JP2002220230A - Super conductive material of quantum-defect flux pinning type and method of manufacturing the same - Google Patents

Super conductive material of quantum-defect flux pinning type and method of manufacturing the same

Info

Publication number
JP2002220230A
JP2002220230A JP2001009276A JP2001009276A JP2002220230A JP 2002220230 A JP2002220230 A JP 2002220230A JP 2001009276 A JP2001009276 A JP 2001009276A JP 2001009276 A JP2001009276 A JP 2001009276A JP 2002220230 A JP2002220230 A JP 2002220230A
Authority
JP
Japan
Prior art keywords
superconducting
quantum defect
spin
magnetic flux
copper oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001009276A
Other languages
Japanese (ja)
Inventor
Hideo Ihara
英雄 伊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Japan Science and Technology Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001009276A priority Critical patent/JP2002220230A/en
Publication of JP2002220230A publication Critical patent/JP2002220230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconductive material of a quantum-defect flux pinning type which is a copper oxide super conductor having a spin quantum defect, a superconductive coherence length long in the direction of an axis c, and a small superconductive anisotropy, so as to have a large irreversible magnetic field (Hirr), a high critical electric current density (Jc), and a high superconductivity transition temperature (Tc), and to provide a method of manufacturing the same. SOLUTION: The spins of Cu elements around an Mg ion having no spin are largely polarized by spin interaction to be lined up in one direction. By the polarized magnetic field, superconductive pairs of electrons in the vicinity of the polarization are destroyed and become a non-superconductive phase or a superconductive phase having a low superconductivity transition temperature so that the phase is easily entered by a flux and acts as a flux pinning center.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はスピン量子欠陥によ
る磁束ピン止めセンターの導入により、高い超伝導臨界
温度(Tc)、高い臨界電流密度(Jc)と、高い不可
逆磁界(Hirr)を有する高性能高温超伝導材料と、
製造コストを大きく低減できる、その製造方法に関する
ものである。この材料と技術は超伝導材料技術としてエ
ネルギー、環境、情報通信、交通運輸、医療の多方面の
分野に利用することができる。本発明は高い超伝導臨界
温度(Tc)、高い臨界電流密度(Jc)と、高い不可
逆磁界(Hirr)を必要とし、また超伝導層に垂直方
向(この方向をc軸方向、層面内をa,b軸とする)の
c軸のみならずa,b軸方向にも長いコヒーレンス長
(ξ)を必要とする、あるいは超伝導性能が極めて優れ
ている超伝導材料とその製造技術を必要とする全ての分
野に利用可能である。
BACKGROUND OF THE INVENTION The present invention relates to a high performance device having a high superconducting critical temperature (Tc), a high critical current density (Jc) and a high irreversible magnetic field (Hirr) by introducing a flux pinning center by spin quantum defects. High-temperature superconducting material,
The present invention relates to a manufacturing method capable of greatly reducing manufacturing costs. This material and technology can be used as a superconducting material technology in various fields of energy, environment, information and communication, transportation, and medicine. The present invention requires a high superconducting critical temperature (Tc), a high critical current density (Jc), a high irreversible magnetic field (Hirr), and a direction perpendicular to the superconducting layer (this direction is the c-axis direction, and a , B axis), a long coherence length (ξ) is required not only in the c-axis direction but also in the a- and b-axis directions, or a superconducting material having extremely excellent superconducting performance and a manufacturing technique thereof are required. Available for all fields.

【0002】[0002]

【従来の技術】従来、高い超伝導異方性をもつ銅酸化物
超伝導体のY,Bi,Tl,Hg系超伝導体では、c軸
方向のコヒーレンス長(ξc)が0.3nm以下と短い
ため量子欠陥による磁束ピン止めセンターの導入は余り
有効には作用しない。そのため磁束ピン止めセンターの
導入は量子欠陥以外の、通常の欠陥(格子欠陥、転位、
空隙、粒界、析出相、アモルファス相など)によるミク
ロな非超伝導相の形成によってなされてきた。従ってこ
れまで銅酸化物超伝導体では、77Kにおける、特に高
磁場中での超伝導特性が十分高くなく、液体窒素温度で
の大規模な実用化が進展しない原因の一つであった。
2. Description of the Related Art Conventionally, in a copper oxide superconductor having a high superconducting anisotropy, a coherence length (ξc) in the c-axis direction is 0.3 nm or less in a Y, Bi, Tl, Hg-based superconductor. Due to its short length, the introduction of flux pinning centers due to quantum defects does not work very effectively. For this reason, the introduction of the flux pinning center is for normal defects (lattice defects, dislocations,
It has been achieved by the formation of a micro non-superconducting phase due to voids, grain boundaries, precipitated phases, amorphous phases, etc. Therefore, the superconducting properties of the copper oxide superconductor at 77 K, particularly in a high magnetic field, have not been sufficiently high, and this has been one of the causes of the failure of large-scale practical use at liquid nitrogen temperature.

【0003】また、これまでの層状構造をもつ銅酸化物
超伝導体では、電荷供給層が絶縁層または非超伝導層で
あり、c軸方向の超伝導結合が小さく、従って超伝導層
間の相互作用が小さいか、または超伝導層の厚さが薄か
ったため、超伝導異方性γが4から300程度と大きか
った。なお、γはコヒーレンス長ξの異方性比、または
磁場侵入深さλの異方性比で、γ=ξab/ξc=λc
/λabと定義する。
Further, in the conventional copper oxide superconductor having a layered structure, the charge supply layer is an insulating layer or a non-superconducting layer, and the superconducting coupling in the c-axis direction is small. The superconducting anisotropy γ was as large as about 4 to 300 because the action was small or the thickness of the superconducting layer was small. Here, γ is the anisotropy ratio of the coherence length 、 or the anisotropy ratio of the magnetic field penetration depth λ, and γ = {ab / ξc = λc
/ Λab.

【0004】このように超伝導異方性γが大きいので、
磁束が低磁場で動くため電気抵抗を発生し易く、Jc、
特に磁界下のJcや、電気抵抗が零(R=0)状態(完
全導電性)を保つ磁界の上限である不可逆磁界Hirr
が小さくなり、実用的な超伝導材料としての線材、バル
ク材としては多くの問題があった。
Since the superconducting anisotropy γ is large,
Since the magnetic flux moves in a low magnetic field, electric resistance is easily generated, and Jc,
In particular, the irreversible magnetic field Hirr, which is the upper limit of the magnetic field that maintains Jc under a magnetic field or the electrical resistance of zero (R = 0) (perfect conductivity).
And there have been many problems as wires and bulk materials as practical superconducting materials.

【0005】また異方性が大きいことからc軸方向の
(Jc)cが小さく、またc軸方向のコヒーレンス長ξ
cが短く、無配向状態での粒界のJcが極めて低かっ
た。また超伝導素子材料としてc軸配向積層構造型の超
伝導素子の特性、特にジョセフソン素子の電流密度が不
十分であった。
Further, since the anisotropy is large, (Jc) c in the c-axis direction is small, and the coherence length c in the c-axis direction.
c was short, and Jc at the grain boundary in a non-oriented state was extremely low. In addition, the characteristics of the c-axis oriented laminated structure type superconducting element as a superconducting element material, particularly the current density of the Josephson element were insufficient.

【0006】一方、銅酸化物超伝導体では、上記の理由
により量子欠陥による磁束ピン止めセンターの導入が有
効でないため、77KでのHirrを8T以上に上げる
には重イオンや中性子照射によるピン止めセンターの導
入に頼らざるを得なかった。これらの方法は、重イオン
や中性子を超伝導体に打ち込んでアモルファス相を形成
し、このアモルファス相を磁束ピン止めセンターにする
ものである。しかしながら、重イオンや中性子の打ち込
み深さは表面から1μm程度にしかならず、また、中性
子を打ち込んだ場合には超伝導体が放射能化してしまう
といった安全性上の問題もあり、実用化できる技術では
ない。
On the other hand, in the copper oxide superconductor, the introduction of the flux pinning center due to the quantum defect is not effective for the above-described reason. Therefore, in order to increase the Hirr at 77K to 8T or more, the pinning by heavy ion or neutron irradiation is required. I had to rely on the introduction of the center. In these methods, heavy ions or neutrons are implanted into a superconductor to form an amorphous phase, and this amorphous phase is used as a flux pinning center. However, the implantation depth of heavy ions and neutrons is only about 1 μm from the surface, and when neutrons are implanted, there is a safety problem that the superconductor becomes radioactive. Absent.

【0007】[0007]

【発明が解決しようとする課題】上記課題に鑑み、本発
明は、銅酸化物超伝導体において、c軸方向の超伝導コ
ヒーレンス長が長く、超伝導異方性が小さく、かつ、ス
ピン量子欠陥を有していることにより、不可逆磁界Hi
rr、臨界電流密度Jc及び超伝導転移温度Tcが高
い、量子欠陥磁束ピン止め型超伝導材料と、その製造方
法を提供することを目的としている。
In view of the above problems, the present invention provides a copper oxide superconductor having a long superconducting coherence length in the c-axis direction, a small superconducting anisotropy, and a spin quantum defect. Irreversible magnetic field Hi
It is an object of the present invention to provide a quantum defect flux pinned superconducting material having a high rr, a critical current density Jc, and a superconducting transition temperature Tc, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の量子欠陥磁束ピン止め型超伝導材料は、ス
ピン、スピン相互作用、交換相互作用、超交換相互作
用、及び/又は、スピン揺らぎ効果が超伝導機構の主要
部分である銅酸化物超伝導体において、スピンを有する
Cuイオン及び/又はOイオンの結晶格子点に、スピン
を持たないイオン、空格子、異種スピン状態のイオン、
及び/又は格子欠陥からなるスピン量子欠陥を有してお
り、スピン量子欠陥が超伝導コヒーレンス長程度の領域
に非超伝導相又は低い超伝導転移温度相を形成する効果
により、スピン量子欠陥が磁束のピン止め中心として作
用することを特徴とする。
In order to solve the above problems, the quantum defect magnetic flux pinned superconducting material of the present invention comprises a spin, spin interaction, exchange interaction, superexchange interaction, and / or In a copper oxide superconductor in which the spin fluctuation effect is a major part of the superconducting mechanism, ions having no spin, vacancies, and ions in different spin states are present at crystal lattice points of Cu ions and / or O ions having spin. ,
And / or a spin quantum defect consisting of a lattice defect, and the spin quantum defect forms a non-superconducting phase or a low superconducting transition temperature phase in a region of about the superconducting coherence length. It is characterized by acting as a pinning center.

【0009】上記構成において、好ましくは、Cu原子
の結晶格子点に、スピンを持たないイオンMg,Zn,
Ag又はAuを有する。この発明の好ましい例として
は、組成式Cu1-x x (Ba1-y Sry 2 (Ca
1-z Mgz n-1 (Cu1-w w n 2+n-v (式中、
M=Tl,Hg,Bi,Pb,Au,In,Sn,M
g,Ag,Mo,W,Re,Os,Ti,Cr,V,F
e,Ni, ランタニド系列元素の一元素または複数元
素、Z=Zn,Ti,Cr,V,Fe,Niの一元素ま
たは複数元素、0≦x<1,0≦y≦1,0≦z<1,
0≦w≦0.1,0≦v≦4,3≦n≦16)で表され
るスピン量子欠陥を有する銅酸化物超伝導体である。他
の好ましい例として、組成式Cu1-x x (Ba1-y
y 2 (Ca1-zMgz n-1 (Cu1-w Mgw n
2+n-v (式中、M =Tl,Hg,Bi,Pb,A
u,In,C,Sn,Mg,Ag,Mo,W,Re,O
s,Ti,Cr,V,Fe,Ni, ランタニド系列元素
の一元素または複数元素、0≦x<1,0≦y≦1,0
≦z<1,0≦w≦0.1,0≦v≦4,3≦n≦1
6)で表されるスピン量子欠陥を有する銅酸化物超伝導
体である。
In the above structure, preferably, ions having no spin, such as Mg, Zn,
It has Ag or Au. Preferred examples of the present invention, the composition formula Cu 1-x M x (Ba 1-y Sr y) 2 (Ca
1-z Mg z) n- 1 (Cu 1-w Z w) n O 2 + nv ( wherein,
M = T1, Hg, Bi, Pb, Au, In, Sn, M
g, Ag, Mo, W, Re, Os, Ti, Cr, V, F
e, Ni , one or more elements of the lanthanide series elements, Z = Zn, one or more elements of Ti, Cr, V, Fe, Ni, 0 ≦ x <1, 0 ≦ y ≦ 1, 0 ≦ z < 1,
It is a copper oxide superconductor having a spin quantum defect represented by 0 ≦ w ≦ 0.1, 0 ≦ v ≦ 4, 3 ≦ n ≦ 16). As another preferred example, the composition formula Cu 1-x M x (Ba 1-y S
r y) 2 (Ca 1- z Mg z) n-1 (Cu 1-w Mg w) n
O 2 + nv (where M = Tl, Hg, Bi, Pb, A
u, In, C, Sn, Mg, Ag, Mo, W, Re, O
s, Ti, Cr, V, Fe, Ni , one or more lanthanide series elements, 0 ≦ x <1, 0 ≦ y ≦ 1,0
≦ z <1, 0 ≦ w ≦ 0.1, 0 ≦ v ≦ 4, 3 ≦ n ≦ 1
It is a copper oxide superconductor having a spin quantum defect represented by 6).

【0010】他の好ましい例として、組成式Cu1-x
x (Ba1-y Sry 2 (Ca1-zMgz n-1 (Cu
1-w w n (O1-f f 2+n-v (式中、M=Tl,
Hg,Bi,Pb,Au,In,Sn,Mg,Ag,M
o,W,Re,Os,Ti,Cr,V,Fe,Ni,
ンタニド系列元素の一元素または複数元素、Z=Mg,
Zn,Ti,Cr,V,Fe,Niの一元素または複数
元素、0≦x<1,0≦y≦1,0≦z<1,0≦w≦
0.1,0≦f≦1,0≦v≦4,3≦n≦16)で表
されるスピン量子欠陥を有する銅酸化物超伝導体であ
る。
As another preferred example, the composition formula Cu 1-x M
x (Ba 1-y Sr y ) 2 (Ca 1-z Mg z) n-1 (Cu
1-w Zw ) n (O 1-f F f ) 2 + nv (where M = Tl,
Hg, Bi, Pb, Au, In, Sn, Mg, Ag, M
o, W, Re, Os, Ti, Cr, V, Fe, Ni , one or more lanthanide series elements, Z = Mg,
One or more elements of Zn, Ti, Cr, V, Fe, Ni, 0 ≦ x <1, 0 ≦ y ≦ 1, 0 ≦ z <1, 0 ≦ w ≦
0.1,0 ≦ f ≦ 1,0 ≦ v ≦ 4,3 ≦ n ≦ 16) is a copper oxide superconductor having a spin quantum defect.

【0011】この発明の他の態様によれば、スピン量子
欠陥を有する銅酸化物超伝導体が、組成式、Cu1-x
x (Ba1-y Sry 2 (Ca1-z Mgz n-1 (Cu
1-wMgw n (O1-f f 2+n-v (式中、M=T
l,Hg,Bi,Pb,Au,In,Sn,Mg,A
g,Mo,W,Re,Os,Ti,Cr,V,Fe,N
, ランタニド系列元素の一元素または複数元素、0≦
x<1,0≦y≦1,0≦z<1,0≦w≦0.1,0
≦f≦1,0≦v≦4,3≦n≦16)で表されること
を特徴とする。また、組成式Cu1-x x Ba2 (Ca
1-z Mgz 3 (Cu1-w Mgw 49 (式中、x=
0.3,z=0.1,0.2,w=0.01,0.0
2)で表されるスピン量子欠陥を有する銅酸化物超伝導
体も好ましい。また、スピン量子欠陥を有する銅酸化物
超伝導体の超伝導異方性γ(γ=ξab/ξcである。
ここで、ξabはab軸面内の超伝導コヒーレンス長、
ξcはc軸方向の超伝導コヒーレンス長)が1〜4であ
り、従来の銅酸化物超伝導体に較べて低いことを特徴と
する。さらに、スピン量子欠陥を有する銅酸化物超伝導
体のc軸方向のコヒーレンス長ξcが0.6〜2.0n
mであり、従来の銅酸化物超伝導体に較べて長いことを
特徴とする。
According to another aspect of the invention, a spin quantum
The copper oxide superconductor having defects has a composition formula of Cu1-xM
x(Ba1-ySry)Two(Ca1-zMgz)n-1(Cu
1-wMgw)n(O1-fFf)2 + nv(Where M = T
1, Hg, Bi, Pb, Au, In, Sn, Mg, A
g, Mo, W, Re, Os, Ti, Cr, V, Fe, N
i ,One or more lanthanide series elements, 0 ≦
x <1,0 ≦ y ≦ 1,0 ≦ z <1,0 ≦ w ≦ 0.1,0
≦ f ≦ 1, 0 ≦ v ≦ 4, 3 ≦ n ≦ 16)
It is characterized by. Further, the composition formula Cu1-xCxBaTwo(Ca
1-zMgz)Three(Cu1-wMgw)FourO9(Where x =
0.3, z = 0.1, 0.2, w = 0.01, 0.0
Copper oxide superconductivity with spin quantum defect represented by 2)
The body is also preferred. Also, a copper oxide having a spin quantum defect
The superconducting anisotropy γ of the superconductor (γ = ξab / ξc.
Where ξab is the superconducting coherence length in the ab axis plane,
ξc is the superconducting coherence length in the c-axis direction) is 1 to 4.
Lower than conventional copper oxide superconductors
I do. Furthermore, copper oxide superconductivity with spin quantum defects
The coherence length Δc in the c-axis direction of the body is 0.6 to 2.0 n
m, which is longer than the conventional copper oxide superconductor.
Features.

【0012】上記構成によれば、スピンのない格子点の
近傍のCuのスピンがスピン相互作用により大きく分極
し、この分極による磁場がこの領域の超伝導電子対を破
壊して、この領域が非超伝導相又は超伝導転移温度の低
い超伝導相になるため、磁束が進入し易くなり、スピン
のない格子点の近傍領域が磁束ピン止め中心(センタ
ー)として作用する。また、このようなスピン量子欠陥
が存在することで、c軸方向の超伝導コヒーレンス長が
長くなり、また、その結果、超伝導異方性が小さくな
る。さらに、これらの構成による量子欠陥磁束ピン止め
型超伝導材料は、超伝導層を厚く、又、電荷供給層を薄
くできるので、c軸方向の超伝導コヒーレンス長をさら
に長くすることができ、超伝導異方性がさらに低くな
る。
According to the above configuration, the spin of Cu near the lattice point having no spin is largely polarized by the spin interaction, and the magnetic field due to the polarization destroys the superconducting electron pairs in this region, and this region becomes non-polar. Since a superconducting phase or a superconducting phase having a low superconducting transition temperature is formed, magnetic flux easily enters, and a region near a lattice point having no spin acts as a magnetic flux pinning center. In addition, the existence of such a spin quantum defect increases the superconducting coherence length in the c-axis direction, and as a result, the superconducting anisotropy decreases. Furthermore, the quantum defect magnetic flux pinned type superconducting material having these structures can make the superconducting layer thick and the charge supply layer thin, so that the superconducting coherence length in the c-axis direction can be further increased, The conduction anisotropy is further reduced.

【0013】さらに、本発明の好ましい態様では、スピ
ン量子欠陥を有する銅酸化物超伝導体の炭酸(CO3
濃度が1モル%以下であり、CO3 濃度が低い効果によ
り、CO3 析出物による粒界の弱結合が無いことを特徴
とする。この構成によれば、超伝導体結晶粒の粒界の弱
結合による超伝導状態の破壊が防止されるから、多結晶
からなる量子欠陥磁束ピン止め型超伝導材料であって
も、不可逆磁界Hirr、臨界電流密度Jc及び超伝導
転移温度Tcが高い、量子欠陥磁束ピン止め型超伝導材
料として使用することができる。また、スピン量子欠陥
を有する銅酸化物超伝導体がオーバードープされてお
り、オーバードープによるバンドベンディングの抑制効
果により、超伝導体粒界の超伝導弱結合が無いことを特
徴とする。
Further, according to a preferred embodiment of the present invention, a copper oxide superconductor having a spin quantum defect, carbonic acid (CO 3 )
It is characterized in that the concentration is 1 mol% or less and there is no weak bonding of the grain boundaries due to the CO 3 precipitate due to the effect of the low CO 3 concentration. According to this configuration, since the superconducting state is prevented from being broken due to the weak coupling of the grain boundaries of the superconductor crystal grains, the irreversible magnetic field Hirr can be obtained even with a quantum defect magnetic flux pinned superconducting material made of polycrystal. , High critical current density Jc and superconducting transition temperature Tc, and can be used as a quantum defect magnetic flux pinned superconducting material. Further, a copper oxide superconductor having a spin quantum defect is overdoped, and there is no superconducting weak coupling at a superconductor grain boundary due to an effect of suppressing band bending due to overdoping.

【0014】この構成によれば、超伝導体結晶粒間の超
伝導波導関数の繋がりがよくなり、多結晶からなる量子
欠陥磁束ピン止め型超伝導材料であっても、不可逆磁界
Hirr、臨界電流密度Jc及び超伝導転移温度Tcが
高い、量子欠陥磁束ピン止め型超伝導材料として使用す
ることができる。また、本発明では、スピン量子欠陥を
有する銅酸化物超伝導体が選択オーバードープされてお
り、選択オーバードープ効果(これについては、本発明
者による国際公開公報WO00/58218、2000
年10月5日国際公開された明細書第7ページを参照)
により、超伝導転移温度が高く、かつ、超伝導臨界電流
密度が高いことを特徴とする。また本発明では、スピン
量子欠陥を有する前記銅酸化物超伝導体が、オーバード
ープされてd+is波超伝導対称性が形成されているの
で、d+is波超伝導対称性によるCuO2 面内での超
伝導異方性の低減効果と、上記の超伝導異方性の低減効
果とにより、超伝導異方性がさらに低いことを特徴とす
る。上記構成によれば、さらに高い、不可逆磁界Hir
r、臨界電流密度Jc及び超伝導転移温度Tcを有する
量子欠陥磁束ピン止め型超伝導材料が得られる。
According to this configuration, the superconducting wave derivative is connected well between the superconductor grains, and even if the quantum defect magnetic flux pinned type superconducting material made of polycrystal is used, the irreversible magnetic field Hirr and the critical current It can be used as a quantum defect magnetic flux pinned superconducting material having a high density Jc and a high superconducting transition temperature Tc. In the present invention, the copper oxide superconductor having a spin quantum defect is selectively over-doped, and the selective over-doping effect (see the international publication WO00 / 58218, 2000 by the present inventors).
(See page 7 of the specification published internationally on October 5, 1998)
Is characterized by a high superconducting transition temperature and a high superconducting critical current density. Further, in the present invention, the copper oxide superconductor having a spin quantum defect is over-doped to form d + is superconducting symmetry, so that the superconductivity in the CuO 2 plane due to the d + is superconducting symmetry is obtained. The superconducting anisotropy is further reduced by the effect of reducing the conductive anisotropy and the above-described effect of reducing the superconducting anisotropy. According to the above configuration, the irreversible magnetic field Hir is even higher.
A quantum defect magnetic flux pinned superconducting material having r, critical current density Jc and superconducting transition temperature Tc is obtained.

【0015】さらに、本発明の量子欠陥磁束ピン止め型
超伝導材料の製造方法の一態様は、スピン量子欠陥を有
する銅酸化物超伝導体の組成を有する原料を単結晶基板
又は結晶配向基板上に乗せ、Ag、Au又は耐酸化性容
器に封入して、0.1気圧から数万気圧までの圧力、温
度及び時間を制御して無配向、c軸配向又はa,c軸の
2軸配向の結晶成長を行うことにより、臨界電流密度J
c、不可逆磁界Hirr及び超伝導転移温度が高い、バ
ルクまたは単結晶を形成することを特徴としている。ま
た、本発明の量子欠陥磁束ピン止め型超伝導材料の製造
方法の他の態様は、スピン量子欠陥を有する銅酸化物超
伝導体の組成を有する原料を単結晶基板又は結晶配向基
板上に堆積又は塗布し、Agもしくは耐酸化性容器に封
入して、0.1〜10気圧の低圧下で温度及び時間を制
御して無配向、c軸配向又はa,c軸の2軸配向の結晶
成長を行うことにより、臨界電流密度Jc、不可逆磁界
Hirr及び超伝導転移温度が高い、多結晶または単結
晶膜を作製することを特徴とする。
Further, one embodiment of the method of manufacturing a quantum defect magnetic flux pinned superconducting material according to the present invention is to provide a method for manufacturing a material having a composition of a copper oxide superconductor having a spin quantum defect on a single crystal substrate or a crystal orientation substrate. And sealed in an Ag, Au or oxidation-resistant container, and controlled in pressure, temperature and time from 0.1 atm to tens of thousands of atm, non-orientation, c-axis orientation or biaxial orientation of a and c axes Of the critical current density J
c, forming a bulk or single crystal having a high irreversible magnetic field Hirr and a high superconducting transition temperature. Another aspect of the method for producing a quantum defect magnetic flux pinned superconducting material of the present invention is to deposit a material having a composition of a copper oxide superconductor having a spin quantum defect on a single crystal substrate or a crystallographically oriented substrate. Or, by coating and enclosing in an Ag or oxidation-resistant container, and controlling the temperature and time under a low pressure of 0.1 to 10 atm, non-oriented, c-axis oriented, or biaxially oriented a, c-axis oriented crystal growth Is performed to produce a polycrystalline or single-crystal film having a high critical current density Jc, an irreversible magnetic field Hirr, and a high superconducting transition temperature.

【0016】さらに、本発明の量子欠陥磁束ピン止め型
超伝導材料の製造方法の他の態様では、スピン量子欠陥
を有する銅酸化物超伝導体の組成を有する原料又はスピ
ン量子欠陥を有する銅酸化物超伝導材料を、Ag又は耐
酸化性金属容器に封入して、圧延と焼鈍を組合わせて、
無配向、c軸配向又はa,c軸の2軸配向の結晶成長を
行うことにより、超伝導層のCuO2 面に垂直に、か
つ、一次元的に配列した又は紐状に繋がったスピン量子
欠陥を導入することにより、臨界電流密度Jc、不可逆
磁界Hirr及び超伝導転移温度が高く、かつ、細線又
はテープに加工することができる多結晶体を作製するこ
とを特徴とする。この構成によれば、c軸方向に一次元
的に配列した、又は紐状に繋がったスピン量子欠陥を導
入することができ、磁束が結晶に進入し易くなる。
Further, in another embodiment of the method for producing a quantum defect magnetic flux pinned superconducting material according to the present invention, there is provided a raw material having a composition of a copper oxide superconductor having a spin quantum defect or a copper oxide having a spin quantum defect. The superconducting material is sealed in an Ag or oxidation-resistant metal container, and rolling and annealing are combined,
By performing non-oriented, c-axis oriented, or biaxially oriented crystal growth of the a and c axes, the spin quanta that are arranged perpendicularly to the CuO 2 plane of the superconducting layer and one-dimensionally or connected in a string shape. By introducing defects, a polycrystalline body having a high critical current density Jc, an irreversible magnetic field Hirr, and a high superconducting transition temperature and capable of being processed into a thin wire or tape is manufactured. According to this configuration, spin quantum defects arranged one-dimensionally in the c-axis direction or connected in a string shape can be introduced, and magnetic flux easily enters the crystal.

【0017】そして、上記した本発明の各構成によれ
ば、極めて低コストで、各種の用途に応じた量子欠陥磁
束ピン止め型超伝導材料を製造することができる。
According to the above-described configurations of the present invention, it is possible to manufacture a quantum defect magnetic flux pinned superconducting material suitable for various uses at an extremely low cost.

【0018】[0018]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態を詳細に説明する。図1は、本発明の量子欠陥
磁束ピン止め型超伝導材料の結晶モデルを示す図であ
る。本発明の量子欠陥磁束ピン止め型超伝導材料は、図
1に示すように、スピンを持つCuとOの結晶格子点
に、スピンを持たないMg、Fイオン等のスピン量子欠
陥を導入することにより、コヒーレンス長程度の領域を
非超伝導相もしくは低いTc(超伝導転移温度)相に変
え、この相を磁束をトラップするピン止め中心として寄
与させ、高い臨界電流密度Jcと高い不可逆磁界Hir
rを達成するものである。さらに層状構造超伝導体の超
伝導層の層数nを大きくし超伝導層の厚さを厚くするこ
とにより、c軸方向の超伝導電子の不確定性領域が厚さ
方向に広がり、c軸方向のコヒーレンス長ξcを長くで
きるため、超伝導異方性γを極めて小さくし、さらに臨
界電流密度Jcと不可逆磁界Hirrを大きくすること
ができる。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram showing a crystal model of a quantum defect magnetic flux pinned superconducting material of the present invention. As shown in FIG. 1, the quantum defect magnetic flux pinned superconducting material according to the present invention introduces spin quantum defects such as Mg and F ions having no spin into crystal lattice points of Cu and O having spin. , The region of about the coherence length is changed to a non-superconducting phase or a low Tc (superconducting transition temperature) phase, and this phase is contributed as a pinning center for trapping magnetic flux, and a high critical current density Jc and a high irreversible magnetic field Hir
r is achieved. Further, by increasing the number n of the superconducting layers of the layered superconductor and increasing the thickness of the superconducting layer, the uncertainty region of the superconducting electrons in the c-axis direction expands in the thickness direction, and the c-axis Since the coherence length Δc in the direction can be increased, the superconducting anisotropy γ can be extremely reduced, and the critical current density Jc and the irreversible magnetic field Hirr can be increased.

【0019】さらに、電荷供給層を構成する元素が超伝
導性を発生できるCu,Oであるため、電荷供給層を金
属化又は超伝導化できる。不確定性原理によれば超伝導
コヒーレンス長はフェルミ速度VFに比例するので、こ
のように電荷供給層を金属化又は超伝導化することによ
り、c軸方向のVF成分を大きくし、コヒーレンス長ξ
cを長くすることができ、超伝導異方性をさらに低くす
ることができる。
Further, since the element constituting the charge supply layer is Cu or O which can generate superconductivity, the charge supply layer can be metallized or made superconductive. According to the uncertainty principle, the superconducting coherence length is proportional to the Fermi velocity VF. Thus, by metallizing or superconducting the charge supply layer, the VF component in the c-axis direction is increased, and the coherence length ξ
c can be lengthened, and the superconducting anisotropy can be further reduced.

【0020】図2は、本発明の量子欠陥磁束ピン止め型
超伝導材料のスピン量子欠陥による磁束ピン止め作用の
原理を示す図である。図2(a)において、格子点は超
伝導材料のab軸面内の結晶格子点を示し、小さな矢印
はCu原子又はO原子のスピンを示す。互いに向き合っ
た矢印は超伝導電子対のスピンを示す。大きな中空の丸
印は、Cuイオンをスピンを持たないMgイオンで置換
した状態を示している。スピンの無いMgイオンの回り
のCu原子のスピンは、スピン相互作用により大きく分
極し、一定方向にその向きを揃える。この分極を大きな
矢印で示している。本発明ではこの欠陥をスピン量子欠
陥と定義する。分極の磁界によって分極近傍の超伝導電
子対が破壊され非超伝導状態、又は、超伝導転移温度の
低い超伝導相となるため、磁束が侵入し易くなり磁束ピ
ン止めセンターとして作用する。図2(b)は、量子欠
陥磁束ピン止め型超伝導材料のb軸に垂直な断面を示す
図である。この図は、超伝導層がc軸方向に積層し、各
超伝導層のスピン量子欠陥がc軸方向に一次元的に配
列、又は繋がっている様子を示す。この構成によれば、
c軸方向の磁界は超伝導材料のc軸方向に垂直な上面又
は下面から進入し、下面又は上面から抜けるので、磁束
が進入することができ、また、磁束が固定される。
FIG. 2 is a diagram showing the principle of the magnetic flux pinning action by the spin quantum defect of the quantum defect magnetic flux pinned superconducting material of the present invention. In FIG. 2A, lattice points indicate crystal lattice points in the ab-axis plane of the superconducting material, and small arrows indicate spins of Cu atoms or O atoms. The arrows facing each other indicate the spins of the superconducting electron pairs. Large hollow circles indicate a state in which Cu ions are replaced by Mg ions having no spin. The spin of the Cu atom around the Mg ion without the spin is largely polarized by spin interaction, and its direction is aligned in a certain direction. This polarization is indicated by the large arrow. In the present invention, this defect is defined as a spin quantum defect. The superconducting electron pair near the polarization is destroyed by the magnetic field of the polarization and becomes a non-superconducting state or a superconducting phase having a low superconducting transition temperature, so that magnetic flux easily penetrates and acts as a magnetic flux pinning center. FIG. 2B is a diagram showing a cross section perpendicular to the b-axis of the quantum defect magnetic flux pinned superconducting material. This figure shows a state in which superconducting layers are stacked in the c-axis direction, and spin quantum defects of each superconducting layer are one-dimensionally arranged or connected in the c-axis direction. According to this configuration,
The magnetic field in the c-axis direction enters from the upper surface or the lower surface perpendicular to the c-axis direction of the superconducting material and exits from the lower surface or the upper surface, so that the magnetic flux can enter and the magnetic flux is fixed.

【0021】本発明の量子欠陥磁束ピン止め型超伝導材
料の好ましい例としては、2次元的な層状構造をもつ超
伝導体が、組成式 Cu1-x x (Ba1-y Sry 2 (Ca1-z Mgz
n-1 (Cu1-w Mgwn (O1-f f 2+n-v で記述できる銅酸化物超伝導体を挙げることができる。
ここで、式中、M=Tl,Hg,Bi,Pb,Au,I
n,Sn,Mg,Ag,Mo,W,Re,Os,Ti,
Cr,V,Fe,Ni, ランタニド系列元素の一元素ま
たは複数元素、 0≦x<1,0≦y≦1,0≦z<
1,0≦w≦0.1,0≦f≦1,0≦v ≦4,3≦
n≦16で表される。
[0021] Preferred examples of the quantum defect flux pinning superconducting material of the present invention, the superconductor having a two-dimensional layered structure, composition formula Cu 1-x M x (Ba 1-y Sr y) 2 (Ca 1-z Mg z )
n-1 (Cu 1-w Mg w) n (O 1-f F f) can be described in 2 + nv can be mentioned copper oxide superconductors.
Where M = Tl, Hg, Bi, Pb, Au, I
n, Sn, Mg, Ag, Mo, W, Re, Os, Ti,
Cr, V, Fe, Ni , one or more lanthanide series elements, 0 ≦ x <1, 0 ≦ y ≦ 1, 0 ≦ z <
1,0 ≦ w ≦ 0.1,0 ≦ f ≦ 1,0 ≦ v ≦ 4,3 ≦
It is represented by n ≦ 16.

【0022】この銅酸化物超伝導体の場合、超伝導層で
ある(Ca1-z Mgz n-1 (Cu 1-w Mgw n (O
1-f f 2+n の層数nの増加、その超伝導層間を結合
する電荷供給層Cu1-x x (Ba1-y Sry 2 (O
1-f f 4-v の近接効果による超伝導化、更にはその
電荷供給層の本来的な超伝導化によってc軸方向の超伝
導結合をさらに強化することができる。その結果、c軸
方向の超伝導電子の不確定領域(厚さ)が拡大し、コヒ
ーレンス長ξcが大きくなり、超伝導異方性を低下し、
臨界電流密度Jcと不可逆磁界Hirrが大きくなる。
In the case of this copper oxide superconductor, the superconducting layer
There (Ca1-zMgz)n-1(Cu 1-wMgw)n(O
1-fFf)2 + nIncrease in the number of layers n, joining the superconducting layers
Charge supply layer Cu1-xMx(Ba1-ySry)Two(O
1-fFf)4-vSuperconductivity due to the proximity effect of
Superconductivity in the c-axis direction due to the intrinsic superconductivity of the charge supply layer
Inductive coupling can be further enhanced. As a result, c-axis
The uncertain region (thickness) of superconducting electrons in the direction expands,
レ ン ス c increases, the superconductivity anisotropy decreases,
The critical current density Jc and the irreversible magnetic field Hirr increase.

【0023】特に一部の銅酸化物超伝導体の場合、コヒ
ーレンス長ξcは経験則より、nを超伝導層の層数とし
て、ξc=0.32(n−1)nm,ξab=1.6n
mと表わせるので、超伝導異方性γは、γ=ξab/ξ
c=5/(n−1)となり、nが3以上の超伝導体では
キャリア濃度が十分であれば超伝導異方性γ<2が実現
でき,臨界電流密度Jcと不可逆磁界Hirrを大きく
することができる。Hirrは上部臨界磁界Hc2 の値
から半経験式:Hirr=Hc2 (1−(T/T
c)2 )/γ2 に従って実験値が良く記述されるが、γ
<2であれば、Cu−1234結晶構造系では77Kで
Hirr=40Tの高い値が予測される。
In particular, in the case of some copper oxide superconductors, the coherence length Δc is empirically determined, where n is the number of superconducting layers, Δc = 0.32 (n−1) nm, Δab = 1. 6n
m, the superconducting anisotropy γ is given by γ = {ab / ξ
c = 5 / (n-1), and in a superconductor having n of 3 or more, if the carrier concentration is sufficient, superconducting anisotropy γ <2 can be realized, and the critical current density Jc and the irreversible magnetic field Hirr are increased. be able to. Hirr the semi-empirical equation from the value of the upper critical magnetic field Hc 2: Hirr = Hc 2 ( 1- (T / T
c) 2) / gamma but experimental values according to the two well described, gamma
If <2, a high value of Hirr = 40T is predicted at 77K in the Cu-1234 crystal structure system.

【0024】さらに、上記の銅酸化物超伝導体ではCu
の平均価数がZ=2+(4−2v)/(n+1)<2+
4/(n+1)と表わすことができ、n=1から16ま
ではZが2.25以上となるので、酸素空格子濃度vを
下げることにより、超伝導異方性γ<2が実現でき,臨
界電流密度Jcと不可逆磁界Hirrを大きくすること
ができるに充分なキャリア供給が可能である。
Further, in the above copper oxide superconductor, Cu
Is the average valence of Z = 2 + (4-2v) / (n + 1) <2+
4 / (n + 1), and Z is 2.25 or more from n = 1 to 16. Therefore, by lowering the oxygen vacancy concentration v, superconducting anisotropy γ <2 can be realized, It is possible to supply a carrier sufficient to increase the critical current density Jc and the irreversible magnetic field Hirr.

【0025】本発明のスピン量子欠陥磁束ピン止め作用
が有効に作用するためには、(1)量子欠陥が一次元的
に連続して繋がり、 CuO2 面に垂直に導入されるこ
と、(2)その一次元的に繋がった欠陥の両端が磁界中
に曝されて磁束が侵入し易いこと、(3)超伝導材料の
c軸方向のコヒーレンス長が長いこと、(4)電荷供給
層も超伝導性であること、(5)電荷供給層が超伝導性
を持たない場合はできるだけその層厚が薄いこと、等が
最も望ましい条件となる。
In order for the spin quantum defect magnetic flux pinning effect of the present invention to work effectively, (1) quantum defects must be continuously connected one-dimensionally and introduced perpendicularly to the CuO 2 plane; ) Both ends of the one-dimensionally connected defect are exposed to a magnetic field, and magnetic flux easily penetrates; (3) the coherence length of the superconducting material in the c-axis direction is long; The most desirable condition is that it is conductive, and (5) if the charge supply layer does not have superconductivity, its thickness is as thin as possible.

【0026】本発明の量子欠陥磁束ピン止め型超伝導材
料の製造方法は、密閉型の低圧法、高圧合成法、ホット
プレス法、HIP法(高温静水圧処理法)、耐酸化材に
よる密封法、スパッタリング法等の非平衡な製造法を利
用する。密閉型の低圧法、高圧合成法、ホットプレス
法、HIP法(高温静水圧処理法)、耐酸化材による密
封法においては、上記の量子欠陥磁束ピン止め型超伝導
材料又はこの原料を、例えば、SrTiO3 ,NdGa
3 ,LaAlO3 ,YSZ(Y安定化ZrO2 ),L
aSrGaO4 単結晶基板又は結晶配向膜基板上に堆積
又は塗布して耐酸化性材料の容器に封入し、圧力、温
度、及び時間を制御することによって、無配向、c軸配
向又はa,c軸の2軸配向させた結晶を作製できる。こ
れにより、用途に応じて、高い臨界電流密度Jcと高い
不可逆磁界Hirrを有する多結晶又は単結晶の膜を容
易に製造することができる。
The method for producing the quantum defect magnetic flux pinned type superconducting material of the present invention includes a closed type low pressure method, a high pressure synthesis method, a hot press method, a HIP method (high temperature hydrostatic pressure treatment method), and a sealing method using an oxidation resistant material. A non-equilibrium manufacturing method such as a sputtering method is used. In a closed low-pressure method, a high-pressure synthesis method, a hot press method, a HIP method (high-temperature hydrostatic pressure treatment method), or a sealing method using an oxidation-resistant material, the above-described quantum defect magnetic flux pinned superconducting material or its raw material is used, for example. , SrTiO 3 , NdGa
O 3 , LaAlO 3 , YSZ (Y-stabilized ZrO 2 ), L
aSrGaO 4 single crystal substrate or crystal oriented film substrate is deposited or coated and sealed in a container of oxidation-resistant material, and by controlling pressure, temperature and time, non-oriented, c-axis oriented or a, c-axis oriented Can be produced. Thus, a polycrystalline or single-crystal film having a high critical current density Jc and a high irreversible magnetic field Hirr can be easily manufactured depending on the application.

【0027】また、上記の量子欠陥磁束ピン止め型超伝
導材料又はこの原料を、上記の単結晶基板、又は結晶配
向膜基板上に乗せ、金、銀、或はインコネル、ハステロ
イ、アルミナ、AIN 、BN等の耐酸化性金属、又は
セラミックス製の容器に封入し、圧力、温度及び時間を
制御することによって、無配向、c軸配向、又はa,c
軸の2軸配向させた結晶を作製できる。これにより、用
途に応じて、高い臨界電流密度Jcと高い不可逆磁界H
irrを有する多結晶又は単結晶の膜を容易に製造し得
る。無配向のまま、またはc軸配向させ、もしくはa,
c軸の2軸配向させ、高い臨界電流密度Jcと高い不可
逆磁界Hirrを有する多結晶バルク体又は単結晶を容
易に製造することもできる。
The above quantum defect magnetic flux pinned superconducting material or its raw material is placed on the above-mentioned single crystal substrate or crystal orientation film substrate, and gold, silver, or inconel, hastelloy, alumina, AIN, By enclosing in an oxidation-resistant metal such as BN or a ceramic container, and controlling the pressure, temperature and time, it is possible to obtain a non-oriented, c-axis oriented, or a, c
Crystals with biaxial orientation can be produced. Thereby, depending on the application, a high critical current density Jc and a high irreversible magnetic field H
A polycrystalline or single crystal film having irr can be easily manufactured. Unoriented or c-axis oriented, or a,
A polycrystalline bulk or single crystal having a high critical current density Jc and a high irreversible magnetic field Hirr can be easily produced by biaxially orienting the c-axis.

【0028】また、スパッタリング法においては、作製
する量子欠陥磁束ピン止め型超伝導材料と同じ組成の燒
結体をターゲットに用いてもよく、また、各元素ごとの
ターゲットを用いて原子層ごとに積層させてもよい。ス
パッタ法は、例えばSrTiO3 ,NdGaO3 ,La
AlO3 ,YSZ(Y安定化ZrO2 ),LaSrGa
4 単結晶基板を用い、基板温度300〜800℃、酸
素ガス圧0.001〜1Torrの条件で行う。
In the sputtering method, a sintered body having the same composition as that of the quantum defect magnetic flux pinned type superconducting material to be manufactured may be used as a target, or a target for each element may be used to laminate each atomic layer. May be. The sputtering method is, for example, SrTiO 3 , NdGaO 3 , La
AlO 3 , YSZ (Y-stabilized ZrO 2 ), LaSrGa
This is performed using an O 4 single crystal substrate under the conditions of a substrate temperature of 300 to 800 ° C. and an oxygen gas pressure of 0.001 to 1 Torr.

【0029】次に、本発明の実施例を示す。 実施例1.MgをドープしたCu−1234結晶構造の
量子欠陥磁束ピン止め型超伝導材料を作製し、超伝導特
性を測定した。仕込み組成、Cu1-x x Ba2 (Ca
1-z Mgz 3 (Cu1-w Mgw 49 (式中、 x=
0.3,z=0.1,w=0.01)、及び、仕込み組
成Cu 1-x x Ba2 (Ca1-z Mgz 3 (Cu1-w
Mgw 4 9 (式中 、x=0.3,z=0.2,w=
0.02)の前駆体に、CuO,AgCO3 、酸化剤と
してAgOを加え、3GPaの圧力下で、1000℃で
2時間、加熱処理することにより組成の異なる2種類の
量子欠陥磁束ピン止め型超伝導材料を作製した。上記2
種類の量子欠陥磁束ピン止め型超伝導材料は、いずれ
も、Mgを含まない同一組成の超伝導体と同等の超伝導
転移温度116〜117Kを示した。
Next, an embodiment of the present invention will be described. Embodiment 1 FIG. Mg-doped Cu-1234 crystal structure
A quantum defect magnetic flux pinned superconducting material was fabricated and
The properties were measured. Charge composition, Cu1-xCxBaTwo(Ca
1-zMgz)Three(Cu1-wMgw)FourO9(Where x =
0.3, z = 0.1, w = 0.01)
Formed Cu 1-xCxBaTwo(Ca1-zMgz)Three(Cu1-w
Mgw)FourO9(Where x = 0.3, z = 0.2, w =
0.02) with CuO, AgCOThree, With oxidants
And add AgO at 1000 ° C. under a pressure of 3 GPa.
By heating for 2 hours, two kinds of different compositions
A quantum defect flux pinned superconducting material was fabricated. 2 above
The types of quantum defect flux pinned superconducting materials
Also has superconductivity equivalent to superconductors of the same composition without Mg
The transition temperature was 116 to 117K.

【0030】また、c軸方向配向粉末試料の磁化特性の
温度変化を測定した(磁界強度範囲0.1〜5T)。磁
化の温度変化から上部臨界磁界Hc2 の温度変化を求
め、Hc2 の温度変化の傾き比から、超伝導異方性はγ
=1.4〜1.5であることが確認された。また磁化の
温度変化の外挿値から(Hc2 )ab=103〜127
T,(Hc 2 )c=74〜86Tであることが確認され
た。これらの上部臨界磁界と、Ginzburg−La
ndau の式、(Hc2 )ab=φ0 /2πξabξ
c,(Hc2 )c=φ0 /2πξabξab、(φ0
磁束量子)に基づくと、コヒーレンス長は、ξc=1.
3〜1.4nm、ξab=1.9〜2.0nmであるこ
とがわかった。したがって、この量子欠陥磁束ピン止め
型超伝導材料の超伝導異方性γは1.4〜1.5であ
る。一方、Mgドープしない、同一組成、同一結晶構造
(Cu−1234型)の超伝導体の超伝導異方性γは
1.6であるから、超伝導異方性が低減されている。ま
た、この量子欠陥磁束ピン止め型超伝導材料のコヒーレ
ンス長は、ξc=1.3〜1.4nm、ξab=1.9
〜2.0nmである。一方、Mgドープしない、同一組
成、同一結晶構造(Cu−1234型)の超伝導体のコ
ヒーレンス長は、ξc=1.0nm、ξab=1.6n
mであるから、両コヒーレンス長とも増大している。す
なわち、この量子欠陥磁束ピン止め型超伝導材料の超伝
導異方性及び超伝導コヒーレンス長の改善は、Mgドー
プによるスピン量子欠陥の導入によるもの見なせる。ま
た磁化(M)−磁場(H)ヒステリシス曲線から求めた
不可逆磁界Hirrは77Kで8Tであった。
The magnetization characteristics of the c-axis oriented powder sample were
The temperature change was measured (magnetic field intensity range 0.1-5T). Magnetic
Of the upper critical magnetic field HcTwoThe temperature change of
HcTwoThe superconducting anisotropy is γ
= 1.4 to 1.5. Also the magnetization
From the extrapolated value of temperature change, (HcTwo) Ab = 103-127
T, (Hc Two) It was confirmed that c = 74-86T.
Was. These upper critical magnetic fields and Ginzburg-La
ndau equation, (HcTwo) Ab = φ0/ 2π {ab}
c, (HcTwo) C = φ0/ 2πξabξab, (φ0:
(Flux quantum), the coherence length is given by {c = 1.
3 to 1.4 nm, Δab = 1.9 to 2.0 nm.
I understood. Therefore, this quantum defect flux pinning
The superconducting anisotropy γ of the type superconducting material is 1.4 to 1.5.
You. On the other hand, the same composition and the same crystal structure without Mg doping
The superconducting anisotropy γ of the (Cu-1234 type) superconductor is
Since it is 1.6, the superconducting anisotropy is reduced. Ma
The coherence of this quantum defect flux pinned superconducting material
長 c = 1.3-1.4 nm, ξab = 1.9
2.02.0 nm. On the other hand, the same group without Mg doping
Of superconductor with the same crystal structure (Cu-1234 type)
The coherence length is Δc = 1.0 nm, Δab = 1.6 n
m, both coherence lengths increase. You
In other words, the superconductivity of this quantum defect magnetic flux pinned superconducting material
Improvements in conductivity anisotropy and superconducting coherence length are
This can be attributed to the introduction of spin quantum defects by the step. Ma
Magnetization (M) -magnetic field (H) determined from a hysteresis curve
The irreversible magnetic field Hirr was 8T at 77K.

【0031】Mgドープによる量子欠陥ピン止めセンタ
ーの形成によりコヒーレンス長の増大、超伝導異方性の
低下が実現した。それにも関わらず、Hirrが予測し
た程度に大きくならないのは量子欠陥磁束ピン止めセン
ターが形成されているにもかかわらず、その両端が磁界
に曝されるように表面まで達していないため、超伝導相
でシールドされて、磁束が侵入し難いためと考えられ
る。表面まで達する一次元的量子欠陥磁束ピン止めセン
ターを形成する必要がある。
The formation of the quantum defect pinning center by Mg doping has increased the coherence length and reduced the superconducting anisotropy. Nevertheless, Hirr does not become as large as expected because despite the formation of the quantum defect flux pinning center, both ends do not reach the surface so as to be exposed to the magnetic field, so the superconductivity is high. This is probably because the magnetic flux is hardly penetrated by being shielded by the phase. It is necessary to form a one-dimensional quantum defect flux pinning center that reaches the surface.

【0032】[0032]

【発明の効果】本発明の量子欠陥ピン止め型超伝導材料
は、スピン量子欠陥による磁束ピン止め作用を有し、ま
た、従来不可能であった超伝導異方性γ=1.4、及び
超伝導コヒーレンス長、ξab=2.0nm,ξc=
1.4nmを有しており、その結果、不可逆磁界Hir
rが高い超伝導材料として使用することができる。予測
値としては77Kにおいて30T以上の高い不可逆磁界
Hirrが期待できる。この超伝導材料は、従来よりも
一層高い超伝導臨界電流密度Jc、高不可逆磁界Hir
rを有する材料であると共に、超伝導異方性が等方性に
近い低異方性を示すから、製造時の配向制御条件を緩和
することができる。配向制御条件を緩和することができ
るから、本発明の量子欠陥ピン止め型超伝導材料の製造
方法を用いて、無配向性、かつ、最高性能を有する超伝
導線材を低コストで製造することができる。また、バル
ク材、素子材料としても、超伝導体として最高レベルの
性能を有する高温超伝導材料として使用できる。本発明
で開示した結果は、銅酸化物超伝導体においては、スピ
ン及びスピン相互作用が超伝導機構の主要部分であるこ
とを裏付けるものである。スピン量子欠陥を導入するこ
とにより磁束のピン止め中心を形成できることが裏付け
られたことは、今後の量子欠陥導入型の新しい磁束ピン
止め機構導入法の開発に勢いを与えるものである。また
この結果は、超伝導機構の解明に対して重要な指針を与
える。すなわち、従来、高い超伝導転移温度Tcは高い
超伝導異方性と密接に関連することが常識化していた
が、本発明の超伝導体は、等方性に近い低異方性の高温
超伝導体であるにもかかわらず高い超伝導転移温度Tc
有しているので、これらの常識が破られ、学術、工学的
に大きなインパクトを与えるものである。
The quantum defect pinned type superconducting material of the present invention has a magnetic flux pinning effect due to spin quantum defects, and has a superconducting anisotropy γ = 1.4, which was impossible in the past. Superconducting coherence length, Δab = 2.0 nm, Δc =
1.4 nm, so that the irreversible magnetic field Hir
It can be used as a superconducting material having a high r. As a predicted value, a high irreversible magnetic field Hirr of 30 T or more at 77K can be expected. This superconducting material has a higher superconducting critical current density Jc and a higher irreversible magnetic field Hir than ever before.
In addition to the material having r, the superconducting anisotropy exhibits low anisotropy close to isotropic, so that the alignment control conditions at the time of manufacturing can be relaxed. Since the orientation control condition can be relaxed, it is possible to produce a superconducting wire having no orientation and the highest performance at a low cost by using the method for producing a quantum defect pinned type superconducting material of the present invention. it can. In addition, it can be used as a bulk material and an element material as a high-temperature superconducting material having the highest level of performance as a superconductor. The results disclosed in the present invention support that spin and spin interaction are a major part of the superconducting mechanism in a copper oxide superconductor. The fact that the pinning center of magnetic flux can be formed by introducing spin quantum defects has given momentum to the development of a new method of introducing a magnetic flux pinning mechanism of the quantum defect introduction type in the future. The results also provide important guidance for elucidating the superconducting mechanism. That is, conventionally, it has been commonly accepted that a high superconducting transition temperature Tc is closely related to a high superconducting anisotropy, but the superconductor of the present invention has a low anisotropy high temperature superconductivity close to isotropic. High superconducting transition temperature Tc despite being a conductor
Therefore, these common senses are violated, and have a great academic and engineering impact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の量子欠陥磁束ピン止め型超伝導材料の
結晶モデルを示す図である。
FIG. 1 is a diagram showing a crystal model of a quantum defect magnetic flux pinned type superconducting material of the present invention.

【図2】本発明の量子欠陥磁束ピン止め型超伝導材料の
スピン量子欠陥による磁束ピン止め作用の原理を示す図
である。
FIG. 2 is a diagram showing the principle of the magnetic flux pinning action of the quantum defect magnetic flux pinned type superconducting material of the present invention by the spin quantum defect.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 スピン、スピン相互作用、交換相互作
用、超交換相互作用、及び/又は、スピン揺らぎ効果が
超伝導機構の主要部分である銅酸化物超伝導体におい
て、スピンを有するCuイオン及び/又はOイオンの結
晶格子点に、スピンを持たないイオン、空格子、異種ス
ピン状態のイオン、及び/又は格子欠陥からなるスピン
量子欠陥を有しており、 このスピン量子欠陥が超伝導コヒーレンス長程度の領域
に非超伝導相又は低い超伝導転移温度相を形成する効果
により、上記スピン量子欠陥が磁束のピン止め中心とし
て作用することを特徴とする、量子欠陥磁束ピン止め型
超伝導材料。
1. A copper oxide superconductor in which spin, spin interaction, exchange interaction, super-exchange interaction, and / or spin fluctuation effect is a main part of the superconducting mechanism. And / or a spin quantum defect consisting of a non-spin ion, a vacancy, an ion in a different spin state, and / or a lattice defect at a crystal lattice point of the O ion, and the spin quantum defect has a superconducting coherence length. A quantum defect magnetic flux pinned superconducting material, characterized in that the spin quantum defect acts as a magnetic flux pinning center due to the effect of forming a non-superconducting phase or a low superconducting transition temperature phase in a degree region.
【請求項2】 前記Cuイオンの結晶格子点に、スピン
を持たないイオンMg,Zn,Ag,又はAuを有する
ことを特徴とする、請求項1に記載の量子欠陥磁束ピン
止め型高性能超伝導材料。
2. The quantum defect magnetic flux pinned high-performance supercharger according to claim 1, wherein said Cu ion has a non-spin ion Mg, Zn, Ag, or Au at a crystal lattice point. Conductive material.
【請求項3】 前記スピン量子欠陥を有する前記銅酸化
物超伝導体が、 組成式Cu1-x x (Ba1-y Sry 2 (Ca1-z
z n-1 (Cu1-ww n 2+n-v (式中、M=T
l,Hg,Bi,Pb,Au,In,C,Sn,Mg,
Ag,Mo,W,Re,Os,Ti,Cr,V,Fe,
Ni,ランタニド系列元素の一元素または複数元素、Z
=Zn,Ti,Cr,V,Fe,Niの一元素または複
数元素,0≦x<1,0≦y<1,0≦z<1,0≦w
<0.1,0≦v≦4,3≦n≦16)でなることを特
徴とする、請求項1又は2に記載の量子欠陥磁束ピン止
め型超伝導材料。
Wherein said copper oxide superconductor having a spin quantum defect, composition formula Cu 1-x M x (Ba 1-y Sr y) 2 (Ca 1-z M
g z) n-1 (Cu 1-w Z w) n O 2 + nv ( where, M = T
1, Hg, Bi, Pb, Au, In, C, Sn, Mg,
Ag, Mo, W, Re, Os, Ti, Cr, V, Fe,
Ni, one or more lanthanide series elements, Z
= One or more elements of Zn, Ti, Cr, V, Fe, Ni, 0 ≦ x <1, 0 ≦ y <1, 0 ≦ z <1, 0 ≦ w
<0.1, 0 ≦ v ≦ 4, 3 ≦ n ≦ 16), wherein the quantum defect magnetic flux pinned superconducting material according to claim 1 or 2, characterized in that:
【請求項4】 前記スピン量子欠陥を有する前記銅酸化
物超伝導体が、 組成式Cu1-x x (Ba1-y Sry 2 (Ca1-z
z n-1 (Cu1-wMgw n 2+n-v (式中、M=
Tl,Hg,Bi,Pb,Au,In,C,Sn,M
g,Ag,Mo,W,Re,Os,Ti,Cr,V,F
e,Ni,ランタニド系列元素の一元素または複数元
素、0≦x<1,0≦y<1,0≦z<1,0≦w<
0.1,0≦v≦4,0≦v≦4,3≦n≦16)でな
ることを特徴とする、請求項1又は2に記載の量子欠陥
磁束ピン止め型超伝導材料。
Wherein said copper oxide superconductor having a spin quantum defect, composition formula Cu 1-x M x (Ba 1-y Sr y) 2 (Ca 1-z M
g z) n-1 (Cu 1-w Mg w) n O 2 + nv ( where, M =
Tl, Hg, Bi, Pb, Au, In, C, Sn, M
g, Ag, Mo, W, Re, Os, Ti, Cr, V, F
e, Ni, one or more lanthanide series elements, 0 ≦ x <1, 0 ≦ y <1, 0 ≦ z <1, 0 ≦ w <
The quantum defect magnetic flux pinned superconducting material according to claim 1, wherein 0.1, 0 ≦ v ≦ 4, 0 ≦ v ≦ 4, 3 ≦ n ≦ 16).
【請求項5】 前記スピン量子欠陥を有する前記銅酸化
物超伝導体が、 組成式Cu1-x x (Ba1-y Sry 2 (Ca1-z
z n-1 (Cu1-ww n (O1-f f
2+n-v (式中、M=Tl,Hg,Bi,Pb,Au,I
n,C,Sn,Mg,Ag,Mo,W,Re,Os,T
i,Cr,V,Fe,Ni,ランタニド系列元素の一元
素または複数元素、Z=Mg,Zn,Ti,Cr,V,
Fe,Niの一元素または複数元素,0≦x<1,0≦
y<1,0≦z<1,0≦w<0.1,0≦f≦1,0
≦v≦4,3≦n≦16)でなることを特徴とする、請
求項1又は2に記載の量子欠陥磁束ピン止め型超伝導材
料。
Wherein said copper oxide superconductor having a spin quantum defect, composition formula Cu 1-x M x (Ba 1-y Sr y) 2 (Ca 1-z M
g z ) n-1 (Cu 1-w Z w ) n (O 1-f F f )
2 + nv (where M = Tl, Hg, Bi, Pb, Au, I
n, C, Sn, Mg, Ag, Mo, W, Re, Os, T
i, Cr, V, Fe, Ni, one or more lanthanide series elements, Z = Mg, Zn, Ti, Cr, V,
One or more elements of Fe and Ni, 0 ≦ x <1,0 ≦
y <1,0 ≦ z <1,0 ≦ w <0.1,0 ≦ f ≦ 1,0
.Ltoreq.v.ltoreq.4, 3.ltoreq.n.ltoreq.16), wherein the quantum defect magnetic flux pinned superconducting material according to claim 1 or 2, is provided.
【請求項6】 前記スピン量子欠陥を有する前記銅酸化
物超伝導体が、 組成式Cu1-x x (Ba1-y Sry 2 (Ca1-z
z n-1 (Cu1-wMgw n (O1-f f 2+n-v
(式中、M=Tl,Hg,Bi,Pb,Au,In,
C,Sn,Mg,Ag,Mo,W,Re,Os,Ti,
Cr,V,Fe,Ni,ランタニド系列元素の一元素ま
たは複数元素、0≦x<1,0≦y<1,0≦z<1,
0≦w<0.1,0≦f≦1,0≦v≦4,3≦n≦1
6)で記述できることを特徴とする、請求項1又は2に
記載の量子欠陥磁束ピン止め型超伝導材料。
Wherein said copper oxide superconductor having a spin quantum defect, composition formula Cu 1-x M x (Ba 1-y Sr y) 2 (Ca 1-z M
g z ) n-1 (Cu 1-w Mg w ) n (O 1-f F f ) 2 + nv
(Where M = Tl, Hg, Bi, Pb, Au, In,
C, Sn, Mg, Ag, Mo, W, Re, Os, Ti,
One or more elements of Cr, V, Fe, Ni, lanthanide series elements, 0 ≦ x <1, 0 ≦ y <1, 0 ≦ z <1,
0 ≦ w <0.1, 0 ≦ f ≦ 1, 0 ≦ v ≦ 4, 3 ≦ n ≦ 1
3. The quantum defect magnetic flux pinned superconducting material according to claim 1, wherein the material can be described in 6).
【請求項7】 前記スピン量子欠陥を有する前記銅酸化
物超伝導体が、 組成式Cu1-x x Ba2 (Ca1-z Mgz 3 (Cu
1-w Mgw 4 9(式中、x=0.3,z=0.1,
0.2,w=0.01,0.02)でなることを特徴と
する、請求項1又は2に記載の量子欠陥磁束ピン止め型
超伝導材料。
7. The copper oxide superconductor having the spin quantum defect has a composition formula of Cu 1-x C x Ba 2 (Ca 1-z Mg z ) 3 (Cu
1-w Mg w ) 4 O 9 (where x = 0.3, z = 0.1,
3. The quantum defect magnetic flux pinned superconducting material according to claim 1, wherein 0.2, w = 0.01, 0.02).
【請求項8】 前記スピン量子欠陥を有する前記銅酸化
物超伝導体の超伝導異方性γ(γ=ξab/ξc、ここ
で、ξabはab軸面内の超伝導コヒーレンス長、ξc
はc軸方向の超伝導コヒーレンス長)が1〜4であり、
異方性が低いことを特徴とする、請求項1〜7の何れか
に記載の量子欠陥磁束ピン止め型超伝導材料。
8. The superconducting anisotropy γ of the copper oxide superconductor having the spin quantum defect (γ = ξab / ξc, where ξab is the superconducting coherence length in the ab axis plane, ξc
Has a superconducting coherence length in the c-axis direction) of 1 to 4,
The quantum defect magnetic flux pinned superconducting material according to claim 1, wherein the material has low anisotropy.
【請求項9】 前記スピン量子欠陥を有する前記銅酸化
物超伝導体のc軸方向のコヒーレンス長ξcが、0.6
〜2.0nmであり、コヒーレンス長が長いことを特徴
とする、請求項1〜8の何れかに記載の量子欠陥磁束ピ
ン止め型超伝導材料。
9. The coherence length Δc in the c-axis direction of the copper oxide superconductor having the spin quantum defect is 0.6.
The quantum defect magnetic flux pinned superconducting material according to any one of claims 1 to 8, wherein the coherence length is long.
【請求項10】 前記スピン量子欠陥を有する前記銅酸
化物超伝導体の炭酸(CO3 )濃度が1モル%以下であ
り、 このCO3 濃度が低い効果により、CO3 析出物による
粒界の弱結合が無いことを特徴とする、請求項1〜9の
何れかに記載の量子欠陥磁束ピン止め型超伝導材料。
Wherein said spin carbonate of the copper oxide superconductors having a quantum defect (CO 3) concentration of not more than 1 mol%, this CO 3 concentration is less effective, the grain boundary due to CO 3 precipitation 10. The quantum defect magnetic flux pinned superconducting material according to claim 1, wherein there is no weak coupling.
【請求項11】 前記スピン量子欠陥を有する前記銅酸
化物超伝導体がオーバードープされており、 このオーバードープによるバンドベンディングの抑制効
果により、上記超伝導体粒界の超伝導弱結合が無いこと
を特徴とする、請求項1〜10の何れかに記載の量子欠
陥磁束ピン止め型超伝導材料。
11. The copper oxide superconductor having the spin quantum defect is overdoped, and the superconducting grain boundary has no superconducting weak coupling due to an effect of suppressing band bending due to the overdoping. The quantum defect magnetic flux pinned superconducting material according to any one of claims 1 to 10, characterized in that:
【請求項12】 前記スピン量子欠陥を有する前記銅酸
化物超伝導体が選択オーバードープされており、 この選択オーバードープ効果により、超伝導転移温度が
高く、かつ、超伝導臨界電流密度が高いことを特徴とす
る、請求項1〜11の何れかに記載の量子欠陥磁束ピン
止め型超伝導材料。
12. The copper oxide superconductor having the spin quantum defect is selectively overdoped, and the superconducting transition temperature is high and the superconducting critical current density is high due to the selective overdoping effect. The quantum defect magnetic flux pinned superconducting material according to any one of claims 1 to 11, characterized in that:
【請求項13】 前記スピン量子欠陥を有する前記銅酸
化物超伝導体が、オーバードープされてd+is波超伝
導対称性が形成されており、 上記d+is波超伝導対称性による、CuO2 面内での
超伝導異方性の低減効果と、前記超伝導異方性が低い効
果とにより、超伝導異方性が低いことを特徴とする、請
求項1〜12の何れかに記載の量子欠陥磁束ピン止め型
超伝導材料。
13. The copper oxide superconductor having the spin quantum defect is overdoped to form a d + is wave superconducting symmetry, and the d + is wave superconducting symmetry in the CuO 2 plane The quantum defect magnetic flux according to any one of claims 1 to 12, wherein the superconducting anisotropy is low due to the effect of reducing the superconducting anisotropy and the effect of the superconducting anisotropy being low. Pinned superconducting material.
【請求項14】 スピン量子欠陥を有する銅酸化物超伝
導体の組成を有する原料を単結晶基板又は結晶配向基板
上に乗せ、Ag、Au又は耐酸化性容器に封入して、
0.1気圧から数万気圧までの圧力、温度及び時間を制
御して無配向、c軸配向、又はa,c軸の2軸配向の結
晶成長を行うことにより、 臨界電流密度Jc、不可逆磁界Hirr、及び超伝導転
移温度Tcが高い、バルクまたは単結晶を形成すること
を特徴とする、量子欠陥磁束ピン止め型超伝導材料の製
造方法。
14. A raw material having a composition of a copper oxide superconductor having a spin quantum defect is placed on a single crystal substrate or a crystallographically oriented substrate, and sealed in an Ag, Au, or oxidation-resistant container.
Critical current density Jc, irreversible magnetic field by controlling the pressure, temperature and time from 0.1 atm to tens of thousands of atmospheres to grow crystals in non-orientation, c-axis orientation, or biaxial orientation of a and c axes A method for producing a quantum defect magnetic flux pinned superconducting material, characterized by forming a bulk or single crystal having a high Hirr and a high superconducting transition temperature Tc.
【請求項15】 スピン量子欠陥を有する銅酸化物超伝
導体の組成を有する原料を単結晶基板又は結晶配向基板
上に堆積又は塗布し、Agもしくは耐酸化性容器に封入
して、0.1〜10気圧の低圧下で温度及び時間を制御
して無配向、c軸配向又はa,c軸の2軸配向の結晶成
長を行うことにより、 臨界電流密度Jc、不可逆磁界Hirr、及び超伝導転
移温度Tcが高い、多結晶または単結晶の膜を作製する
ことを特徴とする、量子欠陥磁束ピン止め型超伝導材料
の製造方法。
15. A raw material having a composition of a copper oxide superconductor having a spin quantum defect is deposited or coated on a single crystal substrate or a crystallographically oriented substrate, and sealed in an Ag or oxidation-resistant container. Critical current density Jc, irreversible magnetic field Hirr, and superconducting transition by controlling temperature and time under low pressure of 10 to 10 atm and performing crystal growth of non-orientation, c-axis orientation or biaxial orientation of a and c axes. A method for producing a quantum defect magnetic flux pinned superconducting material, comprising producing a polycrystalline or single crystal film having a high temperature Tc.
【請求項16】 スピン量子欠陥を有する銅酸化物超伝
導体の組成を有する原料又はスピン量子欠陥を有する銅
酸化物超伝導材料を、Ag又は耐酸化性金属容器に封入
して、圧延と焼鈍を組合わせて無配向、c軸配向又は
a,c軸の2軸配向の結晶成長を行うことにより、 超伝導層のCuO2 面に垂直に、かつ、一次元的に配列
した又は紐状に繋がったスピン量子欠陥を導入し、 臨界電流密度Jc、不可逆磁界Hirr、及び超伝導転
移温度Tcが高く、かつ、細線又はテープに加工するこ
とができる多結晶体を作製することを特徴とする、量子
欠陥磁束ピン止め型超伝導材料の製造方法。
16. Rolling and annealing a raw material having a composition of a copper oxide superconductor having a spin quantum defect or a copper oxide superconducting material having a spin quantum defect is enclosed in an Ag or oxidation-resistant metal container. By performing non-oriented, c-axis oriented, or biaxially oriented a, c-axis crystal growth in combination with the superconducting layer perpendicular to the CuO 2 plane and one-dimensionally or in a string form. Introducing a connected spin quantum defect, producing a polycrystalline material having a high critical current density Jc, an irreversible magnetic field Hirr, and a high superconducting transition temperature Tc, and which can be processed into a thin wire or tape; A method for producing a quantum defect magnetic flux pinned superconducting material.
JP2001009276A 2001-01-17 2001-01-17 Super conductive material of quantum-defect flux pinning type and method of manufacturing the same Pending JP2002220230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001009276A JP2002220230A (en) 2001-01-17 2001-01-17 Super conductive material of quantum-defect flux pinning type and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001009276A JP2002220230A (en) 2001-01-17 2001-01-17 Super conductive material of quantum-defect flux pinning type and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002220230A true JP2002220230A (en) 2002-08-09

Family

ID=18876786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001009276A Pending JP2002220230A (en) 2001-01-17 2001-01-17 Super conductive material of quantum-defect flux pinning type and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002220230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526199A (en) * 2004-01-16 2007-09-13 アメリカン・スーパーコンダクター・コーポレーション Oxide film with nanodot flux and pinning center

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526199A (en) * 2004-01-16 2007-09-13 アメリカン・スーパーコンダクター・コーポレーション Oxide film with nanodot flux and pinning center

Similar Documents

Publication Publication Date Title
Pallecchi et al. Application potential of Fe-based superconductors
Rahman et al. A review on cuprate based superconducting materials including characteristics and applications
Saleem et al. Review the high temperature superconductor (htsc) cuprates-properties and applications
EP0275343A1 (en) New superconductive compounds of the K2NiF4 structural type having a high transition temperature, and method for fabricating same
EP0292436B1 (en) High current conductors and high field magnets using anisotropic superconductors
JPH0515647B2 (en)
JP2939544B1 (en) Mg-doped low-anisotropic high-temperature superconductor and method for producing the same
JPS63222068A (en) Device and system based on novel superconductive material
JP3289134B2 (en) Low anisotropy high temperature superconductor based on uncertainty principle and its manufacturing method
JPH03153089A (en) Tunnel junction element wherein compound oxide superconductive material is used
US5502029A (en) Laminated super conductor oxide with strontium, calcium, copper and at least one of thallium, lead, and bismuth
EP0293836B1 (en) Method for preparing thin film of superconductor
KR0125876B1 (en) Method for preparing superconducting thin film
JP2002220230A (en) Super conductive material of quantum-defect flux pinning type and method of manufacturing the same
EP0303813B1 (en) High critical current superconductors
US5206214A (en) Method of preparing thin film of superconductor
Shiohara et al. R&D of coated conductors in Japan
JP2001247311A (en) Low anisotropic high temperature superconductor based on uncertainty principle and method for producing the same
JPH02199056A (en) Bi-sr-ca-cu multiple oxide superconductor
WO1998032697A1 (en) Oxide superconductor
JP2001233614A (en) Low anisotropic high temperature super-conductive material based on the uncertainty principle and method for producing the same
Yang Optimisation of crystal structure of high temperature superconductors through materials design and chemical doping
JPH05139736A (en) Oxide superconductor
Kirschner et al. High-T/sub c/superconducting magnets based on thick film arrangements
Lang Microstructures and critical current densities of melt-processed Bi₂Sr₂CaCu₂Ox superconductor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306