JP2002218977A - Method for recombinant gene formation - Google Patents

Method for recombinant gene formation

Info

Publication number
JP2002218977A
JP2002218977A JP2001014951A JP2001014951A JP2002218977A JP 2002218977 A JP2002218977 A JP 2002218977A JP 2001014951 A JP2001014951 A JP 2001014951A JP 2001014951 A JP2001014951 A JP 2001014951A JP 2002218977 A JP2002218977 A JP 2002218977A
Authority
JP
Japan
Prior art keywords
gene
microorganism
leu
plasmid vector
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001014951A
Other languages
Japanese (ja)
Other versions
JP4589540B2 (en
Inventor
Yuji Hatada
勇二 秦田
Akinori Ogawa
晃範 小川
Katsuhisa Saeki
勝久 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2001014951A priority Critical patent/JP4589540B2/en
Publication of JP2002218977A publication Critical patent/JP2002218977A/en
Application granted granted Critical
Publication of JP4589540B2 publication Critical patent/JP4589540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for recombinant gene formation, with which a recombinant gene can be formed in the body of a microorganism, the function of the recombinant gene is evaluated in the body of microorganism as it is and an objective gene can be directly searched. SOLUTION: This method for recombinant gene formation is a method for recombining two or more kinds of genes having homology in the same body of microorganism in which a first plasmid vector obtained by connecting one gene to a specific base sequence derived from Bacillus sp.KSM-KP43, a base sequence in which one or more bases are deleted or substituted or added in the base sequence or a base sequence encoding a specified amino acid sequence different from that of the base sequence derived from Bacillus sp.KSM-KP43 or an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence and the other plasmid vector obtained by connecting the other gene to a replication initiation domain different from the first plasmid vector are transferred to a microorganism and homologous recombination is carried out, between the genes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微生物体内で組換
え遺伝子を形成する方法に関する。
TECHNICAL FIELD The present invention relates to a method for forming a recombinant gene in a microorganism.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
様々な生物のゲノム情報の解明をはじめとして、遺伝子
解析の研究が盛んに行われており、これに伴って遺伝子
工学や蛋白工学の重要性が益々高くなっている。蛋白、
DNA、RNAやそれらの複合体の立体構造が推定さ
れ、酵素など機能性分子の構造と機能の関係を解明する
分野も進んできている。これら機能性分子の開発を行う
上で、対象となる機能性分子にいかに多様性を持たせ、
これら多様性分子から目的に適合する分子をいかに効率
よく探索していくかが非常に大事なポイントとなる。
2. Description of the Related Art In recent years,
Research on gene analysis, including elucidation of genomic information of various organisms, has been actively conducted, and accordingly, genetic engineering and protein engineering have become increasingly important. Protein,
The three-dimensional structures of DNA, RNA and their complexes have been estimated, and the field of elucidating the relationship between the structure and function of functional molecules such as enzymes has been advanced. In developing these functional molecules, how diverse the target functional molecules should be,
A very important point is how to efficiently search for molecules that meet the purpose from these diverse molecules.

【0003】遺伝子に多様性をもたせる方法として目的
遺伝子配列にランダムに変異を導入する方法が確立され
てきた。ランダムに変異を導入する方法としては化学修
飾剤を利用する方法やポリメラーゼチェインリアクショ
ンによる遺伝子増幅を利用する方法が主たる方法とされ
ている。
[0003] As a method for imparting diversity to a gene, a method of randomly introducing a mutation into a target gene sequence has been established. As methods for introducing mutations at random, a method using a chemical modifier and a method using gene amplification by polymerase chain reaction are considered to be the main methods.

【0004】しかしながら、ランダム変異法は試験管内
で組換えを起こして目的遺伝子に多様性を持たせるため
に、これら組換え遺伝子をまた一つずつ生体内(微生物
体内)に戻して目的に適合するものであるか否か調べる
という余分な操作が必要である。特に、外来遺伝子によ
る形質転換率の悪い宿主細胞や、生育の悪い宿主細胞に
対してこの操作を行うのは非常に効率が悪いという問題
があった。
However, in the random mutation method, in order to cause recombination in a test tube to give diversity to a target gene, these recombinant genes are returned one by one to the living body (in a microorganism) and adapted to the purpose. An extra operation of checking whether or not it is necessary is required. In particular, there is a problem that it is extremely inefficient to perform this operation on a host cell having a low transformation rate by a foreign gene or a host cell having a poor growth.

【0005】本発明は、遺伝子組換えによって目的遺伝
子に多様性をもたせる場合において、微生物体内のまま
で組換え遺伝子の機能を評価し、目的遺伝子を微生物体
内で直接探索することを可能とする組換え遺伝子の形成
方法を提供することを目的とする。
[0005] The present invention provides a system for evaluating the function of a recombinant gene in a microorganism and directly searching for the gene of interest in the microorganism when the gene of interest is given diversity by genetic recombination. An object of the present invention is to provide a method for forming a transgene.

【0006】[0006]

【課題を解決するための手段】本発明者らは、組換え遺
伝子の作製について検討した結果、特定の複製開始領域
をもつDNA断片を含有するプラスミドベクターと、こ
れと異なる複製開始領域をもつ異種プラスミドベクター
のそれぞれに相同性をもつ遺伝子を含有させ、微生物中
で共存させることにより、遺伝子間に存在する相同性領
域によって遺伝子組換えが起き、多様性をもつ組換え遺
伝子が形成されることを見出した。
Means for Solving the Problems The present inventors have studied the production of a recombinant gene, and as a result, have found that a plasmid vector containing a DNA fragment having a specific replication initiation region and a heterologous vector having a different replication initiation region. By including homologous genes in each of the plasmid vectors and coexisting in microorganisms, gene recombination occurs by the homology region existing between the genes, and it is possible to form diverse recombinant genes. I found it.

【0007】すなわち本発明は、相同性をもつ2種以上
の遺伝子を同一微生物体内で組換える方法であって、一
の遺伝子が配列番号1で示される塩基配列又は該塩基配
列に1個以上の塩基が欠失、置換若しくは付加した塩基
配列又は配列番号2で示されるアミノ酸配列又は該アミ
ノ酸配列に1個以上のアミノ酸が欠失、置換若しくは付
加したアミノ酸配列をコードする塩基配列に連結してな
る第1プラスミドベクターと、他の遺伝子が該第1プラ
スミドベクターとは異なる複製開始領域に連結してなる
他のプラスミドベクターとを微生物に導入し、該遺伝子
間の相同組換えを生じさせる組換え遺伝子形成方法を提
供するものである。
That is, the present invention relates to a method for recombining two or more homologous genes in the same microorganism, wherein one gene has the nucleotide sequence shown in SEQ ID NO: 1 or one or more nucleotides in the nucleotide sequence. A base sequence in which a base is deleted, substituted or added, or an amino acid sequence represented by SEQ ID NO: 2 or a base sequence encoding an amino acid sequence in which one or more amino acids are deleted, substituted or added to the amino acid sequence Recombinant gene that introduces a first plasmid vector and another plasmid vector in which another gene is linked to a replication initiation region different from that of the first plasmid vector into a microorganism and causes homologous recombination between the genes The present invention provides a forming method.

【0008】[0008]

【発明の実施の形態】本発明における第1プラスミドベ
クターは、一の遺伝子が配列番号1で示される塩基配列
又は該塩基配列に1個以上の塩基が欠失、置換若しくは
付加した塩基配列からなるDNA断片又は配列番号2で
示されるアミノ酸配列又は該アミノ酸配列に1個以上の
アミノ酸が欠失、置換若しくは付加したアミノ酸配列を
コードする塩基配列に連結してなるプラスミドベクター
をいう。
BEST MODE FOR CARRYING OUT THE INVENTION The first plasmid vector of the present invention comprises a base sequence of one gene represented by SEQ ID NO: 1 or a base sequence in which one or more bases are deleted, substituted or added to the base sequence. It refers to a DNA fragment or a plasmid vector linked to a base sequence encoding an amino acid sequence represented by SEQ ID NO: 2 or an amino acid sequence in which one or more amino acids have been deleted, substituted or added to the amino acid sequence.

【0009】「一の遺伝子」とは、本発明方法により遺
伝子組換えをして、多様性を付与すべき遺伝子であっ
て、様々な酵素をコードする遺伝子や生体内の様々な機
能、代謝調節に関与する遺伝子等をいい、一例を示せば
アミラーゼ、プロテアーゼ、セルラーゼ、リパーゼ、ペ
クチナーゼ、プルラナーゼ、ペルオキシダーゼ、オキシ
ゲナーゼ、カタラーゼ等の酵素、インシュリン、人成長
ホルモン、インターフェロン、カルシトニン、インター
ロイキン等の生理活性ペプチド、抗生物質耐性関与タン
パク等をコードする遺伝子が挙げられる。
[0009] "One gene" is a gene to be imparted with diversity by genetic recombination according to the method of the present invention, such as a gene encoding various enzymes, various functions in vivo, and regulation of metabolism. Bioactive peptides such as amylase, protease, cellulase, lipase, pectinase, pullulanase, peroxidase, oxygenase, catalase, etc., insulin, human growth hormone, interferon, calcitonin, interleukin, etc. And genes encoding proteins involved in antibiotic resistance.

【0010】これらの遺伝子は、それぞれ生体内におい
て発現される、或いは生体機能において何らかの影響を
示すことから、微生物体内において多様性を持たせれば
その影響は即座に検出でき、目的遺伝子の選択が大変効
率的に行われる。
[0010] These genes are each expressed in the living body or show some effect on the biological function. Therefore, if diversity is provided in the microorganism, the effect can be detected immediately, and selection of the target gene is very difficult. It is done efficiently.

【0011】また、第1プラスミドベクターは、配列番
号1で示される塩基配列又は該塩基配列に1個以上の塩
基が欠失、置換若しくは付加した塩基配列又は配列番号
2で示されるアミノ酸配列又は該アミノ酸配列に1個以
上のアミノ酸が欠失、置換若しくは付加したアミノ酸配
列をコードする塩基配列を有するものである。斯かる塩
基配列は、複製開始領域を示すが、これは所謂RCR
(rolling circle-replicating)形態(Gros, M. F. et
al., The EMBO Journal, 6, 3863-3869,(1987))を形成
するグループには属さないと考えられる。また、当該塩
基配列を持つ第1プラスミドベクターは、グラム陰性菌
の1種から発見されたクロストリジウム由来のプラスミ
ドpIP404(Garnier,T. and Cole,S.T., Plasmid,
19,134-150(1988))の複製開始領域とアミノ酸配列で約
40%の相同性を示し、それ以外のプラスミドの複製開
始領域との相同性はアミノ酸配列で20%以下である新
規なプラスミドである。
[0011] Further, the first plasmid vector may have a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence in which one or more bases have been deleted, substituted or added thereto, or an amino acid sequence represented by SEQ ID NO: 2 or It has a base sequence encoding an amino acid sequence in which one or more amino acids have been deleted, substituted or added to the amino acid sequence. Such a nucleotide sequence indicates a replication initiation region, which is a so-called RCR.
(Rolling circle-replicating) form (Gros, MF et
al., The EMBO Journal, 6, 3863-3869, (1987)). Further, the first plasmid vector having the nucleotide sequence is a plasmid pIP404 (Garnier, T. and Cole, ST, Plasmid,
19,134-150 (1988)), a novel plasmid having about 40% homology with the amino acid sequence of the replication initiation region and less than 20% homology with the replication initiation region of the other plasmids. .

【0012】斯かる第1プラスミドにおける当該領域の
変異の程度は、配列番号2中のアミノ酸番号1〜432
のうち40%以上の相同性を有しているのが好ましく、
60%以上の相同性を有していることがより好ましく、
70%以上の相同性を有しているのが特に好ましい。
尚、「1個以上」とは、1個若しくは複数個又はそれ以
上を意味する。当該塩基配列を有するプラスミドベクタ
ードベクターの好適な例としては、例えばバチルスエス
ピーKSM−KP43株(FERM BP−6532)
由来のプラスミドDNAが挙げられる。
[0012] The degree of mutation of the region in the first plasmid is determined by amino acids 1 to 432 in SEQ ID NO: 2.
Preferably have a homology of 40% or more,
More preferably, it has a homology of 60% or more,
It is particularly preferred that they have a homology of 70% or more.
In addition, "one or more" means one or more or more. Preferred examples of the plasmid vector having the base sequence include, for example, Bacillus sp. KSM-KP43 strain (FERM BP-6532).
Derived plasmid DNA.

【0013】本発明の第1プラスミドベクターを構築す
るためのプラスミドDNAは、例えばバチルスエスピー
KSM−KP43株(FERM BP−6532)から
アルカリ抽出法(Birnboim and Doly 1979 Nucleic Aci
ds Res.,7:1513-1523)等の一般的なプラスミド回収法
及び適当なプライマーを合成してのPCR法を用いるこ
とによって単離、取得することができ、得られたプラス
ミドDNAの複製開始領域を含むDNA断片と上記の改
変を目的とする遺伝子を連結することにより、本発明の
第1プラスミドベクターを構築することができる。
The plasmid DNA for constructing the first plasmid vector of the present invention can be obtained, for example, by an alkali extraction method (Birnboim and Doly 1979 Nucleic Aci) from Bacillus sp. Strain KSM-KP43 (FERM BP-6532).
ds Res., 7: 1513-1523) and the PCR method of synthesizing appropriate primers can be used to isolate and obtain, and to initiate replication of the obtained plasmid DNA. The first plasmid vector of the present invention can be constructed by ligating the DNA fragment containing the region and the gene for the above modification.

【0014】本発明においては、第1プラスミドベクタ
ーの他に、これとは異なる少なくとも1種の他のプラス
ミドベクターが用いられる。斯かる「他のプラスミドベ
クター」とは、第1プラスミドベクターとは異なる複製
開始領域を持ち且つ該プラスミドベクターと微生物中で
共存できるものであって、第1プラスミドベクター上に
存在する一の遺伝子と相同性を有する遺伝子が該複製開
始領域に連結してなるものである。他のプラスミドベク
ターが有する複製開始領域としては、特に限定はされな
いが、RCR形態を形成するタイプのものが比較的好ま
しく、斯かる複製開始領域を有するプラスミドベクター
を用いることにより、第1プラスミドベクターとのより
安定した共存が可能となる。
In the present invention, at least one other plasmid vector different from the first plasmid vector is used in addition to the first plasmid vector. Such “another plasmid vector” has a replication initiation region different from that of the first plasmid vector and can coexist with the plasmid vector in a microorganism, and is identical to one gene present on the first plasmid vector. A gene having homology is linked to the replication initiation region. The replication initiation region of the other plasmid vector is not particularly limited, but is preferably of the type that forms an RCR form. By using a plasmid vector having such a replication initiation region, Can coexist more stably.

【0015】第1プラスミドベクターとは異なる複製開
始領域を持ち、当該ベクターと共に微生物中で共存でき
るプラスミドベクターとしては、例えば、ストレプトコ
ッカス フェーカリス(Streptococcus faecalis)由来
のプラスミドpAMα1(Clewill, D. B. et al., Pro
c. Natl. Acad. Sci. USA, 72, 1720-2724,(1975)やp
HY300PLK(Ishiwa, H and Tsucida, N., Gene,
32, 129(1984))、スタフィロコッカス アウレウス(St
aphylococcus aureus)由来のプラスミドpC194(G
ros, M. F. et al., EMBO J., 6, 3863-3869 (1987))
他、RCR形式(Gros, M. F. et al., The EMBO Journa
l, 6, 3863-3869,(1987))によってプラスミド複製をす
るタイプのプラスミド等が挙げられる。
As a plasmid vector having a replication initiation region different from that of the first plasmid vector and coexisting in a microorganism together with the vector, for example, a plasmid pAMα1 derived from Streptococcus faecalis (Clewill, DB et al., Pro.
c. Natl. Acad. Sci. USA, 72, 1720-2724, (1975) and p.
HY300PLK (Ishiwa, H and Tsucida, N., Gene,
32, 129 (1984)), Staphylococcus aureus (St
aphylococcus aureus) derived plasmid pC194 (G
ros, MF et al., EMBO J., 6, 3863-3869 (1987))
RCR format (Gros, MF et al., The EMBO Journa
1, 6, 3863-3869, (1987)).

【0016】かくして構築された第1プラスミドベクタ
ーと少なくとも1種類以上の他のプラスミドベクターを
エレクトロポレーション法等により微生物に導入し、同
一宿主内に共存させたままで増殖させておいて目的遺伝
子間の相同組換えを生じさせることにより、組換え体を
得ることができる(図1参照)。
The thus constructed first plasmid vector and at least one or more other plasmid vectors are introduced into a microorganism by electroporation or the like, and grown in the same host while coexisting. A recombinant can be obtained by causing homologous recombination (see FIG. 1).

【0017】ここで用いられる微生物としては、原核生
物が好ましく、安全性や酵素の分泌性の点からバチルス
属細菌がより好ましい。
The microorganism used here is preferably a prokaryote, and more preferably a bacterium belonging to the genus Bacillus from the viewpoint of safety and secretion of enzymes.

【0018】かくして、本発明の方法を用いれば、微生
物体内において組換え遺伝子を形成することができる。
相同性組換えを利用して組換え遺伝子が作製された場合
の多様性は、材料となる遺伝子同士の相同性が低ければ
低い程、理論的にはほぼ無限種におよび、これを試験管
内で構築して全て改めて宿主細胞に導入していくことは
不可能に近い程困難であると考えられる。本発明の方法
によれば、宿主体内での組換え遺伝子の創製は終わるこ
となく無限に繰り返され、目的にあった組換え遺伝子が
構築されたと同時にそれは表現系として形質転換体に現
れることから、形質転換体のままの表現系でポジティブ
にスクリーニングを行えることができれば目的の遺伝子
のみを優先的に取得できることになり効果的である。例
えば、新規抗生物質耐性遺伝子の取得を試みる場合、耐
性能力を有する遺伝子が構築されたと同時にこれが優先
して生育ことになりスクリーニングが非常に容易とな
る。
Thus, using the method of the present invention, a recombinant gene can be formed in a microorganism.
When the homologous recombination is used to produce a recombinant gene, the lower the homology between the material genes is, the lower the degree of homology between them is, theoretically, almost infinite species. It is considered that it is almost impossible to construct and reintroduce all into host cells. According to the method of the present invention, creation of a recombinant gene in a host body is repeated indefinitely without ending, and since a recombinant gene of interest is constructed and simultaneously appears in a transformant as an expression system, If a positive screening can be performed with the expression system as it is as a transformant, only the target gene can be preferentially obtained, which is effective. For example, when trying to obtain a novel antibiotic resistance gene, a gene having resistance ability is constructed and at the same time, it grows preferentially, which makes screening very easy.

【0019】実施例 次に実施例を挙げ、本発明を更に詳しく説明する。EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0020】実施例1 (1)バチルスエスピーKSM−KP43株由来のプラ
スミドDNAの複製開始領域を含むDNA断片から構築
したプラスミドベクターpTS43TCの構築:バチル
スエスピーKSM−KP43株由来プラスミドDNAの
複製開始領域を含むDNA断片は以下の様に取得した。
即ち、バチルスエスピーKSM−KP43株を0.5%
ポリペプトン(日本製薬社製)、0.5% 酵母エキス
(ディフコ社製)、0.1%KH2PO4 、0.02%
MgSO4・7H2O、及び0.5%Na2CO3 からな
る培地100mLで30℃で12時間振盪培養した。遠
心分離によって集めた菌体から、BirnboimとDolyの方法
(Nucl. Acids. Res, 7, 1513-1523(1979))に従ってプ
ラスミドDNAを取得した。該プラスミド約10ng、
PCRバッファー(ベーリンガー Pwo DNAポリ
メラーゼ添付)10μL、2種類のオリゴヌクレオチド
(プライマー3;5’−GAATTCCTGCAAGAAAACGATTGTG−
3’(配列番号3))、(プライマー4;5’−AAGATG
AGCTATAAGTCTTGTTAC−3’(配列番号4))20pmo
l、及び4種類のヌクレオチド(A, T,G, C)各20pm
olを加え脱イオン水で100μLに調製した。94℃
2分間の処理後、94℃ 1分、55℃ 1分、72
℃ 2分の反応を1サイクルとして30サイクル繰り返
し、最後に、72℃ 5分間の反応をDNA Ther
mal Cycler(パーキン エルマー社)を用い
て行った後、バチルスエスピーKSM−KP43株由来
プラスミドDNAの複製開始領域を含む2.2kbpの
DNA断片をThe GENECLEAN キット (バイオ 101社製)
を用いて単離し、さらにT4DNAポリメラーゼにより
末端の平滑化を行った。
Example 1 (1) Construction of plasmid vector pTS43TC constructed from a DNA fragment containing a replication initiation region of plasmid DNA derived from Bacillus sp. KSM-KP43: The replication initiation region of plasmid DNA derived from Bacillus sp. The contained DNA fragment was obtained as follows.
That is, 0.5% of the Bacillus sp.
Polypeptone (manufactured by Nippon Pharmaceutical Co., Ltd.), 0.5% yeast extract (manufactured by Difco), 0.1% KH 2 PO 4 , 0.02%
The cells were cultured with shaking at 30 ° C. for 12 hours in 100 mL of a medium composed of MgSO 4 .7H 2 O and 0.5% Na 2 CO 3 . Plasmid DNA was obtained from the cells collected by centrifugation according to the method of Birnboim and Doly (Nucl. Acids. Res, 7, 1513-1523 (1979)). About 10 ng of the plasmid,
10 μL of PCR buffer (with Boehringer Pwo DNA polymerase), 2 types of oligonucleotides (primer 3; 5′-GAATTCCTGCAAGAAAACGATTGTG-
3 ′ (SEQ ID NO: 3)), (Primer 4; 5′-AAGATG
AGCTATAAGTCTTGTTAC-3 '(SEQ ID NO: 4)) 20 pmo
l, and 4 types of nucleotides (A, T, G, C) 20 pm each
ol was added and adjusted to 100 μL with deionized water. 94 ° C
After 2 minutes of treatment, 94 ° C for 1 minute, 55 ° C for 1 minute, 72
The reaction for 2 minutes at 72 ° C. was repeated for 30 cycles.
After performing the reaction using mal Cycler (Perkin Elmer), a 2.2 kbp DNA fragment containing the replication initiation region of the Bacillus sp. KSM-KP43-derived plasmid DNA was transferred to The GENECLEAN kit (Bio 101).
And the ends were blunt-ended with T4 DNA polymerase.

【0021】次に、ストレプトコッカス フェーカリス
由来プラスミドpAMα1上のテトラサイクリン遺伝子
を含むDNA断片1.6kbpをPCRによって増幅し
た。ストレプトコッカス フェーカリス由来プラスミド
pAMα1を鋳型として約1ng用い、PCRバッファ
ー(ベーリンガー Pwo DNAポリメラーゼ添付)
10μL、2種類のオリゴヌクレオチド(プライマー
1;5’−TGCAATGTGGAATTGGGAACGG−3’(配列番号
5))、(プライマー2;5’−CCCTTAACGATTTAGAAATC
CC−3’(配列番号6))20pmol、及び4種類の
ヌクレオチド(A, T, G,C)各20pmolを加え脱イオ
ン水で100μLに調製した。94℃ 2分間の処理
後、94℃ 1分、55℃ 1分、72℃ 1分の反応
を1サイクルとして30サイクル繰り返し、最後に、7
2℃ 5分間の反応をDNA Thermal Cyc
ler(パーキン エルマー社)を用いて行った後、テ
トラサイクリン遺伝子を含むDNA断片1.6kbpを
The GENECLEAN キット (バイオ 101社製)を用いて単離
し、さらにT4DNAポリメラーゼにより末端の平滑化
を行った後バチルスエスピーKSM−KP43株由来プ
ラスミドDNAの複製開始領域を含むDNA断片2.2
kbpとT4 DNAリガーゼで結合した。この結合反応
物による枯草菌ISW1214株(leu A8, metB8, hsrM
1)の形質転換をプロトプラスト法(S. ChangとS. N. Ch
oen;Mol. Gen. Genet., 168, 111-115 (1978))に従
って行ない、5μg/mLテトラサイクリンを含むプロ
トプラスト再生用DM3培地[0.5%コハク酸ナトリ
ウム(pH7.3)、0.5%カザミノ酸、0.5%酵
母エキス、0.35%K2HPO4 、0.15%KH2
4 、0.5%グルコース、20mM MgCl2
0.01%牛血清アルブミン(シグマ社製)]を用いて
形質転換体を選択した。
Next, 1.6 kbp of a DNA fragment containing the tetracycline gene on the plasmid pAMα1 derived from Streptococcus faecalis was amplified by PCR. Using about 1 ng of a plasmid pAMα1 derived from Streptococcus faecalis as a template, a PCR buffer (with Boehringer Pwo DNA polymerase)
10 μL, two kinds of oligonucleotides (primer 1; 5′-TGCAATGTGGAATTGGGAACGG-3 ′ (SEQ ID NO: 5)), (primer 2; 5′-CCCTTAACGATTTAGAAATC
20 pmol of CC-3 '(SEQ ID NO: 6) and 20 pmol of each of the four nucleotides (A, T, G, C) were added, and the mixture was adjusted to 100 μL with deionized water. After the treatment at 94 ° C. for 2 minutes, the reaction was repeated for 30 cycles, with the reaction at 94 ° C. for 1 minute, 55 ° C. for 1 minute and 72 ° C. for 1 minute as one cycle.
The reaction at 2 ° C for 5 minutes was performed using DNA Thermal Cyc.
ler (Perkin Elmer), and then a 1.6 kbp DNA fragment containing the tetracycline gene was obtained.
After isolation using the GENECLEAN kit (manufactured by BIO 101) and blunting the ends with T4 DNA polymerase, the DNA fragment 2.2 containing the replication initiation region of the plasmid DNA derived from Bacillus sp. KSM-KP43 strain 2.2.
kbp and T4 DNA ligase. The Bacillus subtilis ISW1214 strain (leu A8, metB8, hsrM
Transformation of 1) was performed by the protoplast method (S. Chang and SN Ch
oen; DM3 medium for protoplast regeneration [0.5% sodium succinate (pH 7.3), 0.5%, containing 5 µg / mL tetracycline, according to Mol. Gen. Genet., 168, 111-115 (1978)). Casamino acid, 0.5% yeast extract, 0.35% K 2 HPO 4 , 0.15% KH 2 P
O 4 , 0.5% glucose, 20 mM MgCl 2 ,
0.01% bovine serum albumin (manufactured by Sigma)].

【0022】組換え枯草菌の保持する組換えプラスミド
をBirnboimとDolyの方法(Nucl. Acids. Res, 7, 1513-
1523(1979))に従って調製し、得られた組換えプラスミ
ドの制限酵素切断点の解析をアガロースゲル電気泳動法
を用いて行って、プラスミドベクターpTS43TC
(図2)を得た。
The recombinant plasmid retained by the recombinant B. subtilis was prepared by the method of Birnboim and Doly (Nucl. Acids. Res, 7, 1513-
1523 (1979)) and the resulting recombinant plasmid was analyzed for restriction enzyme breakpoints using agarose gel electrophoresis to obtain plasmid vector pTS43TC.
(FIG. 2) was obtained.

【0023】(2)遺伝子組換え体作製の材料としてp
UB110由来のカナマイシン耐性遺伝子(205アミ
ノ酸からなるカナマイシン耐性酵素;Sadaie, Y et a
l., J. Bacteriol. 141, 1178-1182(1980))を用いた。
76番目のアミノ酸の位置が1bp欠落しその結果フレ
ームシフトがなされているカナマイシン耐性遺伝子Aを
コードする遺伝子をライゲーション反応によって上記
(1)で構築されたpTS43TCと連結した。また、
121番目のアミノ酸の位置が1bp欠落しその結果フ
レームシフトがなされているカナマイシン耐性遺伝子B
をライゲーション反応によってpAMα1にクロラムフ
ェニコール耐性遺伝子を連結したプラスミドと連結し
た。これら両プラスミドをエレクトロポレーション法に
よってバチスルエスピーKSM−KP43株に導入し
た。(尚、A、Bそれぞれの遺伝子のみによる形質転換
体はカナマイシン耐性が無く、15μg/mLのカナマ
イシンを含有するLB寒天培地(バクトトリプトン 1
%、塩化ナトリウム 1%、酵母エキス 0.5%、炭
酸ナトリウム 0.05%、寒天 1.5%)で生育で
きないことは事前に確かめた)。
(2) p
Kanamycin resistance gene derived from UB110 (kanamycin resistance enzyme consisting of 205 amino acids; Sadaie, Y et a
l., J. Bacteriol. 141, 1178-1182 (1980)).
The gene encoding the kanamycin resistance gene A in which the position of the 76th amino acid was deleted by 1 bp and the frame was shifted as a result was ligated to the pTS43TC constructed in the above (1) by a ligation reaction. Also,
The kanamycin resistance gene B in which the position of the 121st amino acid has been deleted by 1 bp and a frame shift has been made as a result.
Was ligated to a plasmid in which a chloramphenicol resistance gene was ligated to pAMα1 by a ligation reaction. Both of these plasmids were introduced into Bacillus sp. KSM-KP43 strain by electroporation. (Note that a transformant containing only the genes A and B has no kanamycin resistance and contains an LB agar medium containing 15 μg / mL kanamycin (Bactotryptone 1).
%, Sodium chloride 1%, yeast extract 0.5%, sodium carbonate 0.05%, agar 1.5%).

【0024】次に、両プラスミドを含有する形質転換体
をLB寒天培地(バクトトリプトン1%、塩化ナトリウ
ム 1%、酵母エキス 0.5%、炭酸ナトリウム
0.05%、寒天 1.5%、テトラサイクリン 10
μg/mL、クロラムフェニコール5μg/mL)上で
2日間生育させ、更にこの生育菌体を集めて1000倍
希釈した後、再び同LB寒天培地上で2日間生育させ
た。続いて、この生育菌体を集めて100倍希釈した
後、カナマイシン15μg/mL入りのLB寒天培地に
蒔き、2日間インキュベートを行った。その結果、数百
個の形質転換体が出現した。出現した形質転換体からプ
ラスミドを調製し、その配列を解析したところカナマイ
シンに耐性を示す能力の有る蛋白をコードしている遺伝
子が検出された。
Next, the transformants containing both plasmids were placed on an LB agar medium (1% bactotryptone, 1% sodium chloride, 0.5% yeast extract, 0.5% sodium carbonate).
0.05%, agar 1.5%, tetracycline 10
(g / mL, chloramphenicol 5 μg / mL) for 2 days. The grown cells were collected, diluted 1000-fold, and grown again on the same LB agar medium for 2 days. Subsequently, the grown cells were collected and diluted 100-fold, then plated on an LB agar medium containing 15 μg / mL of kanamycin, and incubated for 2 days. As a result, several hundred transformants appeared. A plasmid was prepared from the resulting transformant, and the sequence was analyzed. As a result, a gene encoding a protein capable of exhibiting resistance to kanamycin was detected.

【0025】実施例2 カナマイシン耐性タンパクの1〜178番目までのアミ
ノ酸をコードする遺伝子と同カナマイシン耐性遺伝子の
調節領域を含むカナマイシン耐性遺伝子C(約800塩
基)をライゲーション反応によって実施例1(1)で構
築されたpTS43TCと連結した。また、102番目
のアミノ酸から終始コドンを含むカナマイシン耐性遺伝
子D(約650塩基)をライゲーション反応によってp
C194プラスミドと連結した。これら両プラスミドを
エレクトロポレーション法によってBacillus subtilis
ISW1214株に導入した(尚、C、Dそれぞれの遺伝子の
みによる形質転換体はカナマイシン耐性が無く、10μ
g/mLのカナマイシンを含有するLB寒天培地(バク
トトリプトン 1%、塩化ナトリウム 1%、酵母エキ
ス 0.5%、寒天 1.5%)では生育できないこと
は事前に確かめた)。次に、両プラスミドを含有する形
質転換体をLB液体培地(バクトトリプトン1%、塩化
ナトリウム 1%、酵母エキス 0.5%、テトラサイ
クリン 7.5 μg/ml、クロラムフェニコール
5μg/mL)で1日間生育させ、培養液10μLをカ
ナマイシン15μg/mL入りのLB寒天培地に蒔き、
1日間インキュベートを行った。その結果、数百個の形
質転換体が出現した。出現した形質転換体からプラスミ
ドを調製し、その配列を解析したところカナマイシンに
耐性を示す能力の有る蛋白をコードしている遺伝子が検
出された。
Example 2 A gene encoding amino acids 1 to 178 of a kanamycin resistance protein and a kanamycin resistance gene C (about 800 bases) containing a regulatory region of the kanamycin resistance gene were ligated in Example 1 (1). And ligated with pTS43TC constructed in. In addition, a kanamycin resistance gene D (about 650 bases) containing a stop codon from the 102nd amino acid was p-ligated by ligation reaction.
Ligation with C194 plasmid. Both of these plasmids were transformed into Bacillus subtilis by electroporation.
(The transformant containing only the C and D genes had no kanamycin resistance and 10 μl
g / mL kanamycin-containing LB agar medium (1% bactotryptone, 1% sodium chloride, 0.5% yeast extract, 1.5% agar) was confirmed in advance to be unable to grow). Next, transformants containing both plasmids were transformed into LB liquid medium (1% bactotryptone, 1% sodium chloride, 0.5% yeast extract, 7.5 μg / ml tetracycline, chloramphenicol
5 μg / mL) for 1 day, and 10 μL of the culture solution is plated on an LB agar medium containing 15 μg / mL of kanamycin.
Incubation was performed for one day. As a result, several hundred transformants appeared. A plasmid was prepared from the resulting transformant, and the sequence was analyzed. As a result, a gene encoding a protein capable of exhibiting resistance to kanamycin was detected.

【0026】[0026]

【発明の効果】本発明の組換え遺伝子形成方法を用いれ
ば、微生物体内のままで組換え遺伝子の機能を評価し、
目的遺伝子を直接探索することが可能である。すなわ
ち、従来の遺伝子組換え操作において行われているよう
な組換え遺伝子をまた一つずつ微生物体内に戻すという
余分な操作を行うことなく目的遺伝子を探索できる。
According to the method for forming a recombinant gene of the present invention, the function of a recombinant gene can be evaluated in a microorganism as it is,
It is possible to directly search for the target gene. That is, the target gene can be searched for without performing an extra operation of returning the recombinant gene into the microorganism one by one as in the conventional gene recombination operation.

【0027】[0027]

【配列表】 SEQUENCE LISTING <110>KAO CORPORATION <120>Method of forming recombinant genes <130>P00181301 <160>6 <210>1 <211>2263 <212>DNA <213>Bacillus sp. KSM-KP43 <400>1 agatgagcta taagtcttgt tacggttccg aacccaaccc gtttgatgaa cacataatga 60 atttgaagga attagcagtt gaattaggaa acactgaagt gattactgtt attgcagact 120 attttaagtc cgatataaca gggttaacca aatctcagag gaagacctta aagaagtttc 180 tggacttgaa atattgggag aaacatactc ctgttaagta gtatatgtta agtggtacat 240 gttatatggt atatgttaag tggtatgata tacacacttg aatctattga tttcatacca 300 ctcaataaag attttattat ttaaaaagaa ttagagaaat tataaacatc cttcttcttt 360 gtcctttttt gaaaaacaaa aaggactttt ctgttttcaa tatcatcttg gaatttgttt 420 tttcgacaga caatagcacc agatacaaaa ttctgatagt attatagaca aagaaaaaac 480 tccctcaagg tttggcggcc aacgggagtt cttgtgcaag ggattagtgt acccttttga 540 cattgtattt aatttattta taccacaaat atatcatagg tacacgtccc tttccactat 600 gaaaggggaa aaaataatgg aaaatgcaaa ctccattcag aaggcgcaat atcacgcctg 660 gttccaacat agtgatgctg atggatggat tacagtagca agaaaaggtg agagtaatag 720 cttcatccag aaacactata agcctactga acttgcggac aagctgacag aatggttagg 780 agaagatgta ttctttagcc aaaatacatt ttatcggcca caaagaagca tagagaacgt 840 ccggcaatta cggtccttat atactgactt ggatttttat ttatttaact acgatccatc 900 ctgggtgatg gggaaactgc agcatgaatt ttttggccaa tcgataccag aaccgaactt 960 aattattttt agtggccaag gaatcgttct gatatggttg ttggatcctg tacctcataa 1020 agctctaccc ttatggcaag ctgtgcaaaa tcatttctta agccaattag aagagcttgg 1080 tggagatccg aaagctgctg atgctgcacg agtattccgt attgctggta gtgttaattc 1140 taagaacggg gcagaagtga gagcagagtt ccgtcatgat cataagtacc aacttaggca 1200 gctgcaatat gattacttac cggagcttaa cgatgagata aatccaccta agaagaaaaa 1260 aagaggacgc aagaaacggg tagcgcagtt atttaataca tacaaactgc attacgcacg 1320 tctgatggat ttagtgagat tggtagagtt gagaaactac caggtgaagg gtcatagaga 1380 gttaatctgc tttttatacc gatattggca atgttgctat tcaaacgatc cgtcagaagc 1440 cctgaatcag accatgacgc ttaatttgca gttttcggca cccttaaccc tccgagaagt 1500 ggaaagagcc accagaagcg ccgagaaagc ttgggaagct cgtaacaacg aagaagctaa 1560 taaaattgca atcgataaag gttatccagg agccggctat aatattagca ataaaaagct 1620 aatttcttgg cttgatatct cttccgatga aatgacgcat ttatcgacca ttatagacgg 1680 tttagagaag aacagaagga aacgtattgc caacatggaa atgcgccgag aacagggcgt 1740 gaagcctcgt gaagagtata taaaagagca acatgctaaa acagataacc aattaacgaa 1800 cctgcagcaa gcattgcaag aaaatccgaa ggcaaaacgg aaggatttag ctgctatatt 1860 aggtgtttct gtgtttcgta ttgatcagtt aaaacgacaa ttaaaaagtt tgtagtggtc 1920 tgtacgctta tattatgggc gttagcctgt gggtttaatt tgaggtcttt tcgggggcct 1980 cttttgcttt tcttctgggg gaggatcctg gcgttacatc atgttccttt tgtatcgaga 2040 agttattccg tgcttattct actttacttt tcctgagcta cttccaaaat acggagattt 2100 taggtgattt atatactgtt tttataaatt tgtctccaaa aagtatattt catatgttat 2160 aattaaaagt tttaaaaaat atattgaccg aacatatgtt agtgttttat aattaaggta 2220 ggtcattaat acaactccca caatcgtttt cttgcaggaa ttc 2263 <210>2 <211>432 <212>PRT <213>Bacillus sp. KSM-KP43 <400>2 Met Glu Asn Ala Asn Ser Ile Gln Lys Ala Gln Tyr His Ala Trp Phe 5 10 15 Gln His Ser Asp Ala Asp Gly Trp Ile Thr Val Ala Arg Lys Gly Glu 20 25 30 Ser Asn Ser Phe Ile Gln Lys His Tyr Lys Pro Thr Glu Leu Ala Asp 35 40 45 Lys Leu Thr Glu Trp Leu Gly Glu Asp Val Phe Phe Ser Gln Asn Thr 50 55 60 Phe Tyr Arg Pro Gln Arg Ser Ile Glu Asn Val Arg Gln Leu Arg Ser 65 70 75 80 Leu Tyr Thr Asp Leu Asp Phe Tyr Leu Phe Asn Tyr Asp Pro Ser Trp 85 90 95 Val Met Gly Lys Leu Gln His Glu Phe Phe Gly Gln Ser Ile Pro Glu 100 105 110 Pro Asn Leu Ile Ile Phe Ser Gly Gln Gly Ile Val Leu Ile Trp Leu 115 120 125 Leu Asp Pro Val Pro His Lys Ala Leu Pro Leu Trp Gln Ala Val Gln 130 135 140 Asn His Phe Leu Ser Gln Leu Glu Glu Leu Gly Gly Asp Pro Lys Ala 145 150 155 160 Ala Asp Ala Ala Arg Val Phe Arg Ile Ala Gly Ser Val Asn Ser Lys 165 170 175 Asn Gly Ala Glu Val Arg Ala Glu Phe Arg His Asp His Lys Tyr Gln 180 185 190 Leu Arg Gln Leu Gln Tyr Asp Tyr Leu Pro Glu Leu Asn Asp Glu Ile 195 200 205 Asn Pro Pro Lys Lys Lys Lys Arg Gly Arg Lys Lys Arg Val Ala Gln 210 215 220 Leu Phe Asn Thr Tyr Lys Leu His Tyr Ala Arg Leu Met Asp Leu Val 225 230 235 240 Arg Leu Val Glu Leu Arg Asn Tyr Gln Val Lys Gly His Arg Glu Leu 245 250 255 Ile Cys Phe Leu Tyr Arg Tyr Trp Gln Cys Cys Tyr Ser Asn Asp Pro 260 265 270 Ser Glu Ala Leu Asn Gln Thr Met Thr Leu Asn Leu Gln Phe Ser Ala 275 280 285 Pro Leu Thr Leu Arg Glu Val Glu Arg Ala Thr Arg Ser Ala Glu Lys 290 295 300 Ala Trp Glu Ala Arg Asn Asn Glu Glu Ala Asn Lys Ile Ala Ile Asp 305 310 315 320 Lys Gly Tyr Pro Gly Ala Gly Tyr Asn Ile Ser Asn Lys Lys Leu Ile 325 330 335 Ser Trp Leu Asp Ile Ser Ser Asp Glu Met Thr His Leu Ser Thr Ile 340 345 350 Ile Asp Gly Leu Glu Lys Asn Arg Arg Lys Arg Ile Ala Asn Met Glu 355 360 365 Met Arg Arg Glu Gln Gly Val Lys Pro Arg Glu Glu Tyr Ile Lys Glu 370 375 380 Gln His Ala Lys Thr Asp Asn Gln Leu Thr Asn Leu Gln Gln Ala Leu 385 390 395 400 Gln Glu Asn Pro Lys Ala Lys Arg Lys Asp Leu Ala Ala Ile Leu Gly 405 410 415 Val Ser Val Phe Arg Ile Asp Gln Leu Lys Arg Gln Leu Lys Ser Leu 420 425 430 <210>3 <211>25 <212>DNA <213>Artificial Sequence <400>3 gaattcctgc aagaaaacga ttgtg 25 <210>4 <211>24 <212>DNA <213>Artificial Sequence <400>4 aagatgagct ataagtcttg ttac 24 <210>5 <211>22 <212>DNA <213>Artificial Sequence <400>5 tgcaatgtgg aattgggaac gg 22 <210>6 <211>22 <212>DNA <213>Artificial Sequence <400>6 cccttaacga tttagaaatc cc 22[Sequence List] SEQUENCE LISTING <110> KAO CORPORATION <120> Method of forming recombinant genes <130> P00181301 <160> 6 <210> 1 <211> 2263 <212> DNA <213> Bacillus sp. KSM-KP43 <400 > 1 agatgagcta taagtcttgt tacggttccg aacccaaccc gtttgatgaa cacataatga 60 atttgaagga attagcagtt gaattaggaa acactgaagt gattactgtt attgcagact 120 attttaagtc cgatataaca gggttaacca aatctcagag gaagacctta aagaagtttc 180 tggacttgaa atattgggag aaacatactc ctgttaagta gtatatgtta agtggtacat 240 gttatatggt atatgttaag tggtatgata tacacacttg aatctattga tttcatacca 300 ctcaataaag attttattat ttaaaaagaa ttagagaaat tataaacatc cttcttcttt 360 gtcctttttt gaaaaacaaa aaggactttt ctgttttcaa tatcatcttg gaatttgttt 420 tttcgacaga caatagcacc agatacaaaa ttctgatagt attatagaca aagaaaaaac 480 tccctcaagg tttggcggcc aacgggagtt cttgtgcaag ggattagtgt acccttttga 540 cattgtattt aatttattta taccacaaat atatcatagg tacacgtccc tttccactat 600 gaaaggggaa aaaataatgg aaaatgcaaa ctccattcag aaggcgcaat atcacgcctg 660 gttccaacat agtgatgctg atggatggat tacagtagca agaaaaggtg agagtaatag 720 cttcatccag aaacactata agcctactga acttgcggac aagctgacag aatggttagg 780 agaagatgta ttctttagcc aaaatacatt ttatcggcca caaagaagca tagagaacgt 840 ccggcaatta cggtccttat atactgactt ggatttttat ttatttaact acgatccatc 900 ctgggtgatg gggaaactgc agcatgaatt ttttggccaa tcgataccag aaccgaactt 960 aattattttt agtggccaag gaatcgttct gatatggttg ttggatcctg tacctcataa 1020 agctctaccc ttatggcaag ctgtgcaaaa tcatttctta agccaattag aagagcttgg 1080 tggagatccg aaagctgctg atgctgcacg agtattccgt attgctggta gtgttaattc 1140 taagaacggg gcagaagtga gagcagagtt ccgtcatgat cataagtacc aacttaggca 1200 gctgcaatat gattacttac cggagcttaa cgatgagata aatccaccta agaagaaaaa 1260 aagaggacgc aagaaacggg tagcgcagtt atttaataca tacaaactgc attacgcacg 1320 tctgatggat ttagtgagat tggtagagtt gagaaactac caggtgaagg gtcatagaga 1380 gttaatctgc tttttatacc gatattggca atgttgctat tcaaacgatc cgtcagaagc 1440 cctgaatcag accatgacgc ttaatttgca gttttcggca cccttaaccc tccgagaagt 1500 ggaaagagcc accagaagcg ccgagaaagc ttgggaagct cgtaacaacg aagaagctaa 1560 taaaattgca atcgataaag gttatccagg agccggctat aatattagca ataaaaagct 1620 aatttcttgg cttgatatct cttccgatga aatgacgcat ttatcgacca ttatagacgg 1680 tttagagaag aacagaagga aacgtattgc caacatggaa atgcgccgag aacagggcgt 1740 gaagcctcgt gaagagtata taaaagagca acatgctaaa acagataacc aattaacgaa 1800 cctgcagcaa gcattgcaag aaaatccgaa ggcaaaacgg aaggatttag ctgctatatt 1860 aggtgtttct gtgtttcgta ttgatcagtt aaaacgacaa ttaaaaagtt tgtagtggtc 1920 tgtacgctta tattatgggc gttagcctgt gggtttaatt tgaggtcttt tcgggggcct 1980 cttttgcttt tcttctgggg gaggatcctg gcgttacatc atgttccttt tgtatcgaga 2040 agttattccg tgcttattct actttacttt tcctgagcta cttccaaaat acggagattt 2100 taggtgattt atatactgtt tttataaatt tgtctccaaa aagtatattt catatgttat 2160 aattaaaagt tttaaaaaat atattgaccg aacatatgtt agtgttttat aattaaggta 2220 ggtcattaat acaactccca caatcgtttt cttgcaggaa ttc 2263 <210> 2 <211> 432 <212> PRT <213> Bacillus sp.KSM-KP43 <400> 2 Met Glu Asn Ala Asn Ser Ile Gln Lys Ala Gln Tyr His Ala Trp Phe 5 10 15 Gln His Ser Asp Ala Asp Gly T rp Ile Thr Val Ala Arg Lys Gly Glu 20 25 30 Ser Asn Ser Phe Ile Gln Lys His Tyr Lys Pro Thr Glu Leu Ala Asp 35 40 45 Lys Leu Thr Glu Trp Leu Gly Glu Asp Val Phe Phe Ser Gln Asn Thr 50 55 60 Phe Tyr Arg Pro Gln Arg Ser Ile Glu Asn Val Arg Gln Leu Arg Ser 65 70 75 80 Leu Tyr Thr Asp Leu Asp Phe Tyr Leu Phe Asn Tyr Asp Pro Ser Trp 85 90 95 Val Met Gly Lys Leu Gln His Glu Phe Phe Gly Gln Ser Ile Pro Glu 100 105 110 Pro Asn Leu Ile Ile Phe Ser Gly Gln Gly Ile Val Leu Ile Trp Leu 115 120 125 Leu Asp Pro Val Pro His Lys Ala Leu Pro Leu Trp Gln Ala Val Gln 130 135 140 Asn His Phe Leu Ser Gln Leu Glu Glu Leu Gly Gly Asp Pro Lys Ala 145 150 155 160 Ala Asp Ala Ala Arg Val Phe Arg Ile Ala Gly Ser Val Asn Ser Lys 165 170 175 Asn Gly Ala Glu Val Arg Ala Glu Phe Arg His Asp His Lys Tyr Gln 180 185 190 Leu Arg Gln Leu Gln Tyr Asp Tyr Leu Pro Glu Leu Asn Asp Glu Ile 195 200 205 Asn Pro Pro Lys Lys Lys Lys Arg Gly Arg Lys Lys Arg Val Ala Gln 210 215 220 Leu Phe Asn Thr Tyr Lys Leu His Tyr Ala Arg Leu M et Asp Leu Val 225 230 235 240 Arg Leu Val Glu Leu Arg Asn Tyr Gln Val Lys Gly His Arg Glu Leu 245 250 255 Ile Cys Phe Leu Tyr Arg Tyr Trp Gln Cys Cys Tyr Ser Asn Asp Pro 260 265 270 Ser Glu Ala Leu Asn Gln Thr Met Thr Leu Asn Leu Gln Phe Ser Ala 275 280 285 Pro Leu Thr Leu Arg Glu Val Glu Arg Ala Thr Arg Ser Ala Glu Lys 290 295 300 Ala Trp Glu Ala Arg Asn Asn Glu Glu Ala Asn Lys Ile Ala Ile Asp 305 310 315 320 Lys Gly Tyr Pro Gly Ala Gly Tyr Asn Ile Ser Asn Lys Lys Leu Ile 325 330 335 Ser Trp Leu Asp Ile Ser Ser Asp Glu Met Thr His Leu Ser Thr Ile 340 345 350 350 Ile Asp Gly Leu Glu Lys Asn Arg Arg Lys Arg Ile Ala Asn Met Glu 355 360 365 Met Arg Arg Glu Gln Gly Val Lys Pro Arg Glu Glu Tyr Ile Lys Glu 370 375 380 Gln His Ala Lys Thr Asp Asn Gln Leu Thr Asn Leu Gln Gln Ala Leu 385 390 395 395 400 Gln Glu Asn Pro Lys Ala Lys Arg Lys Asp Leu Ala Ala Ile Leu Gly 405 410 415 Val Ser Val Phe Arg Ile Asp Gln Leu Lys Arg Gln Leu Lys Ser Leu 420 425 430 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <400> 3 gaattcctgc aagaaaacga ttgtg 25 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <400> 4 aagatgagct ataagtcttg ttac 24 <210> 5 <211> 22 <212> DNA <213> Artificial Sequence <400> 5 tgcaatgtgg aattgggaac gg 22 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <400> 6 cccttaacga tttagaaatc cc 22

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の組換え遺伝子の形成方法を示した概念
図である。
FIG. 1 is a conceptual diagram showing a method for forming a recombinant gene of the present invention.

【図2】プラスミドベクターpTS43TCの構築の過
程を示す図である。
FIG. 2 is a view showing a process of constructing a plasmid vector pTS43TC.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐伯 勝久 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 Fターム(参考) 4B024 AA20 BA80 CA01 DA07 FA01 GA14 HA12  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Katsuhisa Saeki 2606 Akabane, Kaigamachi, Haga-gun, Tochigi Prefecture F-term in the Kao Corporation Research Laboratories (reference) 4B024 AA20 BA80 CA01 DA07 FA01 GA14 HA12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 相同性をもつ2種以上の遺伝子を同一微
生物体内で組換える方法であって、一の遺伝子が配列番
号1で示される塩基配列又は該塩基配列に1個以上の塩
基が欠失、置換若しくは付加した塩基配列又は配列番号
2で示されるアミノ酸配列又は該アミノ酸配列に1個以
上のアミノ酸が欠失、置換若しくは付加したアミノ酸配
列をコードする塩基配列に連結してなる第1プラスミド
ベクターと、他の遺伝子が該第1プラスミドベクターと
は異なる複製開始領域に連結してなる他のプラスミドベ
クターとを微生物に導入し、該遺伝子間の相同組換えを
生じさせる組換え遺伝子形成方法。
1. A method for recombining two or more homologous genes in the same microorganism, wherein one gene lacks one or more nucleotides in the nucleotide sequence shown in SEQ ID NO: 1. A first plasmid comprising a lost, substituted or added nucleotide sequence or an amino acid sequence represented by SEQ ID NO: 2 or a nucleotide sequence encoding an amino acid sequence in which one or more amino acids have been deleted, substituted or added to the amino acid sequence A method for forming a recombinant gene in which a vector and another plasmid vector in which another gene is linked to a replication initiation region different from the first plasmid vector are introduced into a microorganism, and homologous recombination between the genes is caused.
【請求項2】 微生物が、バチルス属細菌である請求項
1記載の組換え遺伝子形成方法。
2. The method according to claim 1, wherein the microorganism is a Bacillus bacterium.
JP2001014951A 2001-01-23 2001-01-23 Recombinant gene formation method Expired - Fee Related JP4589540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001014951A JP4589540B2 (en) 2001-01-23 2001-01-23 Recombinant gene formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001014951A JP4589540B2 (en) 2001-01-23 2001-01-23 Recombinant gene formation method

Publications (2)

Publication Number Publication Date
JP2002218977A true JP2002218977A (en) 2002-08-06
JP4589540B2 JP4589540B2 (en) 2010-12-01

Family

ID=18881575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001014951A Expired - Fee Related JP4589540B2 (en) 2001-01-23 2001-01-23 Recombinant gene formation method

Country Status (1)

Country Link
JP (1) JP4589540B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229879A (en) * 1997-02-17 1998-09-02 Kao Corp Production of protein with homologous recombination body
JP2000287687A (en) * 1999-04-02 2000-10-17 Kao Corp Plasmid vector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229879A (en) * 1997-02-17 1998-09-02 Kao Corp Production of protein with homologous recombination body
JP2000287687A (en) * 1999-04-02 2000-10-17 Kao Corp Plasmid vector

Also Published As

Publication number Publication date
JP4589540B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
KR20190082318A (en) CRISPR / CPF1 system and method
US20190382775A1 (en) Truncated crispr-cas proteins for dna targeting
JP4263248B2 (en) Library creation method by DNA shuffling
KR20190121331A (en) Compositions and methods for increasing protein production in Bacillus licheniformis
JPH01502876A (en) Molecular cloning and expression of genes encoding proteolytic enzymes
JPH07502647A (en) Ubiquitin-specific protease
JPH06500006A (en) Ubiquitin-specific protease
HU193504B (en) Process for preparing and applying recombinated plasmids containing basic phosphatase gens
KR100518953B1 (en) Method for Whole Surrounding Surface Display of Target Proteins Using Exosporium of Bacillus cereus Group
US5024943A (en) Regulatory region cloning and analysis plasmid for bacillus
Stephens et al. A promoter whose utilization is temporally regulated during sporulation in Bacillus subtilis
JP2002218977A (en) Method for recombinant gene formation
JP3507373B2 (en) Plasmid vector
JP2000287687A (en) Plasmid vector
EP1097990B1 (en) A mutant kanamycin nucleotidyltransferase and a method of screening thermophilic bacteria using the same
US20070031937A1 (en) Co-expression of recombinant proteins
JP7453745B2 (en) Method for screening peptides that inhibit the activity of toxic proteins and methods for producing toxic proteins
JP2540031B2 (en) Recombinant DNA molecule
WO2024080067A1 (en) Genome editing method and composition for genome editing
KR102200330B1 (en) A method for preparing cyclic nucleotide using Cas10/Csm4 subcomplex
TWI310405B (en)
WO2021249536A1 (en) Engineered bacterium containing barstar gene and use thereof in barnase gene cloning
JP2538200B2 (en) Polypeptide secretion expression vector and transformed microorganism
JPS61260885A (en) Novel recombinant plasmid containing leucine enkephalin gene
KR100493826B1 (en) Antibiotics screening composition comprising Streptococcus pneumoniae spr0172 gene or its protein product, and antibiotics screening method using said composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees