JP2002221025A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2002221025A
JP2002221025A JP2001017410A JP2001017410A JP2002221025A JP 2002221025 A JP2002221025 A JP 2002221025A JP 2001017410 A JP2001017410 A JP 2001017410A JP 2001017410 A JP2001017410 A JP 2001017410A JP 2002221025 A JP2002221025 A JP 2002221025A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
internal combustion
combustion engine
dpf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001017410A
Other languages
Japanese (ja)
Inventor
Miyao Arakawa
宮男 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001017410A priority Critical patent/JP2002221025A/en
Publication of JP2002221025A publication Critical patent/JP2002221025A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of stabilizing electric discharge and improving efficiency of purifying exhaust gas with low electric power and from low temperature condition. SOLUTION: A plasma generating device 2 and a DPF 32 with catalyst is arranged separately in an upstream side and a downstream side in a exhaust gas passage 6. Particulate pollutant (PM) and gaseous pollutant (NOx and the like) are efficiently purified by combination of purifying actions of the DPF 32 with catalyst and plasma generated from the plasma generating device 2. The plasma generating device 2 is controlled to be turned on in a low temperature condition to compensate deterioration of purifying performance of the DPF 32 with catalyst in the low temperature condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放電を利用して排
ガスの浄化反応を促進させる排気浄化装置に関し、特に
ディーゼルエンジン等の排ガス中に含まれる粒子状汚染
物質およびガス状汚染物質を分解・除去する排気浄化装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus which promotes a purification reaction of exhaust gas by utilizing electric discharge, and more particularly to a method of decomposing particulate and gaseous pollutants contained in exhaust gas of a diesel engine or the like. The present invention relates to an exhaust purification device to be removed.

【0002】[0002]

【従来の技術】ディーゼルエンジン等の排ガス中には、
カーボンを主成分とする粒子状汚染物質(以降、PM:
Particulate Matterと呼ぶ)、なら
びに窒素酸化物(以降、NOxと呼ぶ)等のガス状汚染
物質からなる有害物質が含まれている。この排ガス中の
有害物質(PM、NOx等)を排出源において除去する
排気浄化技術が研究されている。この技術は、例えば特
開平9−329015号公報(図10参照)に示すよう
に、交流高圧電源100と接続された放電電極101と
誘電電極102からなる一対の電極101、102間に
誘導体で構成された集塵部(多孔質フィルタ層)103
を配置させている。また、各電極101、102と集塵
部103との間に放電空間104、105を各々設けて
いる。
2. Description of the Related Art In exhaust gas from diesel engines and the like,
Particulate pollutants mainly composed of carbon (hereinafter referred to as PM:
Harmful substances such as gaseous pollutants such as Particulate Matter) and nitrogen oxides (hereinafter referred to as NOx). Exhaust gas purifying technology for removing harmful substances (PM, NOx, etc.) in the exhaust gas at an emission source has been studied. As disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 9-329015 (see FIG. 10), this technique uses a dielectric between a pair of electrodes 101 and 102 including a discharge electrode 101 and a dielectric electrode 102 connected to an AC high-voltage power supply 100. Dust collection part (porous filter layer) 103
Is arranged. Discharge spaces 104 and 105 are provided between the electrodes 101 and 102 and the dust collecting unit 103, respectively.

【0003】そして、一方の放電空間104に処理対象
ガス106を流し、集塵部103を通過させたのち他方
の放電空間105を経て処理終了ガス107を排出させ
ている。この集塵部103を処理対象ガス106が通過
する際、集塵部103内部でPMが捕捉されたのち放電
により発生するプラズマと反応して二酸化炭素に変換さ
れ集塵部103から除去される。また、NOx等のガス
状汚染物質は、集塵部103を通過しながら放電により
発生するプラズマとの衝突確率を高めて浄化している。
A gas 106 to be processed flows into one discharge space 104, passes through a dust collecting section 103, and then a processing end gas 107 is discharged through the other discharge space 105. When the processing target gas 106 passes through the dust collecting part 103, PM is trapped inside the dust collecting part 103, and then reacts with plasma generated by discharge to be converted into carbon dioxide and removed from the dust collecting part 103. In addition, gaseous pollutants such as NOx are purified while increasing the probability of collision with plasma generated by discharge while passing through the dust collecting portion 103.

【0004】[0004]

【発明が解決しようとする課題】しかし、特公平9−3
29015公報に開示されている排気浄化装置は、一対
の電極101、102間に集塵部103と、放電空間1
04、105を設ける構成であるので、電極101、1
02間の距離が大きくなる。この電極101、102間
の距離を大きくすると、要求印加電圧(放電を発生させ
ることができる電圧)が高くなり、放電が困難になる問
題がある。
However, Japanese Patent Publication No. 9-3
The exhaust purification device disclosed in Japanese Patent No. 29015 discloses a dust collecting portion 103 between a pair of electrodes 101 and 102, and a discharge space 1
04, 105, the electrodes 101, 1
02 increases. When the distance between the electrodes 101 and 102 is increased, the required applied voltage (the voltage at which discharge can be generated) increases, which causes a problem that the discharge becomes difficult.

【0005】更に、電極101、102間に常時通電す
ることにより発生する放電プラズマに依存して、排ガス
中の有害物質である粒子状汚染物質(PM)、ならびに
ガス状汚染物質(NOx等)を浄化していが、電力供給
量が限られた車載バッテリーより放電プラズマを得るた
めの電力供給を受ける場合にあっては、電極101、1
02間に供給できる電力量は限られる。よって、有害物
質の排出量が多い場合には、発電部の大型化、および発
電による内燃機関の負荷が増加することから燃費を悪化
させ問題である。
Further, depending on the discharge plasma generated by constantly energizing between the electrodes 101 and 102, particulate pollutants (PM), which are harmful substances, and gaseous pollutants (NOx, etc.) in exhaust gas are removed. In the case where power is supplied for obtaining discharge plasma from an in-vehicle battery whose power supply is limited, the electrodes 101, 1
The amount of power that can be supplied during 02 is limited. Therefore, when the emission amount of harmful substances is large, the size of the power generation unit is increased and the load on the internal combustion engine due to the power generation is increased.

【0006】本発明の目的は上記の点に鑑み、放電を安
定させるとともに、低電力で排ガスの浄化効率を高める
ことが可能な内燃機関の排気浄化装置を提供することに
ある。
SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to provide an exhaust gas purifying apparatus for an internal combustion engine, which can stabilize discharge and increase the efficiency of purifying exhaust gas with low power.

【0007】[0007]

【課題を解決するための手段】上述した課題を解決する
ために、本発明の請求項1記載の内燃機関の排気浄化装
置によると、放電部と集塵部とを、排ガスが流れる流路
の上流側と下流側に分けて配置する構成とした。つま
り、放電部の電極間に集塵部を鋏む構成ではないので、
電極間の距離が大きくなる事は無くなり、集塵部が配置
されることによる放電部への影響が無くなって、放電部
での放電が安定する。
In order to solve the above-mentioned problems, according to the exhaust gas purifying apparatus for an internal combustion engine according to the first aspect of the present invention, the discharge unit and the dust collection unit are connected to each other in the flow path through which the exhaust gas flows. It was configured to be arranged separately on the upstream side and the downstream side. In other words, since the dust collecting part is not scissored between the electrodes of the discharge part,
The distance between the electrodes does not increase, and the arrangement of the dust collection unit does not affect the discharge unit, so that the discharge in the discharge unit is stabilized.

【0008】また、排ガスが流れる流路の下流側に配置
した集塵部は、第1端が開口されるとともに第2端が封
止された入側室と、第2端が開口されるとともに第1端
が封止された出側室とを有し、入側室と出側室とを触媒
を担持させた多孔質フィルタ層の隔壁で区画しつつ交互
に配置した。
The dust collecting portion disposed downstream of the flow path through which the exhaust gas flows has an opening at a first end and an inlet chamber sealed at a second end, and an opening at a second end. An outlet chamber with one end sealed was provided, and the inlet chamber and the outlet chamber were alternately arranged while being partitioned by a partition wall of a porous filter layer carrying a catalyst.

【0009】それにより、粒子状汚染物質(PM)の場
合にあっては、放電部でのプラズマとの衝突、および集
塵部(多孔質フィルタ層の隔壁に担持させた触媒部)の
双方にて浄化される。一方、ガス状汚染物質(NOx
等)の場合にあっては、多孔質フィルタ層の隔壁内を通
過する際に、触媒の作用により浄化される。
Accordingly, in the case of particulate contaminants (PM), both the collision with the plasma in the discharge part and the dust collection part (the catalyst part carried on the partition walls of the porous filter layer). Is purified. On the other hand, gaseous pollutants (NOx
Etc.), the catalyst is purified by the action of the catalyst when passing through the inside of the partition wall of the porous filter layer.

【0010】本発明の請求項2によると、多孔質フィル
タ層は、セラミック材を用いて構成した。セラミック材
は、微細な孔を多く形成し易い材料であるとともに耐熱
性に優れ、高温の排気ガス下においても微細な孔形状を
安定して維持できる。
According to the second aspect of the present invention, the porous filter layer is made of a ceramic material. The ceramic material is a material that easily forms many fine holes and has excellent heat resistance, and can stably maintain a fine hole shape even under high-temperature exhaust gas.

【0011】本発明の請求項3によると、集塵部は、ハ
ニカム体を構成する各通路の一方端を交互に封止して、
ハニカム体の端面が市松模様のパターンとし、かつ各通
路の隔壁に触媒を担持した多孔質セラミックで構成し
た。
According to the third aspect of the present invention, the dust collecting portion seals one end of each of the passages constituting the honeycomb body alternately,
The end face of the honeycomb body was formed in a checkered pattern, and was formed of porous ceramic in which a partition wall of each passage supported a catalyst.

【0012】このハニカム体構造の集塵部は、排気抵抗
を低減しつつ排気との接触面積を広く得られ、また構造
体として高強度な集塵部とすることができる。
The dust collecting portion of the honeycomb structure has a wide contact area with the exhaust while reducing the exhaust resistance, and can be a high-strength dust collecting portion as a structure.

【0013】本発明の請求項4によると、多孔質セラミ
ック材の隔壁に担持させる触媒を、NOx吸蔵触媒とし
た。そして、エンジンでの燃焼を希薄空燃比燃焼(リー
ン燃焼時)、理論空燃比燃焼、および濃密空燃比燃焼
(リッチ燃焼)を織り交ぜるように制御させ、粒子状汚
染物質(PM)、ならびにガス状汚染物質(NOx等)
を浄化するものである。
According to a fourth aspect of the present invention, the catalyst supported on the partition walls of the porous ceramic material is a NOx storage catalyst. Then, the combustion in the engine is controlled so as to intermix lean air-fuel ratio combustion (during lean combustion), stoichiometric air-fuel ratio combustion, and dense air-fuel ratio combustion (rich combustion), and particulate contaminants (PM) and gas Pollutants (NOx, etc.)
Is to purify.

【0014】上述したNOx吸蔵触媒を担持した集塵部
での浄化作用と、放電部から発生するラジカルや活性ガ
ス等による浄化作用とを組合わせることで、粒子状汚染
物質(PM)、およびガス状汚染物質(NOx等)を高
効率に浄化することが可能となる。
By combining the purifying action of the above-mentioned dust collecting section carrying the NOx storage catalyst with the purifying action of radicals or active gas generated from the discharge section, particulate contaminants (PM) and gas It is possible to efficiently purify state pollutants (such as NOx).

【0015】本発明の請求項5記載によると、集塵部の
温度が高いときには、放電部への通電を停止させること
を特徴とする。つまり、集塵部の温度が低い場合にあっ
ては、放電部への通電を行うことにより発生するラジカ
ルや活性ガス等と反応させて、粒子状汚染物質(P
M)、ならびにガス状汚染物質(NOx等)を浄化す
る。そして、集塵部の温度が高くなった場合には、ガス
状汚染物質(NOx等)は高温条件下で活性化した触媒
と反応して浄化され、粒子状汚染物質(PM)は高温条
件下であるので自ら燃焼を促進させて浄化されるため、
放電部への通電を停止させる。このように、放電部での
消費電力量を抑え、かつ粒子状汚染物質(PM)、およ
びガス状汚染物質(NOx等)を高効率に浄化すること
ができる。
According to a fifth aspect of the present invention, when the temperature of the dust collecting section is high, the power supply to the discharge section is stopped. In other words, when the temperature of the dust collecting part is low, the particulate matter (P) is reacted with radicals, active gas, and the like generated by energizing the discharge part.
M) as well as gaseous pollutants (such as NOx). Then, when the temperature of the dust collecting section becomes high, the gaseous pollutants (NOx, etc.) react with the activated catalyst under high temperature conditions and are purified, and the particulate pollutants (PM) are removed under high temperature conditions. Because it promotes combustion and is purified,
Stop supplying power to the discharge unit. As described above, it is possible to suppress the power consumption in the discharge unit and to purify the particulate pollutant (PM) and the gaseous pollutant (NOx or the like) with high efficiency.

【0016】[0016]

【発明の実施の形態】以下、本発明の一実施形態である
内燃機関の排気浄化装置を、図面を参照して詳細に説明
する。なお、図1、図2に示すように、排気浄化装置1
は内燃機関であるエンジン30の排気管31の途中に配
置したプラズマ発生装置2、および触媒付きDPF(D
iesel Particulate Filter)
32と、プラズマ発生装置2内に配置した電極3に高周
波の交流高電圧を印加する高圧電源発生部4とにより構
成される。また、プラズマ発生装置2と触媒付きDPF
32とを、排ガスが流れる流路の上流側と下流側に分け
て配置する構成とした。つまり、プラズマ発生装置2を
排ガスが流れる流路の上流側に配置し、触媒付きDPF
32をプラズマ発生装置2の排ガス下流側位置に配置す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an exhaust gas purifying apparatus for an internal combustion engine according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that, as shown in FIGS.
Is a plasma generator 2 arranged in the middle of an exhaust pipe 31 of an engine 30, which is an internal combustion engine, and a DPF (D
iesel Particulate Filter)
32, and a high-voltage power generation unit 4 for applying a high-frequency AC high voltage to the electrodes 3 arranged in the plasma generator 2. Further, the plasma generator 2 and a DPF with a catalyst are used.
32 are arranged separately on the upstream side and the downstream side of the flow path through which the exhaust gas flows. That is, the plasma generator 2 is arranged on the upstream side of the flow path through which the exhaust gas flows, and the DPF with the catalyst is provided.
32 is disposed at a position on the downstream side of the exhaust gas of the plasma generator 2.

【0017】先ず、プラズマ発生装置2の構成を図2、
図3を用いて説明する。図2は、本発明の一実施形態の
プラズマ発生装置2の概略構成図である。図3は、図2
中の絶縁基板5を示す詳細図である。プラズマ発生装置
2内には、複数の絶縁基板5が所定間隔で平行に配置さ
れ、各絶縁基板5間に排ガスが通過する偏平な流路6が
形成されている。各絶縁基板5は、放電の生じやすい誘
電性のある耐熱性絶縁体(例えばアルミナ等のセラミッ
ク、ガラス等)で形成されている。
First, the configuration of the plasma generator 2 is shown in FIG.
This will be described with reference to FIG. FIG. 2 is a schematic configuration diagram of the plasma generator 2 according to one embodiment of the present invention. FIG. 3 shows FIG.
FIG. 3 is a detailed view showing an insulating substrate 5 in the inside. In the plasma generator 2, a plurality of insulating substrates 5 are arranged in parallel at predetermined intervals, and a flat flow path 6 through which exhaust gas passes is formed between the insulating substrates 5. Each of the insulating substrates 5 is formed of a dielectric heat-resistant insulator (for example, ceramic such as alumina, glass, or the like) in which electric discharge easily occurs.

【0018】各絶縁基板5内には、それぞれ印刷導体又
は導電板によって形成された放電用の電極3が埋め込ま
れている。この各電極3の一方に形成された接続端子部
3a(図3参照)は、高周波の高圧交流電圧を発生する
高圧電源発生装置4に接続され、他方は、グランド(ア
ース電位)側に接続されている。このように、排ガスが
流れる流路6を挟んで各電極3を対向させて配置し、こ
れら複数の電極3に高圧電源発生部4からの高周波の交
流高電圧を印加しプラズマを発生させて請求項1記載の
放電部を構成している。
In each insulating substrate 5, a discharge electrode 3 formed by a printed conductor or a conductive plate is embedded. A connection terminal portion 3a (see FIG. 3) formed on one side of each of the electrodes 3 is connected to a high-voltage power generator 4 for generating a high-frequency high-voltage AC voltage, and the other is connected to a ground (earth potential) side. ing. As described above, the electrodes 3 are arranged to face each other with the flow path 6 through which the exhaust gas flows, and a high-frequency AC high voltage from the high-voltage power generation unit 4 is applied to the plurality of electrodes 3 to generate plasma. Item 1 constitutes the discharge section.

【0019】次に、プラズマ発生装置2の排ガス下流側
位置に配置される触媒付きDPF32の構成を図4、図
5、および図6を用いて説明する。図4は、図1に示し
た触媒付きDPF32の斜視図である。図5は、触媒付
きDPFの断面構造を示す概略構成図である。図6は、
図5中の隔壁A部での作用を示す説明図である。
Next, the structure of the DPF 32 with a catalyst disposed at a position downstream of the exhaust gas of the plasma generator 2 will be described with reference to FIGS. 4, 5 and 6. FIG. FIG. 4 is a perspective view of the DPF 32 with a catalyst shown in FIG. FIG. 5 is a schematic configuration diagram showing a cross-sectional structure of a DPF with a catalyst. FIG.
It is explanatory drawing which shows the effect | action in the partition A part in FIG.

【0020】触媒付きDPF32は、第1端10が開口
されるとともに第2端11が封止部材15により封止さ
れた入側室12と、第2端11が開口されるとともに第
1端10が封止部材15により封止された出側室13と
を有している。本形態では、図4に示すように、ハニカ
ム体構成とし、第1端10および第2端11の両端面1
0、11を市松模様のパターンとした。そして、入側室
12と出側室13とを触媒を担持させた多孔質セラミッ
ク材の隔壁14で区画しつつ交互に配置し、請求項1記
載の集塵部を構成している。
The DPF 32 with a catalyst has an entrance chamber 12 having a first end 10 opened and a second end 11 sealed by a sealing member 15, a second end 11 opened and a first end 10 opened. The outlet chamber 13 is sealed by the sealing member 15. In this embodiment, as shown in FIG. 4, a honeycomb structure is adopted, and both end faces 1 of the first end 10 and the second end 11 are formed.
0 and 11 are checkerboard patterns. The inlet side chamber 12 and the outlet side chamber 13 are alternately arranged while being partitioned by a partition wall 14 made of a porous ceramic material carrying a catalyst, thereby constituting a dust collecting section according to claim 1.

【0021】また、入側室12、および出側室13と接
する隔壁14にNOx吸蔵触媒を担持させる。このNO
x吸蔵触媒は、Pt(プラチナ)、Ba(バリウム)を
主成分とし、NOx吸蔵還元型三元触媒とも呼ばれる。
そして、エンジンでの燃焼を希薄空燃比燃焼(リーン燃
焼時)、理論空燃比燃焼、および濃密空燃比燃焼(リッ
チ燃焼)を織り交ぜるように制御する図示しない電子制
御装置(以下、単にECUという)を備え、このような
燃焼制御条件下で、上記した触媒付きDPF32を用い
て粒子状汚染物質(PM)、ならびにガス状汚染物質
(NOx等)を浄化するものである。
A NOx storage catalyst is carried on a partition wall 14 which is in contact with the inlet chamber 12 and the outlet chamber 13. This NO
The x storage catalyst contains Pt (platinum) and Ba (barium) as main components, and is also called a NOx storage reduction three-way catalyst.
An electronic control unit (hereinafter simply referred to as ECU) that controls the combustion in the engine so as to intermix lean air-fuel ratio combustion (at the time of lean combustion), stoichiometric air-fuel ratio combustion, and dense air-fuel ratio combustion (rich combustion). ) To purify particulate pollutants (PM) and gaseous pollutants (NOx and the like) using the above-described DPF 32 with catalyst under such combustion control conditions.

【0022】上記システムは、上述したNOx吸蔵触媒
を担持した触媒付きDPF32での浄化作用と、プラズ
マ発生装置2から発生するプラズマによる浄化作用とを
組合わせることで、高効率に粒子状汚染物質(PM)、
ならびにガス状汚染物質(NOx等)を浄化する排気浄
化装置1の構成とした。なお、図6に示すように隔壁1
4の構造は、入側室12に導入された排ガスが出側室1
3へ通過して排出されるよう隙間状の空間を備えた多孔
質セラミック材よりなる。図6中のBは、隙間状の空間
に捕捉されたPMを示す。
The above system combines the purifying action of the DPF 32 with the catalyst carrying the NOx storage catalyst and the purifying action by the plasma generated from the plasma generator 2 to provide highly efficient particulate contaminants ( PM),
In addition, the exhaust gas purifying apparatus 1 is configured to purify gaseous pollutants (NOx and the like). In addition, as shown in FIG.
The exhaust gas introduced into the inlet chamber 12 is discharged from the outlet chamber 1.
3 is made of a porous ceramic material having a gap-like space so as to pass through and be discharged. B in FIG. 6 indicates PM captured in the gap-like space.

【0023】プラズマ発生装置2と触媒付きDPF32
とは、排ガスが流れる流路の上流側と下流側に分けて配
置し、プラズマ発生装置2が触媒付きDPF32に影響
されない配置構成とした。つまり、プラズマ発生装置2
の電極3間に集塵部である触媒付きDPF32を鋏む構
成ではないので、電極3間の距離L(図2中に図示)が
大きくなる事はない。ここで、電極3間の距離が大きく
なると、要求印加電圧(放電を発生させることができる
電圧)が高くなり放電が困難になるが、触媒付きDPF
32がプラズマ発生装置2と分けて配置されるため、電
極3間の距離Lを任意に設定可能となる。従って、放電
部での放電が安定する電極3間距離を設定でき、放電の
安定したプラズマ発生装置2を実現できる。
Plasma generator 2 and DPF 32 with catalyst
Means that the plasma generator 2 is arranged separately on the upstream side and the downstream side of the flow path through which the exhaust gas flows, and the plasma generator 2 is not influenced by the DPF 32 with a catalyst. That is, the plasma generator 2
Since the DPF 32 with a catalyst, which is a dust collecting portion, is not sandwiched between the electrodes 3, the distance L between the electrodes 3 (shown in FIG. 2) does not increase. Here, as the distance between the electrodes 3 increases, the required applied voltage (voltage at which discharge can be generated) increases, making discharge difficult.
Since 32 is arranged separately from the plasma generator 2, the distance L between the electrodes 3 can be set arbitrarily. Therefore, the distance between the electrodes 3 at which the discharge in the discharge section is stable can be set, and the plasma generator 2 with stable discharge can be realized.

【0024】なお、上述した構成の排気浄化装置1にお
いて、エンジン30が始動された以降に高圧電源発生装
置4が、プラズマ発生装置2へ高周波の高圧交流電圧を
常時通電するのではなく、触媒付きDPF32温度を検
出可能な周辺位置に温度検知部(図示しない)を備え、
温度検知部が検知する温度状態に合わせて、プラズマ発
生装置2への通電を制御する制御部(図示しない)を高
圧電源発生装置4内部、あるいはECUの内部に備え
る。そして、例えば触媒付きDPF32が高温状態であ
ると検出したときには、制御部がプラズマ発生装置2へ
の通電を停止させるように制御する。
In the exhaust gas purifying apparatus 1 having the above-described structure, after the engine 30 is started, the high-voltage power generator 4 does not always supply a high-frequency high-voltage AC voltage to the plasma generator 2 but includes a catalyst. A temperature detection unit (not shown) is provided at a peripheral position where the temperature of the DPF 32 can be detected,
A control unit (not shown) for controlling the power supply to the plasma generator 2 according to the temperature state detected by the temperature detector is provided in the high-voltage power supply 4 or the ECU. Then, for example, when detecting that the DPF 32 with a catalyst is in a high temperature state, the control unit controls to stop the power supply to the plasma generator 2.

【0025】そして、温度検知部が触媒が活性していな
い又は活性が不足している低温状態であると検出したと
きには、プラズマ発生装置2への通電を行うことにより
発生するラジカルや活性ガス等と反応させて、粒子状汚
染物質(PM)、ならびにガス状汚染物質(NOx等)
を浄化する。また、温度検知部が触媒のみで排ガス浄化
が可能となる高温状態であると検出したときにプラズマ
発生装置2への通電を停止させる。なお、これら浄化反
応の詳細は、後述する。
When the temperature detecting section detects that the catalyst is in a low temperature state in which the catalyst is not active or insufficient in activity, radicals and active gas generated by energizing the plasma generator 2 are removed. After reacting, particulate pollutants (PM) and gaseous pollutants (NOx, etc.)
To purify. When the temperature detecting unit detects that the exhaust gas can be purified only by the catalyst in a high temperature state, the power supply to the plasma generator 2 is stopped. The details of these purification reactions will be described later.

【0026】以上のように構成した排気浄化装置1の作
用について、以下説明する。エンジン30が始動され
て、NOx等のガス状汚染物質、および粒子状汚染物質
(PM)等の有害成分を含んだ排ガスがプラズマ発生装
置2に導かれる状態、かつ温度検知部が低温状態である
と検出したときには、高圧電源発生装置4から各流路6
を挟んで対向する複数の電極3に高周波の高圧交流電圧
が印加される。
The operation of the exhaust gas purifying apparatus 1 configured as described above will be described below. When the engine 30 is started, exhaust gas containing harmful components such as gaseous pollutants such as NOx and particulate contaminants (PM) is led to the plasma generator 2, and the temperature detector is in a low temperature state. Is detected from the high-voltage power generator 4
A high-frequency high-voltage AC voltage is applied to the plurality of electrodes 3 opposed to each other with the.

【0027】この高周波の高圧交流電圧が電極3に印加
され、電極3間に放電が発生することにより、排ガス中
の酸素分子と放電による加速電子eとが反応し、Oラジ
カル(O*)が生成される。そして、このOラジカル
(O*)と排ガス中の一酸化窒素(NO)とが結合し、
二酸化窒素(NO2)が生成される。
When this high-frequency high-voltage AC voltage is applied to the electrodes 3 and a discharge is generated between the electrodes 3, oxygen molecules in the exhaust gas react with accelerated electrons e due to the discharge, and O radicals (O *) are generated. Generated. Then, the O radical (O *) and nitrogen monoxide (NO) in the exhaust gas are combined,
Nitrogen dioxide (NO 2 ) is produced.

【0028】ここで、有害成分である排ガス中の粒子状
汚染物質(PM)の浄化は、炭素(C)を主成分とする
煤(SOOT)、および炭化水素(HC)を主成分とす
る未燃焼体(S.O.F.)に大別される。この炭素
(C)、および炭化水素(HC)と、放電により生成さ
れる二酸化窒素(NO2)とは、次式に示すように反応
する。煤(SOOT)の場合は、C+NO2→CO2+N
Oとなり、未燃焼体(S.O.F.)の場合は、HC+
NO2→CO2+H2O+NOのように反応する。
Here, the particulate pollutants (PM) in the exhaust gas, which are harmful components, are purified by soot (SOOT) containing carbon (C) as a main component and unreacted component containing hydrocarbon (HC) as a main component. Combustion bodies (SOF) are roughly classified. The carbon (C) and the hydrocarbon (HC) react with nitrogen dioxide (NO 2 ) generated by the discharge as shown in the following equation. In the case of soot (SOOT), C + NO 2 → CO 2 + N
O, and in the case of an unburned body (SOF), HC +
It reacts like NO 2 → CO 2 + H 2 O + NO.

【0029】なお、粒子状汚染物質(PM)と放電によ
り生成される二酸化窒素(NO2)とは、低温環境下で
も反応する。PM浄化の反応は、隙間状の空間を備えた
多孔質セラミック材よりなる隔壁14にて捕捉され、上
流側よりのラジカルや活性ガス等との接触機会を増や
し、二酸化炭素に変換され触媒付きDPF32の隙間状
の空間から除去される。
The particulate contaminants (PM) react with nitrogen dioxide (NO 2 ) generated by the discharge even in a low-temperature environment. The PM purification reaction is captured by the partition wall 14 made of a porous ceramic material having a gap-like space, increases the chance of contact with radicals or active gas from the upstream side, is converted into carbon dioxide, and is converted into carbon dioxide. Removed from the gap-shaped space.

【0030】次に、有害成分であるガス状汚染物の窒素
酸化物(NOx)の浄化においては、ガス状汚染物(N
Ox)と放電により生成されるOラジカル(O*)と
が、プラズマ発生装置2および触媒付きDPF32の双
方を通過しながら次式に示すように還元反応し、無害な
ガス(CO2、N2)、および水となって排出される。
Next, in the purification of nitrogen oxides (NOx) of gaseous pollutants which are harmful components, gaseous pollutants (N
Ox) and O radicals (O *) generated by the discharge undergo a reduction reaction as shown in the following equation while passing through both the plasma generator 2 and the DPF 32 with a catalyst, and produce harmless gases (CO 2 , N 2). ), And discharged as water.

【0031】窒素酸化物(NOx)は、二酸化窒素(N
2)と一酸化窒素(NO)の混合物であり、放電によ
り一酸化窒素(NO)を二酸化窒素(NO2)に酸化さ
せて排ガスの浄化を促進させている。また、還元剤であ
る炭化水素(HC)は、未燃焼成分として排ガス中に含
まれている。そこで、二酸化窒素(NO2)の場合は、
NO2+HC→N2+CO2+H2Oとなり、浄化される。
特に、二酸化窒素(NO2)の方が還元されやすい性質
がある。粒子状汚染物質(PM)は、触媒の酸化作用に
より燃焼処理される。
Nitrogen oxide (NOx) is converted to nitrogen dioxide (N
O 2 ) and nitric oxide (NO), and oxidizes nitric oxide (NO) to nitrogen dioxide (NO 2 ) by discharge to promote purification of exhaust gas. Further, hydrocarbon (HC) as a reducing agent is contained in exhaust gas as an unburned component. Therefore, in the case of nitrogen dioxide (NO 2 ),
NO 2 + HC → N 2 + CO 2 + H 2 O and is purified.
In particular, nitrogen dioxide (NO 2 ) has a property of being easily reduced. Particulate pollutants (PM) are burned by the oxidizing action of the catalyst.

【0032】NOx吸蔵触媒を担持させた触媒付きDP
F32にあっては、ガス状汚染物の窒素酸化物(NOx
等)の浄化作用、および粒子状汚染物質(PM)の酸化
を助長させ、無害なガス、および水となって排出させ
る。
A catalyst-equipped DP carrying a NOx storage catalyst
In F32, nitrogen oxides (NOx
Etc.) and the oxidation of particulate pollutants (PM), and emit as harmless gas and water.

【0033】省電力のため、エンジン始動後、触媒付き
DPF32周辺の温度を検出する温度検知部が高温状態
であると検出した時、つまり、触媒付きDPF32に担
持させた触媒の温度が上がり触媒が活性化した時におい
ては、プラズマ発生装置2への通電を停止させる。この
時、ガス状汚染物質(NOx等)と粒子状汚染物質(P
M)は、ともに高温条件下で活性化した触媒と反応して
浄化させる。
For power saving, when the temperature detector for detecting the temperature around the DPF 32 with the catalyst detects that the temperature around the DPF 32 with the catalyst is in a high temperature state after starting the engine, that is, the temperature of the catalyst carried on the DPF 32 with the catalyst rises, When activated, the power supply to the plasma generator 2 is stopped. At this time, gaseous pollutants (such as NOx) and particulate pollutants (P
M) reacts with the activated catalyst under high temperature conditions to purify.

【0034】図7は、本発明のプラズマ発生装置で生成
されるNO2とその周辺温度との関係を示し、プラズマ
発生装置2への通電を停止させると、破線(ロ)に示す
ように低温域では触媒付きDPF32が活性していない
ので、低温になる程にNO2の生成量は不足する。しか
し、プラズマ発生装置2への通電を行うことにより発生
するプラズマと反応して、実線(イ)に示すように低温
域であっても二酸化窒素(NO2)が生成され、排ガス
中の粒子状汚染物質(PM)、NOxの浄化を促進す
る。
FIG. 7 shows the relationship between NO 2 generated by the plasma generator of the present invention and the ambient temperature. When the power supply to the plasma generator 2 is stopped, the temperature becomes lower as indicated by the broken line (b). Since the catalyst-added DPF 32 is not active in the range, the lower the temperature becomes, the more the amount of NO 2 generated becomes insufficient. However, it reacts with the plasma generated by energizing the plasma generator 2 to generate nitrogen dioxide (NO 2 ) even in a low temperature range as shown by the solid line (a), and the particulate matter in the exhaust gas Promotes purification of pollutants (PM) and NOx.

【0035】図8は、触媒付きDPF32にて吸蔵され
るNOxとその周辺温度との関係を示し、プラズマ発生
装置2への通電を行うことによりNOがNO2に酸化さ
れ、プラズマ発生装置2の排ガス下流に配置したNOx
吸蔵触媒での吸蔵を容易にすることから、NOx吸蔵触
媒が吸蔵するNOx量は、プラズマ発生装置2への通電
を停止した場合(破線(ニ))に比べて、実線(ハ)に
示すように低温域で増加させている。
FIG. 8 shows the relationship between the NOx occluded by the DPF 32 with catalyst and its surrounding temperature. When the plasma generator 2 is energized, NO is oxidized to NO 2 , NOx located downstream of exhaust gas
Since the occlusion by the occlusion catalyst is facilitated, the amount of NOx occluded by the NOx occlusion catalyst is indicated by a solid line (c) as compared with the case where the power supply to the plasma generator 2 is stopped (broken line (d)). In the low temperature range.

【0036】図9は、プラズマ発生装置および触媒付き
DPF32にて燃焼するPMとその周辺温度との関係を
示し、触媒付きDPF32が低温状態でPMの燃焼が促
進されていない状態(破線(ヘ))に対して、プラズマ
発生装置2への通電を行う放電自体およびNO2による
酸化促進により、低温域であってもPM燃焼が促進され
る(実線(ホ))。
FIG. 9 shows the relationship between the PM burning in the plasma generator and the DPF 32 with a catalyst and the surrounding temperature. The state where the combustion of the PM is not promoted when the DPF 32 with the catalyst is in a low temperature state (dashed line (f)) In contrast, due to the discharge itself for energizing the plasma generator 2 and the promotion of oxidation by NO 2 , PM combustion is promoted even in a low temperature range (solid line (e)).

【0037】このように、特に低温時での触媒付きDP
F32による粒子状汚染物質(PM)、およびガス状汚
染物質(NOx等)の浄化性能の低下をプラズマ発生装
置2への通電により補っている。また、高温時にはプラ
ズマ発生装置2への通電を停止させても触媒付きDPF
32が活性して粒子状汚染物質(PM)、およびガス状
汚染物質(NOx等)の浄化を行う。よって、プラズマ
発生装置2と触媒付きDPF32とを組合わせた排気浄
化装置1のプラズマ発生装置2での消費電力量を抑え、
かつ粒子状汚染物質(PM)、およびガス状汚染物質
(NOx等)を高効率に浄化することが可能な内燃機関
の排気浄化装置を提供できる。
As described above, the DP with a catalyst particularly at a low temperature is used.
The reduction in the purification performance of particulate contaminants (PM) and gaseous pollutants (NOx and the like) by F32 is compensated for by energizing the plasma generator 2. Also, at high temperature, even if the power supply to the plasma generator 2 is stopped, the DPF with catalyst
32 is activated to purify particulate pollutants (PM) and gaseous pollutants (such as NOx). Therefore, the power consumption of the plasma generation device 2 of the exhaust gas purification device 1 combining the plasma generation device 2 and the DPF 32 with a catalyst is suppressed,
Further, it is possible to provide an exhaust gas purifying apparatus for an internal combustion engine, which is capable of purifying particulate pollutants (PM) and gaseous pollutants (NOx and the like) with high efficiency.

【0038】なお、本発明の実施にあたり、触媒付きD
PF32に担持する触媒をNOx吸蔵触媒としたが、こ
のNOx吸蔵触媒の代わりに選択還元触媒、3元触媒、
および酸化触媒のいずれの触媒を選択するか、あるいは
複数の触媒を組合わせて使用してもよい。これによれ
ば、担持させた触媒が酸化触媒の場合にあっては、粒子
状汚染物質(PM)の酸化を助長させ、無害なガス(C
2、NO)、および水となって排出させる。また、担
持させた触媒が、選択還元触媒、3元触媒、および酸化
触媒のいずれの触媒であっても、ガス状汚染物の窒素酸
化物(NOx等)の浄化作用を助長させる効果がある。
In the practice of the present invention, a catalyst-equipped D
The catalyst supported on the PF32 was a NOx storage catalyst, but instead of the NOx storage catalyst, a selective reduction catalyst, a three-way catalyst,
Any one of the catalyst and the oxidation catalyst may be selected, or a plurality of catalysts may be used in combination. According to this, when the supported catalyst is an oxidation catalyst, it promotes the oxidation of particulate contaminants (PM), and the harmless gas (C
O 2 , NO) and water. In addition, regardless of whether the supported catalyst is a selective reduction catalyst, a three-way catalyst, or an oxidation catalyst, there is an effect of promoting the action of purifying nitrogen oxides (such as NOx) of gaseous pollutants.

【0039】また、本発明の実施にあたり、温度検知部
を触媒付きDPF32の温度の検出は、排ガス通路、あ
るいはプラズマ発生装置2を含むいずれか周辺に配置さ
せても、触媒付きDPF32の温度を推定できる温度信
号としてプラズマ発生装置2への通電を制御可能な信号
とすることができる。
In implementing the present invention, the temperature of the catalyst-provided DPF 32 can be estimated by detecting the temperature of the catalyst-provided DPF 32 regardless of whether the temperature detector is disposed in the exhaust gas passage or in any vicinity including the plasma generator 2. As a possible temperature signal, a signal that can control the energization of the plasma generator 2 can be used.

【0040】また更に、本発明の実施にあたり、温度制
御部の配置場所を、高圧電源発生装置4内部に備えた
が、ECUの内部に備える構成としてもよい。
Further, in the embodiment of the present invention, the place where the temperature control unit is disposed is provided inside the high-voltage power supply generator 4, but it may be provided inside the ECU.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の排気浄化装置全体を示す
概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating an entire exhaust gas purification apparatus according to an embodiment of the present invention.

【図2】本発明の一実施形態のプラズマ発生装置の概略
構成図である。
FIG. 2 is a schematic configuration diagram of a plasma generator of one embodiment of the present invention.

【図3】図2中の絶縁基板の詳細を示し、(a)は平面
図、(b)は図3(a)の側面図である。
3A and 3B show details of the insulating substrate in FIG. 2, wherein FIG. 3A is a plan view and FIG. 3B is a side view of FIG.

【図4】図1に示した触媒付きDPFの斜視図である。FIG. 4 is a perspective view of the DPF with a catalyst shown in FIG. 1;

【図5】触媒付きDPFの断面構造を示す概略構成図で
ある。
FIG. 5 is a schematic configuration diagram showing a cross-sectional structure of a DPF with a catalyst.

【図6】図5中の隔壁A部での作用を示す説明図であ
る。
FIG. 6 is an explanatory diagram showing an operation at a partition A portion in FIG.

【図7】本発明のプラズマ発生装置で生成されるNO2
とその周辺温度との関係を示す特性図である。
FIG. 7 shows NO 2 generated by the plasma generator of the present invention.
FIG. 4 is a characteristic diagram showing a relationship between the temperature and the ambient temperature.

【図8】触媒付きDPFにて吸蔵されるNOxとその周
辺温度との関係を示す特性図である。
FIG. 8 is a characteristic diagram showing a relationship between NOx stored in a DPF with a catalyst and an ambient temperature thereof.

【図9】プラズマ発生装置および触媒付きDPFにて燃
焼するPMとその周辺温度との関係を示す特性図であ
る。
FIG. 9 is a characteristic diagram showing a relationship between PM burning in a plasma generating device and a DPF with a catalyst and its surrounding temperature.

【図10】従来のプラズマ発生装置の概略構成図であ
る。
FIG. 10 is a schematic configuration diagram of a conventional plasma generator.

【符号の説明】[Explanation of symbols]

1 排気浄化装置 2 プラズマ発生装置 3 電極(放電部) 5 絶縁基板 6 流路 32 触媒付きDPF(集塵部) DESCRIPTION OF SYMBOLS 1 Exhaust purification device 2 Plasma generator 3 Electrode (discharge part) 5 Insulating substrate 6 Flow path 32 DPF with catalyst (dust collection part)

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/02 301 F01N 3/02 301C 321A 321 3/28 301C 3/28 301 9/00 Z 9/00 B01D 53/36 103B Fターム(参考) 3G090 AA03 AA06 DA11 DA13 DB01 DB02 DB03 3G091 AA02 AA18 AA28 AB02 AB03 AB05 AB06 AB13 AB14 BA00 BA03 BA14 BA15 BA19 DB10 EA15 EA18 FA02 FA04 FB02 FB10 FB11 FB12 FC07 GA06 GA20 GA24 GB01W GB03W GB06W GB10X GB17X HA08 HA14 HA38 4D019 AA01 BA05 BB07 BC07 CA01 4D048 AA06 AA14 AB01 BA15X BA30X BB02 CD05 EA03Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F01N 3/02 301 F01N 3/02 301C 321A 321 3/28 301C 3/28 301 9/00 Z 9/00 B01D 53 / 36 103B F term (reference) 3G090 AA03 AA06 DA11 DA13 DB01 DB02 DB03 3G091 AA02 AA18 AA28 AB02 AB03 AB05 AB06 AB13 AB14 BA00 BA03 BA14 BA15 BA19 DB10 EA15 EA18 FA02 FA04 FB02 FB10 FB11 FB12 FC07 GA06 GB10 GB24 GB07 GB17 GB24 HA38 4D019 AA01 BA05 BB07 BC07 CA01 4D048 AA06 AA14 AB01 BA15X BA30X BB02 CD05 EA03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排ガスが流れる流路の上流側
に配置されてプラズマを発生させる放電部と、 前記放電部の下流側の前記流路に配置されて前記排ガス
中の粒子状汚染物質を捕捉する集塵部とを備え、 前記集塵部は、第1端が開口されるとともに第2端が封
止された入側室と、前記第2端が開口されるとともに前
記第1端が封止された出側室とを有し、 前記入側室と前記出側室とを触媒を担持させた多孔質フ
ィルタ層の隔壁で区画しつつ交互に配置したことを特徴
とする内燃機関の排気浄化装置。
A discharge unit disposed upstream of a flow path through which exhaust gas of an internal combustion engine flows to generate plasma; and a particulate contaminant in the exhaust gas disposed in the flow path downstream of the discharge unit. A dust collecting portion for capturing the dust, wherein the dust collecting portion has an opening at a first end and a sealed second end, and an opening at the second end, and the first end is open. An exhaust purification device for an internal combustion engine, comprising: a sealed outlet chamber; wherein the inlet chamber and the outlet chamber are alternately arranged while being partitioned by a partition wall of a porous filter layer supporting a catalyst. .
【請求項2】 前記多孔質フィルタ層は、セラミック材
を用いて構成したことを特徴とする請求項1に記載の内
燃機関の排気浄化装置。
2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the porous filter layer is formed using a ceramic material.
【請求項3】 前記集塵部は、ハニカム体を構成する各
通路の一方端を交互に封止して、前記ハニカム体の端面
が市松模様のパターンとされ、かつ前記各通路の隔壁に
触媒を担持した多孔質セラミックで構成されたことを特
徴とする請求項1または請求項2に記載の内燃機関の排
気浄化装置。
3. The dust collecting section alternately seals one end of each passage constituting the honeycomb body, the end face of the honeycomb body has a checkerboard pattern, and the partition wall of each passage has a catalyst. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas purifying apparatus is made of a porous ceramic that carries thereon.
【請求項4】 前記触媒は、NOx吸蔵触媒としたこと
を特徴とする請求項1ないし請求項3のいずれか1項に
記載の内燃機関の排気浄化装置。
4. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein said catalyst is a NOx storage catalyst.
【請求項5】 前記集塵部の温度が高いときには、前記
放電部への通電を停止させることを特徴とする請求項1
ないし請求項4のいずれか1項に記載の内燃機関の排気
浄化装置。
5. The method according to claim 1, wherein when the temperature of the dust collecting section is high, the current supply to the discharging section is stopped.
An exhaust gas purification apparatus for an internal combustion engine according to any one of claims 4 to 4.
JP2001017410A 2001-01-25 2001-01-25 Exhaust emission control device for internal combustion engine Withdrawn JP2002221025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001017410A JP2002221025A (en) 2001-01-25 2001-01-25 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001017410A JP2002221025A (en) 2001-01-25 2001-01-25 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2002221025A true JP2002221025A (en) 2002-08-09

Family

ID=18883623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001017410A Withdrawn JP2002221025A (en) 2001-01-25 2001-01-25 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2002221025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163886A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2010149053A (en) * 2008-12-25 2010-07-08 Kyocera Corp Dielectric structure, discharge device using the dielectric structure, fluid modification device, and reaction system
CN113047934A (en) * 2021-03-24 2021-06-29 河北师范大学 Diesel engine exhaust aftertreatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163886A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2010149053A (en) * 2008-12-25 2010-07-08 Kyocera Corp Dielectric structure, discharge device using the dielectric structure, fluid modification device, and reaction system
CN113047934A (en) * 2021-03-24 2021-06-29 河北师范大学 Diesel engine exhaust aftertreatment device

Similar Documents

Publication Publication Date Title
US7043902B2 (en) Exhaust gas purification system
US7510600B2 (en) Gas purifying apparatus
JP5045629B2 (en) Exhaust gas purification device
US20100072055A1 (en) Gas purifying device, gas purifying system and gas purifying method
EP1719883A1 (en) System and method for purifying exhaust gas of diesel engine
KR20040030374A (en) Gas purifying system, gas purifying method and discharge reaction apparatus utilized for gas purifying system
JPH11324652A (en) Method for reducing emission of harmful matter from automobile
JP5474468B2 (en) Exhaust gas purification device using plasma discharge
US7121079B2 (en) System for exhaust gas treatment comprising a gas ionizing system with ionized air injection
JP4887888B2 (en) Exhaust gas purification device for internal combustion engine
JP4189337B2 (en) Exhaust gas purification system
US20050079112A1 (en) Surface discharge non-thermal plasma reactor and method
JP2001123823A (en) Mechanism for converting particulate matter in exhaust gas from gasoline engine
EP2075422A1 (en) Exhaust gas treatment system for an internal combustion engine
JP2002256851A (en) Exhaust gas purifier of internal combustion engine
JP2002221027A (en) Exhaust emission control device for internal combustion engine
JP2002221025A (en) Exhaust emission control device for internal combustion engine
JP2001295634A (en) Exhaust emission control device
JP2002213228A (en) Exhaust emission control device for internal combustion engine
JP2002276333A (en) Discharge type exhaust emission control device
JP4582806B2 (en) Exhaust gas purification device
JP2005344688A (en) Exhaust emission control device of internal combustion engine
JP2009281154A (en) Exhaust gas treatment device
JP2007132239A (en) Exhaust emission control device for internal combustion engine
JPS63268911A (en) Exhaust purifier for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070427

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090717