10167701A (en) | Reformer | |
JP4625585B2 (en) | Polymer electrolyte fuel cell system | |
JP2007005134A (en) | Steam generator and fuel cell | |
JP2002260708A (en) | Stackes structure of fuel cell | |
JP5620174B2 (en) | Fuel cell module and fuel cell device | |
JP4351641B2 (en) | Fuel cell system | |
JP2004071242A (en) | Reformed steam generator of fuel cell power generator | |
JP4544055B2 (en) | Fuel cell | |
JP2009076216A (en) | Fuel cell power generation system, and water circulating system thereof | |
KR20230024708A (en) | Gas-liquid separator and fuel cell system therewith | |
JP2000016801A (en) | Evaporator for fuel cell | |
JP2020111492A (en) | Hydrogen production system | |
KR100915267B1 (en) | Absorptive type cooler system using fuel cell generation system and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100319 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100330 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101012 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101108 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |