JP2002216694A - Defect inspecting device and method for manufacturing device using the same - Google Patents

Defect inspecting device and method for manufacturing device using the same

Info

Publication number
JP2002216694A
JP2002216694A JP2001011852A JP2001011852A JP2002216694A JP 2002216694 A JP2002216694 A JP 2002216694A JP 2001011852 A JP2001011852 A JP 2001011852A JP 2001011852 A JP2001011852 A JP 2001011852A JP 2002216694 A JP2002216694 A JP 2002216694A
Authority
JP
Japan
Prior art keywords
sample
image data
defect inspection
charged particle
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001011852A
Other languages
Japanese (ja)
Other versions
JP3986260B2 (en
Inventor
Yuichiro Yamazaki
裕一郎 山崎
Atsushi Onishi
篤志 大西
Mamoru Nakasuji
護 中筋
Toru Satake
徹 佐竹
Masaki Hatakeyama
雅規 畠山
Toshifumi Kaneuma
利文 金馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Toshiba Corp
Original Assignee
Ebara Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Toshiba Corp filed Critical Ebara Corp
Priority to JP2001011852A priority Critical patent/JP3986260B2/en
Publication of JP2002216694A publication Critical patent/JP2002216694A/en
Application granted granted Critical
Publication of JP3986260B2 publication Critical patent/JP3986260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a defect inspecting device capable of reliably inspecting defects even if irradiation energy of primary charged particle beam is raised for a sample surface to be charged. SOLUTION: A measurement image data is generated in a step 12 based on the intensity of secondary electrons detected in a step 11. In a step 13, a distortion correcting data is generated to correct an image distorted by charging. In a step 14, the entire measurement image data is corrected based on the distortion correcting data to generate a corrected image data. In a step 15, the image is compared with any one of a reference image data, a corrected image of other small region of the same sample, and a corrected image of the same small region of other sample, and outputs a defectiveness in case of inconsistency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、荷電粒子線を試料
に照射し、試料の照射点から発生する2次荷電粒子を検
出してデバイスの欠陥検査を行う欠陥検査装置及びそれ
を用いたデバイス製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect inspection apparatus for irradiating a sample with a charged particle beam, detecting secondary charged particles generated from an irradiation point of the sample, and performing a defect inspection of a device, and a device using the same. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】半導体デバイス製造用のマスクパター
ン、あるいは半導体ウエハに形成されたパターンの欠陥
検査は、1次電子線で試料表面を照射したときにその試
料から放出される2次電子を検出して試料のパターン画
像を得、基準パターン、他試料のパターン画像、同一試
料の他の部分のパターン画像のどれかと比較することに
より行っている。2次電子による画像を得る方法として
は、1次電子線で試料表面に走査して画像パターンを得
るもの(以下、単に「走査型欠陥検査装置」とい
う。)、2次電子の一次元像又は二次元像を写像投影光
学系で検出部に結像させるもの(以下、単に「写像投影
型欠陥検査装置」という。)が知られている。
2. Description of the Related Art A defect inspection of a mask pattern for manufacturing a semiconductor device or a pattern formed on a semiconductor wafer is performed by detecting secondary electrons emitted from a sample when the surface of the sample is irradiated with a primary electron beam. This is performed by obtaining a pattern image of the sample and comparing it with one of the reference pattern, the pattern image of another sample, and the pattern image of another portion of the same sample. As a method of obtaining an image by secondary electrons, a method of scanning the sample surface with a primary electron beam to obtain an image pattern (hereinafter, simply referred to as “scanning defect inspection apparatus”), a one-dimensional image of secondary electrons or 2. Description of the Related Art There is known an image forming apparatus that forms a two-dimensional image on a detection unit by an image projection optical system (hereinafter, simply referred to as an “image projection type defect inspection apparatus”).

【0003】[0003]

【発明が解決しようとする課題】いずれの方法による場
合も、2次電子による高精度の画像を得るためには、1
次電子線の照射量を大きくする必要があるが、照射量を
大きくすると、試料表面が帯電し、2次電子による画像
が歪むという問題があった。画像の歪みが十分小さくな
るように照射量を小さくし、複数回照射して平均化処理
を行う方法は、欠陥検査のスループットが低下するとい
う問題があった。
In either case, in order to obtain a high-accuracy image by secondary electrons, one method is required.
Although it is necessary to increase the irradiation amount of the secondary electron beam, when the irradiation amount is increased, there is a problem that the sample surface is charged and an image due to the secondary electrons is distorted. The method of performing the averaging process by irradiating a plurality of times and reducing the irradiation amount so that the image distortion is sufficiently reduced has a problem that the throughput of the defect inspection is reduced.

【0004】本発明は、スループットを大きくするた
め、1次荷電粒子線の照射量を大きくして試料表面が帯
電しても、信頼性の高い欠陥検査ができる欠陥検査装置
を提供することを目的とする。
An object of the present invention is to provide a defect inspection apparatus capable of performing a highly reliable defect inspection even when the sample surface is charged by increasing the irradiation amount of the primary charged particle beam in order to increase the throughput. And

【0005】[0005]

【課題を解決するための手段】本発明の欠陥検査装置
は、荷電粒子線を試料に照射したときに照射点から発生
する2次荷電粒子を検出して、試料の被検査領域を分割
した小領域単位に、試料の欠陥検査を行うものであっ
て、前記2次荷電粒子に基づく前記小領域の画像データ
を作成する手段と、前記作成した画像データと基準画像
データとの間の、複数の特定点における誤差に基づい
て、前記荷電粒子照射に伴う試料表面の帯電による歪み
補正データを求め、この歪み補正データに基づいて、前
記作成した画像データ全体を補正して補正画像データを
作成する画像補正手段と、前記補正画像データと、他の
小領域の補正画像データ、他の試料の補正画像データ、
前記基準画像データの少なくとも1つの画像データとを
画像全体について比較する画像比較手段とを有し、前記
画像比較手段の出力に基づいて試料の欠陥を検出するよ
うにしたものである。
A defect inspection apparatus according to the present invention detects a secondary charged particle generated from an irradiation point when a charged particle beam is irradiated on a sample, and divides the inspection area of the sample into small particles. Means for performing a defect inspection of the sample on a region-by-region basis, wherein a means for creating image data of the small region based on the secondary charged particles; and a plurality of image data between the created image data and the reference image data. Based on an error at a specific point, an image in which distortion correction data due to electrification of the sample surface due to the charged particle irradiation is obtained, and based on the distortion correction data, the entire generated image data is corrected to generate corrected image data Correcting means, the corrected image data, corrected image data of another small area, corrected image data of another sample,
Image comparison means for comparing at least one image data of the reference image data with respect to the entire image, wherein a defect of the sample is detected based on an output of the image comparison means.

【0006】また、前記複数の特定点として、前記作成
した画像データ及び前記基準画像データに含まれるパタ
ーンのコーナーから選択したものである。
Further, the plurality of specific points are selected from corners of a pattern included in the created image data and the reference image data.

【0007】また、複数の1次荷電粒子線を試料に照射
して欠陥検査を行なう装置に適用したものである。
Further, the present invention is applied to an apparatus for performing a defect inspection by irradiating a sample with a plurality of primary charged particle beams.

【0008】また、上記した欠陥検査装置を用いて、デ
バイスの欠陥検査を行うようにしたものである。
[0008] Further, a defect inspection of a device is performed using the defect inspection apparatus described above.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】まず、試料表面の帯電による画像の歪みに
ついて走査型欠陥検査装置を例に説明する。図3は、試
料表面の帯電による影響を説明する図である。試料の被
検査領域1は、複数の小領域2に分割され、小領域毎に
検査が実施される。1次電子線を偏向して電気的な走査
にのみにより、1次電子線照射及び2次電子検出を行う
ものとする。
First, a description will be given of an image distortion due to charging of a sample surface by taking a scanning defect inspection apparatus as an example. FIG. 3 is a diagram for explaining the influence of charging of the sample surface. The inspection area 1 of the sample is divided into a plurality of small areas 2 and an inspection is performed for each small area. It is assumed that primary electron beam irradiation and secondary electron detection are performed only by electrical scanning by deflecting the primary electron beam.

【0011】絶縁物に電子線を照射したときの2次電子
の放出効率ηは、図4のように表され、ηが1より大き
いビームエネルギーでは入射した電子よりも多くの電子
が放出されるため、絶縁物表面は正に帯電される。この
ため、図3の小領域2の始点5から走査を開始すると、
走査済みの領域は正に帯電して電子線が正電荷に引き戻
されるため、本来の6の位置に照射するためには、7の
位置まで走査する必要がある。したがって、小領域2を
走査するためには、領域3の走査を指示する必要があ
る。また、逆に矩形領域の走査指示をした時の2次電子
による画像は、歪むことになる。
The emission efficiency η of secondary electrons when an insulator is irradiated with an electron beam is expressed as shown in FIG. 4. At a beam energy where η is greater than 1, more electrons are emitted than incident electrons. Therefore, the surface of the insulator is positively charged. Therefore, when scanning is started from the starting point 5 of the small area 2 in FIG.
Since the scanned area is positively charged and the electron beam is returned to the positive charge, it is necessary to scan to the position 7 in order to irradiate the original position 6. Therefore, in order to scan the small area 2, it is necessary to instruct the scanning of the area 3. Conversely, an image due to secondary electrons when a rectangular region scanning instruction is issued will be distorted.

【0012】したがって、小領域2を検査するために
は、領域3をカバーする程度の大きさの領域4の走査を
指示し、そのときの2次電子を検出して画像を作成する
必要がある。この点は、写像投影型欠陥検査装置の場合
も同様で、1次電子の照射領域及び画像結像領域を帯電
による歪みの影響を考慮して大きく設定する必要があ
る。
Therefore, in order to inspect the small area 2, it is necessary to instruct the scanning of the area 4 large enough to cover the area 3, and to detect the secondary electrons at that time to create an image. . This is the same in the case of the projection type defect inspection apparatus, and it is necessary to set the irradiation area of the primary electrons and the image formation area to be large in consideration of the influence of distortion due to charging.

【0013】図1に、本発明の欠陥検査処理の概略フロ
ーを示す。ステップ11では、小領域2に1次電子線を
照射したときに試料表面から放出される2次電子の強度
を検出する。走査型欠陥検査装置では、シンチレータ等
を用い、写像投影型欠陥検査装置では、1次元又は2次
元のCCD(Charge Coupled Device)等を用いる。
FIG. 1 shows a schematic flow of the defect inspection processing of the present invention. In step 11, the intensity of secondary electrons emitted from the sample surface when the small region 2 is irradiated with the primary electron beam is detected. A scanning type defect inspection apparatus uses a scintillator or the like, and a projection type defect inspection apparatus uses a one-dimensional or two-dimensional CCD (Charge Coupled Device) or the like.

【0014】ステッ412では、検出した2次電子の強
度、及び1次電子線の照射位置、試料を保持し移動させ
るするステージの位置情報に基づき、測定画像データを
作成する。この測定画像は、図2(2)に示すようなも
のとなる。また、対応する小領域の基準画像は図2
(1)に示すようなものである。
In step 412, measurement image data is created based on the detected intensity of the secondary electrons, the irradiation position of the primary electron beam, and the position information of the stage for holding and moving the sample. This measurement image is as shown in FIG. The reference image of the corresponding small area is shown in FIG.
It is as shown in (1).

【0015】次いで、ステップ13で、帯電によって歪
んだ画像を補正するための歪み補正データを作成する。
歪み補正データの作成に際して、まず、基準画像及び測
定画像に含まれるパターンの複数のコーナーの座標を比
較する。測定画像は、コーナー部が正確に得られないの
で、2辺(例えばX方向及びY方向の辺)の交点を演算
し、コーナーの座標とする。図2の例では、(1)の基
準画像の座標(x1,y1)、(x2,y1)、…(xi
1)、(x1,y2)、…(xi,y2)、…(xi
i) が、測定画像の座標(X1,Y1)、(X2
1)、…(Xi,Y1)、(X1,Y2)、…(Xi
2)、…(Xi,Yi)と比較される。これらの誤差に
基づいて、図2(2)の測定画像を図2(1)の基準画
像に対応させるための歪み補正データを作成する。歪み
補正データの作成方法は、特開昭62−58621号公
報に記載されるような手法を採用することができる。
Next, in step 13, distortion correction data for correcting an image distorted by charging is created.
When creating the distortion correction data, first, the coordinates of a plurality of corners of the pattern included in the reference image and the measurement image are compared. Since the corners of the measurement image cannot be obtained accurately, the intersection of two sides (for example, the sides in the X direction and the Y direction) is calculated and used as the coordinates of the corner. In the example of FIG. 2, the coordinates (x 1 , y 1 ), (x 2 , y 1 ),... (X i ,
y 1 ), (x 1 , y 2 ),... (x i , y 2 ) ,.
y i ) are the coordinates (X 1 , Y 1 ), (X 2 ,
(Y 1 ),... (X i , Y 1 ), (X 1 , Y 2 ) ,.
Y 2 ),... (X i , Y i ). Based on these errors, distortion correction data for making the measurement image of FIG. 2B correspond to the reference image of FIG. 2A is created. As a method for creating the distortion correction data, a method described in JP-A-62-58621 can be adopted.

【0016】続いて、ステップ14で、測定画像データ
全体を歪み補正データに基づいて補正し、補正画像デー
タを作成する。この補正画像データは、試料表面の帯電
の影響が除去されたものとなる。
Subsequently, in step 14, the entire measurement image data is corrected based on the distortion correction data to generate corrected image data. The corrected image data is data from which the influence of the charging of the sample surface has been removed.

【0017】最後に、ステップ15で、基準画像デー
タ、同一試料の他の小領域の補正画像、他の試料の同一
小領域の補正画像のいずれか1つと画像比較を行い、不
一致の場合、不一致点を欠陥位置として出力する。な
お、先に述べたように、測定画像のコーナーは丸くなっ
て正確に得られないので、この部分の不一致は、欠陥と
判断しない。なお、ステップ12〜15の処理は、1又
は複数のプロセッサを用いて実現することができる。
Finally, in step 15, the image is compared with any one of the reference image data, the corrected image of another small region of the same sample, and the corrected image of the same small region of another sample. The point is output as a defect position. As described above, since the corners of the measurement image are rounded and cannot be obtained accurately, a mismatch at this portion is not determined to be a defect. Note that the processing of steps 12 to 15 can be realized using one or a plurality of processors.

【0018】以上述べた本発明の実施の形態は、複数の
1次荷電粒子線の走査によって試料に照射する欠陥検査
装置に適用するとさらに効果的である。図6は、複数の
1次電子線を利用する欠陥検査装置の一例を概略的に示
す図である。同図において、電子銃41から放出された
電子線はコンデンサ・レンズ42によって収束されて点
COにおいてクロスオーバを形成する。このクロスオー
バ点COに、NAを決める開口を有する絞り44が配置
される。
The embodiment of the present invention described above is more effective when applied to a defect inspection apparatus that irradiates a sample by scanning a plurality of primary charged particle beams. FIG. 6 is a diagram schematically illustrating an example of a defect inspection apparatus using a plurality of primary electron beams. In the figure, an electron beam emitted from an electron gun 41 is converged by a condenser lens 42 to form a crossover at a point CO. At this crossover point CO, a stop 44 having an aperture for determining NA is arranged.

【0019】コンデンサ・レンズ42の下方には、複数
の開口を有する第1のマルチ開口板43が配置され、こ
れによって複数の一次電子線が形成される。第1のマル
チ開口板43によって形成された一次電子線のそれぞれ
は、縮小レンズ45によって縮小されてEXB分離器4
6の偏向主面に投影される。即ち、点55で合焦した
後、対物レンズ47によって試料48に合焦される。第
1のマルチ開口板43から出た複数の一次電子線は縮小
レンズ45と対物レンズ47との間には位置された偏向
器により、同時に試料48の面上を走査するよう偏向さ
れる。
Below the condenser lens 42, a first multi-aperture plate 43 having a plurality of openings is arranged, thereby forming a plurality of primary electron beams. Each of the primary electron beams formed by the first multi-aperture plate 43 is reduced by a reduction lens 45 and
6 is projected onto the principal deflection surface. That is, after focusing at the point 55, the sample 48 is focused by the objective lens 47. The plurality of primary electron beams emitted from the first multi-aperture plate 43 are deflected by a deflector located between the reduction lens 45 and the objective lens 47 so as to simultaneously scan the surface of the sample 48.

【0020】縮小レンズ45及び対物レンズ47の像面
湾曲収差が発生しない様にするため、図6に示すよう
に、マルチ開口板43は、中央から周囲へ向かうにつれ
てコンデンサレンズ42からの距離が大きくなるように
段がつけられた構造となっている。
As shown in FIG. 6, the multi-aperture plate 43 has a larger distance from the condenser lens 42 from the center to the periphery, as shown in FIG. It has a stepped structure.

【0021】合焦された複数の一次電子線によって、試
料48の複数の点が照射され、照射されたこれらの複数
の点から放出された二次電子線は、対物レンズ47の電
界に引かれて細く集束され、EXB分離器46の手前の
点56、即ち、EXB分離器46の偏向主面に関して試
料48側の点56に焦点を結ぶ。これは、各一次電子線
は試料面上で500eVにエネルギを持っているのに対
して、二次電子線は数evのエネルギしか持っていない
ためである。試料48から放出された複数の二次電子線
はEXB分離器46により、電子銃41と試料48とを
結ぶ軸の下方へ偏向されて一次電子線から分離され、二
次光学系へ入射する。
The plurality of focused primary electron beams irradiate a plurality of points on the sample 48, and the secondary electron beams emitted from the plurality of irradiated points are attracted to the electric field of the objective lens 47. It is focused to a point 56 in front of the EXB separator 46, that is, a point 56 on the sample 48 side with respect to the main deflection surface of the EXB separator 46. This is because each primary electron beam has energy of 500 eV on the sample surface, whereas the secondary electron beam has energy of only several ev. The plurality of secondary electron beams emitted from the sample 48 are deflected by the EXB separator 46 below the axis connecting the electron gun 41 and the sample 48, separated from the primary electron beam, and incident on the secondary optical system.

【0022】二次光学系は拡大レンズ49、50を有し
ており、これらの拡大レンズ49、50を通過した二次
電子線は、第2のマルチ開口板51の複数の開口を通っ
て複数の検出器52に結像する。なお、検出器52の前
に配置された第2のマルチ開口板51に形成された複数
の開口と、第1のマルチ開口板3に形成された複数の開
口とは一対一に対応している。
The secondary optical system has magnifying lenses 49 and 50, and the secondary electron beam passing through these magnifying lenses 49 and 50 passes through a plurality of openings of the second multi-aperture plate 51, Is imaged on the detector 52. The plurality of openings formed in the second multi-aperture plate 51 disposed in front of the detector 52 correspond to the plurality of openings formed in the first multi-aperture plate 3 on a one-to-one basis. .

【0023】それぞれの検出器52は、検出した2次電
子線を、その強度を表す電気信号へ変換する。こうして
各検出器52から出力された電気信号は増幅器53によ
ってそれぞれ増幅された後、画像処理部54によって受
信され、画像データへ変換される。画像処理部54に
は、一次電子線を偏向させるための走査信号がさらに供
給されるので、画像処理部54は試料48の面を表す画
像を表示する。この画像を標準パターンと比較すること
により、試料48の欠陥を検出することができ、また、
レジストレーションにより試料48を一次光学系の光軸
の近くへ移動させ、ラインスキャンすることによって線
幅評価信号を取り出し、これを適宜に校正することによ
り、試料48上のパターンの線幅を測定することができ
る。
Each detector 52 converts the detected secondary electron beam into an electric signal representing its intensity. The electric signals output from the respective detectors 52 are respectively amplified by the amplifiers 53 and then received by the image processing unit 54 and converted into image data. Since a scanning signal for deflecting the primary electron beam is further supplied to the image processing unit 54, the image processing unit 54 displays an image representing the surface of the sample 48. By comparing this image with a standard pattern, a defect of the sample 48 can be detected.
The sample 48 is moved to a position near the optical axis of the primary optical system by registration, and a line width evaluation signal is taken out by line scanning, and the signal is calibrated appropriately to measure the line width of the pattern on the sample 48. be able to.

【0024】ここで、第1のマルチ開口板43の開口を
通過した一次電子線を試料48の面上に合焦させ、試料
48から放出された2次電子線を検出器52に結像させ
る際、一次光学系及び二次光学系で生じる歪み、像面湾
曲及び視野非点という3つの収差による影響を最小にす
るよう特に配慮する必要がある。複数の一次電子線の照
射位置間隔と、2次光学系との関係については、一次電
子線の間隔を、2次光学系の収差よりも大きい距離だけ
離せば複数のビーム間のクロストークを無くすことがで
きる。
Here, the primary electron beam passing through the opening of the first multi-aperture plate 43 is focused on the surface of the sample 48, and the secondary electron beam emitted from the sample 48 is imaged on the detector 52. At this time, it is necessary to pay particular attention to minimize the effects of the three aberrations of the primary optical system and the secondary optical system, namely, distortion, field curvature, and field astigmatism. Regarding the relationship between the irradiation position intervals of a plurality of primary electron beams and the secondary optical system, crosstalk between a plurality of beams can be eliminated by separating the primary electron beams by a distance larger than the aberration of the secondary optical system. be able to.

【0025】図6に示したような複数の電子線を照射す
る欠陥検査装置は、電子線の照射量が大きくなるため、
帯電による影響が大きくなる。したがって、上記実施の
形態で説明したような補正を行なって、帯電の影響を除
去するメリットが大きい。
In the defect inspection apparatus for irradiating a plurality of electron beams as shown in FIG. 6, since the irradiation amount of the electron beam is large,
The influence of charging increases. Therefore, there is a great merit that the correction as described in the above embodiment is performed to remove the influence of charging.

【0026】このように構成した欠陥検査装置は、半導
体デバイスの欠陥検査に利用することができる。
The defect inspection apparatus thus configured can be used for defect inspection of a semiconductor device.

【0027】図5は、半導体デバイスの製造方法の一例
を示すフローチャートである。この例におけるチップ検
査工程において、本発明の欠陥検査装置を利用すると、
スループットよく検査ができ、全数検査も可能となり、
製品の歩留向上、欠陥製品の出荷防止が可能となる。
FIG. 5 is a flowchart showing an example of a method for manufacturing a semiconductor device. In the chip inspection process in this example, if the defect inspection device of the present invention is used,
Inspection can be performed with high throughput, and 100% inspection is also possible.
Product yield can be improved and defective products can be prevented from being shipped.

【0028】[0028]

【発明の効果】以上の説明から明らかなように、本発明
によれば、試料の帯電によって測定画像に歪みが生じて
も、歪みを補正した画像を欠陥検査ができるので、1次
電子線の照射量を大きくして2次電子の放出効率を高め
ることができるので、S/N比のよい検出信号が得ら
れ、欠陥検査の信頼性が向上する。
As is clear from the above description, according to the present invention, even if the measured image is distorted due to the charging of the sample, the image corrected for the distortion can be inspected for defects, so that the primary electron beam can be inspected. Since the emission efficiency of secondary electrons can be increased by increasing the irradiation amount, a detection signal with a good S / N ratio can be obtained, and the reliability of defect inspection is improved.

【0029】また、測定画像のコーナー座標としてパタ
ーン辺の交点を用いるとともに、コーナー部の不一致を
欠陥と判断しないため、測定画像が本質的に有するコー
ナー部のRの影響による誤欠陥を検出する確率が低くな
る。
Also, since the intersection of the pattern sides is used as the corner coordinates of the measured image, and the mismatch of the corners is not determined as a defect, the probability of detecting an erroneous defect due to the influence of the R of the corner inherent in the measured image. Becomes lower.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の欠陥検査処理の概略フロー図FIG. 1 is a schematic flowchart of a defect inspection process of the present invention.

【図2】小領域の基準画像と測定画像の一例を示す図FIG. 2 is a diagram showing an example of a reference image and a measurement image of a small area.

【図3】試料表面の帯電による影響を説明する図FIG. 3 is a diagram for explaining the influence of charging of a sample surface.

【図4】電子線の照射エネルギーと2次電子の放出効率
ηの関係を示す図
FIG. 4 is a diagram showing a relationship between electron beam irradiation energy and secondary electron emission efficiency η.

【図5】半導体デバイスの製造方法の一例を示すフロー
チャート
FIG. 5 is a flowchart illustrating an example of a method for manufacturing a semiconductor device.

【図6】複数の1次電子線を利用する欠陥検査装置の一
例を概略的に示す図
FIG. 6 is a diagram schematically showing an example of a defect inspection apparatus using a plurality of primary electron beams.

【符号の説明】[Explanation of symbols]

1・・・被検査領域 2・・・小領域 3・・・小領域に対応する走査領域 4・・・走査指示領域 DESCRIPTION OF SYMBOLS 1 ... Inspection area 2 ... Small area 3 ... Scanning area corresponding to a small area 4 ... Scan instruction area

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/66 H01L 21/66 J (72)発明者 大西 篤志 神奈川県横浜市磯子区新杉田町8番 株式 会社東芝セミコンダクター社内 (72)発明者 中筋 護 東京都大田区羽田旭町11番1号 荏原マイ スター株式会社内 (72)発明者 佐竹 徹 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 畠山 雅規 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 金馬 利文 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 2F067 AA62 BB02 BB04 CC16 CC17 HH06 HH13 JJ05 KK04 LL16 2G001 AA03 BA07 CA03 DA01 DA09 EA04 FA01 FA08 GA04 GA05 GA06 HA13 KA03 KA20 LA11 MA05 SA01 4M106 AA01 BA02 CA38 DB05 DB21 DJ18 DJ19 DJ20 5C033 UU02 UU04 UU05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/66 H01L 21/66 J (72) Inventor Atsushi Onishi 8th Shin-Sugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock In-house Toshiba Semiconductor Company (72) Inventor: Mamoru Nakasuji, 11-1 Haneda Asahimachi, Ota-ku, Tokyo Ebara Meister Co., Ltd. (72) Inventor Tohru Satake 11-1, Asahimachi, Haneda, Ota-ku, Tokyo Ebara Corporation (72) Inventor Masanori Hatakeyama 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside Ebara Corporation (72) Inventor Toshifumi Kanma 11-1 Haneda Asahi-cho, Ota-ku, Tokyo F-term in Ebara Corporation ( 2F067 AA62 BB02 BB04 CC16 CC17 HH06 HH13 JJ05 KK04 LL16 2G001 AA03 BA07 CA03 DA01 DA09 EA04 FA01 FA08 GA04 GA05 GA06 HA13 KA03 KA20 LA11 MA05 SA 01 4M106 AA01 BA02 CA38 DB05 DB21 DJ18 DJ19 DJ20 5C033 UU02 UU04 UU05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子線を試料に照射したときに照射
点から発生する2次荷電粒子を検出して、試料の被検査
領域を分割した小領域単位に、試料の欠陥検査を行う欠
陥検査装置であって、 前記2次荷電粒子に基づく前記小領域の測定画像データ
を作成する手段と、 前記測定画像データと基準画像データとの間の、複数の
特定点における誤差に基づいて、前記荷電粒子照射に伴
う試料表面の帯電による歪み補正データを求め、この歪
み補正データに基づいて、前記測定画像データ全体を補
正して補正画像データを作成する画像補正手段と、 前記補正画像データと、他の小領域の補正画像データ、
他の試料の補正画像データ、前記基準画像データの少な
くとも1つの画像データとを画像全体について比較する
画像比較手段とを有し、 前記画像比較手段の出力に基づいて試料の欠陥を検出す
る欠陥検査装置。
1. A defect inspection for detecting a secondary charged particle generated from an irradiation point when a charged particle beam is irradiated on a sample and performing a defect inspection of the sample in small area units obtained by dividing an inspection area of the sample. An apparatus for generating measurement image data of the small area based on the secondary charged particles; and detecting the charge based on errors at a plurality of specific points between the measurement image data and the reference image data. Image correction means for obtaining distortion correction data due to charging of the sample surface due to particle irradiation, and correcting the entire measurement image data to create corrected image data based on the distortion correction data; and Corrected image data of a small area of
Image comparison means for comparing the corrected image data of another sample and at least one image data of the reference image data for the entire image, and a defect inspection for detecting a defect of the sample based on an output of the image comparison means apparatus.
【請求項2】 請求項1記載の欠陥検査装置であって、 前記複数の特定点は、前記測定画像データ及び前記基準
画像データに含まれるパターンのコーナーから選択され
るものである欠陥検査装置。
2. The defect inspection apparatus according to claim 1, wherein the plurality of specific points are selected from corners of a pattern included in the measurement image data and the reference image data.
【請求項3】 荷電粒子線を試料に照射したときに照射
点から発生する2次荷電粒子を検出して、試料の被検査
領域を分割した小領域単位に、試料の欠陥検査を行う欠
陥検査装置であって、 前記2次荷電粒子に基づく測定画像データを作成する手
段を有し、 前記荷電粒子線の照射は、前記小領域よりも広い領域を
照射するように指示され、 前記小領域よりも広い領域について作成された前記測定
画像データに基づいて試料の欠陥を検出する欠陥検査装
置。
3. A defect inspection for detecting a secondary charged particle generated from an irradiation point when a charged particle beam is irradiated on a sample, and performing a defect inspection of the sample in small area units obtained by dividing an inspection area of the sample. An apparatus, comprising: means for creating measurement image data based on the secondary charged particles, wherein the irradiation of the charged particle beam is instructed to irradiate an area wider than the small area, A defect inspection apparatus that detects a defect of a sample based on the measurement image data created for a wide area.
【請求項4】 請求項1ないし3のいずれか1項記載の
欠陥検査装置であって、 複数の1次荷電粒子線を試料に照射する少なくとも1以
上の1次光学系と、 前記2次荷電粒子を少なくとも1以上の検出器に導く少
なくとも1以上の2次光学系とを有し、 前記複数の1次荷電粒子線は、互いに前記2次光学系の
距離分解能より離れた位置に照射されるものである欠陥
検査装置。
4. The defect inspection apparatus according to claim 1, wherein at least one or more primary optical systems for irradiating the sample with a plurality of primary charged particle beams, and the secondary charging. At least one or more secondary optical systems for guiding particles to at least one or more detectors, wherein the plurality of primary charged particle beams are applied to positions separated from each other by a distance resolution of the secondary optical system. Inspection equipment.
【請求項5】 請求項1ないし4のいずれか1項記載の
欠陥検査装置を用いて、デバイスの欠陥検査を行うデバ
イス製造方法。
5. A device manufacturing method for performing a device defect inspection using the defect inspection device according to claim 1.
JP2001011852A 2001-01-19 2001-01-19 Defect inspection apparatus and device manufacturing method using the same Expired - Fee Related JP3986260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001011852A JP3986260B2 (en) 2001-01-19 2001-01-19 Defect inspection apparatus and device manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001011852A JP3986260B2 (en) 2001-01-19 2001-01-19 Defect inspection apparatus and device manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2002216694A true JP2002216694A (en) 2002-08-02
JP3986260B2 JP3986260B2 (en) 2007-10-03

Family

ID=18878941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001011852A Expired - Fee Related JP3986260B2 (en) 2001-01-19 2001-01-19 Defect inspection apparatus and device manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP3986260B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086398A1 (en) * 2006-01-25 2007-08-02 Ebara Corporation Apparatus and method for inspecting sample surface
JP2010140899A (en) * 2008-12-12 2010-06-24 Fei Co Method for determining distortions in particle-optical device
JP2013246162A (en) * 2012-05-30 2013-12-09 Hitachi High-Technologies Corp Defect inspection method and defect inspection device
JP2015041673A (en) * 2013-08-21 2015-03-02 三菱電機株式会社 Observation method
JP2019160606A (en) * 2018-03-14 2019-09-19 株式会社日立製作所 Electron beam device and sample inspection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086398A1 (en) * 2006-01-25 2007-08-02 Ebara Corporation Apparatus and method for inspecting sample surface
JP2007200658A (en) * 2006-01-25 2007-08-09 Ebara Corp Sample surface inspection device and inspection method
US7952071B2 (en) 2006-01-25 2011-05-31 Ebara Corporation Apparatus and method for inspecting sample surface
JP2010140899A (en) * 2008-12-12 2010-06-24 Fei Co Method for determining distortions in particle-optical device
US8885973B2 (en) 2008-12-12 2014-11-11 Fei Company Method for determining distortions in a particle-optical apparatus
JP2013246162A (en) * 2012-05-30 2013-12-09 Hitachi High-Technologies Corp Defect inspection method and defect inspection device
JP2015041673A (en) * 2013-08-21 2015-03-02 三菱電機株式会社 Observation method
JP2019160606A (en) * 2018-03-14 2019-09-19 株式会社日立製作所 Electron beam device and sample inspection method

Also Published As

Publication number Publication date
JP3986260B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
US6909092B2 (en) Electron beam apparatus and device manufacturing method using same
US7351968B1 (en) Multi-pixel electron emission die-to-die inspection
JP2019211296A (en) Electron beam inspection device and electron beam inspection method
TWI737117B (en) Multiple electron beams irradiation apparatus
US20020024021A1 (en) Method and apparatus for inspecting patterns of a semiconductor device with an electron beam
JPH10134757A (en) Multi-beam inspection device
JPH09311112A (en) Defect inspection device
US10984525B2 (en) Pattern inspection method and pattern inspection apparatus
JP2002216694A (en) Defect inspecting device and method for manufacturing device using the same
TWI773329B (en) Pattern inspection device and pattern inspection method
JP7409988B2 (en) Pattern inspection device and method for obtaining alignment amount between contour lines
JP6966319B2 (en) Multi-beam image acquisition device and multi-beam image acquisition method
JPH0660815B2 (en) Pattern defect inspection method using charged particle beam and apparatus therefor
JP2000188310A (en) Circuit pattern inspection device
JP3907943B2 (en) Defect inspection method and device manufacturing method using the method
JP2002148227A (en) Method and apparatus for inspection of surface as well as device manufacturing method
WO2021140866A1 (en) Pattern inspection device and pattern inspection method
JP2001133234A (en) Method and apparatus for inspection of defect as well as manufacturing method for semiconductor device using them
JP4230280B2 (en) Defect inspection method and device manufacturing method using the inspection method
JP2022077421A (en) Electron beam inspection device and electron beam inspection method
JP2002139465A (en) Defect-inspecting device and device-manufacturing method using the defect-inspecting device
JP2003132834A (en) Electron beam system and method for manufacturing device using the same
JP4463249B2 (en) Defect inspection method
JPS59195825A (en) Charged particle beam exposing apparatus
JP2002231174A (en) Electron beam device, and method for manufacturing device using the same device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3986260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees