JP2002216747A - Manufacturing method of electrode for lithium secondary battery - Google Patents

Manufacturing method of electrode for lithium secondary battery

Info

Publication number
JP2002216747A
JP2002216747A JP2001008692A JP2001008692A JP2002216747A JP 2002216747 A JP2002216747 A JP 2002216747A JP 2001008692 A JP2001008692 A JP 2001008692A JP 2001008692 A JP2001008692 A JP 2001008692A JP 2002216747 A JP2002216747 A JP 2002216747A
Authority
JP
Japan
Prior art keywords
thin film
active material
electrode
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001008692A
Other languages
Japanese (ja)
Inventor
Koji Endo
浩二 遠藤
Hisaki Tarui
久樹 樽井
Shingo Nakano
真吾 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001008692A priority Critical patent/JP2002216747A/en
Priority to US09/995,863 priority patent/US6815003B2/en
Publication of JP2002216747A publication Critical patent/JP2002216747A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an electrode for a lithium secondary battery with favorable adhesion between a collector and an active material film in an electrode for a lithium secondary battery with a lithium occluding and discharging active material film accumulated and formed on a metallic foil used as a collector. SOLUTION: This manufacturing method is characterized by that a surface of the metallic foil is roughened by spraying and impacting particulates on the surface of the metallic foil and the active material film is accumulated on the roughened surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規なリチウム二
次電池用電極を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a novel electrode for a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、研究開発が盛んに行われているリ
チウム二次電池は、用いられる電極により充放電電圧、
充放電サイクル寿命特性、保存特性などの電池特性が大
きく左右される。このことから、電極に用いる活物質を
改善することにより、電池特性の向上が図られている。
2. Description of the Related Art In recent years, a lithium secondary battery, which has been actively researched and developed, has a charge / discharge voltage,
Battery characteristics such as charge-discharge cycle life characteristics and storage characteristics are greatly affected. For this reason, the battery characteristics have been improved by improving the active material used for the electrode.

【0003】負極活物質としてリチウム金属を用いる
と、重量当たり及び体積当たりともに高いエネルギー密
度の電池を構成することができるが、充電時にリチウム
がデンドライト状に析出し、内部短絡を引き起こすとい
う問題があった。
[0003] When lithium metal is used as the negative electrode active material, a battery having a high energy density per weight and per volume can be formed. However, there is a problem that lithium precipitates in a dendrite shape during charging and causes an internal short circuit. Was.

【0004】これに対し、充電の際に電気化学的にリチ
ウムと合金化するアルミニウム、シリコン、錫などを電
極として用いるリチウム二次電池が報告されている(So
lidState Ionics,113-115,p57(1998)) 。これらのう
ち、特にシリコンは理論容量が大きく、高い容量を示す
電池用負極として有望であり、これを負極とする種々の
二次電池が提案されている(特開平10−255768
号公報)。しかしながら、この種の合金負極は、電極活
物質である合金自体が充放電により微粉化し集電特性が
悪化することから、十分なサイクル特性は得られていな
い。
On the other hand, there has been reported a lithium secondary battery using, as an electrode, aluminum, silicon, tin or the like which electrochemically alloys with lithium during charging (So).
lidState Ionics, 113-115, p57 (1998)). Among these, silicon is particularly promising as a battery negative electrode having a large theoretical capacity and a high capacity, and various secondary batteries using this as a negative electrode have been proposed (Japanese Patent Application Laid-Open No. 10-255768).
No.). However, in this type of alloy negative electrode, sufficient cycle characteristics have not been obtained because the alloy itself, which is an electrode active material, is pulverized by charging and discharging and the current collecting characteristics are deteriorated.

【0005】[0005]

【発明が解決しようとする課題】本出願人は、シリコン
を電極活物質とし、良好な充放電サイクル特性を示すリ
チウム二次電池用電極として、CVD法またはスパッタ
リング法などの薄膜形成方法により、集電体上に微結晶
シリコン薄膜または非晶質シリコン薄膜を形成したリチ
ウム二次電池用電極を提案している(特願平11−30
1646号など)。
SUMMARY OF THE INVENTION The present applicant has proposed a method of forming a thin film forming method such as a CVD method or a sputtering method as an electrode for a lithium secondary battery having silicon as an electrode active material and exhibiting good charge / discharge cycle characteristics. An electrode for a lithium secondary battery in which a microcrystalline silicon thin film or an amorphous silicon thin film is formed on an electric body has been proposed (Japanese Patent Application No. 11-30).
No. 1646).

【0006】本発明の目的は、このようなシリコン薄膜
などの活物質薄膜を集電体上に堆積して形成したリチウ
ム二次電池用電極において、集電体と活物質薄膜との密
着性が良好なリチウム二次電池用電極を製造する方法を
提供することにある。
An object of the present invention is to provide a lithium secondary battery electrode formed by depositing an active material thin film such as a silicon thin film on a current collector, in which the adhesion between the current collector and the active material thin film is improved. An object of the present invention is to provide a method for producing a good electrode for a lithium secondary battery.

【0007】[0007]

【課題を解決するための手段】本発明は、集電体として
用いる金属箔の上に、リチウムを吸蔵・放出する活物質
薄膜を堆積して形成するリチウム二次電池用電極の製造
方法であり、金属箔の表面に対して微粒子を噴射して衝
突させることにより、金属箔の表面を粗面化し、粗面化
した表面上に活物質薄膜を堆積させることを特徴として
いる。
SUMMARY OF THE INVENTION The present invention is a method for manufacturing an electrode for a lithium secondary battery, comprising forming an active material thin film for absorbing and releasing lithium on a metal foil used as a current collector. The method is characterized in that the surface of the metal foil is roughened by spraying and colliding fine particles against the surface of the metal foil, and an active material thin film is deposited on the roughened surface.

【0008】本発明における活物質薄膜は、金属箔の上
に堆積して形成される。活物質薄膜を堆積して形成する
方法としては、気相から原料を供給して形成する方法が
好ましく採用される。このような方法としては、スパッ
タリング法、CVD法、蒸着法、及び溶射法などが挙げ
られる。また、液相から活物質薄膜を堆積して形成する
方法としては、電解めっき法や、無電解めっき法などが
挙げられる。
In the present invention, the active material thin film is formed by depositing on a metal foil. As a method of depositing and forming the active material thin film, a method of supplying and forming a raw material from a gas phase is preferably adopted. Examples of such a method include a sputtering method, a CVD method, a vapor deposition method, and a thermal spraying method. Examples of a method of depositing and forming an active material thin film from a liquid phase include an electrolytic plating method and an electroless plating method.

【0009】本発明における活物質薄膜は、リチウムを
吸蔵・放出する活物質からなる薄膜である。活物質薄膜
としては、リチウムと合金化することによりリチウムを
吸蔵する活物質薄膜が好ましく用いられる。このような
活物質薄膜を形成する材料としては、例えば、シリコ
ン、ゲルマニウム、錫、鉛、亜鉛、マグネシウム、ナト
リウム、アルミニウム、ガリウム、インジウムなどが挙
げられる。
The active material thin film according to the present invention is a thin film made of an active material that absorbs and releases lithium. As the active material thin film, an active material thin film that occludes lithium by being alloyed with lithium is preferably used. Examples of a material for forming such an active material thin film include silicon, germanium, tin, lead, zinc, magnesium, sodium, aluminum, gallium, and indium.

【0010】上記の気相からの薄膜形成方法により薄膜
として形成し易いという観点からは、シリコンまたはゲ
ルマニウムを主成分とする活物質が好ましい。また、高
い充放電容量の観点からは、シリコンを主成分とする活
物質が特に好ましい。また、活物質薄膜は、非晶質薄膜
または微結晶薄膜であることが好ましい。従って、活物
質薄膜としては、非晶質シリコン薄膜または微結晶シリ
コン薄膜が好ましく用いられる。非晶質シリコン薄膜
は、ラマン分光分析において結晶領域に対応する520
cm-1近傍のピークが実質的に検出されない薄膜であ
り、微結晶シリコン薄膜は、ラマン分光分析において、
結晶領域に対応する520cm-1近傍のピークと、非晶
質領域に対応する480cm-1近傍のピークの両方が実
質的に検出される薄膜である。また、非晶質ゲルマニウ
ム薄膜、微結晶ゲルマニウム薄膜、非晶質シリコンゲル
マニウム合金薄膜、及び微結晶シリコンゲルマニウム合
金薄膜も好ましく用いることができる。
An active material containing silicon or germanium as a main component is preferable from the viewpoint that it is easy to form a thin film by the above-described method for forming a thin film from a gas phase. From the viewpoint of high charge / discharge capacity, an active material containing silicon as a main component is particularly preferable. Further, the active material thin film is preferably an amorphous thin film or a microcrystalline thin film. Therefore, an amorphous silicon thin film or a microcrystalline silicon thin film is preferably used as the active material thin film. The amorphous silicon thin film has a thickness of 520 corresponding to a crystalline region in Raman spectroscopy.
cm- 1 is a thin film in which a peak is not substantially detected, and the microcrystalline silicon thin film is analyzed by Raman spectroscopy.
This is a thin film in which both a peak near 520 cm -1 corresponding to a crystalline region and a peak near 480 cm -1 corresponding to an amorphous region are substantially detected. Further, an amorphous germanium thin film, a microcrystalline germanium thin film, an amorphous silicon germanium alloy thin film, and a microcrystalline silicon germanium alloy thin film can also be preferably used.

【0011】本発明において集電体として用いる金属箔
は、リチウム二次電池用電極の集電体として用いること
ができるものであれば特に限定されるものではないが、
リチウムと合金化しない金属からなるものであることが
好ましい。このような金属箔としては、例えば、銅、
鉄、ニッケル、タンタル、モリブデン、タングステンま
たはこれらの金属を含む合金からなる金属箔が挙げられ
る。
The metal foil used as a current collector in the present invention is not particularly limited as long as it can be used as a current collector of a lithium secondary battery electrode.
It is preferably made of a metal that does not alloy with lithium. As such a metal foil, for example, copper,
A metal foil made of iron, nickel, tantalum, molybdenum, tungsten, or an alloy containing these metals is used.

【0012】本発明においては、金属箔の表面に対して
微粒子を噴射して衝突させることにより、金属箔の表面
を粗面化する。金属箔の表面に噴射する微粒子は、金属
箔よりも固い材質からなる微粒子が一般に用いられる。
このような微粒子としては、アルミナ、炭化珪素、ガラ
ス、スチール、ステンレス、亜鉛、銅などからなる微粒
子が用いられる。
In the present invention, the surface of the metal foil is roughened by spraying and colliding fine particles against the surface of the metal foil. As the fine particles sprayed on the surface of the metal foil, fine particles made of a material harder than the metal foil are generally used.
As such fine particles, fine particles made of alumina, silicon carbide, glass, steel, stainless steel, zinc, copper, or the like are used.

【0013】金属箔表面の粗面化の度合いは、表面に対
して噴射する微粒子の種類、大きさ、噴射量、噴射圧力
などによって制御することができる。また、一般には、
微粒子が噴射されている領域に金属箔を供給し通過させ
ることにより金属箔表面に微粒子を衝突させるが、この
時の金属箔の送り速度によっても粗面化の度合いを制御
することができる。
The degree of surface roughening of the metal foil surface can be controlled by the type, size, spray amount, spray pressure, etc. of the fine particles sprayed on the surface. Also, in general,
The fine particles collide with the surface of the metal foil by supplying and passing the metal foil through the region where the fine particles are sprayed. The degree of surface roughening can also be controlled by the feeding speed of the metal foil at this time.

【0014】微粒子の大きさとしては、例えば、♯20
0〜♯2000のグレードのもの、すなわち最大粒径が
10μm〜150μmのものを用いることができる。本
発明において金属箔の表面は、例えばその表面粗さRa
が0.1μm以上となるように粗面化されることが好ま
しい。さらに好ましくは0.15μm以上、さらに好ま
しくは0.2μm以上の表面粗さRaとなるように粗面
化されることが好ましい。表面粗さRaは日本工業規格
(JIS B 0601−1994)に定められてお
り、表面粗さ計や走査型プローブ顕微鏡(SPM)など
により測定することができる。
The size of the fine particles is, for example, $ 20
Grades of 0 to $ 2000, that is, those having a maximum particle size of 10 m to 150 m can be used. In the present invention, the surface of the metal foil has, for example, its surface roughness Ra.
Is preferably roughened so as to be 0.1 μm or more. The surface is preferably roughened to have a surface roughness Ra of preferably 0.15 μm or more, more preferably 0.2 μm or more. The surface roughness Ra is defined in Japanese Industrial Standards (JIS B 0601-1994) and can be measured by a surface roughness meter, a scanning probe microscope (SPM), or the like.

【0015】金属箔の表面には、表面酸化膜が形成され
ている場合があり、活物質薄膜を堆積する前に、表面酸
化膜を除去しておくことが好ましい場合がある。本発明
では、金属箔の表面に対して微粒子を衝突させて粗面化
しているので、このような粗面化処理の際に、金属箔表
面の表面酸化膜を除去することができる。また、金属箔
の表面に防錆処理が施されて防錆処理層が存在する場合
にも、このような防錆処理層を粗面化処理の際に除去す
ることができる。
In some cases, a surface oxide film is formed on the surface of the metal foil. In some cases, it is preferable to remove the surface oxide film before depositing the active material thin film. In the present invention, the surface of the metal foil is roughened by colliding the fine particles against the surface of the metal foil, so that the surface oxide film on the surface of the metal foil can be removed during such a roughening treatment. Further, even when the surface of the metal foil is subjected to a rust prevention treatment and a rust prevention treatment layer is present, such a rust prevention treatment layer can be removed during the surface roughening treatment.

【0016】本発明においては、金属箔の粗面化した表
面上に中間層を形成し、該中間層の上に活物質薄膜を形
成してもよい。活物質薄膜中に集電体成分が拡散して固
溶体を形成することにより、集電体と活物質薄膜との密
着性が向上し、充放電サイクルが向上することがわかっ
ている。このような観点からは、活物質薄膜中に拡散し
て固溶体を形成する成分を含有する中間層を設けること
が好ましい。活物質薄膜としてシリコン薄膜を形成する
場合、シリコン薄膜中に拡散して固溶体を形成しやすい
成分である銅(Cu)を含む中間層を形成することが好
ましい。
In the present invention, an intermediate layer may be formed on the roughened surface of the metal foil, and an active material thin film may be formed on the intermediate layer. It has been found that when the current collector component is diffused into the active material thin film to form a solid solution, the adhesion between the current collector and the active material thin film is improved, and the charge and discharge cycle is improved. From such a viewpoint, it is preferable to provide an intermediate layer containing a component that diffuses into the active material thin film to form a solid solution. When a silicon thin film is formed as the active material thin film, it is preferable to form an intermediate layer containing copper (Cu), which is a component that easily diffuses into the silicon thin film to form a solid solution.

【0017】本発明によれば、粗面化した金属箔の表面
上に活物質薄膜を堆積して形成する。金属箔表面が粗面
化されているので、活物質薄膜と金属箔表面との接触面
積が大きくなり、活物質薄膜の金属箔に対する密着性を
向上させることができる。このため、充放電反応によ
り、活物質薄膜が膨張収縮しても、その応力によって活
物質薄膜が集電体から剥離するのを防止することができ
る。
According to the present invention, an active material thin film is deposited and formed on the surface of a roughened metal foil. Since the metal foil surface is roughened, the contact area between the active material thin film and the metal foil surface is increased, and the adhesion of the active material thin film to the metal foil can be improved. For this reason, even if the active material thin film expands and contracts due to the charge / discharge reaction, the active material thin film can be prevented from peeling off from the current collector due to the stress.

【0018】また、粗面化した金属箔の表面上に活物質
薄膜を堆積して形成すると、金属箔表面の凹凸に対応し
た凹凸が活物質薄膜の表面に形成されることがわかって
いる。また、表面に凹凸が形成された活物質薄膜は、充
放電反応により膨張収縮する際、凹凸の谷部を起点とす
る切れ目が厚み方向に形成されることがわかっており、
この切れ目によって、活物質薄膜が膨張収縮する際の応
力が緩和され、この結果として良好な充放電サイクル特
性を示すことがわかっている。
It is also known that when an active material thin film is deposited and formed on the surface of a roughened metal foil, irregularities corresponding to the irregularities on the surface of the metal foil are formed on the surface of the active material thin film. Further, it is known that when the active material thin film having irregularities formed on the surface expands and contracts due to a charge-discharge reaction, a cut starting from a valley of the irregularities is formed in the thickness direction,
It has been found that the cuts reduce the stress when the active material thin film expands and contracts, and as a result, show good charge / discharge cycle characteristics.

【0019】また、本発明によれば、微粒子を噴射して
衝突させることにより金属箔の表面を粗面化しているの
で、微粒子の種類や大きさ、噴射量や噴射圧力などを調
整することにより、金属箔表面の粗面化の度合いを自由
に制御することができる。また、種々の材質の金属箔に
対して適用することができる。さらには、粗面化の工程
がドライ工程であるので、製造工程が複雑化することな
く、金属箔の表面を粗面化することができる。
Further, according to the present invention, the surface of the metal foil is roughened by injecting and colliding the fine particles, so that the type and size of the fine particles, the injection amount and the injection pressure are adjusted. The degree of surface roughening of the metal foil surface can be freely controlled. Further, the present invention can be applied to metal foils of various materials. Furthermore, since the roughening step is a dry step, the surface of the metal foil can be roughened without complicating the manufacturing process.

【0020】[0020]

【発明の実施の形態】以下、本発明を実施例に基づいて
さらに詳細に説明するが、本発明は以下の実施例に何ら
限定されるものではなく、その要旨を変更しない範囲に
おいて適宜変更して実施することが可能なものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be appropriately modified within the scope of the invention. It can be implemented by

【0021】(実施例1) [ブラスト加工による粗面化処理]圧延ステンレス箔
(表面粗さRa=0.025μm)をステンレス板に貼
りつけて固定し、このステンレス箔の表面に微粒子を噴
射して衝突させブラスト加工を施した。衝突させる微粒
子としては、♯320(最大粒径80μm)のアルミナ
材を用いた。噴射量は320g/分、噴射圧力は0.2
5MPaとした。微粒子を噴射するノズルを左右方向に
往復運動させながら微粒子を噴射し、これに対して垂直
方向からステンレス箔を送り出しノズル噴射領域を通過
させることによりブラスト加工を施した。ノズルの送り
速度は50mm/秒とし、ステンレス箔の送り速度は
0.6mm/秒とした。上記のブラスト加工により表面
を粗面化した圧延ステンレス箔の表面粗さRaは0.3
2μmであった。
(Example 1) [Roughening treatment by blasting] A rolled stainless steel foil (surface roughness Ra = 0.025 µm) is attached and fixed to a stainless steel plate, and fine particles are sprayed on the surface of the stainless steel foil. And blasted. As the fine particles to be collided, an alumina material having a size of # 320 (maximum particle size: 80 μm) was used. The injection amount is 320 g / min and the injection pressure is 0.2
It was 5 MPa. Blasting was performed by injecting the fine particles while reciprocating the nozzle for injecting the fine particles in the left-right direction, sending out the stainless steel foil from the perpendicular direction, and passing the stainless steel foil through the nozzle injection area. The feed speed of the nozzle was 50 mm / sec, and the feed speed of the stainless steel foil was 0.6 mm / sec. The surface roughness Ra of the rolled stainless steel foil whose surface has been roughened by the blast processing is 0.3
It was 2 μm.

【0022】[シリコン薄膜の形成]上記のようにして
粗面化した圧延ステンレス箔の表面上に、RFスパッタ
リング法により非晶質シリコン薄膜を形成した。単結晶
シリコン(P型、1Ωcm以下)をターゲットとして用
い、ステンレス箔をステンレス板に貼りつけて固定した
状態で、真空チャンバー内部に入れ、真空チャンバー内
部を1×10-3Pa以下になるまで真空引きした後、ア
ルゴンガスを導入口から圧力が0.5Paになるまで導
入し、RFパワー密度:3W/cm2、ターゲット−基
板間距離:10cmの条件でスパッタリングして、厚み
6μmの非晶質シリコン薄膜を形成した。
[Formation of Silicon Thin Film] An amorphous silicon thin film was formed on the surface of the rolled stainless steel foil roughened as described above by RF sputtering. Using single-crystal silicon (P type, 1 Ωcm or less) as a target, a stainless steel foil is stuck on a stainless steel plate and fixed, and then placed in a vacuum chamber, and the inside of the vacuum chamber is evacuated until the pressure becomes 1 × 10 −3 Pa or less. After pulling, argon gas was introduced from the inlet until the pressure became 0.5 Pa, and sputtered under the conditions of RF power density: 3 W / cm 2 , target-substrate distance: 10 cm, and a 6 μm-thick amorphous A silicon thin film was formed.

【0023】[負極の作製]以上のようにしてシリコン
薄膜を形成したステンレス箔を用い、シリコン薄膜が形
成されていないステンレス箔の上に負極タブを取り付け
て負極とした。
[Preparation of Negative Electrode] A stainless steel foil on which a silicon thin film was formed as described above was used, and a negative electrode tab was attached on a stainless steel foil on which no silicon thin film was formed to form a negative electrode.

【0024】[正極の作製]LiCoO2粉末90重量
部、及び導電剤としての人造黒鉛粉末5重量部を、結着
剤としてのポリフッ化ビニリデンを5重量部含む5重量
%のN−メチルピロリドン水溶液に混合し、正極合剤ス
ラリーとした。このスラリーをドクターブレード法によ
り、正極集電体であるアルミニウム箔(厚み20μm)
の上に塗布した後乾燥し、正極活物質層を形成した。正
極活物質を塗布しなかったアルミニウム箔の領域の上に
正極タブを取り付け、正極とした。
[Preparation of Positive Electrode] A 5% by weight aqueous solution of N-methylpyrrolidone containing 90 parts by weight of LiCoO 2 powder, 5 parts by weight of artificial graphite powder as a conductive agent, and 5 parts by weight of polyvinylidene fluoride as a binder To obtain a positive electrode mixture slurry. This slurry was subjected to a doctor blade method to form an aluminum foil (thickness: 20 μm) as a positive electrode current collector.
And then dried to form a positive electrode active material layer. A positive electrode tab was attached on the area of the aluminum foil where the positive electrode active material was not applied, to obtain a positive electrode.

【0025】[電池の作製]以上のようにして作製した
正極及び負極を用いて、図1に示すようなリチウム二次
電池を作製した。図1に示すように、正極11と負極1
2の間にセパレータ13を配置し、さらに正極11の上
にセパレータ13を配置した状態で、これを巻き付け扁
平状態にした後、外装体10内に挿入した。次に外装体
10内に電解液を注入し、注入後外装体10の開口部1
0aを封口して、リチウム二次電池を完成した。電解液
としては、エチレンカーボネートとジエチルカーボネー
トとの体積比1:1の混合溶媒にLiPF6を1モル/
リットル溶解させたものを用いた。
[Preparation of Battery] Using the positive electrode and negative electrode prepared as described above, a lithium secondary battery as shown in FIG. 1 was prepared. As shown in FIG. 1, the positive electrode 11 and the negative electrode 1
The separator 13 was disposed between the two, and the separator 13 was disposed on the positive electrode 11. The separator 13 was wound into a flat state, and then inserted into the exterior body 10. Next, an electrolytic solution is injected into the outer package 10, and after the injection, the opening 1 of the outer package 10 is formed.
0a was sealed to complete a lithium secondary battery. As an electrolytic solution, LiPF 6 was added to a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 by 1 mol / mol.
One liter dissolved was used.

【0026】(比較例)集電体として、ブラスト加工し
ていない、すなわち粗面化処理していない圧延ステンレ
ス箔をそのまま使用する以外は、上記実施例と同様にし
て、その上にシリコン薄膜を形成し負極を作製した。こ
の負極を用いて上記と同様にしてリチウム二次電池を作
製した。なお、圧延ステンレス箔の表面粗さRaは0.
025μmであった。
Comparative Example A silicon thin film was formed thereon in the same manner as in the above example, except that a rolled stainless steel foil that had not been blasted, ie, had not been subjected to surface roughening, was used as a current collector. The negative electrode was formed. Using this negative electrode, a lithium secondary battery was produced in the same manner as described above. In addition, the surface roughness Ra of the rolled stainless steel foil was 0.1.
It was 025 μm.

【0027】(電池の初期放電容量の評価)上記のよう
に作製した各リチウム二次電池について、初期の放電容
量を測定した。充放電の条件は、充放電ともに140m
Aの定電流で、4.2Vとなるまで充電した後、2.7
5Vとなるまで放電し、これを初期の充放電とした。各
リチウム二次電池の初期の放電容量を表1に示す。
(Evaluation of Initial Discharge Capacity of Battery) The initial discharge capacity of each lithium secondary battery prepared as described above was measured. The charging and discharging conditions are 140 m for both charging and discharging.
After charging at 4.2 A with the constant current of A, 2.7
Discharge was performed until the voltage reached 5 V, which was used as initial charge and discharge. Table 1 shows the initial discharge capacity of each lithium secondary battery.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示すように、比較例の電池において
は、集電体から薄膜が剥離したため放電容量を測定する
ことができなかった。これに対し、実施例の電池におい
ては、高い放電容量が得られている。
As shown in Table 1, in the battery of the comparative example, the discharge capacity could not be measured because the thin film was separated from the current collector. On the other hand, in the batteries of the examples, a high discharge capacity was obtained.

【0030】以上のことから、本発明に従い、ブラスト
加工を施し金属箔の表面を粗面化した後、粗面化した表
面上に活物質薄膜を堆積させることにより、集電体であ
る金属箔と活物質薄膜との密着性を向上させ得ることが
わかる。
From the above, according to the present invention, after the surface of the metal foil is roughened by blasting, an active material thin film is deposited on the roughened surface to obtain a metal foil as a current collector. It can be seen that the adhesion between the film and the active material thin film can be improved.

【0031】[0031]

【発明の効果】本発明によれば、集電体と活物質薄膜と
の密着性が良好なリチウム二次電池用電極とすることが
できる。
According to the present invention, an electrode for a lithium secondary battery having good adhesion between the current collector and the active material thin film can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で作製したリチウム二次電池を
示す分解斜視図。
FIG. 1 is an exploded perspective view showing a lithium secondary battery manufactured in an example of the present invention.

【符号の説明】[Explanation of symbols]

10…外装体 11…正極 12…負極 13…セパレータ DESCRIPTION OF SYMBOLS 10 ... Outer body 11 ... Positive electrode 12 ... Negative electrode 13 ... Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 真吾 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H017 AA03 BB00 CC01 DD01 EE01 EE04 HH03 5H029 AJ05 AK03 AL11 AM03 AM05 AM07 BJ02 BJ14 CJ24 CJ25 DJ07 DJ14 DJ18 EJ01 HJ05 5H050 AA07 BA17 CA08 CB11 DA03 DA04 DA06 FA05 FA15 FA20 GA24 GA25 HA05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shingo Nakano 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5H017 AA03 BB00 CC01 DD01 EE01 EE04 HH03 5H029 AJ05 AK03 AL11 AM03 AM05 AM07 BJ02 BJ14 CJ24 CJ25 DJ07 DJ14 DJ18 EJ01 HJ05 5H050 AA07 BA17 CA08 CB11 DA03 DA04 DA06 FA05 FA15 FA20 GA24 GA25 HA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 集電体として用いる金属箔の上に、リチ
ウムを吸蔵・放出する活物質薄膜を堆積して形成するリ
チウム二次電池用電極の製造方法において、前記金属箔
の表面に対して微粒子を噴射して衝突させることによ
り、前記金属箔の表面を粗面化し、粗面化した表面上に
前記活物質薄膜を堆積させることを特徴とするリチウム
二次電池用電極の製造方法。
1. A method for manufacturing an electrode for a lithium secondary battery, comprising forming an active material thin film for absorbing and releasing lithium on a metal foil used as a current collector. A method for manufacturing an electrode for a lithium secondary battery, characterized in that the surface of the metal foil is roughened by injecting and colliding fine particles, and the active material thin film is deposited on the roughened surface.
【請求項2】 前記金属箔が銅、鉄、ニッケル、タンタ
ル、モリブデン、タングステンまたはこれらの金属を含
む合金から形成されていることを特徴とする請求項1に
記載のリチウム二次電池用電極の製造方法。
2. The electrode for a lithium secondary battery according to claim 1, wherein the metal foil is formed of copper, iron, nickel, tantalum, molybdenum, tungsten, or an alloy containing these metals. Production method.
【請求項3】 前記微粒子の最大粒径が10μm〜15
0μmであることを特徴とする請求項1または2に記載
のリチウム二次電池用電極の製造方法。
3. The maximum particle size of the fine particles is 10 μm to 15 μm.
The method for producing an electrode for a lithium secondary battery according to claim 1, wherein the thickness is 0 μm.
【請求項4】 前記活物質薄膜が、非晶質シリコン薄
膜、微結晶シリコン薄膜、非晶質ゲルマニウム薄膜、微
結晶ゲルマニウム薄膜、非晶質シリコンゲルマニウム合
金薄膜、または微結晶シリコンゲルマニウム合金薄膜で
あることを特徴とする請求項1〜3のいずれか1項に記
載のリチウム二次電池用電極の製造方法。
4. The active material thin film is an amorphous silicon thin film, a microcrystalline silicon thin film, an amorphous germanium thin film, a microcrystalline germanium thin film, an amorphous silicon germanium alloy thin film, or a microcrystalline silicon germanium alloy thin film. The method for producing an electrode for a lithium secondary battery according to any one of claims 1 to 3, wherein:
JP2001008692A 2000-12-01 2001-01-17 Manufacturing method of electrode for lithium secondary battery Withdrawn JP2002216747A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001008692A JP2002216747A (en) 2001-01-17 2001-01-17 Manufacturing method of electrode for lithium secondary battery
US09/995,863 US6815003B2 (en) 2000-12-01 2001-11-29 Method for fabricating electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001008692A JP2002216747A (en) 2001-01-17 2001-01-17 Manufacturing method of electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2002216747A true JP2002216747A (en) 2002-08-02

Family

ID=18876273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001008692A Withdrawn JP2002216747A (en) 2000-12-01 2001-01-17 Manufacturing method of electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2002216747A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183366A (en) * 2003-11-27 2005-07-07 Matsushita Electric Ind Co Ltd Energy device and its manufacturing method
JP2006156330A (en) * 2004-11-02 2006-06-15 Sanyo Electric Co Ltd Lithium secondary battery and method of manufacturing the same
JP2006164793A (en) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd Negative electrode for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery
WO2007046327A1 (en) * 2005-10-20 2007-04-26 Mitsui Mining & Smelting Co., Ltd. Negative electrode for rechargeable battery with nonaqueous electrolyte
JP2007128724A (en) * 2005-11-02 2007-05-24 Sony Corp Anode and battery
WO2007102433A1 (en) * 2006-03-02 2007-09-13 Incorporated National University Iwate University Secondary battery, manufacturing method thereof and system thereof
KR100778629B1 (en) * 2004-04-20 2007-11-28 산요덴키가부시키가이샤 Electrode for Lithium Secondary Battery, and Lithium Secondary Battery
US7432014B2 (en) 2003-11-05 2008-10-07 Sony Corporation Anode and battery
US8173304B2 (en) 2006-11-27 2012-05-08 Denso Corporation Electric current collector, electrode and charge accumulating device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625668B2 (en) 2003-11-05 2009-12-01 Sony Corporation Anode and battery
US7459233B2 (en) 2003-11-05 2008-12-02 Sony Corporation Anode and battery
US7432014B2 (en) 2003-11-05 2008-10-07 Sony Corporation Anode and battery
JP2005183366A (en) * 2003-11-27 2005-07-07 Matsushita Electric Ind Co Ltd Energy device and its manufacturing method
KR100778629B1 (en) * 2004-04-20 2007-11-28 산요덴키가부시키가이샤 Electrode for Lithium Secondary Battery, and Lithium Secondary Battery
US7695855B2 (en) 2004-04-20 2010-04-13 Sanyo Electric. Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery
JP2006156330A (en) * 2004-11-02 2006-06-15 Sanyo Electric Co Ltd Lithium secondary battery and method of manufacturing the same
JP2006164793A (en) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd Negative electrode for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery
JP4646612B2 (en) * 2004-12-08 2011-03-09 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
WO2007046327A1 (en) * 2005-10-20 2007-04-26 Mitsui Mining & Smelting Co., Ltd. Negative electrode for rechargeable battery with nonaqueous electrolyte
JP2007128724A (en) * 2005-11-02 2007-05-24 Sony Corp Anode and battery
WO2007102433A1 (en) * 2006-03-02 2007-09-13 Incorporated National University Iwate University Secondary battery, manufacturing method thereof and system thereof
CN101395744B (en) * 2006-03-02 2012-10-31 国立大学法人岩手大学 Secondary battery, manufacturing method thereof and system thereof
JP5194255B2 (en) * 2006-03-02 2013-05-08 国立大学法人岩手大学 Secondary battery and method and system for manufacturing the same
US8173304B2 (en) 2006-11-27 2012-05-08 Denso Corporation Electric current collector, electrode and charge accumulating device

Similar Documents

Publication Publication Date Title
JP3913490B2 (en) Method for producing electrode for lithium secondary battery
JP4027255B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP5219340B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4647014B2 (en) Batteries, electrodes and current collectors used therefor
JP3896025B2 (en) Secondary battery electrode
JP4497899B2 (en) Lithium secondary battery
US20050233066A1 (en) Manufacturing method of chemical battery electrode and battery
JP4245270B2 (en) Method for manufacturing electrode for secondary battery
JP4953583B2 (en) Lithium secondary battery
EP1536499A1 (en) Negative electrode for lithium secondary cell and lithium secondary cell
JP4212458B2 (en) Lithium secondary battery
WO2010110205A1 (en) Lithium ion secondary battery, electrode for the battery, and electrodeposited copper foil for the electrode for the battery
JP2002313319A (en) Electrode for lithium secondary battery and lithium secondary battery
JP4895503B2 (en) Lithium secondary battery
US6815003B2 (en) Method for fabricating electrode for lithium secondary battery
JP2002216747A (en) Manufacturing method of electrode for lithium secondary battery
JP2002042783A (en) Lithium secondary battery
JP4148665B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP5268223B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP3955727B2 (en) Method for producing electrode for lithium secondary battery
JP2005025978A (en) Electrode for lithium secondary battery and lithium secondary battery
JP2002170555A (en) Method for manufacturing electrode of lithium secondary battery
JP4104476B2 (en) Method of using lithium secondary battery and lithium secondary battery
JP2003017069A (en) Electrode for lithium secondary battery and lithium secondary battery
JP4436624B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060816

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061229