JP2002227721A - Cogeneration planning system and cogeneration optimization system - Google Patents

Cogeneration planning system and cogeneration optimization system

Info

Publication number
JP2002227721A
JP2002227721A JP2001022675A JP2001022675A JP2002227721A JP 2002227721 A JP2002227721 A JP 2002227721A JP 2001022675 A JP2001022675 A JP 2001022675A JP 2001022675 A JP2001022675 A JP 2001022675A JP 2002227721 A JP2002227721 A JP 2002227721A
Authority
JP
Japan
Prior art keywords
equipment
price
energy
optimal
constraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001022675A
Other languages
Japanese (ja)
Inventor
Yasushi Harada
泰志 原田
Yasushi Tomita
泰志 冨田
Toshiyuki Sawa
澤  敏之
Hiroaki Suzuki
洋明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001022675A priority Critical patent/JP2002227721A/en
Publication of JP2002227721A publication Critical patent/JP2002227721A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently support a program user to analyze sensitivity of an optimal solution for demand forecasting errors and equipment parameter uncertainty. SOLUTION: When finding an equipment optimal size 11 and an optimal operating pattern 12 by an optimization calculating means 10, a potential price 13 and an energy unit price 14 are found at the same time and displayed on a display device 16 by an image displaying means 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電併給計画シス
テム又は熱電併給最適化システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cogeneration planning system or a cogeneration optimization system.

【0002】[0002]

【従来の技術】従来の最適計画において、機器規模最適
化計算と機器運用最適化計算の2つの部分からなり、収
束するまで両計算を往復しながら計算を実行するものが
有る。例えば、伊東弘一,横山良平著「コージェネレー
ションの最適計画」産業図書(株)(平成2年)111
−132頁に記載されている。この方法による処理手順
は次のとおりである。先ずユーザは、エネルギー需要の
予測値,機器容量の値及びユーティリティ最大契約量の
値を計算機に与え、これらの値を前提として機器運用最
適化計算を計算機に実行させ、それにより最適運転パタ
ーンを求める。次に、機器規模最適化計算を計算機に実
行させ、総経費すなわち設備費と従量費の合計が小さく
なるよう機器容量の値とユーティリティ最大契約量の値
を修正する。さらに、いまの機器規模最適化計算の結果
を前提に、再度、機器運用最適化計算を計算機に実行さ
せる。ユーザは、計算が収束するまで、この手続きを計
算機に繰り返させる。これにより、ユーザはエネルギー
供給機器の最適規模と最適運転パターンを得る。
2. Description of the Related Art In a conventional optimal plan, there is an apparatus which comprises two parts, an equipment scale optimization calculation and an equipment operation optimization calculation, and executes a calculation while reciprocating both calculations until convergence. For example, Koichi Ito and Ryohei Yokoyama, “Optimal Planning for Cogeneration”, Sangyo Tosho (Heisei 2) 111
-132 pages. The processing procedure by this method is as follows. First, the user gives the predicted value of the energy demand, the value of the equipment capacity, and the value of the maximum utility contract amount to the computer, and based on these values, causes the computer to execute the equipment operation optimization calculation, thereby obtaining the optimum operation pattern. . Next, the computer is caused to execute the device scale optimization calculation, and the value of the device capacity and the value of the utility maximum contract amount are corrected so that the total cost, that is, the sum of the facility cost and the usage-based cost, is reduced. Further, based on the result of the current device size optimization calculation, the computer is again caused to execute the device operation optimization calculation. The user causes the calculator to repeat this procedure until the calculation converges. Thereby, the user obtains the optimal scale and the optimal operation pattern of the energy supply device.

【0003】[0003]

【発明が解決しようとする課題】一般に、エネルギー供
給機器の最適規模と最適運転パターンを決定するには、
エネルギー需要の予測値を前提にする。しかし、一般に
予測値は予測誤差を含むので、特定の予測値を前提とし
た最適解をユーザは直ちに採用すべきではなく、予測誤
差の影響を検討しながら最適解の採否を判断する必要が
ある。しかし、従来技術を用いて予測誤差の影響を検討
するには、ユーザは予測値を若干量だけ変更し、その変
更後の予測値を前提に最適解を求め直し、予測値変更前
後の最適解を比較するといった手順を踏まねばならず、
従来、ユーザはこの作業に多大な労力と時間を要してい
た。
Generally, in order to determine the optimal scale and the optimal operation pattern of the energy supply equipment,
Assume the predicted value of energy demand. However, since a predicted value generally includes a prediction error, the user should not immediately adopt an optimal solution based on a specific predicted value, but must determine whether to adopt the optimal solution while examining the effect of the prediction error. . However, in order to examine the effect of the prediction error using the conventional technology, the user changes the prediction value by a small amount, re-calculates the optimal solution based on the predicted value after the change, and calculates the optimal solution before and after the prediction value change. Must be compared.
Heretofore, the user has required a great deal of labor and time for this operation.

【0004】本発明の目的は、予測誤差の影響の検討を
容易にすることにある。
[0004] It is an object of the present invention to facilitate consideration of the effects of prediction errors.

【0005】[0005]

【課題を解決するための手段】本発明の特徴は、各制約
条件の潜在価格の値を求め、その値をユーザに提示する
ことである。ここで制約条件とは、例えば、電力,ガ
ス,蒸気,温水及び冷水などエネルギー種別毎の需給バ
ランス制約(等式制約),各エネルギー供給機器の入出
力特性(等式制約)及び各エネルギー供給機器の上下限
制約(不等式制約)の全部又は一部を指す。また潜在価格
とは、例えば、最適解において、制約条件の定数項を単
位量だけ変化させたときに目的関数値がどれだけ変化す
るかの感度を意味する。
A feature of the present invention is to determine a value of a potential price of each constraint and present the value to a user. Here, the constraint conditions are, for example, a supply-demand balance constraint (equation constraint) for each energy type such as electric power, gas, steam, hot water and cold water, an input / output characteristic of each energy supply device (equation constraint), and each energy supply device. Refers to all or some of the upper and lower bound constraints (inequality constraints). The potential price means, for example, the sensitivity of how much the objective function value changes when the constant term of the constraint condition is changed by a unit amount in the optimal solution.

【0006】[0006]

【発明の実施の形態】本発明の実施例は、ガスタービン
発電機や蓄熱装置等、複数のエネルギー供給機器を組合
せ、ビルや工場等のエネルギー需要地域にエネルギーを
供給する場合、該エネルギー需要地域のエネルギー需要
の予測値に応じ、該エネルギー供給機器の最適規模と最
適運転パターンを求める計算機プログラムに関する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention are applicable to a case where a plurality of energy supply devices such as a gas turbine generator and a heat storage device are combined to supply energy to an energy demanding area such as a building or a factory. The present invention relates to a computer program for calculating an optimum scale and an optimum operation pattern of the energy supply device according to a predicted value of energy demand of the energy supply device.

【0007】本発明の実施例で解決しようとする第一の
課題は、エネルギー供給機器の最適規模と最適運転パタ
ーンを求めると同時に、予測誤差の影響の検討を容易に
することにある。
A first problem to be solved by the embodiment of the present invention is to obtain an optimum scale and an optimum operation pattern of an energy supply device, and at the same time, to facilitate an examination of the influence of a prediction error.

【0008】なお以上では、予測誤差の最適解に対する
影響を分析する必要性について述べたが、最適解の採否
を判断するには、このほかに将来の電気料金やガス料金
の変化、技術進歩による機器のエネルギー効率改善な
ど、ユーザはいろいろな関連パラメータの不確定要因を
想定し、その影響を検討する必要がある。従来、これら
不確定要因の影響の検討についても、ユーザは多大な労
力と時間を要していた。
In the above, the necessity of analyzing the influence of the prediction error on the optimal solution has been described. However, in order to judge whether or not the optimal solution is adopted, in addition to changes in future electricity rates and gas rates, and technical advances, The user needs to consider the uncertain factors of various related parameters, such as improving the energy efficiency of equipment, and examine the effects thereof. Conventionally, the user has required a great deal of labor and time to study the effects of these uncertain factors.

【0009】本発明の実施例が解決しようとする課題
は、先に述べた第一の課題のほか、電気料金やガス料金
などのユーティリティ料金や、機器のエネルギー効率な
どの機器パラメータの不確定性の影響の検討を容易にす
ることにもある。
The problem to be solved by the embodiment of the present invention is, in addition to the above-mentioned first problem, utility rates such as an electricity rate and a gas rate, and uncertainties of equipment parameters such as energy efficiency of the equipment. It may also make it easier to study the effects of

【0010】本発明の実施例の一つの特徴は、各制約条
件の潜在価格の値を求め、その値をユーザに提示するこ
とである。ここで制約条件とは、例えば、電力,ガス,
蒸気,温水及び冷水などエネルギー種別毎の需給バラン
ス制約(等式制約),各エネルギー供給機器の入出力特
性(等式制約)及び各エネルギー供給機器の上下限制約
(不等式制約)の全部又は一部を指す。また潜在価格と
は、例えば、最適解において、制約条件の定数項を単位
量だけ変化させたときに目的関数値がどれだけ変化する
かの感度を意味する。潜在価格の求め方の一般的説明
は、例えば、今野浩著「線形計画法」(株)日科技連
(1987)71−90頁に記載されている。
One feature of an embodiment of the present invention is to determine the value of the potential price for each constraint and present the value to the user. Here, the constraint conditions are, for example, electric power, gas,
All or some of the supply-demand balance constraints (equation constraints) for each energy type such as steam, hot water, and cold water, the input / output characteristics of each energy supply device (equation constraints), and the upper and lower limits of each energy supply device (inequality constraints) Point to. The potential price means, for example, the sensitivity of how much the objective function value changes when the constant term of the constraint condition is changed by a unit amount in the optimal solution. A general explanation of how to determine the potential price is described in, for example, Hiroshi Konno, "Linear Programming", Nikka Giren (1987), pp. 71-90.

【0011】潜在価格をユーザに提示するには、先ず潜
在価格を求める必要がある。潜在価格を求めるために本
発明が提供する手段は、最適規模と最適運転パターンを
求める問題を、単一の線形計画問題として定式化し、こ
れを解くことにより最適規模と最適運転パターンをいち
どに求める方法である。このように定式化した線形計画
問題は、大規模な問題になることが多いが、例えば、今
野浩著「線形計画法」(株)日科技連(1987)14
7−162頁の方法を適用すれば、大規模線形計画問題
を解くことができる。
In order to present the potential price to the user, it is necessary to first find the potential price. The means provided by the present invention for obtaining the potential price is a method of formulating the problem of finding the optimal scale and the optimal operation pattern as a single linear programming problem and solving it to find the optimal scale and the optimal operation pattern at once. It is. The linear programming problem formulated in this way is often a large-scale problem. For example, Hiroshi Konno, “Linear Programming”, Nikkagiren (1987) 14
By applying the method on page 7-162, a large-scale linear programming problem can be solved.

【0012】従来、問題が大規模化するのを避けるため
に、最適規模と最適運転パターンを求める問題を2つの
部分問題に分け、かつ、定式化のなかに離散変数を含ん
でいるので、直接、潜在価格を求めることは困難であっ
た。以下、従来技術で潜在価格を求めることが困難であ
った理由と本発明の実施例での解決手段を説明する。潜
在価格は、目的関数値のパラメータ値に対する感度、す
なわち、パラメータ値による目的関数値の微分値である
から、問題を微分可能な形式に定式化する必要がある。
そのためには、元の問題を2つの部分に分けたり、離散
変数を導入したりすることを避けねばならない。しか
し、従来技術では、計算機のメモリ容量の制約や計算時
間の短縮のため、微分可能性を犠牲にせざるを得なかっ
た。つまり従来技術では、潜在価格を求めることと短時
間に最適解を求めることの両立が困難であった。これに
対し、本発明の実施例では、定式化において離散変数な
どの微分不可能要素を排除し、かつ、例えば、今野浩著
「線形計画法」(株)日科技連(1987)147−1
62頁の方法を適用することで、潜在価格を求めること
と短時間に最適解を求めることの両立を可能にした。な
お、例えば、今野浩著「線形計画法」(株)日科技連
(1987)147−162頁には、大規模線形計画問
題を効率的に解く方法が詳細に記載されている。
Conventionally, in order to avoid the problem from becoming large-scale, the problem of finding the optimal scale and the optimal operation pattern is divided into two subproblems, and the formulation includes discrete variables. Finding the potential price was difficult. Hereinafter, the reason why it is difficult to obtain a potential price in the related art and the solution in the embodiment of the present invention will be described. Since the potential price is the sensitivity of the objective function value to the parameter value, that is, the differential value of the objective function value by the parameter value, it is necessary to formulate the problem in a differentiable form.
To do so, we must avoid splitting the original problem into two parts and introducing discrete variables. However, in the prior art, differentiability has to be sacrificed in order to restrict the memory capacity of the computer and shorten the calculation time. That is, in the related art, it was difficult to find both the potential price and the optimal solution in a short time. On the other hand, in the embodiment of the present invention, non-differentiable elements such as discrete variables are excluded in the formulation, and, for example, Hiroshi Konno, "Linear Programming", Nisshin Giren (1987) 147-1
By applying the method on page 62, it has become possible to obtain both the potential price and the optimal solution in a short time. For example, Hiroshi Konno, “Linear Programming”, Nikka Giren (1987), pp. 147-162 describes a method for efficiently solving a large-scale linear programming problem.

【0013】本発明の実施例を実現する機能ブロック図
の一例を図1に示す。図1において、最適化問題定式化
手段6は入力データとして機器構成データ1,需要デー
タ2,エネルギーユーティリティデータ3,機器容量単
価データ4および機器入出力特性データ5を読み込む。
最適化問題定式化手段6は、これら入力データをもと
に、目的関数7,設備制約8および需給バランス制約9
を生成する。ここで、目的関数7は、エネルギーユーテ
ィリティデータ3と機器容量単価データ4に基づき、設
備費と運転費の合計で定義し、線形式で与えるものとす
る。設備制約8は、機器入出力特性データ5に基づき、
各機器の入出力関係を表す線形等式制約と各機器の入力
値もしくは出力値に対する線形不等式制約で与える。設
備制約8において、何時の機器の入力値もしくは出力値
も機器規模を越えてはならないとの制約を含め、かつ、
機器規模を決定変数に含め、最適化問題を解けば、必要
最小限の機器規模すなわち最も経済的な機器規模を求め
ることができる。需給バランス制約9は、機器構成デー
タ1に基づき、需要データ2で与えられる需要の種類毎
に線形等式制約で与える。このように得られた最適化問
題は線形計画問題となる。以上の最適化問題定式化の方
法は、例えば、伊東弘一,横山良平著「コージェネレー
ションの最適計画」産業図書(株)(平成2年)に記載
されている。ただしこの文献では、運転中と停止中を区
別するための0−1変数を導入しているが、本発明では
運転中と停止中の区別は行わずこの0−1変数を使用し
ないものとする。これにより、最適化問題から離散変数
を排除することができるので、通常の線形計画法で最適
解と潜在価格を求めることができる。つぎに最適化計算
手段10は、目的関数7,設備制約8および需給バラン
ス制約9を読み込み、制約条件を守りつつ目的関数を最
小とする機器最適規模11および最適運転パターン12
を求める。それと同時に、需給バランス制約9に対応し
た潜在価格13を求める。更に、各機器のエネルギー単
価14を求める。最適解を求める方法は、例えば、今野
浩著「線形計画法」(株)日科技連(1987)147
−162頁に記載されている。また潜在価格は、例え
ば、今野浩著「線形計画法」(株)日科技連(198
7)71−90頁の方法を用いて求めることができる。
ある機器のエネルギー単価14は、その機器への入力エ
ネルギーとその機器のエネルギー効率から求めることが
できる。たとえば、ある機器への入力エネルギーの単価
が10円で、その機器のエネルギー効率が50%なら
ば、その機器のエネルギー単価は20円となる。最後
に、画面表示手段15は、機器最適規模11,最適運転
パターン12,潜在価格13及びエネルギー単価14を
読み込み、CRTなど適当な表示装置16にこれらを表
示する。
FIG. 1 shows an example of a functional block diagram for realizing an embodiment of the present invention. In FIG. 1, an optimization problem formulation means 6 reads, as input data, equipment configuration data 1, demand data 2, energy utility data 3, equipment capacity unit price data 4, and equipment input / output characteristic data 5.
Based on these input data, the optimization problem formulation means 6 generates an objective function 7, equipment constraints 8, and supply / demand balance constraints 9
Generate Here, the objective function 7 is defined based on the energy utility data 3 and the equipment capacity unit price data 4 by the total of the facility cost and the operating cost, and is given in a linear form. The equipment constraint 8 is based on the device input / output characteristic data 5,
It is given by a linear equality constraint representing the input / output relationship of each device and a linear inequality constraint on the input value or output value of each device. Equipment restriction 8 includes a restriction that the input value or output value of the device at any time must not exceed the device scale, and
If the optimization problem is solved by including the device size in the decision variables, the minimum necessary device size, that is, the most economical device size can be obtained. The supply / demand balance constraint 9 is given by a linear equation constraint for each type of demand given by the demand data 2 based on the device configuration data 1. The optimization problem thus obtained is a linear programming problem. The above-mentioned method of formulating the optimization problem is described in, for example, Koichi Ito and Ryohei Yokoyama, “Optimal Planning of Cogeneration,” Sangyo Tosho Co., Ltd. (1990). However, this document introduces the 0-1 variable for distinguishing between running and stopped, but in the present invention, it is assumed that no distinction is made between running and stopped and the 0-1 variable is not used. . Thereby, since the discrete variables can be excluded from the optimization problem, the optimal solution and the potential price can be obtained by the ordinary linear programming. Next, the optimization calculation means 10 reads the objective function 7, the equipment constraint 8, and the supply-demand balance constraint 9, and keeps the constraint function while minimizing the objective function while optimizing the equipment size 11 and the optimal operation pattern 12.
Ask for. At the same time, a potential price 13 corresponding to the supply-demand balance constraint 9 is obtained. Further, the energy unit price 14 of each device is obtained. A method for finding the optimal solution is described in, for example, Hiroshi Konno, “Linear Programming”, Nisshin Giren (1987) 147
-162 pages. The potential price is calculated, for example, by Hiroshi Konno, “Linear Programming”, Nikka Giren (198)
7) It can be determined using the method on pages 71-90.
The energy unit price 14 of a certain device can be obtained from the energy input to the device and the energy efficiency of the device. For example, if the unit price of the input energy to a certain device is 10 yen and the energy efficiency of the device is 50%, the energy unit price of the device is 20 yen. Finally, the screen display means 15 reads the optimal equipment size 11, the optimal operation pattern 12, the potential price 13 and the energy unit price 14, and displays them on a suitable display device 16 such as a CRT.

【0014】図2は、本発明を実現するための処理の流
れである。データ読込21にて、必要な入力データすな
わち機器構成データ1,需要データ2,エネルギーユー
ティリティデータ3,機器容量単価データ4および機器
入出力特性データ5を読み込む。つぎに最適化問題定式
化22にすすみ、データ読込21にて読み込んだデータ
をもとに最適化問題を定式化する。最適化計算実行23
では、定式化した最適化問題の解を求めると同時に潜在
価格を求め、結果表示24で最適解および潜在価格を表
示する。
FIG. 2 shows a flow of processing for realizing the present invention. In data reading 21, necessary input data, that is, device configuration data 1, demand data 2, energy utility data 3, device capacity unit price data 4, and device input / output characteristic data 5 are read. Next, the process proceeds to the optimization problem formulation 22, where the optimization problem is formulated based on the data read by the data reading unit 21. Optimization calculation execution 23
Then, the potential price is determined at the same time as finding the solution of the formulated optimization problem, and the optimal display and the potential price are displayed on the result display 24.

【0015】以下、具体例に基づき本発明の実施形態を
説明する。図3は、機器構成を表す図であり機器構成デ
ータ1に対応する。図4は、電力,蒸気,温水および冷
水の各1日24点の需要であり需要データ2に対応す
る。図5は、電力とガスの従量料金,電力契約容量単価
および各機器の容量単価であり、エネルギーユーティリ
ティデータ3と機器容量単価データ4に対応する。機器
入出力特性データ5は、例えば、伊東弘一,横山良平著
「コージェネレーションの最適計画」産業図書(株)
(平成2年)に倣い適切な値に設定するものとする。こ
れらのデータを用い、最適化問題を定義し、それを解く
ことにより最適解と潜在価格を求める。本発明では、目
的関数を次のように定式化する。
Hereinafter, embodiments of the present invention will be described based on specific examples. FIG. 3 is a diagram illustrating a device configuration, and corresponds to device configuration data 1. FIG. 4 shows demand at 24 points each day for electric power, steam, hot water and cold water, and corresponds to demand data 2. FIG. 5 shows the electricity and gas usage rates, the power contract capacity unit price, and the capacity unit price of each device, and corresponds to the energy utility data 3 and the device capacity unit price data 4. The device input / output characteristic data 5 is described, for example, by Koichi Ito and Ryohei Yokoyama, “Optimal Cogeneration Planning”, Sangyo Tosho Co., Ltd.
It should be set to an appropriate value following (1990). Using these data, we define an optimization problem and solve it to find the optimal solution and potential price. In the present invention, the objective function is formulated as follows.

【0016】目的関数:Objective function:

【0017】[0017]

【数1】 (Equation 1)

【0018】すなわち、目的関数Jは、年間設備費C
c ,年間基本料金Codおよび年間従量料金Coeの和で定
義し、年間設備費Cc は各設備の初期設備費の合計を償
却期間Tdep で除算したものとし、年間基本料金Cod
電力とガスの契約基本料金の合計を単位契約期間Tcon
で除算したものとし、年間従量料金Coeは電力とガスの
使用量と単位使用量当りの料金の積和とする。なお、こ
れらの式で、添字は次の意味を表す。すなわち、GTは
ガスタービン、REは電動ターボ冷凍機、RWは温水吸
収式冷凍機、RSは蒸気吸収式冷凍機、BGはガスボイ
ラ、BAは補助ボイラ、CTは冷却塔、SHは蓄熱槽、
SCは氷蓄熱、SEは蓄電池、HEは熱交換器、RDは
放熱器、PCは冷水廃棄ポンプ、EPは電力会社からの
電力、及び、FPはガス会社からのガスを表す。また、
PE(t)およびPF(t)はそれぞれ時刻tにおける電力
とガスの単位使用量当りの料金、E(t)およびF(t)は
それぞれ時刻tにおける電力とガスの使用量を表す。
That is, the objective function J is the annual facility cost C
c, defined by the sum of the annual base rate C od and annual pay-as-you-go C oe, the annual cost of equipment C c and those obtained by dividing the sum of the initial equipment costs of each facility in the amortization period T dep, annual base rate C od is unit contract period the total contract base rate of electricity and gas T con
The annual consumption rate Coe is the sum of the electricity and gas usage and the rate per unit usage. In these expressions, the subscripts represent the following meanings. That is, GT is a gas turbine, RE is an electric turbo refrigerator, RW is a hot water absorption refrigerator, RS is a steam absorption refrigerator, BG is a gas boiler, BA is an auxiliary boiler, CT is a cooling tower, SH is a heat storage tank,
SC is ice heat storage, SE is a storage battery, HE is a heat exchanger, RD is a radiator, PC is a chilled water waste pump, EP is power from a power company, and FP is gas from a gas company. Also,
PE (t) and PF (t) represent the charge per unit usage of power and gas at time t, respectively, and E (t) and F (t) represent the usage of power and gas at time t, respectively.

【0019】本発明の実施例では、機器特性を次のよう
な制約条件で表現する。
In the embodiment of the present invention, the device characteristics are expressed by the following constraints.

【0020】制約条件(機器特性):Restrictions (equipment characteristics):

【0021】[0021]

【数2】 (Equation 2)

【0022】なお、この制約条件の例は、図6に示すガ
スタービンの特性を5本の等式制約と1本の不等式制約
で表現したものである。ガスタービン以外の機器の特性
も、同様の等式制約および不等式制約で表現できる。ま
た、エネルギーバランス条件も、次のような制約条件で
表現する。
Note that this example of the constraint condition is obtained by expressing the characteristics of the gas turbine shown in FIG. 6 by five equality constraints and one inequality constraint. The characteristics of the equipment other than the gas turbine can be expressed by the same equation constraints and inequality constraints. The energy balance condition is also expressed by the following constraint conditions.

【0023】制約条件(エネルギーバランス):Constraints (energy balance):

【0024】[0024]

【数3】 (Equation 3)

【0025】なお、この制約条件の例は、図3のコジェ
ネシステムにおける冷水の需給バランス制約を表す。電
力,蒸気、および温水の需給バランス制約もそれぞれ同
様に表現する。
Note that this example of the constraint condition represents a supply / demand balance of chilled water in the cogeneration system of FIG. Electric power, steam, and hot water supply / demand balance constraints are similarly expressed.

【0026】図7に、例として、電力,蒸気,温水及び
冷水の潜在価格と各機器のエネルギー単価を示す。図7
の各表の左欄外の1乃至24の数値は時刻を表す。図7
において、数値の右に上矢印もしくは下矢印がついてい
る場合があるが、上矢印はエネルギー単価が潜在価格よ
りも高い場合を表し、下矢印はエネルギー単価が潜在価
格よりも安い場合を表す。矢印がついていない場合には
エネルギー単価と潜在価格が等しい。
FIG. 7 shows, as an example, potential prices of electric power, steam, hot water and cold water, and the energy unit price of each device. FIG.
Numerical values 1 to 24 outside the left column of each table indicate time. FIG.
, There may be an up arrow or a down arrow to the right of the numerical value. The up arrow indicates that the energy unit price is higher than the potential price, and the down arrow indicates that the energy unit price is lower than the potential price. If there is no arrow, the energy unit price is equal to the potential price.

【0027】図7において、エネルギー単価と潜在価格
を比較すれば、両者の大小関係が分かり、その結果、構
成機器の最適規模を決定しているクリティカルな時刻が
何時であるかを知ることができる。例えば電力に着目す
ると、14時における潜在価格38.8は、電力会社か
らの買電のエネルギー単価14.7よりも高く、かつ、
ガスタービンの電力のエネルギー単価15.0 よりも高
い。このことから、14時における電力の潜在価格に
は、運転費のほかに設備費が加わっていると判断でき、
このことから電力会社の最適契約容量とガスタービンの
最適規模を決定しているのは、14時の電力需給状況で
あることがわかる。14時における電力の潜在価格に対
する別の解釈として、14時における電力需要の単位量
は38.8 の価値を有し、もしこの時点の電力需要が単
位量だけ多ければそれを賄うのに38.8の増分コストがか
かるとの解釈も成り立つ。
In FIG. 7, by comparing the energy unit price and the potential price, the magnitude relationship between the two can be understood, and as a result, it is possible to know what is the critical time at which the optimum scale of the constituent devices is determined. . For example, focusing on electricity, the potential price of 38.8 at 14:00 is higher than the energy unit price of 14.7 for the purchase of electricity from a power company, and
The energy unit price of gas turbine power is higher than 15.0. From this, it can be determined that the potential price of power at 14:00 includes equipment costs in addition to operating costs,
From this, it is understood that it is the power supply and demand situation at 14:00 that determines the optimum contracted capacity of the power company and the optimum size of the gas turbine. Another interpretation of the potential price of electricity at 14:00 is that the unit quantity of electricity demand at 14:00 has a value of 38.8, and if the electricity demand at this time is greater by the unit quantity, 38.8 units are needed to cover it. The interpretation that the incremental cost is required also holds.

【0028】蒸気についても同様の考えで、22時にお
ける潜在価格15.8 は、ガスタービンの蒸気エネルギ
ー単価3.59 よりも高く、かつ、補助ボイラの蒸気エ
ネルギー単価6.39 よりも高い。このことから、ガス
タービンと補助ボイラの最適規模は、22時の蒸気需給
状況から決定されていることがわかる。
With the same idea for steam, the potential price 15.8 at 22:00 is higher than the steam energy unit price of the gas turbine of 3.59 and higher than the steam energy unit price of the auxiliary boiler of 6.39. This indicates that the optimal scale of the gas turbine and the auxiliary boiler is determined from the steam supply and demand situation at 22:00.

【0029】このように、図7のような潜在価格とエネ
ルギー単価を表示することにより、何時の時点における
何の需要がどの構成機器の最適規模に影響を与えるか、
またその時点の需要単位量当りの価値が具体的にいくら
であるかを知ることができる。
As described above, by displaying the potential price and the energy unit price as shown in FIG. 7, it is possible to determine what demand at what point in time affects the optimal scale of which component device.
In addition, it is possible to know the specific value per unit of demand at that time.

【0030】参考のため、電力,蒸気,温水及び冷水の
各需給パターンをそれぞれ図7乃至図11に示す。従来
技術では、図7乃至図11のような需給パターンを表示
するのみであり、潜在価格を表示していなかったため、
最適規模を決定するクリティカルな時点が何時であるか
を調べるのが困難であった。しかし、本発明のように図
7の潜在価格とエネルギー単価を表示すれば、それらの
大小関係を調べることにより、クリティカルな時点を比
較的容易に見つけ出すことができる。
For reference, respective supply and demand patterns of electric power, steam, hot water and cold water are shown in FIGS. 7 to 11, respectively. In the related art, only the supply and demand patterns as shown in FIGS. 7 to 11 are displayed, and the potential price is not displayed.
It was difficult to find out what was the critical point in determining the optimal size. However, if the potential price and the energy unit price in FIG. 7 are displayed as in the present invention, it is possible to relatively easily find a critical point by examining the magnitude relation between them.

【0031】図7に示した電力のエネルギー単価と潜在
価格のグラフ表示を図12に示す。このようにグラフ表
示すれば、各時点における電力の潜在価格を決定してい
るのが電力会社のエネルギー単価なのかガスタービンの
それなのか、クリティカルな時点は何時なのかがより簡
単にわかる場合もある。たとえば、図11の場合、14
時の潜在価格が2本のエネルギー単価の棒グラフを上回
っていることから、14時がクリティカルな時点である
ことが容易に見て取れる。
FIG. 12 shows a graphical representation of the energy unit price and the potential price of the electric power shown in FIG. By displaying the graph in this way, it is sometimes easier to know whether the potential price of electricity at each point in time is determined by the energy price of the power company or that of the gas turbine, and when the critical point is is there. For example, in the case of FIG.
Since the potential price at the time exceeds the two energy unit price bar graphs, it is easy to see that 14:00 is a critical point.

【0032】以上によれば、各制約の潜在価格と機器の
エネルギー単価を表示するので、ユーザは需要予測誤差
や機器パラメータに対する最適解の感度を容易に解析す
ることができる。また、ユーザは、潜在価格とエネルギ
ー単価の大小関係に基づき、不確かさに対する最適解の
感度を、直接的かつ定量的に知ることができる。
According to the above, the potential price of each constraint and the unit energy cost of the equipment are displayed, so that the user can easily analyze the demand prediction error and the sensitivity of the optimal solution to the equipment parameters. Further, the user can directly and quantitatively know the sensitivity of the optimal solution to the uncertainty based on the magnitude relationship between the potential price and the energy unit price.

【0033】以上では、最適値を求めることを例に説明
しているが、熱電併給設備の構成機器の規模と運転パタ
ーンを決定する決定装置と、エネルギー需給バランス制
約と機器容量制約を満足しつつ設備費と運転費の和を小
さく熱電併給適化装置とを有し、該制約の潜在価格と該
構成機器のエネルギー単価を表示することを特徴とする
熱電併給計画システムのように、現状値より、より好ま
しい小さい値又は大きい値を求める場合に用いても良
い。
In the above description, an example of obtaining the optimum value has been described. However, the determination device for determining the scale and operation pattern of the components of the combined heat and power equipment, the energy supply and demand balance constraint and the device capacity constraint are satisfied. Like the combined heat and power planning system, which has a combined heat and power optimization device that reduces the sum of the equipment cost and the operating cost and displays the potential price of the constraint and the energy unit price of the component equipment. May be used to obtain a more preferable small value or large value.

【0034】[0034]

【発明の効果】本発明によれば、予測誤差の影響の検討
を容易にすることができる。
According to the present invention, the effect of the prediction error can be easily studied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の機能ブロック図。FIG. 1 is a functional block diagram of one embodiment of the present invention.

【図2】本発明の一実施例における処理流れ図。FIG. 2 is a processing flowchart in one embodiment of the present invention.

【図3】本発明の一実施例における機器構成図。FIG. 3 is a device configuration diagram in one embodiment of the present invention.

【図4】本発明の一実施例における需要データのグラフ
を示す図。
FIG. 4 is a diagram showing a graph of demand data in one embodiment of the present invention.

【図5】本発明の一実施例における従量単価と容量単価
を示す図。
FIG. 5 is a diagram showing a unit price and a capacity unit price in one embodiment of the present invention.

【図6】本発明の一実施例のガスタービンのモデル図。FIG. 6 is a model diagram of a gas turbine according to one embodiment of the present invention.

【図7】本発明の一実施例におけるエネルギー単価と潜
在価格の表形式による表示例を示す図。
FIG. 7 is a diagram showing a display example of an energy unit price and a potential price in a table format according to an embodiment of the present invention.

【図8】同実施例における電力需給パターンを示す図。FIG. 8 is a view showing a power supply and demand pattern in the embodiment.

【図9】同実施例における蒸気需給パターンを示す図。FIG. 9 is a view showing a steam supply and demand pattern in the embodiment.

【図10】同実施例における温水需給パターンを示す
図。
FIG. 10 is a view showing a hot water supply / demand pattern in the embodiment.

【図11】同実施例における冷水需給パターンを示す
図。
FIG. 11 is a view showing a cold water supply / demand pattern in the embodiment.

【図12】同実施例におけるエネルギー単価と潜在価格
のグラフ形式による表示例を示す図。
FIG. 12 is a diagram showing a display example in the form of a graph of an energy unit price and a potential price in the embodiment.

【符号の説明】[Explanation of symbols]

1…機器構成データ、2…需要データ、3…エネルギー
ユーティリティデータ、4…機器容量単価データ、5…
機器入出力特性データ、6…最適化問題定式化手段、7
…目的関数、8…設備制約、9…需給バランス制約、1
0…最適化計算手段、11…機器最適規模、12…最適
運転パターン、13…潜在価格、14…エネルギー単
価、15…画面表示手段、16…表示装置。
1 ... device configuration data, 2 ... demand data, 3 ... energy utility data, 4 ... device capacity unit price data, 5 ...
Equipment input / output characteristic data, 6 ... Optimization problem formulation means, 7
... Objective function, 8: Equipment constraint, 9: Supply and demand balance constraint, 1
0: optimization calculation means, 11: equipment optimum scale, 12: optimum operation pattern, 13: potential price, 14: energy unit price, 15: screen display means, 16: display device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤 敏之 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 鈴木 洋明 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所事業企画本部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiyuki Sawa 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory, Ltd. (72) Inventor Hiroaki Suzuki 4-6-1 Kanda Surugadai, Chiyoda-ku, Tokyo Address: Hitachi, Ltd. Business Planning Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】熱電併給設備の構成機器の規模と運転パタ
ーンを決定する決定装置と、エネルギー需給バランス制
約と機器容量制約を満足しつつ設備費と運転費の和を小
さく熱電併給適化装置とを有し、 該制約の潜在価格と該構成機器のエネルギー単価を表示
することを特徴とする熱電併給計画システム。
An apparatus for determining the scale and operation pattern of components of a combined heat and power equipment, and a combined heat and power optimization apparatus that reduces the sum of equipment costs and operation costs while satisfying energy supply and demand balance constraints and equipment capacity constraints. And displaying the potential price of the constraint and the unit price of energy of the component equipment.
【請求項2】熱電併給設備の構成機器の規模と運転パタ
ーンを最適に決定することで、エネルギー需給バランス
制約と機器容量制約を満足しつつ設備費と運転費の和を
最小化する、熱電併給最適化システムにおいて、 該制約の潜在価格と該構成機器のエネルギー単価を表示
することを特徴とする熱電併給最適化システム。
2. The combined heat and power supply that minimizes the sum of equipment costs and operation costs while satisfying energy supply and demand balance constraints and equipment capacity constraints by optimizing the scale and operation pattern of components of the combined heat and power equipment. An optimization system, wherein a potential price of the constraint and an energy unit price of the component device are displayed.
JP2001022675A 2001-01-31 2001-01-31 Cogeneration planning system and cogeneration optimization system Pending JP2002227721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001022675A JP2002227721A (en) 2001-01-31 2001-01-31 Cogeneration planning system and cogeneration optimization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001022675A JP2002227721A (en) 2001-01-31 2001-01-31 Cogeneration planning system and cogeneration optimization system

Publications (1)

Publication Number Publication Date
JP2002227721A true JP2002227721A (en) 2002-08-14

Family

ID=18888054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001022675A Pending JP2002227721A (en) 2001-01-31 2001-01-31 Cogeneration planning system and cogeneration optimization system

Country Status (1)

Country Link
JP (1) JP2002227721A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263622A (en) * 2003-02-28 2004-09-24 Osaka Gas Co Ltd Cogeneration system
JP2005257097A (en) * 2004-03-09 2005-09-22 Toshiba Corp Start/stop plan formulation system for heat source device
US8396605B2 (en) 2008-04-17 2013-03-12 E. I. Engineering Co., Ltd. System for simulating heat and power supply facility
US8571903B1 (en) * 1998-07-02 2013-10-29 Google Inc. Pricing graph representation for sets of pricing solutions for travel planning system
JP2017194924A (en) * 2016-04-22 2017-10-26 三菱電機株式会社 Energy supply plan formulation device and energy supply plan formulation program
CN113316787A (en) * 2019-01-22 2021-08-27 西门子股份公司 Computer-aided method for simulating the operation of an energy system and energy management system
JP2023029218A (en) * 2021-08-20 2023-03-03 常州工学院 Method and system for optimizing ventilation structure for boiler combustion

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8571903B1 (en) * 1998-07-02 2013-10-29 Google Inc. Pricing graph representation for sets of pricing solutions for travel planning system
JP2004263622A (en) * 2003-02-28 2004-09-24 Osaka Gas Co Ltd Cogeneration system
JP2005257097A (en) * 2004-03-09 2005-09-22 Toshiba Corp Start/stop plan formulation system for heat source device
US8396605B2 (en) 2008-04-17 2013-03-12 E. I. Engineering Co., Ltd. System for simulating heat and power supply facility
JP2017194924A (en) * 2016-04-22 2017-10-26 三菱電機株式会社 Energy supply plan formulation device and energy supply plan formulation program
CN113316787A (en) * 2019-01-22 2021-08-27 西门子股份公司 Computer-aided method for simulating the operation of an energy system and energy management system
JP2023029218A (en) * 2021-08-20 2023-03-03 常州工学院 Method and system for optimizing ventilation structure for boiler combustion
JP7384476B2 (en) 2021-08-20 2023-11-21 常州工学院 Optimization method and system for ventilation structure for boiler combustion

Similar Documents

Publication Publication Date Title
Kelley et al. An MILP framework for optimizing demand response operation of air separation units
Carelli et al. Economic features of integral, modular, small-to-medium size reactors
Cohen et al. Optimizing post-combustion CO2 capture in response to volatile electricity prices
Huo et al. Chance-constrained optimization for integrated local energy systems operation considering correlated wind generation
Zhou et al. Distributionally robust chance-constrained energy management of an integrated retailer in the multi-energy market
Zhang et al. Optimized generation capacity expansion using a further improved screening curve method
Beran et al. Modelling German electricity wholesale spot prices with a parsimonious fundamental model–Validation & application
Fridgen et al. Not all doom and gloom: How energy-intensive and temporally flexible data center applications may actually promote renewable energy sources
Tseng et al. A framework using two-factor price lattices for generation asset valuation
CN111695742A (en) Day-ahead scheduling interval optimization method, system and equipment for comprehensive energy system
Yifan et al. Power and energy flexibility of district heating system and its application in wide-area power and heat dispatch
Yu et al. China's unconventional carbon emissions trading market: the impact of a rate-based cap in the power generation sector
Cuisinier et al. New rolling horizon optimization approaches to balance short-term and long-term decisions: An application to energy planning
Cox et al. Real-time dispatch optimization for concentrating solar power with thermal energy storage
Assia et al. Green Scheduling of Jobs and Flexible Periods of Maintenance in a Two‐Machine Flowshop to Minimize Makespan, a Measure of Service Level and Total Energy Consumption
Zhang Data-driven building energy modeling with feature selection and active learning for data predictive control
Gonzalez-Salazar et al. Portfolio optimization in district heating: Merit order or mixed integer linear programming?
Perekrest et al. Principles of designing and functioning of the expert system of assessing the efficiency of introducing energy conservation measures
Boyd Power Sector Modeling 101
Leenders et al. Optimal design of integrated batch production and utility systems
JP2002227721A (en) Cogeneration planning system and cogeneration optimization system
Wang et al. Analysis of predicted mean vote-based model predictive control for residential HVAC systems
JP6622068B2 (en) Business evaluation system and business evaluation method
Sandberg et al. A new optimal solution space based method for increased resolution in energy system optimisation
Ela et al. Long-term resource adequacy, long-term flexibility requirements, and revenue sufficiency