JP2002220206A - Method and device for concentration and separation of hydrogen isotope - Google Patents

Method and device for concentration and separation of hydrogen isotope

Info

Publication number
JP2002220206A
JP2002220206A JP2001015162A JP2001015162A JP2002220206A JP 2002220206 A JP2002220206 A JP 2002220206A JP 2001015162 A JP2001015162 A JP 2001015162A JP 2001015162 A JP2001015162 A JP 2001015162A JP 2002220206 A JP2002220206 A JP 2002220206A
Authority
JP
Japan
Prior art keywords
storage
tower
deuterium
storage tower
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001015162A
Other languages
Japanese (ja)
Inventor
Satoshi Fukada
智 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu TLO Co Ltd
Original Assignee
Kyushu TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu TLO Co Ltd filed Critical Kyushu TLO Co Ltd
Priority to JP2001015162A priority Critical patent/JP2002220206A/en
Publication of JP2002220206A publication Critical patent/JP2002220206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact device easy to operate and a method for hydrogen isotope concentration and separation capable of concentrating and separating deuterium at a high concentration rate or at a high recovery rate from a raw hydrogen gas consisting of mixed protium and deuterium. SOLUTION: This method and device consist of an absorption process which comprises placing three and more absorption towers side by side filled in with an absorbing agent to preferentially absorb protium, sequentially keeping one absorption tower standby and connecting the remaining towers in series and supplying a raw gas through the bottom of the rearmost tower to be absorbed by the absorbing agent, a reprocessing process which comprises cutting off the rearmost tower from the series after completion of absorption, producing an increase in temperature to desorb a protium-enriched gas and thus reprocessing the absorbing agent and keeping it standby and a recovery process to recover an enriched deuterium through the top of the headmost tower after repeating the absorption and reprocessing processes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軽水素と重水素が
混在するガスから重水素を回収する水素同位体の濃縮分
離方法およびそれに用いる装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for concentrating and separating hydrogen isotopes for recovering deuterium from a gas in which light hydrogen and deuterium are mixed, and an apparatus used for the method.

【0002】[0002]

【従来の技術】水素ガスを構成する水素原子には、質量
数1の水素原子(H)の他に、質量数2の水素原子(デ
ューテリウム:D)および質量数3の水素原子(トリチ
ウム:T)の同位体が存在し、一般的に入手できる各種
の水素ガス原料には、H2から成る水素ガス(本明細書
では軽水素と呼ぶ)とともに、デューテリウムを構成原
子として含む微量のHD、D2とトリチウムを構成原子
として含むさらにごく微量のHT、DT、T2から成る
水素ガス(本明細書では、これらをまとめて重水素と呼
ぶ)が混在している。重水素は、核融合炉用燃料として
の他、分析・解析用トレーサーなどの各種の用途におい
て貴重な物質であるが、上記のように、軽水素とともに
混在しているので、それぞれの用途に供するためには、
従来より知られた熱拡散法、蒸留法、レーザー法、膜分
離法などにより軽水素と重水素を分離することが試みら
れている。しかしながら、これらの方法は、装置が大型
であったり多量の運転エネルギーを必要とするなどの難
点があった。
2. Description of the Related Art In addition to a hydrogen atom having a mass number of 1 (H), a hydrogen atom having a mass number of 2 (deuterium: D) and a hydrogen atom having a mass number of 3 (tritium: T) isotopes, and various commonly available hydrogen gas raw materials include, in addition to hydrogen gas composed of H 2 (herein referred to as light hydrogen), a trace amount of HD containing deuterium as a constituent atom. , D 2 and tritium as constituent atoms, and a very small amount of hydrogen gas composed of HT, DT, and T 2 (in the present specification, these are collectively referred to as deuterium). Deuterium is a valuable substance for various uses such as tracers for analysis and analysis, as well as fuel for fusion reactors, but as described above, it is mixed with light hydrogen, so it is provided for each use. In order to
Attempts have been made to separate light hydrogen and deuterium by a conventionally known thermal diffusion method, distillation method, laser method, membrane separation method or the like. However, these methods have disadvantages such as a large device and a large amount of operating energy.

【0003】これらの方法に対して、特定の水素同位体
を優先的に吸蔵(吸着)する吸蔵剤(吸着剤)を用いる
方法は、比較的簡単な装置で水素同位体を分離すること
ができるという利点はあるが、従来の吸蔵法(吸着法)
では、目的の水素同位体の濃縮率あるいは回収率が低
く、低濃度の水素同位体を高濃度で取り出すことができ
ないという問題があった。
In contrast to these methods, a method using an occluding agent (adsorbent) that preferentially occupies (adsorbs) a specific hydrogen isotope can separate the hydrogen isotope with a relatively simple apparatus. Although there is an advantage, the conventional occlusion method (adsorption method)
Thus, there was a problem that the enrichment rate or the recovery rate of the target hydrogen isotope was low, and a low-concentration hydrogen isotope could not be extracted at a high concentration.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、以上
のような問題を克服して、小型で操作の簡単な装置を用
いながら、同位体の混在する水素ガスから高い濃縮率あ
るいは回収率で重水素を濃縮し分離することのできる新
しい水素同位体濃縮分離技術を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the problems described above and to obtain a high enrichment or recovery rate from isotope-mixed hydrogen gas by using a small and easy-to-operate apparatus. Another object of the present invention is to provide a new hydrogen isotope enrichment and separation technique capable of enriching and separating deuterium by using the method.

【0005】[0005]

【課題を解決するための手段】本発明に従えば、上述の
目的を達成するものとして、軽水素に重水素が混合して
いる原料ガスから重水素を濃縮分離する方法であって;
軽水素を優先的に吸蔵する吸蔵剤を充填したn本(n≧
3)の吸蔵塔を並置し、順次、1本の吸蔵塔を待機させ
て残りの(n−1)本の吸蔵塔を直列に連結し該(n−
1)本の吸蔵塔の最後尾の吸蔵塔の下端から原料ガスを
供給して吸蔵剤に該ガスを吸蔵させる吸蔵工程と、該吸
蔵工程が終了した後、前記(n−1)本の吸蔵塔の最後
尾の吸蔵塔を連結から切り離して昇温し軽水素富化ガス
を脱離させることにより吸蔵剤を再生させて待機させる
再生工程とを、繰り返した後;連結している(n−1)
本の吸蔵塔の先頭の吸蔵塔の上端から、濃縮された重水
素を回収する回収工程を含む水素同位体の濃縮分離方法
が提供される。
According to the present invention, there is provided, as a means for achieving the above-mentioned object, a method for concentrating and separating deuterium from a source gas in which deuterium is mixed with light hydrogen;
N (n ≧ n) filled with an occluding agent that preferentially occupies light hydrogen
The storage towers of 3) are juxtaposed, and one storage tower is sequentially put on standby, and the remaining (n-1) storage towers are connected in series to form (n-
1) An occlusion step in which a raw material gas is supplied from a lower end of the last occlusion tower of the occlusion tower to occlude the gas in the occluding agent, and after the occlusion step is completed, the (n-1) occlusion is performed. After the storage tower at the end of the tower is disconnected from the connection and the temperature is raised to release the light hydrogen-enriched gas to regenerate the storage agent and wait. 1)
Provided is a method for enriching and separating hydrogen isotopes, which includes a recovery step of recovering concentrated deuterium from the upper end of the top storage tower of the book storage tower.

【0006】さらに、本発明に従えば、上記の水素同位
体の濃縮分離方法の実施に使用される装置であって、軽
水素を優先的に吸蔵する吸蔵剤が充填され温度調整手段
が配備された少なくとも3本の吸蔵塔;各吸蔵塔の上端
と次の吸蔵塔の下端とを連結する吸蔵塔接続通路;原料
ガス供給路および該原料ガス供給路から分流され各吸蔵
塔の下端に原料ガスを導入する原料ガス導入路;各吸蔵
塔の下端から軽水素富化ガスを貯蔵容器に排気する排気
ガス回収路;各吸蔵塔の上端から濃縮重水素を導出して
貯蔵容器に回収する濃縮重水素回収路;原料ガス供給路
と原料ガス導入路の分流点に配備され、いずれかの吸蔵
塔の原料ガス導入路に原料ガスを導くように切り替えら
れる原料ガス流路切替弁;各吸蔵塔の下方に配設され、
各吸蔵塔の下端を、吸蔵塔接続通路、原料ガス導入路ま
たは排気ガス回収路のいずれかに連結するように切り替
えられる吸蔵塔下方流路切替弁;各吸蔵塔の上方に配設
され、各吸蔵塔の上端を、吸蔵塔接続通路または濃縮重
水素回収路のいずれかに連結するように切り替えられる
吸蔵塔上方流路切替弁;を有する水素同位体の濃縮分離
装置が提供される。
Further, according to the present invention, there is provided an apparatus used for carrying out the above-mentioned method for enriching and separating hydrogen isotopes, wherein an occluding agent for preferentially occluding light hydrogen is filled and a temperature adjusting means is provided. At least three occlusion towers; an occlusion tower connection passage connecting the upper end of each occlusion tower and the lower end of the next occlusion tower; a source gas supply path and a source gas divided from the source gas supply path and provided at a lower end of each occlusion tower. Gas exhaust path for exhausting light hydrogen-enriched gas from the lower end of each storage tower to a storage vessel; Concentrated weight for extracting concentrated deuterium from the upper end of each storage tower and collecting it in the storage vessel Hydrogen recovery path; a source gas flow path switching valve that is provided at a branch point between the source gas supply path and the source gas introduction path and that is switched to guide the source gas to the source gas introduction path of one of the storage towers; Located below,
A storage tower lower flow path switching valve that is switched to connect the lower end of each storage tower to one of a storage tower connection passage, a raw material gas introduction passage, and an exhaust gas recovery passage; provided above each storage tower; A hydrogen isotope enrichment / separation device having an occlusion tower upper flow path switching valve that is switched to connect the upper end of the occlusion tower to either the occlusion tower connection passage or the enriched deuterium recovery passage.

【0007】[0007]

【発明の実施の形態】本発明は、吸蔵剤(吸着剤)を用
いる水素同位体の分離法において、軽水素を優先的に吸
蔵する吸蔵剤を充填した吸蔵塔を3本以上並置すること
により、バルブ(弁)の開閉操作による流路切り替えと
温度調整のみで、軽水素の吸蔵と脱離(すなわち、吸蔵
剤の再生)を行う吸蔵塔を順次移動させながら、吸蔵剤
の有する同位体効果により、先頭に位置する吸蔵塔に重
水素を濃縮させ、高い濃縮率で回収することを可能にし
たものである。以下、理解を容易にするため、図1に例
示する本発明の水素同位体濃縮分離装置に沿って、本発
明の実施の形態を詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a method for separating hydrogen isotopes using an occluding agent (adsorbent) by juxtaposing three or more occlusion towers filled with an occluding agent that occludes light hydrogen preferentially. The isotope effect of the occluding agent is obtained by sequentially moving the occlusion tower for occlusion and desorption of light hydrogen (that is, regeneration of the occluding agent) only by switching the flow path by opening and closing the valve (valve) and adjusting the temperature. This makes it possible to concentrate deuterium in the occlusion tower located at the head and to recover it at a high concentration rate. Hereinafter, in order to facilitate understanding, embodiments of the present invention will be described in detail along the hydrogen isotope enrichment and separation apparatus of the present invention illustrated in FIG.

【0008】本発明の水素同位体濃縮分離装置には、軽
水素を優先的に吸蔵する吸蔵剤を充填したn本(n≧
3)の吸蔵塔、すなわち、少なくとも3本の吸蔵塔が並
置される。この吸蔵塔は、後述するように吸蔵剤に軽水
素含有ガスが吸蔵され且つ吸蔵剤から該ガスが脱離され
るように温度調整手段が配備されている。図1に例示す
る装置においては、軽水素を優先的に吸蔵する吸蔵剤
(1)を充填した3本の吸蔵塔、すなわち、第1吸蔵塔
(2)、第2吸蔵塔(3)および第3吸蔵塔(4)が並
置されている。
[0008] The hydrogen isotope enrichment and separation apparatus of the present invention has n (n ≧ n) filled with an occluding agent that preferentially occupies light hydrogen.
The storage tower of 3), that is, at least three storage towers are juxtaposed. The storage tower is provided with a temperature adjusting means so that a light hydrogen-containing gas is stored in the storage agent and the gas is desorbed from the storage agent as described later. In the apparatus illustrated in FIG. 1, three storage towers filled with a storage agent (1) that stores light hydrogen preferentially, that is, a first storage tower (2), a second storage tower (3), and a second storage tower (3). Three storage towers (4) are juxtaposed.

【0009】各吸蔵塔は、吸蔵塔接続通路により、その
上端と次の吸蔵塔の下端とが接続され、水素同位体の濃
縮分離操作に際して直列に連結され得るように構成され
ている。図1の装置例では、(15)、(16)および
(17)が、それぞれ、第1吸蔵塔−第2吸蔵塔接続通
路、第2吸蔵塔−第3吸蔵塔接続通路、および第3吸蔵
塔−第1吸蔵塔接続通路と成る。
Each of the storage towers is configured such that an upper end thereof is connected to a lower end of the next storage tower by a storage tower connection passage, and can be connected in series during a hydrogen isotopic enrichment and separation operation. In the example of the apparatus of FIG. 1, (15), (16) and (17) represent the first storage tower-second storage tower connection passage, the second storage tower-third storage tower connection passage, and the third storage tower, respectively. It becomes a tower-first storage tower connection passage.

【0010】また、各吸蔵塔の下方には、軽水素に重水
素が混合している原料ガスを供給するための原料ガス供
給路、および該原料ガス供給路から分流され各吸蔵塔の
下端に原料ガスを導入するための原料ガス導入路が配設
されている。図1に例示する装置においては、(10)
が原料ガス供給路であり、それから分流された(9)が
原料ガス導入路に相当する。図に示されるように、原料
ガス供給路には、圧力と流量の不均衡が起こらないよう
に調整するマスフローコントローラーが配備されている
ことが好ましい。
A source gas supply path for supplying a source gas in which deuterium is mixed with light hydrogen is provided below each of the storage towers. A source gas introduction path for introducing the source gas is provided. In the device illustrated in FIG. 1, (10)
Is a source gas supply path, and (9) divided therefrom corresponds to a source gas introduction path. As shown in the figure, it is preferable that a mass flow controller for adjusting the pressure and the flow rate so as not to be imbalanced is provided in the source gas supply path.

【0011】各吸蔵塔の下方には、さらに、後述するよ
うな吸蔵剤の再生に際して、その下端から軽水素富化ガ
スを排気し回収するための排気ガス回収路が設けられて
いる。図1に例示する装置においては、(24)が排気
ガス回収路である。図に示すように、この排気ガス回収
路には、開閉弁(25)、ニードル弁(26)、マスフ
ローコントローラー(27)が設置してあり、排気ガス
回収路(24)から排出される脱離ガス(軽水素富化ガ
ス)を排気ガス回収容器(28)に回収貯蔵するように
なっている。
An exhaust gas recovery path is provided below each of the storage towers for exhausting and recovering the light hydrogen-enriched gas from its lower end when the storage agent is regenerated as described below. In the apparatus illustrated in FIG. 1, (24) is an exhaust gas recovery path. As shown in the figure, an on-off valve (25), a needle valve (26), and a mass flow controller (27) are installed in the exhaust gas recovery path, and desorption discharged from the exhaust gas recovery path (24) is performed. The gas (light hydrogen-enriched gas) is collected and stored in an exhaust gas collection container (28).

【0012】なお、排気ガス回収路は、図1に示すよう
に、適当な開閉弁(29)を介して真空排気手段に接続
されていることが好ましい。これによって、後述するよ
うに吸蔵剤の再生工程において軽水素富化ガスを脱離さ
せた後、さらに真空排気を行うことによって、吸蔵剤の
再生(活性化)が促進され、軽水素と重水素の分離度が
高くなる。
As shown in FIG. 1, the exhaust gas recovery path is preferably connected to a vacuum exhaust means via an appropriate on-off valve (29). As a result, as described later, after the light hydrogen-enriched gas is desorbed in the storage agent regeneration step, the evacuation is further performed, whereby the regeneration (activation) of the storage agent is promoted, and light hydrogen and deuterium are decomposed. Is increased.

【0013】一方、各吸蔵塔の上方には、後述するよう
な吸蔵工程と再生工程を繰り返した後、その上端から濃
縮重水素を導出して貯蔵容器に回収するための濃縮重水
素回収路が配設されている。図1の装置例においては、
(18)が濃縮重水素回収路であり、図に示されるよう
に、この濃縮重水素回収路には開閉弁(19)、圧力計
(23)、ニードル弁(20)、マスフローコントロー
ラー(21)が配備され、その先端に重水素の回収貯蔵
容器(22)が接続されている。
On the other hand, above each occlusion tower, a concentrated deuterium recovery passage for repeating the storage step and the regeneration step as described later, and then leading the concentrated deuterium from the upper end thereof and collecting it in the storage container is provided. It is arranged. In the device example of FIG.
(18) is a concentrated deuterium recovery path. As shown in the figure, the concentrated deuterium recovery path includes an on-off valve (19), a pressure gauge (23), a needle valve (20), and a mass flow controller (21). , And a deuterium recovery storage container (22) is connected to the tip thereof.

【0014】本発明の水素同位体濃縮分離装置には、さ
らに、幾つかの流路切替弁が設けられており、これによ
って上述したような各種の通路(流路)を適宜切り替え
ることにより、水素同位体の濃縮分離が簡単且つ効率的
に実施できるようになっている。
The hydrogen isotope enrichment / separation apparatus of the present invention is further provided with some flow path switching valves, and by appropriately switching the above-mentioned various paths (flow paths), the hydrogen isotope is separated. Isotope enrichment and separation can be performed easily and efficiently.

【0015】すなわち、原料ガス供給路と原料ガス導入
路の分流点には、いずれかの吸蔵塔の原料ガス導入路に
原料ガスを導くように切り替えられる原料ガス流路切替
弁が配設され、図1に示す例では(8)がこの原料ガス
流路切替弁である。また、各吸蔵塔の下方には、各吸蔵
塔の下端を、吸蔵塔接続通路、原料ガス導入路または排
気ガス回収路のいずれかに連結するように切り替えられ
る吸蔵塔下方流路切替弁が配設されており、図1に示す
装置においては、(5)、(6)および(7)が、ぞれ
ぞれ、第1吸蔵塔(2)、第2吸蔵塔(3)および第3
吸蔵塔(4)の下方に設けられた流路切替弁である。さ
らに、各吸蔵塔の上方には、各吸蔵塔の上端を、吸蔵塔
接続通路または濃縮重水素回収路のいずれかに連結する
ように切り替えられる吸蔵塔上方流路切替弁が配設され
ており、図1の装置例では、(12)、(13)および
(14)が、それぞれ、第1吸蔵塔(2)、第2吸蔵塔
(3)および第3吸蔵塔(4)の上方に設けられた流路
切替弁である。
That is, at a branch point between the source gas supply path and the source gas introduction path, a source gas flow path switching valve that switches so as to guide the source gas to the source gas introduction path of one of the storage towers is provided. In the example shown in FIG. 1, (8) is this source gas flow path switching valve. Below the storage tower, a storage tower lower flow path switching valve that switches the lower end of each storage tower to be connected to the storage tower connection passage, the raw material gas introduction passage, or the exhaust gas recovery passage is arranged. In the apparatus shown in FIG. 1, (5), (6) and (7) correspond to the first occlusion tower (2), the second occlusion tower (3) and the third occlusion tower, respectively.
This is a flow path switching valve provided below the storage tower (4). Above each storage tower, a storage tower upper flow path switching valve that switches the upper end of each storage tower to be connected to either the storage tower connection passage or the concentrated deuterium recovery passage is provided. 1, (12), (13) and (14) are provided above the first storage tower (2), the second storage tower (3) and the third storage tower (4), respectively. It is a flow path switching valve provided.

【0016】本発明において用いられる軽水素を優先的
に吸蔵する吸蔵剤は、特に限定されるものではなく、パ
ラジウム(Pd)、Pd−Pt、Pd−Au、Pd−A
g等のパラジウム合金系の吸蔵剤、ジルコニウム合金系
吸蔵剤、チタン合金系吸蔵剤、ウラン(U)等が使用で
きる。これらは、ペレット、タブレットあるいは粉末な
ど適当なサイズに加工したものを吸蔵塔内に充填して使
用する。吸蔵剤として好ましい例は、パラジウムであ
り、パラジウムの耐久性能を上昇させたパラジウムアル
ミナペレットが特に好ましい。これらの吸蔵剤は、一般
に室温で軽水素を吸蔵(吸着)し、その後、昇温する
(例えば、パラジウム系吸蔵剤の場合、約200℃)と
吸蔵していたガスを脱離、放出する。次に、上記の装置
を使用して水素同位体を濃縮分離する方法について具体
的に説明する。
The occluding agent for preferentially occluding light hydrogen used in the present invention is not particularly limited, and palladium (Pd), Pd-Pt, Pd-Au, Pd-A
g, a palladium alloy-based occluding agent, a zirconium alloy-based occluding agent, a titanium alloy-based occluding agent, uranium (U), and the like can be used. These are used after filling into an occlusion tower with pellets, tablets or powder processed into a suitable size. A preferred example of the occlusion agent is palladium, and palladium alumina pellets having improved durability of palladium are particularly preferred. These occluding agents generally absorb (adsorb) light hydrogen at room temperature and then desorb and release the occluded gas when the temperature is raised (for example, about 200 ° C. in the case of a palladium-based occluding agent). Next, a method for enriching and separating hydrogen isotopes using the above apparatus will be specifically described.

【0017】先ず、予備操作として吸蔵塔(2)(3)
(4)を加熱し且つ真空排気することによりその中に収
容されている吸蔵剤を活性化しておく。その後、開閉弁
(19)を閉じたまま、流路切替弁(5)(12)
(6)を介して第1吸蔵塔(2)と第2吸蔵塔(3)を
連結し、流路切替弁(8)を第1吸蔵塔の方向にし、マ
スフローコントローラー(11)で流量調整された原料
ガス(水素同位体を混合している水素ガス)を室温で供
給する。第2吸蔵塔出口の圧力が原料ガス供給圧力に達
したら、流路切替弁(5)(12)(6)を閉じ第1吸
蔵塔を切り離す。それと同時に流路切替弁(6)(1
3)(7)を開け第2吸蔵塔(3)と第3吸蔵塔(4)
を連結し、流路切替弁(8)を第2吸蔵塔(3)に切り
替え、マスフローコントローラー(11)で流量調整さ
れた原料ガスを室温で供給する。
First, as a preliminary operation, the storage tower (2) (3)
(4) is heated and evacuated to activate the occluding agent contained therein. Thereafter, while the on-off valve (19) is closed, the flow path switching valve (5) (12)
The first storage tower (2) and the second storage tower (3) are connected via (6), the flow path switching valve (8) is set in the direction of the first storage tower, and the flow rate is adjusted by the mass flow controller (11). Raw material gas (hydrogen gas mixed with hydrogen isotope) is supplied at room temperature. When the pressure at the outlet of the second storage tower reaches the source gas supply pressure, the flow path switching valves (5), (12), and (6) are closed to disconnect the first storage tower. At the same time, the flow path switching valve (6) (1
3) Open (7), second storage tower (3) and third storage tower (4)
And the flow path switching valve (8) is switched to the second storage tower (3), and the raw material gas whose flow rate has been adjusted by the mass flow controller (11) is supplied at room temperature.

【0018】切離した第1吸蔵塔(2)を昇温し(例え
ば、200℃まで)、吸蔵している原料ガスを脱離させ
る。第1吸蔵塔(2)の温度が予め設定した温度まで上
昇した後、流路切替弁(5)を開け、排気ガス回収路
(24)、開閉弁(25)、ニードル弁(26)および
マスフローコントローラー(27)を閉じるとともに別
の開閉弁(29)を開き真空排気し、吸蔵剤(1)の再
生を行う。再生工程が終了したら開閉弁(29)、流路
切替弁(5)を閉じ、待機させる。
The temperature of the separated first storage tower (2) is raised (for example, up to 200 ° C.), and the stored raw material gas is desorbed. After the temperature of the first storage tower (2) rises to a preset temperature, the flow path switching valve (5) is opened, and the exhaust gas recovery path (24), the on-off valve (25), the needle valve (26) and the mass flow The controller (27) is closed and another on-off valve (29) is opened to evacuate and regenerate the occluding agent (1). When the regeneration step is completed, the on-off valve (29) and the flow path switching valve (5) are closed and put on standby.

【0019】第3吸蔵塔(4)の圧力が原料ガス供給圧
力に達したら、流路切替弁(6)(13)(7)を閉じ
第2吸蔵塔を切離すと同時に、流路切替弁(7)(1
4)(5)を開け第3吸蔵塔と待機させていた第1吸蔵
塔を連結し、流路切替弁(8)を第3吸蔵塔に切り替
え、マスフローコントローラー(11)で流量調整され
た原料ガスを室温で供給する。切離した第2吸蔵塔を昇
温し(例えば200℃まで)、吸蔵している原料ガスを
脱離させ、第2吸蔵塔の温度が設定温度に達した後、流
路切替弁(6)を開け、排気ガス回収路(24)を通し
て貯蔵器(28)に排気する。その後開閉弁(25)を
閉じるとともに、開閉弁(29)を開け真空排気し吸蔵
剤の再生を行う。この再生工程が終了したら開閉弁(2
9)と流路切替弁(6)を閉じ、待機させる。
When the pressure of the third storage tower (4) reaches the supply pressure of the raw material gas, the flow path switching valves (6), (13) and (7) are closed to disconnect the second storage tower, and at the same time, the flow path switching valve is opened. (7) (1
4) Opening (5), connecting the third storage tower with the first storage tower which has been on standby, switching the flow path switching valve (8) to the third storage tower, and adjusting the flow rate of the raw material by the mass flow controller (11). The gas is supplied at room temperature. The temperature of the disconnected second storage tower is raised (for example, up to 200 ° C.), the stored raw material gas is desorbed, and after the temperature of the second storage tower reaches the set temperature, the flow path switching valve (6) is opened. Open and exhaust to reservoir (28) through exhaust gas recovery path (24). Thereafter, the on-off valve (25) is closed, and the on-off valve (29) is opened to evacuate and regenerate the occluding agent. When this regeneration process is completed, the on-off valve (2
9) and the flow path switching valve (6) are closed and put on standby.

【0020】第1吸蔵塔出口の圧力が原料ガス供給圧力
に達したら、流路切替弁(7)(14)(5)を閉じ第
3吸蔵塔を切離す。流路切替弁(5)(12)(6)を
開け第1吸蔵塔と第2吸蔵塔を連結し、流路切替弁
(8)を第1吸蔵塔に切り替え、マスフローコントロー
ラー(11)で流量調整された原料ガスを室温で供給す
る。切離した第3吸蔵塔を昇温し(例えば200℃ま
で)、水素が富化されたガスを脱離させ、第3吸蔵塔出
口の温度が設定温度に達した後、流路切替弁(7)を開
け、排気ガス回収路(24)を通して排気ガス貯蔵器
(28)に送り、その後、真空排気し吸蔵剤の再生を行
う。再生工程が終了した後、流路切替弁(7)を閉じ待
機させる。
When the pressure at the outlet of the first storage tower reaches the supply pressure of the raw material gas, the flow path switching valves (7), (14) and (5) are closed to disconnect the third storage tower. Open the flow path switching valves (5), (12) and (6), connect the first storage tower and the second storage tower, switch the flow path switching valve (8) to the first storage tower, and use the mass flow controller (11) to control the flow rate. The adjusted source gas is supplied at room temperature. The temperature of the separated third storage tower is raised (for example, up to 200 ° C.), the hydrogen-enriched gas is desorbed, and the temperature at the outlet of the third storage tower reaches the set temperature. ) Is opened and sent to an exhaust gas storage (28) through an exhaust gas recovery path (24). Thereafter, the exhaust is evacuated and the storage agent is regenerated. After the regeneration step is completed, the flow path switching valve (7) is closed and made to wait.

【0021】このように、本発明においては、吸蔵剤を
充填したn本の吸蔵塔のうち、1本を待機させて残りの
(n−1)本の吸蔵塔を直列に連結した状態で順次、連
結した吸蔵塔の最後尾の吸蔵塔の下端から原料ガスを供
給して吸蔵剤に吸蔵させる吸蔵工程と、吸蔵工程が終了
した後、その最後尾の吸蔵塔を連結から切り離して吸蔵
剤を再生させる再生工程とを繰り返す。例えば、図1に
示すように3本の吸蔵塔を並置する場合には、上で詳述
したように、順次、2本の吸蔵塔を連結し1本の吸蔵塔
を待機させた状態で吸蔵工程と再生工程とを繰り返す。
As described above, in the present invention, one of the n storage towers filled with the storage agent is kept on standby, and the remaining (n-1) storage towers are sequentially connected in a state of being connected in series. A storage step in which the raw material gas is supplied from the lower end of the last storage tower of the connected storage tower to occlude the storage agent, and after the storage step is completed, the last storage tower is disconnected from the connection to remove the storage agent. The reproduction step of reproducing is repeated. For example, when three storage towers are juxtaposed as shown in FIG. 1, as described in detail above, two storage towers are sequentially connected, and one storage tower is in a standby state. The process and the regeneration process are repeated.

【0022】この操作が繰り返されると、原料ガス中の
重水素が先頭の吸蔵塔に移動され、重水素が次第に濃縮
されることになる。先頭の吸蔵塔に重水素が十分な量、
濃度まで濃縮されたら、先頭の吸蔵塔の上端にある流路
切替弁(12)(13)(14)のいずれかと開閉弁
(19)を開け、濃縮重水素回収路(18)を通してニ
ードル弁(20)とマスフローコントローラー(21)
で流量を制御しながら濃縮重水素を製品ガスとして回収
貯蔵容器(22)に回収貯蔵する。製品ガスを回収した
後、上述の濃縮操作を引き続き行うことにより連続的に
原料ガス中の水素同位体を濃縮・分離できる。
When this operation is repeated, deuterium in the raw material gas is moved to the leading storage tower, and the deuterium is gradually concentrated. Enough deuterium in the top storage tower,
After concentration to the concentration, one of the flow path switching valves (12), (13), and (14) and the on-off valve (19) at the upper end of the top occlusion tower are opened, and the needle valve (18) is passed through the concentrated deuterium recovery path (18). 20) and mass flow controller (21)
The concentrated deuterium is recovered and stored in the recovery storage container (22) as a product gas while controlling the flow rate by the above. After the product gas is recovered, the hydrogen isotope in the source gas can be continuously concentrated and separated by continuously performing the above-described concentration operation.

【0023】上記実施態様では、3塔の吸蔵塔を使用し
て濃縮分離しているが、原料ガス中の水素同位体(重水
素)の濃度が低い場合、あるいは高濃度の水素同位体
(重水素)を可及的に迅速に得ようとする場合には、3
塔以上の吸蔵塔を配置して使用して、所定の濃度を得る
ようにしても良い。このように、本発明に従えば、少な
くとも3本以上の吸蔵塔を並置することにより、逐次、
活性化(再生)された吸蔵剤を収容している1本の吸蔵
剤を待機させながら残りの吸蔵塔を連結させて原料ガス
を吸蔵させるという連続プロセスが可能となる。連結さ
れる吸蔵塔の数は多いほど、その先頭に位置する吸蔵塔
の水素同位体(重水素)の濃縮率は高くなるが、実用上
は、吸蔵塔は一般に3〜5本配置すればよい。
In the above embodiment, the concentration and separation are performed using three storage towers. However, when the concentration of hydrogen isotope (deuterium) in the raw material gas is low, or when the concentration of hydrogen isotope (deuterium) is high, Hydrogen) is to be obtained as quickly as possible.
A predetermined concentration may be obtained by arranging and using more than one storage tower. Thus, according to the present invention, by juxtaposing at least three or more storage towers,
A continuous process is possible in which the one storage agent containing the activated (regenerated) storage agent is kept on standby and the remaining storage towers are connected to store the source gas. The greater the number of storage towers connected, the higher the enrichment rate of hydrogen isotopes (deuterium) in the storage tower located at the head thereof, but in practice, generally three to five storage towers may be arranged. .

【0024】図2に、上述したような図1の装置を用い
(吸蔵剤はパラジウムアルミナペレット)本発明の方法
に従って、天然水素(重水素濃度150ppm)を濃縮
した実験例の結果を示す。実験条件は、塔温度303
K、空塔速度6.8cm/秒、塔高さ70cmとした。
mは実験に使用した並置カラム数(すなわち、吸蔵塔の
数)、nは通過カラム数である。図2から理解されるよ
うに、本発明に従えば、水素同位体が混在している水素
ガスからきわめて高い濃縮率(例えば、100倍から1
000倍)で重水素を濃縮分離できる。
FIG. 2 shows the results of an experimental example in which natural hydrogen (deuterium concentration: 150 ppm) was concentrated using the apparatus of FIG. 1 described above (the storage agent was palladium alumina pellets) and according to the method of the present invention. The experimental conditions were tower temperature 303
K, the superficial tower speed was 6.8 cm / sec, and the tower height was 70 cm.
m is the number of juxtaposed columns used in the experiment (that is, the number of occlusion towers), and n is the number of passing columns. As can be understood from FIG. 2, according to the present invention, a very high enrichment ratio (for example, 100 to 1) can be obtained from hydrogen gas containing hydrogen isotopes.
Deuterium can be concentrated and separated.

【0025】[0025]

【発明の効果】本発明の方法および装置を用いれば、軽
水素を優先的に吸蔵する吸蔵剤を充填している3本以上
の吸蔵塔にバルブを介して、原料ガスを次々と通過させ
ることにより先頭の吸蔵塔に水素同位体(重水素)を濃
縮させることができ、この重水素を高純度の製品ガスと
して回収することができる。吸蔵が終了した吸蔵塔は、
吸蔵した原料ガスを温度制御により脱離させ、系外に排
気し再生することにより新たに水素同位体の分離に用い
ることができ、濃縮した水素同位体ガスを製品として回
収した後も、上記の操作を継続して行うことにより連続
的に水素同位体を濃縮・回収することができる。さら
に、本発明の装置は、吸蔵剤を充填した3本以上の吸蔵
塔を接続するだけであり、その操作もバルブの開閉操作
と各吸蔵塔の温度を調整変化させるだけであるから、イ
ニシャルコストやランニングコストを低コストに抑える
ことができ、小規模な設備で確実に水素同位体を生産す
ることができる。
According to the method and the apparatus of the present invention, the raw material gas can be successively passed through three or more storage towers filled with a storage agent for storing light hydrogen preferentially via valves. Thus, the hydrogen isotope (deuterium) can be concentrated in the leading storage tower, and this deuterium can be recovered as a high-purity product gas. The storage tower whose storage has been completed is
The stored raw material gas is desorbed by temperature control, exhausted to the outside of the system and regenerated, and can be used for new hydrogen isotope separation.After the concentrated hydrogen isotope gas is recovered as a product, By continuing the operation, the hydrogen isotope can be continuously concentrated and recovered. Further, the apparatus of the present invention only connects three or more storage towers filled with the storage agent, and the operation is only to open and close the valve and adjust and change the temperature of each storage tower. And running costs can be kept low, and hydrogen isotopes can be produced reliably with small-scale equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の装置の1実施例を示す概略構成図であ
る。
FIG. 1 is a schematic configuration diagram showing one embodiment of an apparatus of the present invention.

【図2】本発明に従って天然水素を濃縮した実験例の結
果を示す。
FIG. 2 shows the results of an experimental example in which natural hydrogen was concentrated according to the present invention.

【符号の説明】[Explanation of symbols]

1 吸蔵剤 2 第1吸蔵塔 3 第2吸蔵塔 4 第3吸蔵塔 5、6、7、8 切替弁 9 原料ガス導入路 10 原料ガス供給路 11 マスフローコントローラー 12、13、14 切替弁 15 第1吸蔵塔−第2吸蔵塔接続通路 16 第2吸蔵塔−第3吸蔵塔接続通路 17 第3吸蔵塔−第1吸蔵塔接続通路 18 重水素回収路 19 開閉弁 20 ニードル弁 21 マスフローコントローラー 22 濃縮重水素貯蔵容器 23 圧力計 24 排気ガス回収路 25 開閉弁 26 ニードル弁 27 マスフローコントローラー 28 排気ガス貯蔵容器 29 開閉弁 REFERENCE SIGNS LIST 1 storage agent 2 first storage tower 3 second storage tower 4 third storage tower 5, 6, 7, 8 switching valve 9 source gas introduction path 10 source gas supply path 11 mass flow controller 12, 13, 14 switching valve 15 first Storage tower-second storage tower connection passage 16 Second storage tower-third storage tower connection passage 17 Third storage tower-first storage tower connection passage 18 Deuterium recovery path 19 Open / close valve 20 Needle valve 21 Mass flow controller 22 Condensation weight Hydrogen storage container 23 Pressure gauge 24 Exhaust gas recovery path 25 On-off valve 26 Needle valve 27 Mass flow controller 28 Exhaust gas storage container 29 On-off valve

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 軽水素に重水素が混合している原料ガス
から重水素を濃縮分離する方法であって、 軽水素を優先的に吸蔵する吸蔵剤を充填したn本(n≧
3)の吸蔵塔を並置し、順次、1本の吸蔵塔を待機させ
て残りの(n−1)本の吸蔵塔を直列に連結し該(n−
1)本の吸蔵塔の最後尾の吸蔵塔の下端から原料ガスを
供給して吸蔵剤に該ガスを吸蔵させる吸蔵工程と、該吸
蔵工程が終了した後、前記(n−1)本の吸蔵塔の最後
尾の吸蔵塔を連結から切り離して昇温し軽水素富化ガス
を脱離させることにより吸蔵剤を再生させて待機させる
再生工程とを、繰り返した後、 連結している(n−1)本の吸蔵塔の先頭の吸蔵塔の上
端から、濃縮された重水素を回収する回収工程を含むこ
とを特徴とする水素同位体の濃縮分離方法。
1. A method for concentrating and separating deuterium from a raw material gas in which deuterium is mixed with deuterium, comprising: n pieces (n ≧ n) filled with a storage agent that preferentially stores light hydrogen.
The storage towers of 3) are juxtaposed, and one storage tower is sequentially put on standby, and the remaining (n-1) storage towers are connected in series to form (n-
1) An occlusion step in which a raw material gas is supplied from a lower end of the last occlusion tower of the occlusion tower to occlude the gas in the occluding agent, and after the occlusion step is completed, the (n-1) occlusion is performed. The storage step at the end of the tower is disconnected from the connection, the temperature is raised, the light hydrogen-enriched gas is desorbed to regenerate the storage agent by desorbing the light hydrogen-enriched gas, and the recovery step is repeated. 1) A method for enriching and separating hydrogen isotopes, which comprises a recovery step of recovering concentrated deuterium from the upper end of the first storage tower of the book storage tower.
【請求項2】 吸蔵塔を3乃至5本並置することを特徴
とする請求項1の水素同位体の濃縮分離方法。
2. The method for concentrating and separating hydrogen isotopes according to claim 1, wherein 3 to 5 storage towers are juxtaposed.
【請求項3】 吸蔵剤の再生工程において、軽水素富化
ガスを脱離させた後、さらに真空排気を行うことを特徴
とする請求項1または2の水素同位体の濃縮分離方法。
3. The method for concentrating and separating hydrogen isotopes according to claim 1, wherein, in the step of regenerating the occluding agent, vacuum evacuation is further performed after desorbing the light hydrogen-enriched gas.
【請求項4】 吸蔵剤としてパラジウムアルミナペレッ
トを用いることを特徴とする請求項1〜3のいずれかの
水素同位体の濃縮分離方法。
4. The method for concentrating and separating hydrogen isotopes according to claim 1, wherein palladium alumina pellets are used as the storage agent.
【請求項5】 吸蔵剤の再生工程において、吸蔵剤を2
00℃まで昇温することを特徴とする請求項4の水素同
位体の濃縮分離方法。
5. The method of claim 2, wherein in the regeneration step of the storage agent, the storage agent is
5. The method according to claim 4, wherein the temperature is raised to 00 ° C.
【請求項6】 請求項1の水素同位体の濃縮分離方法に
使用される装置であって、 軽水素を優先的に吸蔵する吸蔵剤が充填され温度調整手
段が配備された少なくとも3本の吸蔵塔;各吸蔵塔の上
端と次の吸蔵塔の下端とを連結する吸蔵塔接続通路;原
料ガス供給路および該原料ガス供給路から分流され各吸
蔵塔の下端に原料ガスを導入する原料ガス導入路;各吸
蔵塔の下端から軽水素富化ガスを貯蔵容器に排気する排
気ガス回収路;各吸蔵塔の上端から濃縮重水素を導出し
て貯蔵容器に回収する濃縮重水素回収路;原料ガス供給
路と原料ガス導入路の分流点に配備され、いずれかの吸
蔵塔の原料ガス導入路に原料ガスを導くように切り替え
られる原料ガス流路切替弁;各吸蔵塔の下方に配設さ
れ、各吸蔵塔の下端を、吸蔵塔接続通路、原料ガス導入
路または排気ガス回収路のいずれかに連結するように切
り替えられる吸蔵塔下方流路切替弁;各吸蔵塔の上方に
配設され、各吸蔵塔の上端を、吸蔵塔接続通路または濃
縮重水素回収路のいずれかに連結するように切り替えら
れる吸蔵塔上方流路切替弁;を有することを特徴とする
水素同位体の濃縮分離装置。
6. An apparatus for use in the method for enriching and separating hydrogen isotopes according to claim 1, wherein at least three occlusions are filled with an occluding agent for preferentially occluding light hydrogen and provided with a temperature adjusting means. Tower: a storage tower connection passage connecting the upper end of each storage tower to the lower end of the next storage tower; a raw material gas supply path and a raw material gas introduced from the raw material gas supply path and introduced into the lower end of each storage tower Path: an exhaust gas recovery path for discharging light hydrogen-enriched gas from the lower end of each storage tower to a storage container; a concentrated deuterium recovery path for extracting concentrated deuterium from the upper end of each storage tower and recovering the same in the storage vessel; A source gas flow path switching valve that is provided at a branch point between the supply path and the source gas introduction path and that is switched to guide the source gas to the source gas introduction path of any of the storage towers; Connect the lower end of each storage tower to the storage tower connection passage, A storage tower lower flow path switching valve that is switched so as to be connected to either the introduction path or the exhaust gas recovery path; disposed above each storage tower, the upper end of each storage tower is connected to the storage tower connection passage or the concentrated deuterium. A hydrogen isotope enrichment and separation device, comprising: a storage tower upper flow path switching valve that is switched to be connected to any one of the recovery paths.
【請求項7】 濃縮重水素回収路、排気ガス回収路およ
び原料ガス供給路に、それぞれ、マスフローコントロー
ラーが配備されていることを特徴とする請求項6の水素
同位体の濃縮分離装置。
7. The apparatus for concentrating and separating hydrogen isotopes according to claim 6, wherein a mass flow controller is provided in each of the concentrated deuterium recovery path, the exhaust gas recovery path, and the source gas supply path.
【請求項8】 排気ガス回収路が真空排気手段に接続さ
れていることを特徴とする請求項5または6の水素同位
体の濃縮分離装置。
8. The apparatus for concentrating and separating hydrogen isotopes according to claim 5, wherein the exhaust gas recovery path is connected to a vacuum exhaust means.
JP2001015162A 2001-01-24 2001-01-24 Method and device for concentration and separation of hydrogen isotope Pending JP2002220206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001015162A JP2002220206A (en) 2001-01-24 2001-01-24 Method and device for concentration and separation of hydrogen isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001015162A JP2002220206A (en) 2001-01-24 2001-01-24 Method and device for concentration and separation of hydrogen isotope

Publications (1)

Publication Number Publication Date
JP2002220206A true JP2002220206A (en) 2002-08-09

Family

ID=18881758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001015162A Pending JP2002220206A (en) 2001-01-24 2001-01-24 Method and device for concentration and separation of hydrogen isotope

Country Status (1)

Country Link
JP (1) JP2002220206A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018027879A (en) * 2016-08-15 2018-02-22 小野 信行 Method for discharging heavy hydrogen from seawater
CN114768531A (en) * 2022-05-31 2022-07-22 中国工程物理研究院材料研究所 Hydrogen isotope water separation system and method
GB2610262A (en) * 2022-06-14 2023-03-01 Atomic Energy Authority Uk Improvements in and relating to isotope separation in a fusion power system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018027879A (en) * 2016-08-15 2018-02-22 小野 信行 Method for discharging heavy hydrogen from seawater
CN114768531A (en) * 2022-05-31 2022-07-22 中国工程物理研究院材料研究所 Hydrogen isotope water separation system and method
CN114768531B (en) * 2022-05-31 2023-04-07 中国工程物理研究院材料研究所 Hydrogen isotope water separation system and method
GB2610262A (en) * 2022-06-14 2023-03-01 Atomic Energy Authority Uk Improvements in and relating to isotope separation in a fusion power system
GB2610262B (en) * 2022-06-14 2023-12-27 Atomic Energy Authority Uk Improvements in and relating to isotope separation in a fusion power system

Similar Documents

Publication Publication Date Title
US4472178A (en) Adsorptive process for the removal of carbon dioxide from a gas
US5176722A (en) Pressure swing adsorption method for separating gaseous mixtures
AU646704B2 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
KR101686085B1 (en) Recovery of NF3 from Adsorption Operation
JPS6247051B2 (en)
JPH10202039A (en) Production of nitrogen with selective oxygen adsorbent
JPS59184707A (en) Pressure swing adsorption for medical oxygen generator
JP2007130611A (en) Pressure fluctuation adsorption type gas separation process and apparatus
JPS63240915A (en) Gas separation method
CN107930400A (en) A kind of hydrogen helium separation and hydrogen isotope concentration coupled system and method
JPS61176540A (en) Collection of gaseous mixture of methane and carbon dioxide
JPS58128123A (en) Separation of gas and its device
US3698156A (en) Method of continuous separation by gas-phase chromatography on fixed granular reds
JP2002220206A (en) Method and device for concentration and separation of hydrogen isotope
US4696806A (en) Metal hydride adsorption process for hydrogen purification
AU2021377152B2 (en) A process and plant for producing ultrahigh-purity hydrogen from low-grade hydrogen gas
KR20040104494A (en) A separation method and separation apparatus of isotopes from gaseous substances
JPH11137969A (en) Method for separating and recovering hydrogen isotope and device therefor
JP7319830B2 (en) Nitrogen production method and apparatus
JPH0531331A (en) Separation of hydrogen isotope
JP4508716B2 (en) Isotope selective adsorbent, isotope separation and enrichment method, and isotope separation and enrichment apparatus
JPS6231317B2 (en)
JP2006007004A (en) Isotope selective adsorbent, isotope separation concentration method and isotope separation concentration apparatus
JPH0753563B2 (en) Method for producing high-purity purified hydrogen gas
JP2000272905A (en) Removal of organic impurity in methanol degradation gas by closed tsa method