JP2002224696A - Method for treating organic waste - Google Patents

Method for treating organic waste

Info

Publication number
JP2002224696A
JP2002224696A JP2001023783A JP2001023783A JP2002224696A JP 2002224696 A JP2002224696 A JP 2002224696A JP 2001023783 A JP2001023783 A JP 2001023783A JP 2001023783 A JP2001023783 A JP 2001023783A JP 2002224696 A JP2002224696 A JP 2002224696A
Authority
JP
Japan
Prior art keywords
activated sludge
aeration tank
organic waste
tank
sludge water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2001023783A
Other languages
Japanese (ja)
Inventor
Shinji Hiroe
愼治 廣江
Yoshio Kamogawa
喜郎 加茂川
Shigeki Minami
茂樹 南
Shu Nakajima
周 中嶋
Sousaku Nakatani
創作 中谷
Hidehiko Kinoshita
秀彦 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO KANKYO GIJUTSU KENKYUSHO
TOYO KANKYO GIJUTSU KENKYUSHO KK
Original Assignee
TOYO KANKYO GIJUTSU KENKYUSHO
TOYO KANKYO GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO KANKYO GIJUTSU KENKYUSHO, TOYO KANKYO GIJUTSU KENKYUSHO KK filed Critical TOYO KANKYO GIJUTSU KENKYUSHO
Priority to JP2001023783A priority Critical patent/JP2002224696A/en
Publication of JP2002224696A publication Critical patent/JP2002224696A/en
Ceased legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

PROBLEM TO BE SOLVED: To provide an organic waste treating method in which an excess of sludge can be prevented from being generated by restraining activated sludge from propagating, drawing-out and retreating of sludge are unnecessary and organic waste can be treated with extremely high efficiency. SOLUTION: This organic waste treating method in which sludge is not withdrawn to the outside is carried out by adding the organic waste from a raw water tank 4 to activated sludge water in an aeration tank 12 so that the concentration of propagating nitrifying bacteria is not lowered, adding a pH adjusting agent from a pH adjusting agent tank 10 to the activated sludge water in the tank 12 so that the pH of the activated sludge water in the tank 12 is kept to be >=5, supplying oxygen of the amount equal to or more than the oxygen requirement to biodegradation of organic carbon in the activated sludge water, endogenous respiration of a microbe, nitrification of ammonia nitrogen and auto-oxidation of the microbe to the activated sludge water from a Roots blower 20 through an air diffusing pipe 18 and discharging the activated sludge water to the outside of the tank 12 so that the concentration of propagating nitrifying bacteria is not lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性廃棄物の処
理方法に関し、更に詳述すれば、生ごみ、焼酎廃液、家
畜糞尿、余剰活性汚泥等の有機性廃棄物を生分解処理す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating organic waste, and more particularly, to a method for biodegrading organic waste such as garbage, shochu waste, livestock manure, and excess activated sludge. About.

【0002】[0002]

【従来の技術】近年、産業が急速に発展し、都市へ人口
が集中すると共に、生活様式や農業形態が変化してき
た。それに伴って、廃棄物は多量に、且つ、集中的に発
生するようになった。
2. Description of the Related Art In recent years, industries have rapidly developed, populations have been concentrated in cities, and lifestyles and agricultural forms have changed. As a result, wastes have been generated in large amounts and intensively.

【0003】産業や生活から発生する排水や廃棄物の発
生量が自然の浄化力を超えたとき、人間の健康及び環境
保全上の種々の問題が生じ、そのために排水処理や廃棄
物処理を行うようになった。
[0003] When the amount of wastewater and waste generated from industry and daily life exceeds the purification ability of nature, various problems on human health and environmental preservation arise, and for that purpose, wastewater treatment and waste treatment are performed. It became so.

【0004】このうち、例えば、生ごみ、焼酎廃液、家
畜糞尿等の有機性廃棄物を含む排水処理は、微生物によ
る生分解処理が一般的に行われている。
Among these, for example, in the wastewater treatment including organic waste such as garbage, shochu waste liquid, livestock manure, etc., biodegradation treatment by microorganisms is generally performed.

【0005】上記の有機性廃棄物を含む排水処理を微生
物によって行う代表的処理方法として、活性汚泥法があ
る。
[0005] As a typical treatment method in which the above wastewater containing organic waste is treated by microorganisms, there is an activated sludge method.

【0006】都市下水処理、農村集落排水処理及び漁村
集落排水処理等において、処理場における曝気槽の活性
汚泥水中に投入される原水のBODはおおよそ200p
pm、アンモニア態窒素濃度は50ppm以下である。
In urban sewage treatment, rural settlement wastewater treatment, fishing village settlement wastewater treatment, etc., the BOD of raw water introduced into activated sludge water in an aeration tank at a treatment plant is approximately 200 p.
pm and the concentration of ammonia nitrogen are 50 ppm or less.

【0007】この投入原水量は、農村集落排水処理及び
漁村集落排水処理では、集落規模によるが、おおむね2
00m3/日、都市下水では数万m3/日に達する。
[0007] The amount of input raw water depends on the scale of settlements in rural settlement drainage treatment and fishing village settlement drainage treatment.
00m 3 / day, it will reach tens of thousands of m 3 / day in urban sewage.

【0008】このように、排水処理すべき有機性廃棄物
は膨大な量である。
As described above, the amount of organic waste to be treated for wastewater is enormous.

【0009】しかし、従来の活性汚泥法を用いて上記有
機性廃棄物を処理する場合は、排水中に含まれる有機廃
棄物の40〜70%が汚泥に変換されるため、再循環用
以外の余剰汚泥が二次廃棄物として大量に発生する問題
がある。
However, when the above-mentioned organic waste is treated using the conventional activated sludge method, 40 to 70% of the organic waste contained in the wastewater is converted into sludge. There is a problem that a large amount of excess sludge is generated as secondary waste.

【0010】二次廃棄物として生ずる余剰汚泥の量は、
近年ますます多くなってきており、現在我が国で発生す
る余剰汚泥量は、年間数千万トンに達する。この余剰汚
泥を処理するために種々の方法が提案されている。例え
ば、長時間曝気法、酸素曝気法、オゾンで前処理する方
法等々である。
[0010] The amount of excess sludge generated as secondary waste is
In recent years, the amount of excess sludge generated in Japan has reached tens of millions of tons per year. Various methods have been proposed to treat this excess sludge. For example, there are a long-time aeration method, an oxygen aeration method, a method of pretreatment with ozone, and the like.

【0011】長時間曝気法及び酸素曝気法は汚泥の自己
酸化により汚泥を減量化する処理方法である。オゾン前
処理法は、余剰汚泥をオゾンで殺菌し、余剰汚泥を処理
しやすい形態に変えた後、活性汚泥法で処理する方法で
ある。その他の方法も。何らかの物理化学的方法で余剰
汚泥を殺菌し、余剰汚泥を処理しやすい形態に変えた
後、活性汚泥法で処理する方法である。
The long-time aeration method and the oxygen aeration method are treatment methods for reducing the amount of sludge by the auto-oxidation of the sludge. The ozone pretreatment method is a method in which surplus sludge is sterilized with ozone, the surplus sludge is changed into a form that can be easily treated, and then treated by an activated sludge method. Other methods too. This is a method in which the excess sludge is sterilized by some physicochemical method, the excess sludge is changed into a form that can be easily treated, and then the activated sludge is treated.

【0012】しかし、これら従来の余剰汚泥の処理方法
は、酸素供給設備、オゾン供給設備などの複雑な設備を
必要としたり、長時間の運転を必要とし、設備費、運転
費等が膨大にかかるものであり、設備上、操作上の問題
がある。
However, these conventional methods for treating excess sludge require complicated facilities such as an oxygen supply facility and an ozone supply facility, require a long operation, and require enormous facility and operation costs. And has problems in equipment and operation.

【0013】従って、膨大な量に達している余剰活性汚
泥を減量好ましくは消滅させることが緊急の課題であ
る。
Therefore, it is an urgent task to reduce or preferably eliminate the excess activated sludge which has reached a huge amount.

【0014】更に、上記活性汚泥による有機性廃棄物の
処理においては、アンモニア態窒素の処理が完全になさ
れていない問題がある。
Further, in the treatment of organic waste with the above-mentioned activated sludge, there is a problem that the treatment of ammonia nitrogen is not completely performed.

【0015】[0015]

【発明が解決しようとする課題】本発明者らは上記問題
を解決するために種々検討した結果、曝気槽内における
活性汚泥水の硝酸態窒素、亜硝酸態窒素は、余剰汚泥を
処理するのに必ずしも影響を与えるものではないという
ことを知得した。
As a result of various studies to solve the above problems, the present inventors have found that activated sludge water nitrate nitrogen and nitrite nitrogen in the aeration tank are capable of treating excess sludge. Has not always been affected.

【0016】本発明者らは更に検討を重ねた結果、曝気
槽内の活性汚泥水中に有機性廃棄物及びpH調整剤を添
加すると共に、活性汚泥水中に十分な量の空気泡を導入
し、曝気槽内の活性汚泥水のpHを5以上、好ましくは
7以上に維持し、且つ硝化菌の濃度を高く保つことによ
り、有機性廃棄物におけるアンモニア態窒素が処理でき
ると同時に有機炭素が処理でき、しかも余剰活性汚泥の
増殖を抑えることができることを知得し、本発明を完成
するに至った。
As a result of further studies, the present inventors added organic waste and a pH adjuster to the activated sludge water in the aeration tank, and introduced a sufficient amount of air bubbles into the activated sludge water. By maintaining the pH of the activated sludge water in the aeration tank at 5 or more, preferably at 7 or more, and keeping the concentration of nitrifying bacteria high, it is possible to treat ammonia nitrogen in organic waste and organic carbon at the same time. In addition, the present inventors have learned that the growth of excess activated sludge can be suppressed, and have completed the present invention.

【0017】よって、本発明の目的とするところは、上
記問題を解決した有機性廃棄物の処理方法を提供するこ
とにある。
Accordingly, it is an object of the present invention to provide a method for treating organic waste which has solved the above-mentioned problems.

【0018】[0018]

【課題を解決するための手段】上記目的を達成する本発
明は、以下に記載するものである。
The present invention to achieve the above object is as described below.

【0019】〔1〕 曝気槽内の活性汚泥水中に有機性
廃棄物を添加すると共に、活性汚泥水中に空気泡を導入
する有機性廃棄物の処理方法であって、活性汚泥水中に
有機性廃棄物及びpH調整剤を添加すると共に、活性汚
泥水中の有機炭素の生分解処理、微生物の内生呼吸、ア
ンモニア態窒素の硝化、及び微生物の自己酸化に必要な
酸素量以上の酸素を活性汚泥水に供給して、曝気槽内の
活性汚泥水のpHを5以上に維持し、前記炭素及び窒素
を同一槽内で同時に処理し且つ曝気槽内における活性汚
泥水中への有機性廃棄物の添加及び曝気槽外への活性汚
泥水の排出は、増殖する硝化菌濃度を減少させない範囲
内で行うことを特徴とする汚泥の増殖を抑え、その結果
汚泥を外部に取り出さない有機性廃棄物の処理方法。
[1] A method for treating organic waste by adding organic waste to activated sludge water in an aeration tank and introducing air bubbles into the activated sludge water. And a pH adjuster, and activates the activated sludge water to release more oxygen than is required for biodegradation of organic carbon in the activated sludge water, endogenous respiration of microorganisms, nitrification of ammonia nitrogen, and autooxidation of microorganisms. To maintain the pH of the activated sludge water in the aeration tank at 5 or more, simultaneously treat the carbon and nitrogen in the same tank, and add organic waste to the activated sludge water in the aeration tank and Discharge of activated sludge water outside the aeration tank is performed within a range that does not reduce the concentration of the growing nitrifying bacteria, thereby suppressing the growth of sludge and, as a result, a method of treating organic waste that does not take sludge outside. .

【0020】〔2〕 曝気槽内の活性汚泥水のpHを7
以上に維持する〔1〕に記載の有機性廃棄物の処理方
法。
[2] Adjust the pH of the activated sludge water in the aeration tank to 7
The method for treating organic waste according to [1], which is maintained as described above.

【0021】〔3〕 有機性廃棄物が余剰汚泥である
〔1〕に記載の有機性廃棄物の処理方法。
[3] The method for treating organic waste according to [1], wherein the organic waste is excess sludge.

【0022】〔4〕 有機性廃棄物が生ごみ又は家畜糞
尿である〔1〕に記載の有機性廃棄物の処理方法。
[4] The method for treating organic waste according to [1], wherein the organic waste is garbage or livestock manure.

【0023】〔5〕 曝気槽内における活性汚泥水中へ
の有機性廃棄物の添加及び必要時における曝気槽外への
活性汚泥水の排出をバッチ方式で行い、硝化菌数を前バ
ッチ終了時の硝化菌数以上に保って曝気槽内における活
性汚泥水中への有機性廃棄物の添加及び曝気槽外への活
性汚泥水の排出を行う〔1〕に記載の有機性廃棄物の処
理方法。
[5] The addition of organic waste to the activated sludge water in the aeration tank and the discharge of the activated sludge water out of the aeration tank when necessary are performed in a batch mode, and the number of nitrifying bacteria at the end of the previous batch is determined. The method for treating organic waste according to [1], wherein the organic waste is added to the activated sludge water in the aeration tank and the activated sludge water is discharged out of the aeration tank while maintaining the number of nitrifying bacteria or more.

【0024】〔6〕 各バッチにおける曝気槽外への活
性汚泥水の排出量が、曝気槽内の全活性汚泥水量の7分
の1以下である〔5〕に記載の有機性廃棄物の処理方
法。
[6] The treatment of organic waste according to [5], wherein the amount of activated sludge discharged to the outside of the aeration tank in each batch is 1/7 or less of the total amount of activated sludge in the aeration tank. Method.

【0025】[0025]

【作用】本発明の有機性廃棄物の処理方法の作用は、以
下のように考えられる。
The operation of the method for treating organic waste according to the present invention is considered as follows.

【0026】曝気槽内の活性汚泥水において、アンモニ
ア態窒素を処理する好気条件下では有機炭素の処理も同
一槽内で同時に行う。同時にアンモニア態窒素と有機炭
素とを処理しつつ、微生物の自己酸化に必要な酸素量の
供給を行う。
In the activated sludge water in the aeration tank, the treatment of organic carbon is also performed simultaneously in the same tank under aerobic conditions for treating ammonia nitrogen. At the same time, the amount of oxygen necessary for the auto-oxidation of microorganisms is supplied while treating ammonia nitrogen and organic carbon.

【0027】このように、本発明の方法は、微生物の自
己酸化に必要な酸素量を確保する処理を行うことによ
り、活性汚泥の増殖を抑え、外部に取り出す余剰汚泥を
無くしている。
As described above, the method of the present invention suppresses the growth of activated sludge and eliminates the excess sludge taken out to the outside by performing the treatment for securing the amount of oxygen necessary for the autooxidation of microorganisms.

【0028】他方、従来の方法では、活性汚泥が増殖す
るため、大量に発生する余剰汚泥を外部に取り出す必要
がある。
On the other hand, in the conventional method, since activated sludge multiplies, it is necessary to take out excess sludge generated in large quantities to the outside.

【0029】よって、本発明の方法では、従来の方法と
比較して、微生物の自己酸化に必要な酸素量を確保する
必要がある。反面、余剰汚泥が発生しないので、余剰汚
泥を外部に取り出して凝集させることは必要としない。
Therefore, in the method of the present invention, it is necessary to ensure the amount of oxygen necessary for the auto-oxidation of the microorganism as compared with the conventional method. On the other hand, since no excess sludge is generated, it is not necessary to take out the excess sludge and aggregate it.

【0030】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0031】[0031]

【発明の実施の形態】有機性廃棄物の生分解処理は、例
えば、図1に示すようなフローに沿って行う。以下、こ
れらのフローに沿って、本発明の有機性廃棄物の処理方
法を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The biodegradation treatment of organic waste is performed, for example, according to the flow shown in FIG. Hereinafter, the method for treating organic waste according to the present invention will be described along these flows.

【0032】本発明において処理対象である有機性廃棄
物としては、例えば、都市下水、農村集落排水及び漁村
集落排水等の排水処理設備において発生する余剰汚泥、
焼酎廃液等の食品工場や醸造工業の廃棄物、家畜糞尿、
家庭の台所やレストランの厨房から排出される生ごみ、
スーパーから排出される食品廃棄物、並びに、芝刈りや
植栽の剪定により排出される草木類などに適用すること
ができる。
The organic waste to be treated in the present invention includes, for example, excess sludge generated in wastewater treatment facilities such as urban sewage, rural village wastewater, and fishing village wastewater.
Food factory and brewing industry waste such as shochu waste liquid, livestock manure,
Garbage discharged from home kitchens and restaurant kitchens,
The present invention can be applied to food waste discharged from supermarkets, plants and the like discharged by lawn mowing or planting.

【0033】図1の有機性廃棄物の処理フローでは、有
機性廃棄物として、排水処理設備(活性汚泥法)2にお
いて発生した余剰汚泥を処理している。
In the organic waste treatment flow shown in FIG. 1, excess sludge generated in the wastewater treatment equipment (activated sludge method) 2 is treated as organic waste.

【0034】原水槽4に貯留された原水を処理して発生
した余剰汚泥(有機性廃棄物)は、調整槽6に投入され
る。この調整槽6には、沈殿槽8で沈降分離されて返送
される沈殿汚泥が投入されると共に、pH調整剤槽10
からpH調整剤が投入される。
Excess sludge (organic waste) generated by treating the raw water stored in the raw water tank 4 is supplied to the adjusting tank 6. Into the adjusting tank 6, sediment sludge separated and settled in the sedimentation tank 8 is returned, and a pH adjusting agent tank 10 is set.
Is charged with a pH adjuster.

【0035】この調整槽6では、好気的前処理をする
為、調整槽6底部の散気管14から調整槽6内の有機性
廃棄物を含む活性汚泥水に、ルーツブロアー16から送
られる空気を空気泡として導入し、曝気を行う。
In the conditioning tank 6, air sent from the roots blower 16 to the activated sludge water containing organic waste in the conditioning tank 6 from the air diffuser 14 at the bottom of the conditioning tank 6 for aerobic pretreatment. Is introduced as air bubbles to perform aeration.

【0036】調整槽6で有機性廃棄物、pH調整剤が投
入され、曝気処理された活性汚泥水は、曝気槽12に移
送される。調整槽6の有機性廃棄物を曝気槽12に投入
する方式は、窒素処理の観点からバッチ方式がより好ま
しい。
Organic waste and a pH adjuster are charged in the adjusting tank 6, and the activated sludge water subjected to aeration is transferred to the aeration tank 12. As a method of putting the organic waste in the adjusting tank 6 into the aeration tank 12, a batch method is more preferable from the viewpoint of nitrogen treatment.

【0037】なお、有機性廃棄物及びpH調整剤の曝気
槽12への投入方式は、上記のように調整槽6を介して
行っても良いが、調整槽6を介することなく、曝気槽1
2へ直接投入しても良い。
The method of charging the organic waste and the pH adjuster into the aeration tank 12 may be performed through the adjustment tank 6 as described above.
2 may be directly charged.

【0038】曝気槽12では、曝気槽12底部の散気管
18からルーツブロアー20の空気を空気泡として導入
し、調整槽6から送られた活性汚泥水に曝気を行うと共
に、必要に応じて消泡用シャワリング22から曝気槽1
2の活性汚泥水を散布することが好ましい。
In the aeration tank 12, air from the roots blower 20 is introduced as air bubbles from the air diffuser 18 at the bottom of the aeration tank 12, and the activated sludge water sent from the adjustment tank 6 is aerated and, if necessary, turned off. Aeration tank 1 from foam showering 22
It is preferable to spray activated sludge water of No. 2.

【0039】曝気槽12内における活性汚泥水中の全有
機炭素濃度は2000ppm以上が好ましく、2000
〜200000ppmが更に好ましい。
The total organic carbon concentration in the activated sludge water in the aeration tank 12 is preferably 2000 ppm or more.
~ 200000 ppm is more preferred.

【0040】曝気槽12内における活性汚泥水のpHは
5以上が好ましく、7〜9が更に好ましく、7〜8が特
に好ましい。
The pH of the activated sludge water in the aeration tank 12 is preferably 5 or more, more preferably 7 to 9, and particularly preferably 7 to 8.

【0041】なお、調整槽6を介して曝気槽12に有機
性廃棄物を投入する方式が、バッチ方式である場合、各
バッチにおける曝気槽12への有機性廃棄物投入直後の
活性汚泥水のpHは7〜9が好ましく、各バッチにおけ
る曝気処理後の活性汚泥水のpHは5以上が好ましい。
When the organic waste is charged into the aeration tank 12 via the adjusting tank 6 in a batch system, the activated sludge water immediately after the organic waste is charged into the aeration tank 12 in each batch. The pH is preferably 7 to 9, and the pH of the activated sludge water after aeration treatment in each batch is preferably 5 or more.

【0042】曝気槽12内における活性汚泥水のpHを
上記範囲に維持するには、曝気槽12に直接pH調整剤
槽10からのpH調整剤を添加してpHを調整してもよ
いが、調整槽6でpHを調整することで曝気槽12内に
おける活性汚泥水のpHを上記範囲に維持することが簡
便である。その為に、曝気槽12内における活性汚泥水
のpHを測定し、その値を調整槽6のpH調整にフィー
ドバックすることが好ましい。
In order to maintain the pH of the activated sludge water in the aeration tank 12 within the above range, the pH may be adjusted by directly adding the pH adjuster from the pH adjuster tank 10 to the aeration tank 12. It is easy to maintain the pH of the activated sludge water in the aeration tank 12 in the above range by adjusting the pH in the adjustment tank 6. For this purpose, it is preferable to measure the pH of the activated sludge water in the aeration tank 12 and feed the value back to the pH adjustment in the adjustment tank 6.

【0043】更に、曝気槽12内の活性汚泥水のpHを
コンピュータに取り込み、活性汚泥水へのpH調整剤添
加量にフィードバックすることで、曝気槽12内の活性
汚泥水のpHを上記範囲に維持することも好ましいもの
である。
Further, the pH of the activated sludge water in the aeration tank 12 is adjusted to the above range by taking the pH of the activated sludge water in the aeration tank 12 into a computer and feeding it back to the amount of the pH adjuster added to the activated sludge water. Maintaining is also preferred.

【0044】活性汚泥水の曝気は十分行う必要がある。
曝気による活性汚泥水への酸素の供給は、活性汚泥水中
の有機炭素の生分解処理、微生物の内生呼吸、アンモニ
ア態窒素の硝化、及び微生物の自己酸化に必要な酸素量
を超える量である必要がある。
It is necessary to sufficiently aerate the activated sludge water.
The supply of oxygen to activated sludge water by aeration exceeds the amount of oxygen required for biodegradation of organic carbon in activated sludge water, endogenous respiration of microorganisms, nitrification of ammonia nitrogen, and autooxidation of microorganisms There is a need.

【0045】上記必要な酸素量は、経験値及び化学量論
的計算により算出できる。一般的には、有機性廃棄物の
投入の少なくとも5時間前から投入するまでの期間、活
性汚泥水中の溶存酸素量を3mg/L以上、好ましくは
5mg/L以上の値に保つことにより簡単に達成でき
る。
The required amount of oxygen can be calculated by empirical values and stoichiometric calculations. Generally, it is easy to maintain the amount of dissolved oxygen in the activated sludge water at a value of 3 mg / L or more, preferably 5 mg / L or more, at least from 5 hours before the input of the organic waste to the input. Can be achieved.

【0046】この酸素供給量が不足する場合は、アンモ
ニア態窒素の硝酸態窒素への酸化が阻害されると共に、
汚泥の増加が生ずる。酸素供給が上記量を充分超える場
合は、アンモニア態窒素は硝酸態窒素に変更され、汚泥
は確実に減少する。
If the oxygen supply is insufficient, the oxidation of ammonia nitrogen to nitrate nitrogen is inhibited, and
An increase in sludge occurs. When the oxygen supply exceeds the above amount sufficiently, the ammonia nitrogen is changed to nitrate nitrogen, and the sludge is surely reduced.

【0047】本発明においては、曝気槽12内の活性汚
泥水中の硝化菌の存在量は充分高い必要がある。曝気槽
12内において増殖する硝化菌の濃度を保つため、曝気
槽12に投入する有機性廃棄物を含む活性汚泥水の添加
によって生ずる曝気槽外への活性汚泥水の排出量を制御
する。即ち、バッチ処理の場合は前バッチ処理終了時の
活性汚泥水中の硝化菌数以上の硝化菌数を保って、次の
バッチ処理を終了させる必要がある。
In the present invention, the amount of nitrifying bacteria in the activated sludge water in the aeration tank 12 needs to be sufficiently high. In order to maintain the concentration of the nitrifying bacteria growing in the aeration tank 12, the amount of activated sludge water discharged to the outside of the aeration tank caused by the addition of the activated sludge water containing organic waste to be introduced into the aeration tank 12 is controlled. That is, in the case of batch processing, it is necessary to end the next batch processing while keeping the number of nitrifying bacteria equal to or greater than the number of nitrifying bacteria in the activated sludge water at the end of the previous batch processing.

【0048】次のバッチ処理終了時に前バッチ処理終了
時よりも硝化菌数が減少することが繰返される場合は、
硝化菌数が減少していく。その結果、アンモニア態窒素
は硝化されずに活性汚泥水中に残存し、更に活性汚泥水
中の有機性廃棄物や汚泥が充分減少されず、余剰汚泥が
増大する。
When the number of nitrifying bacteria is repeatedly reduced at the end of the next batch process as compared with the end of the previous batch process,
The number of nitrifying bacteria decreases. As a result, the ammonia nitrogen remains in the activated sludge water without being nitrified, and the organic waste and the sludge in the activated sludge water are not sufficiently reduced, and the excess sludge increases.

【0049】調整槽6を介して曝気槽12に有機性廃棄
物を投入する方式が、バッチ方式である場合、曝気槽1
2に有機性廃棄物を投入すると、曝気槽12中の有機性
廃棄物は生分解処理されて減量しているので、曝気槽1
2外に投入量以下の活性汚泥水が排出される。
In the case where the system for charging the organic waste into the aeration tank 12 via the adjustment tank 6 is a batch system, the aeration tank 1
When the organic waste is put into the aeration tank 2, the organic waste in the aeration tank 12 is subjected to biodegradation treatment to reduce the weight thereof.
Activated sludge water below the input amount is discharged to the outside.

【0050】曝気槽12外に排出された活性汚泥水は、
沈殿槽8に移送されて、上澄み液と、沈殿汚泥(余剰汚
泥)とに沈降分離される。
The activated sludge discharged out of the aeration tank 12 is
It is transferred to the sedimentation tank 8 and settled and separated into a supernatant liquid and sedimentation sludge (excess sludge).

【0051】上澄み液は、処理水として系外へ排出され
る。他方、沈殿汚泥は、調整槽6に返送され、調整槽6
内の次のバッチの余剰汚泥(原水)に添加される。
The supernatant is discharged out of the system as treated water. On the other hand, the settled sludge is returned to the adjustment tank 6,
In the next batch of excess sludge (raw water).

【0052】なお、本発明の有機性廃棄物の処理方法に
よれば、活性汚泥の増殖が抑えられ、沈殿汚泥の生成量
は少ない。そのため、この沈殿汚泥は、全量、調整槽6
投入用の活性汚泥水として返送することができ、通常こ
の沈殿汚泥の一部を引抜いて再処理する必要はない。
According to the method for treating organic waste of the present invention, the growth of activated sludge is suppressed, and the amount of precipitated sludge generated is small. Therefore, the whole amount of the settled sludge is
It can be returned as activated sludge water for input, and there is usually no need to withdraw and reprocess a part of the settled sludge.

【0053】バッチ処理の場合、硝化菌が減少すること
なく、各バッチにおいて曝気槽12外に排出できる活性
汚泥水の量は、曝気槽12内の全活性汚泥水量の7分の
1以下が好ましい。曝気槽内における活性汚泥水中への
有機性廃棄物の添加及び曝気槽外への活性汚泥水の排出
を上述したように硝化菌の増殖率以上に行わないことに
より、アンモニア態窒素を処理するに十分な量の硝化菌
を曝気槽12内で維持することができる。
In the case of batch treatment, the amount of activated sludge water that can be discharged out of the aeration tank 12 in each batch without reducing nitrifying bacteria is preferably 1/7 or less of the total amount of activated sludge water in the aeration tank 12. . In order to treat ammonia nitrogen by not adding the organic waste to the activated sludge water in the aeration tank and discharging the activated sludge water out of the aeration tank beyond the growth rate of nitrifying bacteria as described above. A sufficient amount of nitrifying bacteria can be maintained in the aeration tank 12.

【0054】上記説明においては、有機性廃棄物として
余剰汚泥を処理する場合について説明したが、これに限
られず、生ごみ、家畜糞尿等の場合も余剰汚泥の代り
に、又は余剰汚泥と共に同様にして処理できる。
In the above description, the case where excess sludge is treated as organic waste has been described. However, the present invention is not limited to this, and in the case of garbage, livestock manure, etc., the same applies to the case of using excess sludge instead of or together with excess sludge. Can be processed.

【0055】なお、有機性廃棄物が上記の生ごみのよう
な場合は、ディスポーザー、微粉砕機(ミル)等の粉砕
機を用いて微細化等の前処理することが好ましい。
When the organic waste is the above-mentioned garbage, it is preferable to perform pretreatment such as pulverization using a crusher such as a disposer or a fine crusher (mill).

【0056】[0056]

【実施例】以下、本発明を実施例により、具体的且つ詳
細に説明するが、本発明は実施例により限定されるもの
ではない。
EXAMPLES Hereinafter, the present invention will be described specifically and in detail with reference to examples, but the present invention is not limited to the examples.

【0057】各物性値は、以下の方法で測定した。Each physical property value was measured by the following method.

【0058】全有機炭素濃度(TOC):株式会社島津
製作所製 TOC−5000を用いて測定した。
Total organic carbon concentration (TOC): Measured using TOC-5000 manufactured by Shimadzu Corporation.

【0059】溶存酸素量(DO):株式会社ダイセク製
KDS−25を用いて測定した。
Dissolved oxygen content (DO): Measured using KDS-25 manufactured by Daisek Corporation.

【0060】pH:株式会社ダイセク製 GRT−1を
用いて測定した。
PH: Measured using GRT-1 manufactured by Daisek Corporation.

【0061】アンモニア態窒素濃度(NH4−N):
(ATI)オリオン社製 複合電極9307BN型を用
いて測定した。
Ammonia nitrogen concentration (NH 4 -N):
(ATI) The measurement was performed using a composite electrode type 9307BN manufactured by Orion.

【0062】硝酸態窒素濃度(NO3−N):(AT
I)オリオン社製 膜電極95−12BN型を用いて測
定した。
Nitrate nitrogen concentration (NO 3 -N): (AT
I) Measurement was performed using a membrane electrode 95-12BN manufactured by Orion.

【0063】実施例1及び2、並びに、比較例1及び2 図1に示す有機性廃棄物の処理フローを用いて、排水処
理設備(活性汚泥法)2において発生し原水槽4に貯留
された余剰汚泥(有機性廃棄物)について、188日の
処理期間を、0〜70日の第1期(実施例1)、71〜
116日の第2−1期(比較例1)、117〜147日
の第2−2期(比較例2)、及び148〜188日の第
3期(実施例2)の4期間に分け、それぞれの期間の処
理条件を変えて有機性廃棄物(原水)の処理を行った。
Examples 1 and 2 and Comparative Examples 1 and 2 Using the treatment flow of organic waste shown in FIG. 1, the waste was generated in waste water treatment equipment (activated sludge method) 2 and stored in raw water tank 4. Regarding the excess sludge (organic waste), the treatment period of 188 days was changed to the first period of 0 to 70 days (Example 1), 71 to 71 days.
It is divided into four periods of a 2-1 period of 116 days (Comparative Example 1), a 2-2 period of 117 to 147 days (Comparative Example 2), and a third period of 148 to 188 days (Example 2), Organic waste (raw water) was treated under different treatment conditions in each period.

【0064】この原水の処理において、曝気槽12内で
処理中の余剰汚泥である活性汚泥水について、所定処理
日数毎に、全有機炭素濃度、pH、アンモニア態窒素濃
度、及び硝酸態窒素濃度を測定した。
In the treatment of the raw water, the activated organic sludge, which is excess sludge being treated in the aeration tank 12, is subjected to a predetermined treatment every day, and the total organic carbon concentration, pH, ammonia nitrogen concentration, and nitrate nitrogen concentration are changed. It was measured.

【0065】図2乃至6は、曝気槽12内における活性
汚泥水の前記測定項目の測定結果、及び投入余剰汚泥の
累積炭素量(累積投入炭素量)について、処理日数を横
軸とした推移を示すグラフである。
FIGS. 2 to 6 show the results of measurement of the activated sludge water in the aeration tank 12 and the cumulative carbon amount (cumulative input carbon amount) of the input excess sludge, with the number of treatment days as a horizontal axis. It is a graph shown.

【0066】個々のグラフとしては、図2は、累積投入
炭素量と曝気槽12内の活性汚泥水の全有機炭素量(曝
気槽内炭素量)の推移を示すグラフである。図3は、曝
気槽内炭素量と曝気槽12内における活性汚泥水のpH
(曝気槽内pH)の推移を示すグラフである。図4は、
曝気槽内炭素量と曝気槽12内における活性汚泥水のア
ンモニア態窒素濃度(曝気槽内アンモニア態窒素濃度)
の推移を示すグラフである。図5は、曝気槽内アンモニ
ア態窒素濃度と曝気槽12内における活性汚泥水の硝酸
窒素濃度(曝気槽硝酸態窒素濃度)の推移を示すグラフ
である。図6は、曝気槽内アンモニア態窒素濃度と曝気
槽内pHの推移を示すグラフである。
As individual graphs, FIG. 2 is a graph showing the transition of the cumulative input carbon amount and the total organic carbon amount of the activated sludge water in the aeration tank 12 (carbon amount in the aeration tank). FIG. 3 shows the amount of carbon in the aeration tank and the pH of the activated sludge water in the aeration tank 12.
It is a graph which shows transition of (pH in an aeration tank). FIG.
Amount of carbon in aeration tank and ammonia nitrogen concentration of activated sludge water in aeration tank 12 (ammonia nitrogen concentration in aeration tank)
5 is a graph showing the transition of. FIG. 5 is a graph showing changes in the concentration of ammonia nitrogen in the aeration tank and the concentration of nitrate in activated sludge water in the aeration tank 12 (the concentration of nitrate nitrogen in the aeration tank). FIG. 6 is a graph showing changes in the ammonia nitrogen concentration in the aeration tank and the pH in the aeration tank.

【0067】実施例1(第1期) 排水処理設備(活性汚泥法)2において発生し原水槽4
に貯留された余剰汚泥(原水)4m3を曝気槽12に投
入すると共に、pH調整剤を添加、空気泡を導入し、p
Hが6.5、アンモニア態窒素濃度5mg/L以下の活
性汚泥水に調整した。以後、曝気槽12への余剰汚泥
(原水)の投入は、以下に述べるように、調整槽6を介
して所定処理日数毎にバッチ方式で行った。
Example 1 (Phase 1) Raw water tank 4 generated in wastewater treatment facility (activated sludge method) 2
4 m 3 of excess sludge (raw water) stored in the aeration tank 12, a pH adjuster is added, air bubbles are introduced, and p
H was adjusted to 6.5 and activated sludge water having an ammonia nitrogen concentration of 5 mg / L or less. Thereafter, the surplus sludge (raw water) was charged into the aeration tank 12 through the adjustment tank 6 in a batch manner every predetermined number of treatment days as described below.

【0068】各バッチにおいて、原水0.03m3を調
整槽6に投入した。この調整槽6に投入した原水0.0
3m3中の全有機炭素量を各バッチについて累積した値
を、累積投入炭素量として図2に示す。
In each batch, 0.03 m 3 of raw water was charged into the adjusting tank 6. Raw water 0.0
The value obtained by accumulating the total amount of organic carbon in 3 m 3 for each batch is shown in FIG. 2 as the accumulated input carbon amount.

【0069】調整槽6の原水には、後記の沈殿槽8から
返送される沈殿汚泥を投入すると共に、pH調整剤槽1
0からpH調整剤を所定量投入した。処理期間の第1期
では、pH調整剤の投入量は、図3及び6に示すように
曝気槽12内の活性汚泥水のpHが5以下にならないよ
うに調整した。
To the raw water in the adjusting tank 6, the sludge returned from the sedimentation tank 8 described later is put, and the pH adjusting agent tank 1
From 0, a predetermined amount of the pH adjuster was added. In the first stage of the treatment period, the amount of the pH adjuster added was adjusted so that the pH of the activated sludge water in the aeration tank 12 did not become 5 or less as shown in FIGS.

【0070】調整槽6で好気的前処理をする為、調整槽
6底部の散気管14からルーツブロアー16の空気を空
気泡として導入し、曝気を行った。曝気処理後の調整槽
6の余剰汚泥(原水)は、曝気槽12に移送し、曝気槽
12内の活性汚泥水と合流させた。
In order to perform aerobic pretreatment in the adjusting tank 6, air from the roots blower 16 was introduced as air bubbles from the air diffuser 14 at the bottom of the adjusting tank 6, and aeration was performed. Excess sludge (raw water) in the adjusting tank 6 after the aeration treatment was transferred to the aeration tank 12 and merged with the activated sludge water in the aeration tank 12.

【0071】曝気槽12では、曝気槽12底部の散気管
18からルーツブロアー20の空気を空気泡として導入
し、曝気を行うと共に、必要に応じて消泡用シャワリン
グ22から曝気槽12内の活性汚泥水を散布した。
In the aeration tank 12, the air of the roots blower 20 is introduced as air bubbles from the air diffuser 18 at the bottom of the aeration tank 12 to perform aeration, and if necessary, from the defoaming showering 22 to the inside of the aeration tank 12. Activated sludge was sprayed.

【0072】曝気量は0.5m3/分であり、溶存酸素
量測定結果から、この曝気量は有機炭素の生分解、微生
物の内生呼吸、微生物の自己酸化、アンモニア態窒素の
硝化に充分な供給量であることが保障された。
The amount of aeration is 0.5 m 3 / min. From the measurement of dissolved oxygen, this aeration is sufficient for biodegradation of organic carbon, endogenous respiration of microorganisms, auto-oxidation of microorganisms, and nitrification of ammonia nitrogen. Supply was assured.

【0073】各バッチにおいて、曝気槽12における曝
気処理後の活性汚泥水について、余剰汚泥を調整槽6か
ら曝気槽12に移送する前の曝気槽12内における活性
汚泥水の量である4m3よりも増加した分を、沈殿槽8
に移送し、上澄み液と沈殿汚泥とに沈降分離させた。
In each batch, regarding the activated sludge water after the aeration treatment in the aeration tank 12, the amount of activated sludge water in the aeration tank 12 before transfer of the excess sludge from the adjustment tank 6 to the aeration tank 12 was 4 m 3 . The increased amount is transferred to the sedimentation tank 8
And settled and separated into a supernatant and a settled sludge.

【0074】上澄み液は処理水として系外に排出し、沈
殿汚泥は、調整槽6に返送した。
The supernatant was discharged out of the system as treated water, and the settled sludge was returned to the adjusting tank 6.

【0075】処理期間の第1期では、以上のバッチ操作
を処理日数0〜70日の期間繰り返した。その結果を図
2乃至6及び表1に示す。
In the first stage of the processing period, the above batch operation was repeated for a period of 0 to 70 days. The results are shown in FIGS.

【0076】比較例1(第2−1期) 各バッチにおける調整槽6への原水の投入量を0.06
〜0.1m3とし、調整槽6における原水へのpH調整
剤の投入を中止し、その結果、図3及び6に示すように
曝気槽12内の活性汚泥水のpHが5から4.2まで推
移し、このバッチ操作を処理日数71〜116日の期間
繰り返した以外は、実施例1(第1期)の場合と同様の
バッチ操作を行った。その結果を図2乃至6及び表1に
示す。
Comparative Example 1 (Phase 2-1) The feed amount of raw water to the adjusting tank 6 in each batch was 0.06
0.10.1 m 3, and the introduction of the pH adjuster to the raw water in the adjusting tank 6 was stopped. As a result, as shown in FIGS. 3 and 6, the pH of the activated sludge water in the aeration tank 12 was 5 to 4.2. , And the same batch operation as in Example 1 (first phase) was performed except that this batch operation was repeated for a period of 71 to 116 days. The results are shown in FIGS.

【0077】比較例2(第2−2期) 各バッチにおける調整槽6への原水の投入量を0.03
3とし、比較例1(第2−1期)の操作に引き続き、
調整槽6における原水へのpH調整剤の投入を中止し、
その結果、図3及び6に示すように曝気槽12内の活性
汚泥水のpHが4.2から3.8まで推移し、このバッ
チ操作を処理日数117〜147日の期間繰り返した以
外は、実施例1(第1期)の場合と同様のバッチ操作を
行った。その結果を図2乃至6及び表1に示す。
Comparative Example 2 (Phase 2-2) The amount of raw water charged to the adjusting tank 6 in each batch was 0.03
and m 3, following the operation of Comparative Example 1 (2-1 phase),
Stop supplying the pH adjusting agent to the raw water in the adjusting tank 6,
As a result, as shown in FIGS. 3 and 6, the pH of the activated sludge in the aeration tank 12 changed from 4.2 to 3.8, and this batch operation was repeated for a period of 117 to 147 days. The same batch operation as in Example 1 (first phase) was performed. The results are shown in FIGS.

【0078】実施例2(第3期) 比較例1(第2−2期)の操作に引き続き、各バッチに
おける調整槽6への原水の投入量を0.03m3とし、
一方、調整槽6における原水へのpH調整剤の投入を再
開した。次いで、図3及び6に示すように処理期間の第
2−2期で3.8まで低下した曝気槽12内の活性汚泥
水のpHを高くして7以上になるようにpH調整剤の投
入量を調整し、以下、実施例1(第1期)の場合と同様
のバッチ操作を行い、このバッチ操作を処理日数148
〜188日の期間繰り返した。その結果を図2乃至6及
び表1に示す。
Example 2 (Third Phase) Following the operation of Comparative Example 1 (2-2nd phase), the input amount of raw water to the adjusting tank 6 in each batch was set to 0.03 m 3 ,
On the other hand, the supply of the pH adjuster to the raw water in the adjusting tank 6 was restarted. Next, as shown in FIGS. 3 and 6, the pH of the activated sludge water in the aeration tank 12, which was reduced to 3.8 in the second to second stages of the treatment period, was increased, and a pH adjuster was added so that the pH became 7 or more. The amount was adjusted, and the same batch operation as in Example 1 (the first phase) was performed.
Repeated for a period of ~ 188 days. The results are shown in FIGS.

【0079】[0079]

【表1】 [Table 1]

【0080】表1において、投入炭素量は、各処理期間
における投入余剰汚泥の累積全有機炭素量を示す。
In Table 1, the input carbon amount indicates the accumulated total organic carbon amount of the input excess sludge in each treatment period.

【0081】曝気槽内炭素増加量(kg)は、各処理期間
における曝気槽内炭素量の増加分を示す。
The increase in the amount of carbon in the aeration tank (kg) indicates the amount of increase in the amount of carbon in the aeration tank during each treatment period.

【0082】各処理期間における汚泥処理率(単位:質
量%)は、〔1−(各処理期間における曝気槽内炭素量
の増加分÷各処理期間における累積投入炭素量)〕×1
00なる数式で求めた数値を示す。
The sludge treatment rate (unit: mass%) in each treatment period is [1- (increase in the amount of carbon in the aeration tank in each treatment period / accumulated carbon amount in each treatment period)] × 1
The numerical value obtained by the formula of 00 is shown.

【0083】NH4−N濃度は、曝気槽12内における
活性汚泥水のアンモニア態窒素濃度(曝気槽内アンモニ
ア態窒素濃度)であって、NH4−N濃度を求める対象
の処理期間においてN回のバッチ操作を行った場合、N
回の平均値を示す。
The NH 4 —N concentration is the ammonia nitrogen concentration of the activated sludge in the aeration tank 12 (the ammonia nitrogen concentration in the aeration tank), and is N times in the processing period for which the NH 4 —N concentration is to be determined. If the batch operation of
Shows the average of the times.

【0084】NH4−N処理率(単位:質量%)は、N
4−N処理率を求める対象の処理期間においてN回の
バッチ操作を行った場合、次式で求めたアンモニア態窒
素処理率の数値を示す。
The NH 4 -N treatment rate (unit: mass%)
When performing the N times of batch operation in the processing period of the target seeking H 4 -N treatment rate, indicating the value of the ammonia nitrogen treatment ratio obtained by the following equation.

【0085】[0085]

【数1】 (Equation 1)

【0086】図2及び表1に示すように、最初の70日
間(第1期)、余剰汚泥を投入しているにも拘らず、曝
気槽12内の活性汚泥水の全有機炭素量(曝気槽内炭素
量)は変化していないことが解る(直線1)。このよう
に、処理期間第1期の汚泥処理率は100質量%であっ
た。
As shown in FIG. 2 and Table 1, the total amount of organic carbon (the amount of aerated water) in the activated sludge water in the aeration tank 12 despite the introduction of excess sludge for the first 70 days (first period) It can be seen that the amount of carbon in the tank did not change (straight line 1). Thus, the sludge treatment rate in the first treatment period was 100% by mass.

【0087】続く76日(及び)間(第2−1期:71
〜116日目及び第2−2期:117〜147日目)の
曝気槽内炭素量の推移は、直線2で示されるように右上
がりの直線であり、汚泥処理率は、それぞれ52.8質
量%及び60.6質量%であった。
The following 76 days (and) (phase 2-1: 71)
The changes in the amount of carbon in the aeration tank during the period from the 116th day to the 116th and the 2-2nd period from the 117th to the 147th day are straight lines rising to the right as shown by the straight line 2, and the sludge treatment rate is 52.8, respectively. % And 60.6% by mass.

【0088】最後の40日間(第3期:148〜188
日目)の曝気槽内炭素量の推移は、直線3で示されるよ
うに殆ど増加していない。このように、処理期間第3期
の汚泥処理率は99質量%であった。
The last 40 days (third period: 148 to 188
The change in the amount of carbon in the aeration tank on day 3) hardly increased as indicated by the straight line 3. As described above, the sludge treatment rate in the third treatment period was 99% by mass.

【0089】図3及び表1に示すように、65質量%以
下と汚泥処理率が悪い時は、曝気槽12内の活性汚泥水
について、pHが5未満になっている。
As shown in FIG. 3 and Table 1, when the sludge treatment rate is low at 65% by mass or less, the pH of the activated sludge water in the aeration tank 12 is less than 5.

【0090】よって、投入した余剰汚泥の全有機炭素を
消滅させる為には、曝気槽12内の活性汚泥水のpHを
5以上に維持する必要がある。
Therefore, in order to eliminate the total organic carbon in the surplus sludge that has been introduced, it is necessary to maintain the pH of the activated sludge water in the aeration tank 12 at 5 or more.

【0091】余剰汚泥を調整槽6から曝気槽12に移送
し、曝気槽12内で余剰汚泥を処理しようとした時、曝
気槽12内の活性汚泥水のpHが5未満になると(直線
2に相当する期間のpH)、曝気槽12内の活性汚泥水
の全有機炭素量が増大し汚泥処理率が悪くなる。
When the excess sludge is transferred from the adjusting tank 6 to the aeration tank 12 and the excess sludge is to be treated in the aeration tank 12, if the pH of the activated sludge water in the aeration tank 12 becomes less than 5 (in line 2) During the corresponding period, the total organic carbon content of the activated sludge water in the aeration tank 12 increases, and the sludge treatment rate deteriorates.

【0092】処理日数138日目で、曝気槽12内の活
性汚泥水にpH調整剤の炭酸水素ナトリウムを投入し、
翌日(処理日数139日目)pHを測定したところは7
以上になった。しかし、翌日(処理日数139日目)以
後、再び比較例2(第2−2期)のpH調整剤を投入し
ない条件に戻して処理を続けたところ、長期間のpH>
5の維持はできず、中2日間なる処理日数142日目で
pHは5未満に下がった。
On the 138th day of the treatment, sodium hydrogen carbonate as a pH adjuster was added to the activated sludge water in the aeration tank 12,
The next day (139 days of treatment), the pH was measured to be 7
That's all. However, after the next day (139 days of treatment), the conditions were returned to the condition of not adding the pH adjuster of Comparative Example 2 (2nd stage) again, and the treatment was continued.
The pH of 5 could not be maintained, and the pH dropped to less than 5 on the 142th day of the treatment, which was the medium 2 days.

【0093】曝気槽12及び調整槽6の活性汚泥水にp
H調整剤の炭酸水素ナトリウムを投入することで曝気槽
12のpHを調整すると(143日以降)、曝気槽12
のpHは7以上になり、曝気槽12内での汚泥処理率が
増大した。
The activated sludge water in the aeration tank 12 and the adjustment tank 6
When the pH of the aeration tank 12 is adjusted by adding sodium hydrogencarbonate as an H adjuster (after 143 days), the aeration tank 12
Became 7 or more, and the sludge treatment rate in the aeration tank 12 increased.

【0094】図4及び表1に示すように、65質量%以
下と汚泥処理率が悪い時は、曝気槽12内の活性汚泥水
について、アンモニア態窒素濃度が70mg/Lを超え
ている。
As shown in FIG. 4 and Table 1, when the sludge treatment rate is low at 65% by mass or less, the ammonia nitrogen concentration of the activated sludge water in the aeration tank 12 exceeds 70 mg / L.

【0095】よって、投入した余剰汚泥の全有機炭素を
消滅させる為には、曝気槽12内の活性汚泥水のアンモ
ニア態窒素濃度を70mg/L以下に維持することが有
効である。
Therefore, in order to extinguish the total organic carbon in the surplus sludge introduced, it is effective to maintain the ammonia nitrogen concentration of the activated sludge water in the aeration tank 12 at 70 mg / L or less.

【0096】第1期では、曝気槽12内の活性汚泥水の
アンモニア態窒素量濃度は50mg/L以下で、増加し
ていない。この第1期の処理期間では、汚泥処理率は1
00質量%であった。
In the first stage, the concentration of the ammonia nitrogen in the activated sludge water in the aeration tank 12 is 50 mg / L or less and has not increased. In this first treatment period, the sludge treatment rate is 1
It was 00% by mass.

【0097】曝気槽12内の活性汚泥水のアンモニア態
窒素濃度が70mg/Lを超えて増大した第2−1期及
び第2−2期では、汚泥処理率は低下し、それぞれ5
2.8質量%及び60.6質量%と低く65質量%以下
であった。
In the 2-1 and 2-2 periods, in which the ammonia nitrogen concentration of the activated sludge water in the aeration tank 12 was increased to more than 70 mg / L, the sludge treatment rate was reduced,
It was as low as 2.8% by mass and 60.6% by mass and 65% by mass or less.

【0098】調整槽6でpHを調整することで曝気槽1
2内の活性汚泥水のpHを調整した第3期では、曝気槽
12内の活性汚泥水のアンモニア態窒素濃度を劇的に減
少でき、汚泥処理率も99質量%に回復した。
The pH of the aeration tank 1 is adjusted by adjusting the pH in the adjustment tank 6.
In the third stage in which the pH of the activated sludge water in 2 was adjusted, the ammonia nitrogen concentration of the activated sludge water in the aeration tank 12 could be dramatically reduced, and the sludge treatment rate was restored to 99% by mass.

【0099】よって、活性汚泥の処理率向上には、アン
モニア態窒素の処理が重要である。
Therefore, the treatment of ammonia nitrogen is important for improving the treatment rate of activated sludge.

【0100】図5及び表1に示すように、第1期におけ
る曝気槽12内の活性汚泥水については、アンモニア態
窒素濃度が0〜60mg/Lと低いのみならず、硝酸態
窒素濃度も0〜300mg/Lと、さほど高くはなって
いない。
As shown in FIG. 5 and Table 1, regarding the activated sludge water in the aeration tank 12 in the first stage, not only the ammonia nitrogen concentration is as low as 0 to 60 mg / L, but also the nitrate nitrogen concentration is 0. 300300 mg / L, not so high.

【0101】第2−1期及び第2−2期における曝気槽
12内の活性汚泥水については、アンモニア態窒素の処
理期間における平均濃度が、それぞれ第2−1期で80
mg/L、第2−2期で140mg/Lと高いのみなら
ず、硝酸態窒素の処理期間における平均濃度も、それぞ
れ第2−1期で350mg/L、第2−2期で500m
g/Lと第1期よりも高くなっている。
Regarding the activated sludge water in the aeration tank 12 in the 2-1 and 2-2 periods, the average concentration of ammonia nitrogen during the treatment period was 80 in the 2-1 period.
mg / L and 140 mg / L in the 2-2 stage, and the average concentration of nitrate nitrogen during the treatment period was 350 mg / L in the 2-1 stage and 500 m in the 2-2 stage, respectively.
g / L, which is higher than the first period.

【0102】この第2−2期までは、曝気槽12内にお
ける活性汚泥水の硝酸態窒素濃度の推移と、汚泥処理率
との関係は、アンモニア態窒素濃度と、汚泥処理率との
関係とほぼ同様の関係である。
Until the 2-2 period, the relationship between the transition of the nitrate nitrogen concentration of the activated sludge water in the aeration tank 12 and the sludge treatment rate is determined by the relationship between the ammonia nitrogen concentration and the sludge treatment rate. The relationship is almost the same.

【0103】しかし、第3期における曝気槽12内の活
性汚泥水については、アンモニア態窒素濃度は減少する
が、硝酸態窒素濃度は高く、しかも徐々に増大してい
る。
However, in the activated sludge in the aeration tank 12 in the third stage, the concentration of ammonia nitrogen is decreased, but the concentration of nitrate nitrogen is high and gradually increased.

【0104】なお、硝酸態窒素は、間歇曝気等を行えば
減少させることは容易であるが、それのみによって汚泥
処理率を向上させることは出来ない。
Incidentally, nitrate nitrogen can be easily reduced by intermittent aeration or the like, but the sludge treatment rate cannot be improved by itself.

【0105】このことから、曝気槽12内における活性
汚泥水の硝酸態窒素濃度は汚泥処理率を左右する直接の
原因ではないことが推測される。
From this, it is presumed that the nitrate nitrogen concentration of the activated sludge water in the aeration tank 12 is not a direct cause of the sludge treatment rate.

【0106】図6は、図3と図4をまとめ、曝気槽12
内の活性汚泥水についてpHとアンモニア態窒素濃度の
関連を示すグラフである。
FIG. 6 summarizes FIG. 3 and FIG.
It is a graph which shows the relationship between pH and ammonia nitrogen concentration about activated sludge water in the inside.

【0107】図6及び表1に示すように、第1期におけ
る曝気槽12内の活性汚泥水について、pHは5以上で
ある。一方、アンモニア態窒素濃度は徐々には増加して
いるが、一方的には増加しておらず、増加した時点でも
70mg/L以下と低い。
As shown in FIG. 6 and Table 1, the activated sludge water in the aeration tank 12 in the first stage has a pH of 5 or more. On the other hand, although the ammonia nitrogen concentration is gradually increasing, it is not unilaterally increasing, and is as low as 70 mg / L or less even at the time of the increase.

【0108】第2−1期及び第2−2期における曝気槽
12内の活性汚泥水について、pHは5未満である。一
方、アンモニア態窒素は、その平均濃度で、それぞれ第
2−1期で80mg/L、第2−2期で140mg/L
と単調に増加した。
The pH of the activated sludge water in the aeration tank 12 in the 2-1 and 2-2 stages is less than 5. On the other hand, the average concentration of ammonia nitrogen was 80 mg / L in the second stage and 140 mg / L in the second stage.
And increased monotonically.

【0109】第3期における曝気槽12内の活性汚泥水
については、pHは7以上となり、しかもアンモニア態
窒素濃度は劇的に減少し、アンモニア態窒素はほぼ10
0%処理されている。
In the activated sludge in the aeration tank 12 in the third stage, the pH becomes 7 or more, the ammonia nitrogen concentration is drastically reduced, and the ammonia nitrogen is reduced to approximately 10%.
0% treatment.

【0110】これらの結果から、以下のことが言及でき
る。
The following can be mentioned from these results.

【0111】余剰汚泥を曝気によって減量好ましくは消
滅させるには、曝気槽のpHを5以上、好ましくは7〜
9に、更に好ましくは7〜8に維持する必要がある。
In order to reduce or preferably eliminate the excess sludge by aeration, the pH of the aeration tank should be 5 or more, preferably 7 to
9, more preferably 7-8.

【0112】余剰汚泥を曝気槽で減量好ましくは消滅さ
せるには、曝気槽で発生するアンモニア態窒素を酸化さ
せ、処理する必要がある。
In order to reduce or preferably eliminate excess sludge in the aeration tank, it is necessary to oxidize and treat ammonia nitrogen generated in the aeration tank.

【0113】曝気槽のpHを上記範囲に維持するには、
曝気槽でpHを調整してもよいが、調整槽でpHを調整
することで曝気槽のpHを上記範囲に維持することが簡
便である。その為に、曝気槽のpHを測定し、その値を
調整槽のpH調整にフィードバックすることが好まし
い。
To maintain the pH of the aeration tank in the above range,
The pH may be adjusted in the aeration tank, but it is convenient to maintain the pH in the aeration tank in the above range by adjusting the pH in the adjustment tank. For this purpose, it is preferable to measure the pH of the aeration tank and feed that value back to the pH adjustment of the adjustment tank.

【0114】実施例3及び比較例3 表2に示すように曝気槽容量等が異なる以外は図1と同
様な処理フローを備えた有機性廃棄物の処理設備を用い
(以下、処理フローにおける各箇所、各部材等の符号に
ついては、図1において相当する各箇所、各部材等の符
号を代用する)、表2に示す実施例3及び比較例3の処
理条件について余剰汚泥(有機性廃棄物)を原水として
微生物処理を行い、その結果を表2に示す。
Example 3 and Comparative Example 3 As shown in Table 2, except that the aeration tank capacity and the like were different, an organic waste treatment facility having the same treatment flow as in FIG. Regarding the reference numerals of the parts and the respective members, the corresponding reference numerals of the respective parts and the respective members in FIG. 1 are used instead), and the excess sludge (organic waste) for the processing conditions of Example 3 and Comparative Example 3 shown in Table 2. ) Was used as raw water for microbial treatment, and the results are shown in Table 2.

【0115】[0115]

【表2】 [Table 2]

【0116】比較例3の場合は、曝気槽12内における
活性汚泥水のpHが5以下になり、表2に示すように曝
気槽12内における活性汚泥水のアンモニア態窒素濃度
が150mg/L、炭素処理率(汚泥処理率)が57.
0質量%となっており、アンモニア態窒素の処理も、有
機炭素の処理もできなくなっていることが解る。
In the case of Comparative Example 3, the pH of the activated sludge in the aeration tank 12 became 5 or less, and as shown in Table 2, the ammonia nitrogen concentration of the activated sludge in the aeration tank 12 was 150 mg / L. 57. Carbon treatment rate (sludge treatment rate)
It is 0% by mass, which indicates that neither ammonia nitrogen treatment nor organic carbon treatment can be performed.

【0117】これに対して、実施例3の場合は、表2に
示すように曝気槽12内における活性汚泥水のアンモニ
ア態窒素濃度が1.0mg/L、炭素処理率が100.
0質量%となっており、有機炭素とアンモニア態窒素が
同一処理槽で同時に処理できていることが解る。
On the other hand, in the case of Example 3, as shown in Table 2, the ammonia nitrogen concentration of the activated sludge water in the aeration tank 12 was 1.0 mg / L, and the carbon treatment rate was 100.
It is 0% by mass, indicating that organic carbon and ammonia nitrogen can be simultaneously treated in the same treatment tank.

【0118】次いで、余剰汚泥以外の種々の有機性廃棄
物を微生物処理した実施例及び比較例の結果を以下に示
す。
Next, the results of Examples and Comparative Examples in which various organic wastes other than excess sludge were treated with microorganisms are shown below.

【0119】実施例4乃至6、並びに、比較例4及び5 表3及び4に示すように曝気槽容量等が異なる以外は図
1と同様な処理フローを備えた有機性廃棄物の処理設備
を用い(以下、処理フローにおける各箇所、各部材等の
符号については、図1において相当する各箇所、各部材
等の符号を代用する)、表3及び4に示す実施例4乃至
6、並びに、比較例4及び5の処理条件について、家畜
尿又は家畜糞尿(有機性廃棄物)を原水として微生物処
理を行い、その結果を表3及び4に示す。
Examples 4 to 6 and Comparative Examples 4 and 5 As shown in Tables 3 and 4, an organic waste treatment facility having a treatment flow similar to that of FIG. (Hereinafter, the reference numerals of the corresponding parts, the respective members, etc. in the processing flow will be replaced with the corresponding reference numerals of the respective parts, the respective members, etc. in FIG. 1). Regarding the treatment conditions of Comparative Examples 4 and 5, microbial treatment was performed using livestock urine or livestock manure (organic waste) as raw water, and the results are shown in Tables 3 and 4.

【0120】[0120]

【表3】 [Table 3]

【0121】[0121]

【表4】 [Table 4]

【0122】比較例4及び5の場合は、曝気槽12内に
おける活性汚泥水のpHが5以下になり、表4に示すよ
うに曝気槽12内における活性汚泥水のアンモニア態窒
素濃度が、それぞれ390mg/L及び900mg/
L、炭素処理率が、それぞれ62.0質量%及び55.
0質量%となっており、アンモニア態窒素の処理も、有
機炭素の処理もできなくなっていることが解る。
In the case of Comparative Examples 4 and 5, the pH of the activated sludge water in the aeration tank 12 became 5 or less, and as shown in Table 4, the concentration of ammonia nitrogen in the activated sludge water in the aeration tank 12 decreased. 390 mg / L and 900 mg / L
L and carbon treatment rates are 62.0 mass% and 55.
It is 0% by mass, which indicates that neither ammonia nitrogen treatment nor organic carbon treatment can be performed.

【0123】これに対して、実施例4、5及び6の場合
は、表3に示すように曝気槽12内における活性汚泥水
のアンモニア態窒素濃度が、それぞれ13mg/L、3
mg/L及び1.3mg/L、炭素処理率が、それぞれ
90.0質量%、94.0質量%及び92.0質量%と
なっており、有機炭素とアンモニア態窒素が同一処理槽
で同時に処理できていることが解る。
On the other hand, in Examples 4, 5 and 6, as shown in Table 3, the activated sludge aqueous ammonia concentration in the aeration tank 12 was 13 mg / L and 3 mg / L, respectively.
mg / L and 1.3 mg / L, the carbon treatment rates are 90.0% by mass, 94.0% by mass, and 92.0% by mass, respectively, and organic carbon and ammonia nitrogen are simultaneously treated in the same treatment tank. You can see that it has been processed.

【0124】実施例7 表5に示すように曝気槽容量等が異なる以外は図1と同
様な処理フローを備えた有機性廃棄物の処理設備を用い
(以下、処理フローにおける各箇所、各部材等の符号に
ついては、図1において相当する各箇所、各部材等の符
号を代用する)、生ごみ(有機性廃棄物)を原水として
表5に示す条件で微生物処理を行い、その結果を表5に
示す。
Example 7 As shown in Table 5, an organic waste treatment facility provided with a treatment flow similar to that of FIG. 1 except that the aeration tank capacity and the like were different (hereinafter, each part and each member in the treatment flow) was used. For the reference numerals, etc., the corresponding parts in FIG. 1 and the reference numerals for the respective members are used instead), and garbage (organic waste) is used as raw water for microbial treatment under the conditions shown in Table 5, and the results are shown in a table. It is shown in FIG.

【0125】[0125]

【表5】 [Table 5]

【0126】実施例7において、処理対象とする有機性
廃棄物の生ゴミは、前処理としてディスポーザーで数m
mの大きさまで粉砕後、微粉砕機(ミル)で数十μmの
大きさまで更に微細にしている。
In Example 7, the garbage of the organic waste to be treated is a few meters by a disposer as a pretreatment.
After being crushed to a size of m, the material is further refined to a size of several tens of μm by a fine crusher (mill).

【0127】表5に示すように曝気槽42内における活
性汚泥水のアンモニア態窒素濃度が11.1mg/L、
炭素処理率が100.0質量%となっており、実施例7
のように処理対象とする有機性廃棄物が生ゴミの場合で
も、有機炭素とアンモニア態窒素が同一処理槽で同時に
処理できていることが解る。
As shown in Table 5, the activated sludge aqueous ammonia concentration in the aeration tank 42 was 11.1 mg / L,
The carbon treatment rate was 100.0% by mass.
It can be seen that even when the organic waste to be treated is garbage as described above, organic carbon and ammonia nitrogen can be treated simultaneously in the same treatment tank.

【0128】また、表5に示すように、処理対象となる
有機性廃棄物である生ごみの全有機炭素濃度は6000
0mg/Lと高濃度であるため、生分解によって炭酸ガ
ス、窒素ガス及び水蒸気等として蒸散していく成分が多
い。その結果、次のバッチ操作において曝気槽42内の
活性汚泥水は曝気槽42外に排出されず、処理水として
系外へ排出される沈殿槽38の上澄み液でさえもなくす
ことができた。
Further, as shown in Table 5, the total organic carbon concentration of garbage, which is an organic waste to be treated, is 6000.
Since the concentration is as high as 0 mg / L, many components evaporate as carbon dioxide gas, nitrogen gas, water vapor and the like by biodegradation. As a result, in the next batch operation, the activated sludge water in the aeration tank 42 was not discharged out of the aeration tank 42, and even the supernatant liquid of the precipitation tank 38 discharged out of the system as treated water could be eliminated.

【0129】[0129]

【発明の効果】本発明の有機性廃棄物の処理方法によれ
ば、アンモニア態窒素の処理を、有機炭素処理と同時に
且つ急速に行うことができ、活性汚泥の増殖を抑え、余
剰汚泥の発生を防ぐことができる。従って、汚泥を引抜
いて再処理する必要がない。
According to the method for treating organic waste of the present invention, the treatment of ammonia nitrogen can be carried out simultaneously and rapidly with the treatment of organic carbon, suppressing the growth of activated sludge and generating excess sludge. Can be prevented. Therefore, there is no need to extract and reprocess sludge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機性廃棄物の処理方法の一例を示す
フロー図である。
FIG. 1 is a flowchart showing an example of an organic waste treatment method of the present invention.

【図2】実施例1及び2、並びに、比較例1及び2にお
いて、累積投入炭素量と曝気槽内の活性汚泥水の全有機
炭素量(曝気槽内炭素量)について、処理日数を横軸と
した推移を示すグラフである。
FIG. 2 In Examples 1 and 2 and Comparative Examples 1 and 2, the horizontal axis represents the number of treatment days for the cumulative input carbon amount and the total organic carbon amount of activated sludge water in the aeration tank (carbon amount in the aeration tank). It is a graph which shows the change made.

【図3】実施例1及び2、並びに、比較例1及び2にお
いて、曝気槽内炭素量と曝気槽内における活性汚泥水の
pH(曝気槽内pH)について、処理日数を横軸とした
推移を示すグラフである。
FIG. 3 shows the changes in the amount of carbon in the aeration tank and the pH of the activated sludge water in the aeration tank (pH in the aeration tank) in Examples 1 and 2 and Comparative Examples 1 and 2, with the number of treatment days on the horizontal axis. FIG.

【図4】実施例1及び2、並びに、比較例1及び2にお
いて、曝気槽内炭素量と曝気槽内における活性汚泥水の
アンモニア態窒素濃度(曝気槽内アンモニア態窒素濃
度)について、処理日数を横軸とした推移を示すグラフ
である。
FIG. 4 shows the number of treatment days in Examples 1 and 2 and Comparative Examples 1 and 2 for the amount of carbon in the aeration tank and the ammonia nitrogen concentration of the activated sludge in the aeration tank (the ammonia nitrogen concentration in the aeration tank). 7 is a graph showing the transition with the horizontal axis as.

【図5】実施例1及び2、並びに、比較例1及び2にお
いて、曝気槽内アンモニア態窒素濃度と曝気槽内におけ
る活性汚泥水の硝酸窒素濃度(曝気槽硝酸態窒素濃度)
について、処理日数を横軸とした推移を示すグラフであ
る。
FIG. 5 shows the ammonia nitrogen concentration in the aeration tank and the nitrogen nitrate concentration in the activated sludge water in the aeration tank (Nitrate nitrogen concentration in the aeration tank) in Examples 1 and 2 and Comparative Examples 1 and 2.
5 is a graph showing the transition of the number of processing days on the horizontal axis.

【図6】実施例1及び2、並びに、比較例1及び2にお
いて、曝気槽内アンモニア態窒素濃度と曝気槽内pHに
ついて、処理日数を横軸とした推移を示すグラフであ
る。
FIG. 6 is a graph showing the transition of the ammonia nitrogen concentration in the aeration tank and the pH in the aeration tank with the number of treatment days on the horizontal axis in Examples 1 and 2 and Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

2 排水処理設備 4 原水槽 6 調整槽 8 沈殿槽 10 pH調整剤槽 12 曝気槽 14 散気管 16 ルーツブロアー 18 散気管 20 ルーツブロアー 22 消泡用シャワリング 2 wastewater treatment equipment 4 raw water tank 6 adjustment tank 8 sedimentation tank 10 pH adjuster tank 12 aeration tank 14 air diffuser 16 roots blower 18 air diffuser 20 roots blower 22 defoaming showering

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加茂川 喜郎 京都府京都市南区上鳥羽鉾立町11−2 京 都市創業支援工場B−3 株式会社東洋環 境技術研究所内 (72)発明者 南 茂樹 京都府京都市南区上鳥羽鉾立町11−2 京 都市創業支援工場B−3 株式会社東洋環 境技術研究所内 (72)発明者 中嶋 周 京都府京都市南区上鳥羽鉾立町11−2 京 都市創業支援工場B−3 株式会社東洋環 境技術研究所内 (72)発明者 中谷 創作 京都府京都市南区上鳥羽鉾立町11−2 京 都市創業支援工場B−3 株式会社東洋環 境技術研究所内 (72)発明者 木下 秀彦 京都府京都市南区上鳥羽鉾立町11−2 京 都市創業支援工場B−3 株式会社東洋環 境技術研究所内 Fターム(参考) 4D004 AA02 AA03 CA19 CB03 CC02 CC07 4D040 BB01 BB91 4D059 AA01 AA03 AA07 BA03 BA22 BF13 BF14 BK12 DA01 EB05 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshiro Kamogawa 11-2 Kamibahakodatemachi, Minami-ku, Kyoto-shi, Kyoto Kyoto B-3 11-2, Kyotoba Hakodatemachi, Minami-ku, Kyoto-shi, Kyoto City B-3 City Support Center B-3 Inside the Toyo Environmental Technology Research Institute Co., Ltd. (72) Inventor Shu Nakajima 11-2, Kyotoba Hokodate-cho, Minami-ku, Kyoto, Kyoto City Business Supporting Plant B-3 Inside the Toyo Environmental Technology Research Institute Co., Ltd. (72) Inventor Nakatani Creative Kyoto City Business Supporting Plant B-3 Kyoto Toyo Environmental Technology Research Co., Ltd. In-house (72) Inventor Hidehiko Kinoshita Kyoto Metropolitan Foundation for Business Establishment 11-2 Kamibahakodatemachi, Minami-ku, Kyoto, Kyoto F-3 (Reference) 4D004 AA02 AA03 CA19 CB03 CC02 CC07 4D040 BB01 BB91 4D059 AA01 AA03 AA07 BA03 BA22 BF13 BF14 BK12 DA01 EB05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 曝気槽内の活性汚泥水中に有機性廃棄物
を添加すると共に、活性汚泥水中に空気泡を導入する有
機性廃棄物の処理方法であって、活性汚泥水中に有機性
廃棄物及びpH調整剤を添加すると共に、活性汚泥水中
の有機炭素の生分解処理、微生物の内生呼吸、アンモニ
ア態窒素の硝化、及び微生物の自己酸化に必要な酸素量
以上の酸素を活性汚泥水に供給して、曝気槽内の活性汚
泥水のpHを5以上に維持し、前記炭素及び窒素を同一
槽内で同時に処理し且つ曝気槽内における活性汚泥水中
への有機性廃棄物の添加及び曝気槽外への活性汚泥水の
排出は、増殖する硝化菌濃度を減少させない範囲内で行
うことを特徴とする汚泥の増殖を抑え、その結果汚泥を
外部に取り出さない有機性廃棄物の処理方法。
1. A method for treating organic waste, wherein organic waste is added to activated sludge water in an aeration tank and air bubbles are introduced into the activated sludge water. And a pH adjuster, as well as biodegradation of organic carbon in activated sludge water, endogenous respiration of microorganisms, nitrification of ammonia nitrogen, and oxygen more than the amount of oxygen required for autooxidation of microorganisms into activated sludge water. Supply, maintain the pH of the activated sludge water in the aeration tank at 5 or more, simultaneously treat the carbon and nitrogen in the same tank, and add and aerate the organic waste to the activated sludge water in the aeration tank. A method for treating organic waste, wherein the activated sludge water is discharged to the outside of the tank within a range that does not reduce the concentration of the proliferating nitrifying bacteria.
【請求項2】 曝気槽内の活性汚泥水のpHを7以上に
維持する請求項1に記載の有機性廃棄物の処理方法。
2. The method for treating organic waste according to claim 1, wherein the pH of the activated sludge water in the aeration tank is maintained at 7 or more.
【請求項3】 有機性廃棄物が余剰汚泥である請求項1
に記載の有機性廃棄物の処理方法。
3. The organic waste is excess sludge.
3. The method for treating organic waste according to claim 1.
【請求項4】 有機性廃棄物が生ごみ又は家畜糞尿であ
る請求項1に記載の有機性廃棄物の処理方法。
4. The method for treating organic waste according to claim 1, wherein the organic waste is garbage or livestock manure.
【請求項5】 曝気槽内における活性汚泥水中への有機
性廃棄物の添加及び必要時における曝気槽外への活性汚
泥水の排出をバッチ方式で行い、硝化菌数を前バッチ終
了時の硝化菌数以上に保って曝気槽内における活性汚泥
水中への有機性廃棄物の添加及び曝気槽外への活性汚泥
水の排出を行う請求項1に記載の有機性廃棄物の処理方
法。
5. The addition of organic waste to the activated sludge water in the aeration tank and the discharge of the activated sludge water out of the aeration tank when necessary in a batch mode, and the number of nitrifying bacteria is determined by nitrification at the end of the previous batch. The method for treating organic waste according to claim 1, wherein the organic waste is added to the activated sludge water in the aeration tank and the activated sludge water is discharged out of the aeration tank while maintaining the number of bacteria or more.
【請求項6】 各バッチにおける曝気槽外への活性汚泥
水の排出量が、曝気槽内の全活性汚泥水量の7分の1以
下である請求項5に記載の有機性廃棄物の処理方法。
6. The method for treating organic waste according to claim 5, wherein the amount of activated sludge discharged to the outside of the aeration tank in each batch is not more than one seventh of the total amount of activated sludge in the aeration tank. .
JP2001023783A 2001-01-31 2001-01-31 Method for treating organic waste Ceased JP2002224696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001023783A JP2002224696A (en) 2001-01-31 2001-01-31 Method for treating organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001023783A JP2002224696A (en) 2001-01-31 2001-01-31 Method for treating organic waste

Publications (1)

Publication Number Publication Date
JP2002224696A true JP2002224696A (en) 2002-08-13

Family

ID=18889026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001023783A Ceased JP2002224696A (en) 2001-01-31 2001-01-31 Method for treating organic waste

Country Status (1)

Country Link
JP (1) JP2002224696A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024905A1 (en) * 2009-08-28 2011-03-03 関西熱化学株式会社 Biotreatment method
JP2011092942A (en) * 2011-02-17 2011-05-12 Kurita Water Ind Ltd Nitrogen-containing wastewater treatment method and treatment apparatus
JP2011179981A (en) * 2010-03-01 2011-09-15 Kazumi Shimomura Water quality sampling device and method of sampling water quality

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058038A1 (en) * 1999-03-26 2000-10-05 Sumitomo Heavy Industries, Ltd. Method apparatus for disposal of chlorine-containing organic compound
JP2000296385A (en) * 1999-04-13 2000-10-24 Tokyo Electric Power Co Inc:The Equipment for treatment of waste containing fish and shellfish

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058038A1 (en) * 1999-03-26 2000-10-05 Sumitomo Heavy Industries, Ltd. Method apparatus for disposal of chlorine-containing organic compound
JP2000296385A (en) * 1999-04-13 2000-10-24 Tokyo Electric Power Co Inc:The Equipment for treatment of waste containing fish and shellfish

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024905A1 (en) * 2009-08-28 2011-03-03 関西熱化学株式会社 Biotreatment method
JP4672816B1 (en) * 2009-08-28 2011-04-20 関西熱化学株式会社 Biological treatment method
CN102574715A (en) * 2009-08-28 2012-07-11 关西热化学株式会社 Biotreatment method
US9133043B2 (en) 2009-08-28 2015-09-15 Kansai Coke And Chemicals Co., Ltd. Biological treatment method for treating waste water and controlling COD loading rate per bacterium and COD concentration in effluent
JP2011179981A (en) * 2010-03-01 2011-09-15 Kazumi Shimomura Water quality sampling device and method of sampling water quality
JP2011092942A (en) * 2011-02-17 2011-05-12 Kurita Water Ind Ltd Nitrogen-containing wastewater treatment method and treatment apparatus

Similar Documents

Publication Publication Date Title
Yoo et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor
US6712970B1 (en) Sewage treatment process with phosphorus removal
US5480548A (en) Wastewater biological phosphorus removal process
Jenicek et al. Factors affecting nitrogen removal by nitritation/denitritation
US7404897B2 (en) Method for nitrogen removal and treatment of digester reject water in wastewater using bioaugmentation
JP2001293494A (en) Biological nitrogen removing method
JP4872171B2 (en) Biological denitrification equipment
JP2009066505A (en) Method of forming aerobic granule, water treatment method and water treatment apparatus
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
CN110540293A (en) Sewage treatment device and method suitable for large-amplitude fluctuation of water quantity
US20040011734A1 (en) Lagoon for hog waste and the method of treatment thereof
JP2002224696A (en) Method for treating organic waste
KR100403864B1 (en) A wastewater treatment methods
JP5095882B2 (en) Waste nitric acid treatment method
JP5240465B2 (en) Storage system and storage method for anaerobic microorganism-immobilized carrier
KR100292432B1 (en) Modified oxidation ditch for organic wastewater treatment
JP2841131B2 (en) Activated sludge treatment method for sewage
CN110526401A (en) A kind of landfill leachate short-cut nitrification and denitrification biological denitrification method
JP4596533B2 (en) Wastewater treatment method
JP2021003699A (en) Sewage treatment system
KR100753993B1 (en) Advanced swage and waste water treatment method and apparatus use of selected and cultured bacillus species bacteria etc
KR102052163B1 (en) Wastewater treatment apparatus and method
JP3858271B2 (en) Wastewater treatment method and apparatus
KR100983829B1 (en) Wastewater Treatment by Corrosion of Organics Using Methane Fermentation Tank
JP2004344886A (en) Method for producing high spore species sludge, and waste water discharging treatment method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20101026