JP2002224069A - Body surface multi-lead electrocardiogram device and analytical method using this device - Google Patents

Body surface multi-lead electrocardiogram device and analytical method using this device

Info

Publication number
JP2002224069A
JP2002224069A JP2001030350A JP2001030350A JP2002224069A JP 2002224069 A JP2002224069 A JP 2002224069A JP 2001030350 A JP2001030350 A JP 2001030350A JP 2001030350 A JP2001030350 A JP 2001030350A JP 2002224069 A JP2002224069 A JP 2002224069A
Authority
JP
Japan
Prior art keywords
wave
electrocardiogram
atrial
atrial fibrillation
qrst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001030350A
Other languages
Japanese (ja)
Inventor
Kenji Nakai
賢司 中居
Minoru Shobusawa
実 菖蒲澤
Chuichi Ito
忠一 伊藤
Kohei Kawazoe
浩平 川副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001030350A priority Critical patent/JP2002224069A/en
Priority to PCT/JP2002/000779 priority patent/WO2002062217A1/en
Publication of JP2002224069A publication Critical patent/JP2002224069A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a body surface multi-lead electrocardiogram device for analyzing and displaying a conduction mode of a fibrillary wave on a body surface and the body surface distribution of the frequency analyzing frequency or part identification of atrial period outside shrinkage. SOLUTION: This body surface multi-lead electrocardiogram device is characterized by having an electrode 1 installed on an organism, an amplifying means 2 amplifying an electrocardiogram signal led from the electrode, an analog digital converting means 3 connected to the amplifying means, and digitally converting an XYZ lead electrocardiogram, a voltage calibrating part 4 calibrating voltage of a signal from the analog digital converting means, a storage part 6 storing the signal from the voltage calibrating part, an operation part 5 analyzing the atrial fibrillation wave or the atrial period outside shrinkage on the basis of the signal from the voltage calibrating part and the signal from the storage part, and a display part 7 displaying output from the operation part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、心電図装置に関す
るものであり、特に体表面での心房細動波の伝導様式と
その周波数解析・周波数の体表面分布、また心房期外収
縮の部位同定とを解析・表示する体表面多誘導心電図装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrocardiographic apparatus, and more particularly to a method of conducting atrial fibrillation waves on a body surface, analyzing the frequency thereof, distributing the frequency to the body surface, and identifying a site of premature atrial contraction. The present invention relates to a body surface multi-lead electrocardiogram apparatus for analyzing and displaying the data.

【0002】[0002]

【従来の技術】ここで心電図について説明しておくと、
心電図は図10に示すように一心周期(1拍)の波形の
中にP波、R波、T波、U波が含まれている。この心電
図は模式的・標準的なものであり個々人によってまた誘
導によって各名称の部位が欠落したり2個以上有ったり
する。図11に正常な5秒間の標準12誘導心電図を、
図12に心房細動が記録された5秒間の標準12誘導心
電図を、さらに図13に心房性期外収縮が記録された標
準12誘導心電図を示す。
2. Description of the Related Art An electrocardiogram will now be described.
As shown in FIG. 10, the electrocardiogram includes a P-wave, an R-wave, a T-wave, and a U-wave in a waveform of one cardiac cycle (one beat). This electrocardiogram is a schematic / standard one, and the part of each name is missing or has two or more parts depending on the individual or due to the lead. FIG. 11 shows a normal 5-second standard 12-lead ECG.
FIG. 12 shows a standard 12-lead electrocardiogram in which atrial fibrillation was recorded for 5 seconds, and FIG. 13 shows a standard 12-lead electrocardiogram in which atrial extrasystole was recorded.

【0003】心臓の心房は正常状態では一分間に約70
回動くが心房細動という不整脈があり、これは心室の動
きと協調しない一分間約300〜600回の細かい動き
である。60歳以上では3〜5パ−セントの人が心房細
動を持つ。心房細動があると心房内に血栓を生じやすく
これが脳に飛び脳血栓を引き起こす有力な原因の一つと
見なされている。
[0003] In the normal state, the atrium of the heart is about 70 per minute.
There is an arrhythmia that oscillates but is atrial fibrillation, which is about 300-600 minute movements per minute that are not coordinated with ventricular movements. Over the age of 60, 3 to 5 percent of people have atrial fibrillation. Atrial fibrillation tends to form a blood clot in the atrium, which is considered to be one of the leading causes of cerebral thrombosis that jumps to the brain.

【0004】[0004]

【発明が解決しようとする課題】ところで、図12に示
すような通常の標準12誘導心電図からは心房細動が起
きているという事は分かるが、心房細動の特性を調べた
り心房のどの部位で起きているかという空間分布を解析
する方法がないという問題があり、心房細動に対する的
確な治療法の可否を決めかねる状況にある。
By the way, although it can be understood from the normal standard 12-lead electrocardiogram as shown in FIG. 12 that atrial fibrillation has occurred, the characteristics of atrial fibrillation are examined and any part of the atria is examined. There is a problem that there is no method for analyzing the spatial distribution of whether or not the patient is arising, and it is difficult to determine whether an appropriate treatment for atrial fibrillation can be performed.

【0005】この問題を解決するためには心房細動波の
解析が必要であるが、心房細動波の解析の場合、心室の
動き(興奮)であるQRST波が心房細動波の上に大き
く重なり、QRST波が心房細動波に比べ大きく周波数
解析ではノイズとなってしまう。さらに心房細動波の連
続する電位変化を見ようとするとQRST波に心房細動
波が埋もれて見えないという状況にあり解析を困難にし
ていて(図12中、誘導によってその大きさは違うがT
波の終わりから次のQRS波の部分に記録されている細
かい振れが心房細動波である。QRST波部分では重な
って見えない。)、このQRST波の除去が必要である
という問題点がある。なお図12の心房細動が記録され
た標準12誘導心電図で細かい揺れとして記録されてい
る心房細動波は心房の興奮であり、正常心電図にある心
房波(P波)は存在しない。この心房細動波と心室の興
奮であるQRST波は連動しておらずお互いに独立であ
る。
In order to solve this problem, it is necessary to analyze atrial fibrillation waves. In the case of atrial fibrillation waves, a QRST wave, which is a motion (excitation) of a ventricle, is placed on the atrial fibrillation waves. The overlap is large, and the QRST wave is larger than the atrial fibrillation wave and becomes noise in frequency analysis. Furthermore, when trying to see the continuous potential change of the atrial fibrillation wave, the atrial fibrillation wave is buried in the QRST wave and cannot be seen, making the analysis difficult (in FIG. 12, the size differs depending on the lead, but T
The fine swing recorded in the next QRS wave part from the end of the wave is the atrial fibrillation wave. In the QRST wave part, it does not overlap and cannot be seen. ), There is a problem that it is necessary to remove this QRST wave. It should be noted that the atrial fibrillation wave recorded as fine shaking in the standard 12-lead electrocardiogram in which atrial fibrillation is recorded in FIG. The atrial fibrillation wave and the QRST wave, which is the excitation of the ventricle, are not interlocked and are independent of each other.

【0006】また、心房細動の発症は心房性期外収縮と
いう心房の局所の不正常な動き(興奮)を発端とするこ
とが多い。この心房性期外収縮を発症の発端とする心房
細動はカテ−テル焼灼法により心房性期外収縮の発生起
源となっている局所の心房筋を焼く事により治療が可能
となっている。心房性期外収縮の発生起源の解析はその
心房性期外収縮の心房波(P波)を形態・電位分布を解
析すれば判る。しかし、心房性期外収縮は正常なタイミ
ングの心臓の動き(興奮)の次に起きる正常なタイミン
グの心臓の動き(興奮)よりも早期のタイミングで異常
な心房の部位から起きるため、その心房波(P波)は先
行する正常なタイミングの心電図のT波に重畳すること
が多くP波よりも非常に大きなT波に心房性期外収縮の
P波が埋もれてしまい波形の認識が出来なく(図13
中、5個目のQRST波が心房性期外収縮であるがその
P波は前のT波に重なりはっきりしない)、現在この心
房性期外収縮を非侵襲的に評価する方法は確立されてい
ないという問題点がある。なお図13の心房性期外収縮
が記録された標準12誘導心電図において心房性期外収
縮とは異常な心房の部位から起きる心房性期外収縮のP
波とその興奮が心室に伝わって起こる心室の興奮(心房
性期外収縮のQRST波)を総称して言う。
[0006] The onset of atrial fibrillation often starts with abnormal abnormal movement (excitation) in the atria, called atrial extrasystole. Atrial fibrillation that begins with atrial premature contraction can be treated by burning the local atrial muscle, which is the source of atrial premature contraction, by catheter ablation. The origin of the atrial premature contraction can be analyzed by analyzing the atrial wave (P wave) of the atrial premature contraction by analyzing the morphology and potential distribution. However, the atrial premature contraction occurs from the abnormal atrial site at a timing earlier than the normal timing heart motion (excitation) that occurs after the normal timing heart motion (excitation). (P wave) is often superimposed on the T wave of the preceding normal timing electrocardiogram, and the P wave of atrial extrasystole is buried in the T wave which is much larger than the P wave, and the waveform cannot be recognized ( FIG.
(The fifth QRST wave is an atrial premature contraction, but its P wave overlaps with the previous T wave, and it is not clear.) Currently, a method for non-invasively evaluating this atrial extrasystole has been established. There is a problem that there is no. In the standard 12-lead electrocardiogram in which the atrial premature contraction of FIG. 13 is recorded, the atrial premature contraction is the P of the atrial premature contraction originating from the abnormal atrial site.
A wave and its excitation are transmitted to the ventricle, and the ventricle excitation (QRST wave of atrial extrasystole) is collectively referred to.

【0007】本装置では、心房細動における心房細動波
の時間的・空間的特性の解析と心房性期外収縮の性状・
発生源解析とを一体とする体表面多誘導心電図装置を提
供し、上記問題点を解決することを目的とする。一体と
する理由は第一に心房細動という不整脈の治療では、心
房細動の発端となる心房性期外収縮に対する治療と心房
細動自身に対する治療は一連のものである事、第二に心
電図の心電図加算平均手段、R波同期心電図波形減算手
段、多誘導心電図による等電位線図などのマッピング表
示手段など両解析に使用する手段は共通しているという
事である。
In this apparatus, the analysis of the temporal and spatial characteristics of the atrial fibrillation wave in atrial fibrillation and the characteristics of atrial extrasystole are performed.
It is an object of the present invention to provide a body surface multi-lead electrocardiogram apparatus that integrates source analysis and solve the above problems. The first reason is that in the treatment of arrhythmia called atrial fibrillation, the treatment for atrial premature contraction that causes atrial fibrillation and the treatment for atrial fibrillation itself are a series, and the second is ECG. The means used for both analyzes, such as the electrocardiogram averaging means, the R-wave synchronized electrocardiogram waveform subtracting means, and the mapping display means such as an equipotential diagram by a multi-lead electrocardiogram, are common.

【0008】本発明の体表面多誘導心電図装置では、心
電図加算平均手段とR波同期心電図波形減算手段を応用
し、第一には心房細動心電図QRST波部分を消去し心
房細動波のみの波形を求め、その空間的な伝導様式とそ
の周波数解析による周波数成分の時間的特性・空間分布
とを求める。加えて第二に先行する心電図のT波に重畳
する心房性期外収縮の心房波(P波)をT波を消去して
心房波のみを求めその空間的な伝導様式と心房内におけ
る起源を特定する。
In the body surface multi-lead electrocardiogram apparatus of the present invention, an electrocardiogram averaging means and an R-wave synchronized electrocardiogram waveform subtracting means are applied. First, an atrial fibrillation electrocardiogram QRST wave portion is deleted and only an atrial fibrillation wave is obtained. The waveform is obtained, and the spatial conduction mode and the time characteristic and spatial distribution of the frequency component obtained by the frequency analysis are obtained. In addition, second, the atrial premature contraction atrial wave (P wave) superimposed on the preceding electrocardiographic T wave is eliminated from the T wave to obtain only the atrial wave, and the spatial conduction mode and the origin in the atrium are determined. Identify.

【0009】[0009]

【課題を解決するための手段】このため本発明が採用し
た技術解決手段は、生体に装着する電極と、その電極か
ら誘導される心電図信号を増幅する増幅手段と、該増幅
手段に接続されXYZ誘導心電図をデジタル変換するア
ナログデジタル変換手段と、前記アナログデジタル変換
手段からの信号を電圧校正する電圧校正部と、電圧校正
部からの信号を記憶する記憶部と、前記電圧校正部から
の信号および記憶部からの信号にもとづいて心房細動波
解析または心房性期外収縮の解析を実行する演算部と、
演算部からの出力を表示する表示部を備えていることを
特徴とする体表面多誘導心電図装置である。前記演算部
は、多電極測定心電図を取り込み、テンプレ−トQRS
T波形形成のために表示操作する一つの心電図誘導を選
択する心電図誘導選択手段と、前記心電図誘導選択手段
で選んだ心電図に基づいてテンプレ−トQRST波形を
形成するQRST波形形成手段(6b)と、前記QRS
T波形形成手段で形成したテンプレ−トQRST波形を
前記多電極測定心電図のQRST波からR波に同期させ
減算するQRST波形減算手段(6c)と、心房細動波
解析の場合に必要とする心房細動波の周波数解析をする
周波数解析手段(6d)と、前記QRST波形減算手段
(6c)または前記周波数解析手段(6d)からの信号
をもとに等電位線図・等周波数線図・等周波数パワ−値
線図・等積分電位線図などのマッピングを形成する表示
手段(6e)とを備えていることを特徴とする請求項1
に記載の体表面多誘導心電図装置である。心房細動心電
図をもとにテンプレ−トQRST波を形成し、このテン
プレ−トQRST波形を心房細動心電図から減算してQ
RST波を含まない心房細動のみの波形を求め、求めた
心房細動波を周波数解析して周波数パワ−スペクトルも
とめ、表示することを特徴とする心房細動波解析方法で
ある。心房性期外収縮の記録された心電図をもとにテン
プレ−トQRST波を形成し、このテンプレ−トQRS
T波形と心房性期外収縮の一つ前のQRS波とをもとに
T波が除去され心房性期外収縮のP波が明瞭となった心
房波形を求め、心房性期外収縮のP波の時間によって変
化する電位分布を表示することを特徴とする心房性期外
収縮解析方法である。
The technical solution adopted by the present invention is an electrode mounted on a living body, an amplifying means for amplifying an electrocardiogram signal induced from the electrode, and an XYZ connected to the amplifying means. Analog-to-digital conversion means for digitally converting a lead electrocardiogram, a voltage calibration unit for calibrating a signal from the analog-to-digital conversion means, a storage unit for storing a signal from the voltage calibration unit, and a signal from the voltage calibration unit An arithmetic unit that performs atrial fibrillation wave analysis or analysis of atrial extrasystole based on a signal from the storage unit,
A body surface multi-lead electrocardiogram device comprising a display unit for displaying an output from a calculation unit. The arithmetic unit fetches the multi-electrode measurement electrocardiogram and outputs the template QRS
ECG lead selecting means for selecting one ECG lead to be displayed and operated to form a T waveform, and QRST waveform forming means (6b) for forming a template QRST waveform based on the ECG selected by the ECG lead selecting means. , The QRS
QRST waveform subtracting means (6c) for synchronizing the template QRST waveform formed by the T waveform forming means with the R wave from the QRST wave of the multi-electrode measurement electrocardiogram, and subtracting the atrial required for atrial fibrillation wave analysis. Frequency analysis means (6d) for analyzing the frequency of the fibrillation wave, and equipotential and isofrequency diagrams based on signals from the QRST waveform subtraction means (6c) or the frequency analysis means (6d). A display means (6e) for forming a mapping such as a frequency power value diagram and an equi-integrated potential diagram.
2. The body surface multi-lead electrocardiogram device according to 1. A template QRST wave is formed based on the atrial fibrillation electrocardiogram, and the template QRST waveform is subtracted from the atrial fibrillation electrocardiogram to obtain Q
An atrial fibrillation wave analysis method characterized in that a waveform of only atrial fibrillation not including an RST wave is obtained, a frequency power spectrum is obtained by frequency analysis of the obtained atrial fibrillation wave, and displayed. A template QRST wave is formed based on the recorded electrocardiogram of atrial extrasystole, and this template QRS
Based on the T waveform and the QRS wave immediately before the atrial premature contraction, an atrial waveform from which the T wave was removed and the P wave of the atrial premature contraction became clear was obtained, and the P of the atrial extrasystole was determined. This is an atrial extrasystole analysis method characterized by displaying a potential distribution that changes with time of a wave.

【0010】[0010]

【発明の実施の形態】以下、図面を参照しながら本発明
の実施の形態について説明すると図1は、本実施形態に
係る心電図装置の構成図、図2は同装置の演算部のフロ
ーチャートである。本心電図装置は従来の多誘導心電図
装置から得られた心電図にもとづいて第一に心房細動心
電図の場合QRST波部分を消去して心房細動波を求
め、これを周波数解析し、周波数成分の時間的特性と空
間分布を求めるための処理手段を付加した点と、第二に
心房性期外収縮の解析では、心房性期外収縮に先行する
心電図のT波を消去して心房波のみを求めその空間的な
伝導様式と心房内における起源を特定する手段を付加し
た点に大きな特徴がある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an electrocardiographic apparatus according to an embodiment of the present invention, and FIG. 2 is a flowchart of an operation section of the apparatus. . The present electrocardiogram apparatus first obtains an atrial fibrillation wave by erasing a QRST wave part in the case of an atrial fibrillation electrocardiogram based on an electrocardiogram obtained from a conventional multi-lead electrocardiogram apparatus, analyzes the frequency, and analyzes the frequency component. Secondly, in the analysis of atrial premature contraction, the T wave of the electrocardiogram preceding the atrial premature contraction is eliminated and only the atrial wave is obtained. The major feature is that a means for specifying the spatial conduction mode and the origin in the atrium is added.

【0011】図1において1は電極、2は増幅手段、3
はA/D変換手段、4は電圧校正部、5は演算部、6は
記憶部、7は表示部、8は入力部、9は記録部であり、
身体に装着された多数の電極1から誘導された心電図信
号は、それぞれ増幅器2により増幅された後、A/D変
換器3により時系列ディジタルデ−タに変換され、その
後の処理は全てソフトウエアにより行われる。また記憶
部6から出力された信号は電圧校正部4において電圧校
正が行われ後述する演算部5によって演算処理され、そ
の結果に基づいて心房細動波の周波数成分の時間的特性
と空間分布、心房性期外収縮のP波の伝導様式と起源部
位を表示部8に表示され計測できるようになっている。
In FIG. 1, 1 is an electrode, 2 is an amplifying means, 3
Is an A / D converter, 4 is a voltage calibration unit, 5 is an operation unit, 6 is a storage unit, 7 is a display unit, 8 is an input unit, 9 is a recording unit,
Electrocardiogram signals guided from a large number of electrodes 1 attached to the body are respectively amplified by an amplifier 2 and then converted to time-series digital data by an A / D converter 3, and all subsequent processing is performed by software. It is performed by Further, the signal output from the storage unit 6 is subjected to voltage calibration in a voltage calibration unit 4 and is subjected to arithmetic processing by an arithmetic unit 5 described later. Based on the result, the temporal characteristics and spatial distribution of the frequency component of the atrial fibrillation wave, The conduction mode and origin of the P wave of atrial premature contraction are displayed on the display unit 8 and can be measured.

【0012】演算部5についてここで図2を参照して詳
述しておくと、演算部5は、前記記憶手段から多電極測
定心電図二分間分を取り込み後述する心電図減算処理の
ための元になるテンプレ−トQRST波形(後述する図
3および図7とその説明を参照)形成のために表示操作
する一つの心電図誘導を選択する心電図誘導選択手段
(6a)と、その選択手段で選んだ一つの心電図誘導二
分間分から加算平均しテンプレ−トQRST波形とする
ための一つのQRST波形を選択し公知のR波同期テン
プレ−トマッチングにより数十拍のQRST波形を加算
平均しテンプレ−トQRST波形を形成するQRST波
形形成手段(6b)と、前記多電極測定心電図二分間分
のQRST波からテンプレ−トQRST波形をR波に同
期させ減算するQRST波形減算手段(6c)と、心房
細動波解析の場合に心房細動波の周波数解析をする周波
数解析手段(6d)と等電位線図・等周波数線図・等周
波数パワ−値線図・等積分電位線図などのマッピングを
形成する手段(6e)とを備えている。
The arithmetic unit 5 will now be described in detail with reference to FIG. 2. The arithmetic unit 5 takes in two minutes of the multi-electrode measurement electrocardiogram from the storage means and uses it for an electrocardiogram subtraction process which will be described later. ECG lead selecting means (6a) for selecting one ECG lead to be displayed and operated to form a template QRST waveform (see FIGS. 3 and 7 and the description thereof), and one selected by the selecting means. One QRST waveform to be added and averaged from two electrocardiogram leads for two minutes to form a template QRST waveform is selected, and the QRST waveform of several tens of beats is added and averaged by well-known R-wave synchronized template matching to obtain a template QRST waveform. And a QRT waveform synchronizing means for subtracting the template QRST waveform from the QRST wave for two minutes of the multi-electrode measurement electrocardiogram in synchronization with the R wave. T waveform subtraction means (6c), frequency analysis means (6d) for analyzing the frequency of atrial fibrillation waves in the case of atrial fibrillation wave analysis, and equipotential, equi-frequency and equi-frequency power value diagrams A means (6e) for forming a mapping such as an equi-integral potential diagram.

【0013】前記QRST波形減算手段(6c)は、心
房細動波解析の場合には、多電極測定心電図二分間分の
QRST波からテンプレ−トQRST波形をR波に同期
させ減算を実行するものであり、また心房性期外収縮の
場合は、心房性期外収縮に関与しないQRST波部分を
テンプレ−トQRST波形として、心房性期外収縮の一
つ前のQRS波に同期させ減算を実行するものであり、
QRST波形減算手段(6c)としてはこの両機能を達
成できる構成となっている(詳細は後述する)。そし
て、図外の操作手段からの入力信号によって心房細動波
解析をするのか、あるいは心房性期外収縮解析をするの
かを判断し、この判断に対応した減算を実行する。
In the case of atrial fibrillation wave analysis, the QRST waveform subtraction means (6c) performs subtraction by synchronizing a template QRST waveform with an R wave from a QRST wave for two minutes of a multi-electrode measurement electrocardiogram. In the case of atrial premature contraction, a QRST wave portion not involved in atrial premature contraction is used as a template QRST waveform and subtraction is performed in synchronization with the QRS wave immediately before the atrial premature contraction. To do
The QRST waveform subtraction means (6c) is configured to achieve both functions (details will be described later). Then, it is determined whether to perform atrial fibrillation wave analysis or atrial extrasystole analysis based on an input signal from an operation means (not shown), and a subtraction corresponding to this determination is performed.

【0014】ここで、前記演算手段5での処理について
図を基に心房細動波解析の場合と、心房性期外収縮の解
析の場合に分け詳述する。心房細動波解析の場合は、先
ずQRST波を除去し心房細動波のみの波形を作る手順
を図3で説明する。(7a)は心房細動心電図である。
この心電図のQRST波部分をR波に同期して数十個加
算平均する。するとこの心電図のQRST波と心房細動
波はお互いに独立しているので心房細動波はノイズとし
て打ち消し合い心房細動波を含まないQRST波が形成
される。これがテンプレ−トQRST波形(7b)であ
る。このテンプレ−トQRST波形を7a心房細動心
電図のQRS波に同期して発生させT波の終了点と次の
QRS波の開始点を直線補間したものが7cである。こ
の7cを7aの心房細動心電図から減算するとQRST
波を含まない心房細動のみの波形(7d)が得られる。
同様の処理を32誘導分行いQRST波を含まない32
誘導心房細動波(図4参照)を得る。次にこの心房細動
波に対して周波数解析を行う。すなわち心房細動波の任
意の区間に対し公知の高速フ−リエ変換(Fast F
ourier Transform:FFT)を行い3
2誘導分の周波数パワ−スペクトル(図5参照)を得
る。
Here, the processing in the arithmetic means 5 will be described in detail separately for the case of atrial fibrillation wave analysis and the case of atrial premature contraction based on the drawings. In the case of atrial fibrillation wave analysis, a procedure for removing the QRST wave and creating a waveform of only the atrial fibrillation wave will be described with reference to FIG. (7a) is an atrial fibrillation electrocardiogram.
Dozens of QRST wave portions of the electrocardiogram are averaged in synchronization with the R wave. Then, since the QRST wave and the atrial fibrillation wave of the electrocardiogram are independent of each other, the atrial fibrillation wave cancels out as noise and a QRST wave not including the atrial fibrillation wave is formed. This is the template QRST waveform (7b). This template QRST waveform is generated in synchronization with the QRS wave of the atrial fibrillation electrocardiogram 7a , and the end point of the T wave and the start point of the next QRS wave are linearly interpolated as 7c. When this 7c is subtracted from the atrial fibrillation electrocardiogram of 7a, QRST is obtained.
A waveform (7d) of only atrial fibrillation without waves is obtained.
The same process is performed for 32 leads and the QRST wave is not included.
A guided atrial fibrillation wave (see FIG. 4) is obtained. Next, frequency analysis is performed on the atrial fibrillation wave. That is, a known fast Fourier transform (Fast F) is applied to an arbitrary section of the atrial fibrillation wave.
Our Transform (FFT) 3
A frequency power spectrum for two leads (see FIG. 5) is obtained.

【0015】この周波数パワ−スペクトルは周波数値、
そのパワ−値などを誘導毎に図1の表示部7で図5の9
aに示すように計測表示できる。図5の9bにおける周
波数パワ−スペクトルの代表例では心房細動の治療可能
な一過性心房細動(9b−1)では心房細動の治療が難
しい慢性心房細動(9b−2)に比べてパワ−の最大値
を示す周波数はより低いことがわかる。また32誘導心
房細動波の時間によって変化する電位分布を等電位線図
として、周波数パワ−スペクトルから各誘導における最
大パワ−値となる周波数の分布を等周波数線図として、
任意の周波数におけるパワ−値の分布を等周波数パワ−
値線図として図1の表示部7に図6の10aおよび10
bに示すように表示することがができる。これらからそ
の心房細動における興奮様式の評価が行われ、治療法の
選択や治療効果の評価などが行われる。
The frequency power spectrum is a frequency value,
The power value and the like are displayed on the display unit 7 in FIG.
The measurement can be displayed as shown in FIG. In the representative example of the frequency power spectrum in 9b of FIG. 5, it is difficult to treat atrial fibrillation in the case of transient atrial fibrillation (9b-1) which can treat atrial fibrillation (9b-1) compared to chronic atrial fibrillation (9b-2). Thus, it can be seen that the frequency showing the maximum value of the power is lower. In addition, a potential distribution that changes with time of the 32-lead atrial fibrillation wave as an equipotential diagram, and a distribution of a frequency having a maximum power value in each lead from a frequency power spectrum as an isofrequency diagram,
The distribution of the power value at an arbitrary frequency is
As a value diagram, 10a and 10a in FIG.
It can be displayed as shown in FIG. From these, the excitement mode in the atrial fibrillation is evaluated, and the selection of the treatment method and the evaluation of the treatment effect are performed.

【0016】心房性期外収縮の解析の場合は、まず心房
性期外収縮のP波に重なるT波を除去してP波のみの波
形を作る手順を図7で説明する。11aは心房性期外収
縮の記録された心電図である。この心電図の心房性期外
収縮に関与しないQRST波部分(例えば図7中11
a)をテンプレ−トQRST波形(11b)として、心
房性期外収縮の一つ前のQRS波に同期させこの11b
を11aの心電図から減算するとT波が除去され心房性
期外収縮のP波が明瞭となった波形(11c)が得られ
る。同様の処理を32誘導について行いT波に重ならな
い明瞭な心房性期外収縮のP波を32誘導分(図8中1
2a、12b参照)を得る。次に心房性期外収縮のP波
の時間によって変化する電位分布を等電位線図として、
心房性期外収縮のP波の時間積分値の分布を等積分値線
図として図1の表示部7に図9中の13a、13bに示
すように表示することができる。
In the case of analysis of atrial premature contraction, a procedure for removing a T wave overlapping with a P wave of atrial premature contraction and forming a waveform of only a P wave will be described with reference to FIG. 11a is a recorded electrocardiogram of atrial premature contraction. A QRST wave portion of the electrocardiogram that is not involved in atrial extrasystole (for example, 11 in FIG. 7)
a) as a template QRST waveform (11b), synchronized with the QRS wave just before the atrial extrasystole,
Is subtracted from the electrocardiogram of 11a to obtain a waveform (11c) in which the T wave is removed and the P wave of atrial premature contraction becomes clear. A similar process was performed for lead 32, and a clear P-wave of atrial extrasystole that did not overlap with the T-wave for 32 leads (1 in FIG. 8)
2a, 12b). Next, the potential distribution that changes with the time of the P wave of atrial premature contraction is shown as an equipotential diagram,
The distribution of the time integral of the P wave of atrial premature contraction can be displayed as an isointegral value diagram on the display unit 7 of FIG. 1 as shown by 13a and 13b in FIG.

【0017】以上、本発明の実施の形態について説明し
てきたが、本発明はその精神または主要な特徴から逸脱
することなく、他のいかなる形でも実施できる。そのた
め、前述の実施形態はあらゆる点で単なる例示にすぎず
限定的に解釈してはならない。たとえば、周波数解析は
FFTに限定されず、同様な解析ができる手法であれば
線型予測法(Burg法)など、他の手法を採用するこ
とができる。
While the embodiments of the present invention have been described above, the present invention can be embodied in any other form without departing from the spirit or main features. Therefore, the above-described embodiment is merely an example in every aspect and should not be interpreted in a limited manner. For example, the frequency analysis is not limited to the FFT, and other methods such as a linear prediction method (Burg method) can be adopted as long as a similar analysis can be performed.

【0018】[0018]

【発明の効果】上記のように、本発明によれば、従来の
心電図装置では、心房細動の場合心房細動波のみの解析
は心室の興奮であるQRST波が存在するため困難であ
ったが心電図加算平均手段を利用したテンプレートQR
ST波形形成によるQRST波除去手段を体表面多誘導
心電図に応用しマッピング表示する処理手段を用いるこ
とによって心房細動の特性の解析が可能となった。また
心房性期外収縮の場合同様の処理手段を用いることによ
ってその発生部位の特定が可能となった。これらの機能
を備えた心電図解析装置はなく臨床のニ−ズにかなうも
のである。また心電図の誘導法、誘導数も32誘導は例
示にすぎず、限定的に解釈してはならない様々な組み合
わせが可能である。
As described above, according to the present invention, in a conventional electrocardiographic apparatus, it is difficult to analyze only atrial fibrillation waves in the case of atrial fibrillation because a QRST wave, which is an excitation of a ventricle, exists. Is a template QR using ECG averaging means
The characteristics of atrial fibrillation can be analyzed by applying a QRST wave removing means based on ST waveform formation to a body surface multi-lead electrocardiogram and using a processing means for mapping and displaying. Further, in the case of atrial premature contraction, the occurrence site can be specified by using the same processing means. There is no ECG analyzer equipped with these functions, and it meets clinical needs. In addition, the lead method and the number of leads of the electrocardiogram are only 32 leads, and various combinations that should not be interpreted in a limited manner are possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本装置のブロック図である。FIG. 1 is a block diagram of the present apparatus.

【図2】図1のブロック図中5演算部の処理フロ−図で
ある。
FIG. 2 is a processing flow diagram of five operation units in the block diagram of FIG. 1;

【図3】心房細動の場合で5演算部の処理で心房細動心
電図から心房細動波のみを取り出す手段を説明した図で
ある。
FIG. 3 is a diagram illustrating a means for extracting only an atrial fibrillation wave from an atrial fibrillation electrocardiogram in the case of atrial fibrillation by the processing of five arithmetic units.

【図4】心房細動の場合で32誘導の心房細動心電図と
5演算部で処理された32誘導心房細動波のみの図であ
る。
FIG. 4 is a diagram of an atrial fibrillation electrocardiogram of 32 leads in the case of atrial fibrillation and only a 32 lead atrial fibrillation wave processed by a 5-calculation unit.

【図5】心房細動の場合で5演算部で周波数解析された
32誘導分のパワ−スペクトル(9a)と代表的なパワ
−スペクトルの図(9b)である。
FIG. 5 is a diagram (9b) of a power spectrum (9a) for 32 leads and a typical power spectrum subjected to frequency analysis in five arithmetic units in the case of atrial fibrillation.

【図6】心房細動の場合で5演算部で作成された等周波
数線図(10a)と等電位線図(10b)である。
FIG. 6 is an equi-frequency diagram (10a) and an equi-potential diagram (10b) created by a 5-calculation unit in the case of atrial fibrillation.

【図7】心房性期外収縮の場合で5演算部の処理で心房
性期外収縮心電図からそのP波のみを取り出す手段を説
明した図である。
FIG. 7 is a diagram illustrating a means for extracting only the P wave from the atrial premature contraction electrocardiogram in the case of atrial premature contraction by the processing of the five arithmetic units.

【図8】心房性期外収縮の場合で32誘導の心房性期外
収縮心電図(12a)と5演算部で処理された32誘導
心房性期外収縮のP波のみの図(12b)である。
FIG. 8 shows a 32-lead atrial premature contraction electrocardiogram (12a) in the case of atrial premature contraction and a diagram (12b) showing only the P-wave of the 32-lead atrial premature contraction processed by the five calculation section. .

【図9】心房性期外収縮の場合で5演算部で作成された
等電位線図(13a)、等積分電位線図(13b)であ
る。
FIG. 9 is an equipotential diagram (13a) and an equi-integral potential diagram (13b) created by the 5 calculation unit in the case of atrial premature contraction.

【図10】一心周期(1拍)の心電図とその各部の名称
である。
FIG. 10 shows an electrocardiogram of one cardiac cycle (one beat) and names of respective parts thereof.

【図11】正常な5秒間の標準12誘導心電図である。FIG. 11 is a normal 5-second standard 12-lead ECG.

【図12】心房細動が記録された5秒間の標準12誘導
心電図である。
FIG. 12 is a 5 second standard 12-lead electrocardiogram with atrial fibrillation recorded.

【図13】心房性期外収縮が記録された標準12誘導心
電図である。
FIG. 13 is a standard 12-lead electrocardiogram with recorded atrial extrasystole.

【符号の説明】[Explanation of symbols]

1 電極 2 増幅手段 3 A/D変換手段 4 電圧校正部 5 演算部 6 記憶部 7 表示部 8 入力部 9 記録部 DESCRIPTION OF SYMBOLS 1 Electrode 2 Amplification means 3 A / D conversion means 4 Voltage calibration part 5 Operation part 6 Storage part 7 Display part 8 Input part 9 Recording part

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C027 AA02 EE01 EE08 FF01 FF03 FF05 GG01 GG02 GG11 GG13 GG16 HH11 HH13 KK05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C027 AA02 EE01 EE08 FF01 FF03 FF05 GG01 GG02 GG11 GG13 GG16 HH11 HH13 KK05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】生体に装着する電極と、その電極から誘導
される心電図信号を増幅する増幅手段と、該増幅手段に
接続されXYZ誘導心電図をデジタル変換するアナログ
デジタル変換手段と、前記アナログデジタル変換手段か
らの信号を電圧校正する電圧校正部と、電圧校正部から
の信号を記憶する記憶部と、前記電圧校正部からの信号
および記憶部からの信号にもとづいて心房細動波解析ま
たは心房性期外収縮の解析を実行する演算部と、演算部
からの出力を表示する表示部を備えていることを特徴と
する体表面多誘導心電図装置。
An electrode mounted on a living body, amplifying means for amplifying an electrocardiogram signal induced from the electrode, an analog-to-digital converting means connected to the amplifying means for digitally converting an XYZ lead electrocardiogram, and the analog-to-digital conversion A voltage calibrator for calibrating the signal from the means, a memory for storing the signal from the voltage calibrator, and atrial fibrillation wave analysis or atrial activity based on the signal from the voltage calibrator and the signal from the memory. A body surface multi-lead electrocardiogram device, comprising: a calculation unit for performing analysis of extrasystole; and a display unit for displaying an output from the calculation unit.
【請求項2】前記演算部は、多電極測定心電図を取り込
み、テンプレ−トQRST波形形成のために表示操作す
る一つの心電図誘導を選択する心電図誘導選択手段と、
前記心電図誘導選択手段で選んだ心電図に基づいてテン
プレ−トQRST波形を形成するQRST波形形成手段
(6b)と、前記QRST波形形成手段で形成したテン
プレ−トQRST波形を前記多電極測定心電図のQRS
T波からR波に同期させ減算するQRST波形減算手段
(6c)と、心房細動波解析の場合に必要とする心房細
動波の周波数解析をする周波数解析手段(6d)と、前
記QRST波形減算手段(6c)または前記周波数解析
手段(6d)からの信号をもとに等電位線図・等周波数
線図・等周波数パワ−値線図・等積分電位線図などのマ
ッピングを形成する表示手段(6e)とを備えているこ
とを特徴とする請求項1に記載の体表面多誘導心電図装
置。
2. The arithmetic unit includes: an electrocardiogram lead selecting means for taking in a multi-electrode measurement electrocardiogram and selecting one electrocardiogram lead to be displayed and operated for forming a template QRST waveform;
QRST waveform forming means (6b) for forming a template QRST waveform based on the electrocardiogram selected by the electrocardiogram lead selecting means, and a QRS of the multi-electrode measurement electrocardiogram using the template QRST waveform formed by the QRST waveform forming means.
QRST waveform subtraction means (6c) for synchronizing and subtracting R waves from T waves, frequency analysis means (6d) for analyzing the frequency of atrial fibrillation waves required for atrial fibrillation wave analysis, and the QRST waveform A display for forming a mapping such as an equipotential diagram, an isofrequency diagram, an isofrequency power value diagram, or an equipotential diagram based on a signal from the subtracting means (6c) or the frequency analyzing means (6d). The body surface multi-lead electrocardiogram device according to claim 1, further comprising means (6e).
【請求項3】心房細動心電図をもとにテンプレ−トQR
ST波を形成し、このテンプレ−トQRST波形を心房
細動心電図から減算してQRST波を含まない心房細動
のみの波形を求め、求めた心房細動波を周波数解析して
周波数パワ−スペクトルもとめ、表示することを特徴と
する心房細動波解析方法。
3. A template QR based on an atrial fibrillation electrocardiogram.
An ST wave is formed, the template QRST waveform is subtracted from the atrial fibrillation electrocardiogram to obtain a waveform of only atrial fibrillation not including the QRST wave, and the obtained atrial fibrillation wave is frequency-analyzed by frequency analysis. A method for analyzing atrial fibrillation waves, characterized by displaying and displaying.
【請求項4】心房性期外収縮の記録された心電図をもと
にテンプレ−トQRST波を形成し、このテンプレ−ト
QRST波形と心房性期外収縮の一つ前のQRS波とを
もとにT波が除去され心房性期外収縮のP波が明瞭とな
った心房波形を求め、心房性期外収縮のP波の時間によ
って変化する電位分布を表示することを特徴とする心房
性期外収縮解析方法。
4. A template QRST wave is formed based on an electrocardiogram in which atrial premature contraction is recorded, and the template QRST waveform and the QRS wave immediately before the atrial premature contraction are also generated. An atrial waveform in which the T-wave is removed and the P-wave of the atrial premature contraction is clarified, and a time-varying potential distribution of the P-wave of the atrial extrasystole is displayed. Extrasystole analysis method.
JP2001030350A 2001-02-07 2001-02-07 Body surface multi-lead electrocardiogram device and analytical method using this device Withdrawn JP2002224069A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001030350A JP2002224069A (en) 2001-02-07 2001-02-07 Body surface multi-lead electrocardiogram device and analytical method using this device
PCT/JP2002/000779 WO2002062217A1 (en) 2001-02-07 2002-01-31 Body surface multi-induction cardiograph and analysis method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001030350A JP2002224069A (en) 2001-02-07 2001-02-07 Body surface multi-lead electrocardiogram device and analytical method using this device

Publications (1)

Publication Number Publication Date
JP2002224069A true JP2002224069A (en) 2002-08-13

Family

ID=18894579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001030350A Withdrawn JP2002224069A (en) 2001-02-07 2001-02-07 Body surface multi-lead electrocardiogram device and analytical method using this device

Country Status (1)

Country Link
JP (1) JP2002224069A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194839A (en) * 2002-12-17 2004-07-15 Eucalyptus:Kk Body surface mapping system
JP2005027944A (en) * 2003-07-08 2005-02-03 Chunichi Denshi Co Ltd Method of estimating biomedical signal
JP2005506097A (en) * 2000-11-10 2005-03-03 シー・アール・バード・インコーポレーテッド System for processing an electrocardiogram signal having a superimposed composite
JP2005287849A (en) * 2004-03-31 2005-10-20 Eucalyptus:Kk Body surface electrocardiograph
JP2007268034A (en) * 2006-03-31 2007-10-18 Ritsumeikan Method and device for measuring biological signal
JP2007313122A (en) * 2006-05-26 2007-12-06 Fukuda Denshi Co Ltd Electrocardiogram analyzer
JP2010214016A (en) * 2009-03-18 2010-09-30 Iwate Medical Univ Electrocardiogram analysis apparatus for analyzing body surface electrocardiogram and creating two-dimensional functional diagram on t-wave alternating pulse or fibrillary wave
JP2012505045A (en) * 2008-10-08 2012-03-01 ベッドロック・インヴェンションズ・エルエルシー Method and apparatus for measuring and processing shivering during temperature control for treatment
JP2012139490A (en) * 2010-12-29 2012-07-26 General Electric Co <Ge> Methods and systems for developing medical waveforms, and training methods
JP2015530160A (en) * 2012-09-21 2015-10-15 カーディオインサイト テクノロジーズ インコーポレイテッド Physiological mapping for arrhythmia
CN106691432A (en) * 2016-10-19 2017-05-24 深圳市杰纳瑞医疗仪器股份有限公司 Inductive electrocardio measurement method and instrument
US9681823B2 (en) 2007-11-26 2017-06-20 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US9839372B2 (en) 2014-02-06 2017-12-12 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US9907513B2 (en) 2008-10-07 2018-03-06 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US10004875B2 (en) 2005-08-24 2018-06-26 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US10046139B2 (en) 2010-08-20 2018-08-14 C. R. Bard, Inc. Reconfirmation of ECG-assisted catheter tip placement
US10105121B2 (en) 2007-11-26 2018-10-23 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10231753B2 (en) 2007-11-26 2019-03-19 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US10231643B2 (en) 2009-06-12 2019-03-19 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US10238418B2 (en) 2007-11-26 2019-03-26 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US10271762B2 (en) 2009-06-12 2019-04-30 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US10349857B2 (en) 2009-06-12 2019-07-16 Bard Access Systems, Inc. Devices and methods for endovascular electrography
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
JP2019188208A (en) * 2014-01-29 2019-10-31 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Double bipolar configuration for atrial fibrillation annotation
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US10602958B2 (en) 2007-11-26 2020-03-31 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
CN111096740A (en) * 2018-10-25 2020-05-05 上海微创电生理医疗科技股份有限公司 Electrocardiosignal analysis method and device, signal recorder and three-dimensional mapping system
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US10849695B2 (en) 2007-11-26 2020-12-01 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
WO2022244291A1 (en) * 2021-05-21 2022-11-24 株式会社カルディオインテリジェンス Program, output device, and data processing method

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506097A (en) * 2000-11-10 2005-03-03 シー・アール・バード・インコーポレーテッド System for processing an electrocardiogram signal having a superimposed composite
US7272437B2 (en) 2000-11-10 2007-09-18 C.R. Bard, Inc. Systems for processing electrocardiac signals having superimposed complexes
JP2004194839A (en) * 2002-12-17 2004-07-15 Eucalyptus:Kk Body surface mapping system
JP2005027944A (en) * 2003-07-08 2005-02-03 Chunichi Denshi Co Ltd Method of estimating biomedical signal
JP4630397B2 (en) * 2004-03-31 2011-02-09 ユーカリテック株式会社 Body surface electrocardiograph
JP2005287849A (en) * 2004-03-31 2005-10-20 Eucalyptus:Kk Body surface electrocardiograph
US11207496B2 (en) 2005-08-24 2021-12-28 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US10004875B2 (en) 2005-08-24 2018-06-26 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
JP2007268034A (en) * 2006-03-31 2007-10-18 Ritsumeikan Method and device for measuring biological signal
US8874199B2 (en) 2006-05-26 2014-10-28 Fukuda Denshi Co., Ltd. Electrocardiogram analyzer
JP2007313122A (en) * 2006-05-26 2007-12-06 Fukuda Denshi Co Ltd Electrocardiogram analyzer
US11134915B2 (en) 2007-11-26 2021-10-05 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10238418B2 (en) 2007-11-26 2019-03-26 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US11707205B2 (en) 2007-11-26 2023-07-25 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US11529070B2 (en) 2007-11-26 2022-12-20 C. R. Bard, Inc. System and methods for guiding a medical instrument
US9681823B2 (en) 2007-11-26 2017-06-20 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US10602958B2 (en) 2007-11-26 2020-03-31 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US9999371B2 (en) 2007-11-26 2018-06-19 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US11779240B2 (en) 2007-11-26 2023-10-10 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US10105121B2 (en) 2007-11-26 2018-10-23 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10165962B2 (en) 2007-11-26 2019-01-01 C. R. Bard, Inc. Integrated systems for intravascular placement of a catheter
US11123099B2 (en) 2007-11-26 2021-09-21 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US10231753B2 (en) 2007-11-26 2019-03-19 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US10849695B2 (en) 2007-11-26 2020-12-01 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US10342575B2 (en) 2007-11-26 2019-07-09 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US10966630B2 (en) 2007-11-26 2021-04-06 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US11027101B2 (en) 2008-08-22 2021-06-08 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US9907513B2 (en) 2008-10-07 2018-03-06 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US8706207B2 (en) 2008-10-08 2014-04-22 Bedrock Inventions, Llc Method and apparatus for measuring and treating shivering during therapeutic temperature control
JP2012505045A (en) * 2008-10-08 2012-03-01 ベッドロック・インヴェンションズ・エルエルシー Method and apparatus for measuring and processing shivering during temperature control for treatment
JP2010214016A (en) * 2009-03-18 2010-09-30 Iwate Medical Univ Electrocardiogram analysis apparatus for analyzing body surface electrocardiogram and creating two-dimensional functional diagram on t-wave alternating pulse or fibrillary wave
US10912488B2 (en) 2009-06-12 2021-02-09 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US10271762B2 (en) 2009-06-12 2019-04-30 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US10231643B2 (en) 2009-06-12 2019-03-19 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US11419517B2 (en) 2009-06-12 2022-08-23 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US10349857B2 (en) 2009-06-12 2019-07-16 Bard Access Systems, Inc. Devices and methods for endovascular electrography
US10046139B2 (en) 2010-08-20 2018-08-14 C. R. Bard, Inc. Reconfirmation of ECG-assisted catheter tip placement
JP2012139490A (en) * 2010-12-29 2012-07-26 General Electric Co <Ge> Methods and systems for developing medical waveforms, and training methods
JP2015530160A (en) * 2012-09-21 2015-10-15 カーディオインサイト テクノロジーズ インコーポレイテッド Physiological mapping for arrhythmia
JP2019141619A (en) * 2012-09-21 2019-08-29 カーディオインサイト テクノロジーズ インコーポレイテッド Physiological mapping for arrhythmia
US10194982B2 (en) 2012-09-21 2019-02-05 Cardioinsight Technologies, Inc. Physiological mapping for arrhythmia
JP2019188208A (en) * 2014-01-29 2019-10-31 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Double bipolar configuration for atrial fibrillation annotation
US11229395B2 (en) 2014-01-29 2022-01-25 Biosense Webster (Israel) Ltd. Double bipolar configuration for atrial fibrillation annotation
US10863920B2 (en) 2014-02-06 2020-12-15 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US9839372B2 (en) 2014-02-06 2017-12-12 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US11026630B2 (en) 2015-06-26 2021-06-08 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
CN106691432A (en) * 2016-10-19 2017-05-24 深圳市杰纳瑞医疗仪器股份有限公司 Inductive electrocardio measurement method and instrument
US11621518B2 (en) 2018-10-16 2023-04-04 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
CN111096740A (en) * 2018-10-25 2020-05-05 上海微创电生理医疗科技股份有限公司 Electrocardiosignal analysis method and device, signal recorder and three-dimensional mapping system
WO2022244291A1 (en) * 2021-05-21 2022-11-24 株式会社カルディオインテリジェンス Program, output device, and data processing method
JP7254399B1 (en) * 2021-05-21 2023-04-10 株式会社カルディオインテリジェンス Program, output device and data processing method

Similar Documents

Publication Publication Date Title
JP2002224069A (en) Body surface multi-lead electrocardiogram device and analytical method using this device
Breithardt et al. Standards for analysis of ventricular late potentials using high-resolution or signal-averaged electrocardiography. A statement by a Task Force Committee of the European Society of Cardiology, the American Heart Association, and the American College of Cardiology.
US6169919B1 (en) System and method for quantifying alternation in an electrocardiogram signal
US7142907B2 (en) Method and apparatus for algorithm fusion of high-resolution electrocardiograms
Breithart et al. Standards for analysis of ventricular late potentials using high resolution or signal-averaged electrocardiography: A statement of by a Task Force Committee between the European Society of Cardiology, the American College of Cardiology, the American Heart Association and the American college of cardiology
Lu et al. Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information?
Lemay et al. Cancellation of ventricular activity in the ECG: evaluation of novel and existing methods
EP1331876B1 (en) Deriving p-waves in electrocardiac signals having superimposed complexes
JP5236200B2 (en) Method and apparatus for ECG morphology and time series analysis and editing
JP6980011B2 (en) A system for filtering heart signals
Hammour et al. Hearables: Feasibility and validation of in-ear electrocardiogram
Agostinelli et al. Extracting a clean ECG from a noisy recording: a new method based on segmented-beat modulation
Pingale Using Pan Tompkin ‘S Method, ECG signal processing and dignose various diseases in Matlab
Western et al. Real-time feedback of dynamic cardiac repolarization properties
JP2006025836A (en) Method for processing electrocardiograph signal having superimposed complex
Pingale et al. Detection of various diseases using ECG signal in Matlab
Jindal et al. MATLAB based GUI for ECG arrhythmia detection using Pan-Tompkin algorithm
Berbari et al. High-resolution analysis of ambulatory electrocardiograms to detect possible mechanisms of premature ventricular beats
Akula et al. Automation algorithm to detect and quantify electrocardiogram waves and intervals
Dallet et al. Combined signal averaging and electrocardiographic imaging method to non-invasively identify atrial and ventricular tachycardia mechanisms
Valverde et al. Assessment of delayed ventricular activation after myocardial infarction
Jokiniemi et al. Baseline reconstruction for localization of rapid ventricular tachycardia from body surface potential maps
US20240138744A1 (en) Apparatus and method for analysis and monitoring of high frequency electrograms and electrocardiograms in various physiological conditions
Moreno-Martinez et al. Enhanced spectral method for T–wave alternans analysis
Yuldashev et al. Algorithm for the Abnormal Ventricular Electrical Excitation Detection

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513