JP2002214108A - Rheology measuring method of liquid material and its device - Google Patents

Rheology measuring method of liquid material and its device

Info

Publication number
JP2002214108A
JP2002214108A JP2001040959A JP2001040959A JP2002214108A JP 2002214108 A JP2002214108 A JP 2002214108A JP 2001040959 A JP2001040959 A JP 2001040959A JP 2001040959 A JP2001040959 A JP 2001040959A JP 2002214108 A JP2002214108 A JP 2002214108A
Authority
JP
Japan
Prior art keywords
sample
flowing
outlet
receiving
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001040959A
Other languages
Japanese (ja)
Inventor
Kaname Wakasugi
要 若杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001040959A priority Critical patent/JP2002214108A/en
Publication of JP2002214108A publication Critical patent/JP2002214108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for measuring automatically fluidity, viscosity, cuttability, and thixotropic property of rheological constants, without requiring a manual work of a sample in a manufacture tank or a transfer pipe in a manufacturing process of liquid material. SOLUTION: The sample is sent to a flowing part 3 having a required tilt angle by a sample transmission means 2, and the sample sent to the flowing part is fluidized, a sample receiving part 8 for receiving the sample is installed on the position for receiving the sample flowing out of an outflow port 3b of the flowing part; a sensor part 7 of a sample detection means 6 for detecting the sample flowing out of the outflow port is installed between the outflow port and the sample receiving part; a signal of the sample detection means detected by the sensor part is inputted into a computer 14; an elapsed time from the point of time when the sample is sent to the flowing part by the sample sending means until the time when the sample is fluidized through the flowing part and the outflow from the outflow port is finished is measured; and the rheological constants of the sample are operated by the computer based on the elapsed time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液状物質(低粘度
の液体物質から固形物が混入した高粘度の物質やスラリ
ー状物質の流動体の試料を言う)の食品類、塗料、接着
剤、インキ、油類、化粧品、化学製品類や、まだ固まら
ない軟練りコンクリート、軟練りモルタル、グラウト、
セメントミルク溶液等の製造現場や施工現場で試料を流
動させて、液状物質の物性であるレオロジー定数の流動
性、粘性、切れ性、チキソトロピー性を簡便的に測定す
る方法や装置に関するもので、特に、高粘度の液状物質
や固形物が混入しているレトルトカレー類やソース類及
びジャム等を製造する製造工程の品質管理に用いれば有
効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to foods, paints, adhesives, and the like for liquid substances (referred to as fluid samples of high-viscosity substances or slurry-like substances in which solid substances are mixed from low-viscosity liquid substances). Inks, oils, cosmetics, chemicals, unhardened soft concrete, soft mortar, grout,
This method relates to a method and an apparatus for easily measuring a rheological constant, which is a physical property of a liquid substance, by flowing a sample at a manufacturing site or a construction site of a cement milk solution or the like, and for easily measuring the rheological constant, cutting property, and thixotropic property. It is effective if it is used for quality control in a manufacturing process for manufacturing retort curries, sauces, jams, and the like in which high-viscosity liquid substances and solid substances are mixed.

【0002】[0002]

【従来の技術】従来、液状物質を製造する製造工程で試
料のレオロジー測定に用いられる装置として、液状物質
を製造する製造工程の製造タンクやパイプラインに取り
付けて使用する工業用オンライン振動式粘度計や、ねじ
れ振動式プロセス粘度計及び同軸シリンダー回転式粘度
計等と、ダイヤフラムポンプを使用して循環するクロー
ズドループの回路で、専用のB型回転式粘度計を用いた
自動粘度コントローラー等がある。
2. Description of the Related Art Conventionally, an on-line vibrating viscometer for industrial use which is attached to a production tank or a pipeline in a production process for producing a liquid material and used as a device used for measuring the rheology of a sample in a production process for producing a liquid material. Also, there are a torsional vibration process viscometer, a coaxial cylinder rotary viscometer, and the like, and an automatic viscosity controller using a dedicated B-type rotary viscometer with a closed loop circuit circulating using a diaphragm pump.

【0003】それと、本発明者若杉による光センサを用
いた液状物質のレオロジー測定方法及びその装置(特願
2000−201615)や、システムストップウオッ
チを用いた液状物質のレオロジー測定方法及びその装置
(特願2000−289603)や、パソコンを用いた
液状物質のレオロジー測定方法及びその装置(特願20
00−344439)が提案開発されている。
In addition, a method and apparatus for measuring rheology of a liquid substance using an optical sensor by the present inventor Wakasugi (Japanese Patent Application No. 2000-201615) and a method and apparatus for measuring a rheology of a liquid substance using a system stopwatch (Japanese Patent Application 2000-289603) and a method and an apparatus for measuring the rheology of a liquid substance using a personal computer (Japanese Patent Application No.
00-344439) has been proposed and developed.

【0004】[0004]

【発明が解決しょうとする課題】従来の[Problems to be solved by the invention]

【0002】記載のレオロジー測定装置は、試料の粘性
を主に測定して、試料の流動性があまり明確に測定でき
ない欠点と、本来固形物を含まない液体を対象とした測
定装置であり、レトルトカレーのように具が試料の中に
混ざっていると、レオロジーの測定が不能な装置や、具
の固形物が回転羽根にあたり正確なトルクが検出されな
いので、レオロジーの測定が不正確になる欠点と、セン
サ部が試料と接触する装置はセンサ部の清掃や維持管理
が面倒であった。
The described rheology measuring apparatus is a measuring apparatus mainly for measuring the viscosity of a sample and not being able to measure the fluidity of the sample very clearly, and a measuring apparatus for a liquid which does not originally contain solid matter. If the ingredients are mixed in the sample like curry, the rheology cannot be measured, and the solids of the ingredients will hit the rotating blades, and the accurate torque will not be detected. In a device in which the sensor unit contacts the sample, cleaning and maintenance of the sensor unit are troublesome.

【0005】また、[0005]

【0003】記載のレオロジー測定方法や装置は、液体
物質の流動性が明確に測定でき、尚且、固形物を含む液
体物質の流動性や粘性及び切れ性又はチキソトロピー性
を求めることができ、測定終了時に測定試料を入れた容
器や試料を流動させた流動部のトイ及び受け容器の洗浄
作業が無く、センサ部が試料と接触しないのでセンサ部
の清掃や維持管理が容易であるが、流動部として既設設
備のホッパーのスカート部分や縦シュート及び横シュー
トまたはノズル等を使用するので流動距離が短く、また
ホッパーのスカート部分や縦ジュート及びノズル等は大
部分が垂直(180度)になっているので、試料の流動
経過時間や流出経過時間が短く、尚且、流出速度が速い
為に正確なレオロジー定数を求めることができない場合
があった。
The described rheology measuring method and apparatus can clearly measure the fluidity of a liquid substance, and can also determine the fluidity, viscosity, cutting ability, or thixotropic property of a liquid substance including a solid substance, and complete the measurement. Sometimes there is no work to clean the container containing the sample to be measured or the toy and the receiving container in the flow section where the sample has flowed, and the sensor section does not come in contact with the sample, so cleaning and maintenance of the sensor section are easy, but as a flow section The flow distance is short because the skirt part of the hopper, the vertical chute and the horizontal chute or the nozzle, etc. of the existing equipment are used, and the skirt part, the vertical jute and the nozzle of the hopper are mostly vertical (180 degrees). In some cases, accurate rheological constants could not be obtained due to short flow lapse time and outflow lapse time of the sample and high outflow speed.

【0006】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころの測定方法や装置においては、液状物質を製造する
製造工場や液状物質を施工する施工現場において、原材
料受入や製造及び中間製品を入れる製造タンク15や移
送パイプ19内の試料を直接試料送出手段2で、試料を
流動さす所要寸法で所要傾斜角度からなる流動部3に送
出し、センサ部7に試料が接触することなしに複数のレ
オロジー定数を簡便的であるがより正確に求めることが
でき、液状物質を製造する製品の品質管理や液状物質を
施工する材料の品質管理に用いることができ、尚且、測
定終了時にセンサー部や流動部の洗浄作業が不要な液状
物質のレオロジー測定方法や装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and a measuring method and apparatus aimed at the present invention are directed to a manufacturing plant for manufacturing a liquid material and a liquid material. At the construction site where the construction is carried out, the sample in the production tank 15 or the transfer pipe 19 for receiving the raw materials, manufacturing and intermediate products is sent directly to the flowing section 3 having a required size and a required inclination angle for flowing the sample by the sample sending means 2. However, a plurality of rheological constants can be obtained easily but more accurately without the sample coming into contact with the sensor unit 7, and quality control of a product that manufactures a liquid substance and quality control of a material that is used to apply the liquid substance It is another object of the present invention to provide a method and an apparatus for measuring the rheology of a liquid substance, which do not require cleaning of the sensor section and the flow section at the end of the measurement.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の液状物質のレオロジー測定方法において
は、試料を試料送出手段2により所要傾斜角度の流動部
3に送出し、この流動部3に送出した試料を流動させ、
該流動部3の流出口3bより流出した試料を受ける位置
に、試料を受ける試料受部8を設け、この流出口3bと
試料受部8の間に、流出口3bより流出した試料を検出
する試料検出手段6のセンサ部7を設け、このセンサ部
7で検出した試料検出手段6の信号をコンピュータ14
に入力し、前記試料送出手段2により流動部3に送出さ
せた時点から試料が流動部3を流動して流出口3bより
流出が終了する時点までの経過時間を計測し、この経過
時間により試料のレオロジー定数をコンピュータ14で
演算する方法がある。
In order to achieve the above object, in the method for measuring the rheology of a liquid material according to the present invention, a sample is sent by a sample sending means 2 to a flow section 3 having a required inclination angle. Flow the sample sent to 3,
A sample receiving portion 8 for receiving a sample is provided at a position for receiving the sample flowing out of the outlet 3b of the flowing portion 3, and the sample flowing out of the outlet 3b is detected between the outlet 3b and the sample receiving portion 8. A sensor section 7 of the sample detecting means 6 is provided, and a signal of the sample detecting means 6 detected by the sensor section 7 is transmitted to a computer 14.
, And the elapsed time from the point when the sample is sent to the flowing part 3 by the sample sending means 2 to the point when the sample flows through the flowing part 3 and finishes flowing out from the outlet 3b is measured. Is calculated by the computer 14.

【0008】また、試料送出手段2により所要傾斜角度
の流動部3に送出させた時点から試料が流動部3を流動
して流出口3bより流出が終了する時点までの途中経過
時間と積算経過時間を計測し、この途中経過時間と積算
経過時間により試料のレオロジー定数をコンピュータ1
4で演算するとよい。
Further, the intermediate elapsed time and the accumulated elapsed time from the point in time when the sample is sent out to the flowing part 3 at the required inclination angle by the sample sending means 2 to the point in time when the sample flows in the flowing part 3 and finishes flowing out from the outlet 3b. Is measured, and the rheological constant of the sample is calculated by the computer 1 based on the elapsed time and the accumulated elapsed time.
4 should be calculated.

【0009】また、試料が所要傾斜角度の流動部3を流
動して流出口3bより流出が開始した時点から試料が流
出口3bより流出が終了する時点までの間に、試料の流
出が途切れた区間経過時間を計測し、この途切れた区間
経過時間により試料のレオロジー定数をコンピュータ1
4で演算するとよい。
Further, the flow of the sample is interrupted between the time when the sample flows through the flow portion 3 at the required inclination angle and starts flowing out from the outlet 3b and the time when the sample ends flowing out from the outlet 3b. The elapsed time of the section is measured, and the rheological constant of the sample is calculated based on the elapsed time of the section.
4 should be calculated.

【0010】また、流出口3bより流出した試料をセン
サ部7で検出し、この検出した試料を試料受部8で受け
て試料送出手段2の製造タンク15や移送パイプ19に
流出させるとよい。
Further, it is preferable that the sample flowing out from the outlet 3b is detected by the sensor section 7, and the detected sample is received by the sample receiving section 8 and flowed out to the production tank 15 of the sample sending means 2 and the transfer pipe 19.

【0011】また、液状物質を製造する製造工程におい
ては、液状物質を送出する装置を試料送出手段2とし、
この試料送出手段2の送出口2dより送出される試料を
受ける位置まで所要傾斜角度の流動部3を動かし、この
流動部3に試料送出手段2から送出した試料を流動させ
て、試料のレオロジー定数を測定する方法がある。
In the production process for producing a liquid substance, an apparatus for transmitting the liquid substance is used as a sample transmitting means 2,
The rheological constant of the sample is obtained by moving the flow part 3 having a required inclination angle to a position for receiving the sample sent from the outlet 2d of the sample sending means 2 and flowing the sample sent from the sample sending means 2 into the flow part 3. There is a way to measure

【0012】そして、上記液状物質のレオロジー測定装
置1としては、試料を入れる製造タンク15や試料を移
送する移送パイプ19にサンプルパイプ2bの一端を取
り付け、このサンプルパイプ2bの他端には試料を流動
部3に送出する電磁弁2cを取り付け、このサンプルパ
イプ2bの途中には製造タンク15や移送パイプ19の
試料を送出するポンプ2aを取り付けた試料送出手段2
と、該試料送出手段2により送出した試料を受ける位置
に試料を流動さす流動部3を所要傾斜角度で支持する流
動部位置決め手段5を設け、この流動部位置決め手段5
に流動部3を取り付けて、この流動部3に試料送出手段
2の送出口3bより試料を送出し、該流動部3を流動し
て流出口3bより流出した試料を受ける位置に試料を受
ける試料受部8を設け、この流出口3bと試料受部8の
間に流出口3bより流出した試料を検出する試料検出手
段6のセンサ部7を設け、このセンサ部7で検出した試
料検出手段6の信号をコンピュータ14に入力し、前記
試料送出手段2により試料を流動部3に送出させた時点
から試料が流動部3を流動して流出口3bより流出が終
了する時点までの経過時間を計測し、この経過時間によ
り試料のレオロジー定数をコンピュータ14で演算する
ものである。
In the liquid substance rheology measuring apparatus 1, one end of a sample pipe 2b is attached to a production tank 15 for storing a sample and a transfer pipe 19 for transferring the sample, and the sample is attached to the other end of the sample pipe 2b. A sample sending means 2 equipped with a solenoid valve 2c for sending out to the flow section 3 and a pump 2a for sending out a sample in the production tank 15 and the transfer pipe 19 in the middle of the sample pipe 2b.
And a flow part positioning means 5 for supporting the flow part 3 for flowing the sample at a required inclination angle at a position for receiving the sample sent by the sample sending means 2.
The sample is sent to the flowing portion 3 from the outlet 3b of the sample sending means 2, and the sample is received at a position where the sample flows through the flowing portion 3 and flows out of the outlet 3b. A receiving portion 8 is provided, and a sensor portion 7 of sample detecting means 6 for detecting a sample flowing out from the outlet 3b is provided between the outlet 3b and the sample receiving portion 8, and the sample detecting portion 6 detected by the sensor portion 7 is provided. Is input to the computer 14, and the elapsed time from the point when the sample is sent out to the flowing part 3 by the sample sending means 2 to the point when the sample flows through the flowing part 3 and finishes flowing out from the outlet 3b is measured. The computer 14 calculates the rheological constant of the sample based on the elapsed time.

【0013】また、液状物質を製造する製造工程におい
ては、液状物質を送出する装置からなる試料送出手段2
と、この試料送出手段2の送出口2dより送出する試料
を受けて流動さす流動部3を所要傾斜角度で支持した流
動部位置決め手段5と、この流動部3を試料送出手段2
の送出口2dより送出する試料を受ける位置まで動かす
流動部移動手段24と、この流動部移動手段24により
所要傾斜角度で支持された流動部3を前記位置まで動か
し、この流動部3に試料送出手段2の送出口3bより試
料を送出し、該流動部3を流動して流出口3bより流出
した試料を受ける位置に試料を受ける試料受部8を設
け、この流出口3bと試料受部8の間に流出口3bより
流出した試料を検出する試料検出手段6のセンサ部7を
設け、このセンサ部7で検出した試料検出手段6の信号
をコンピュータ14に入力し、前記試料送出手段2によ
り試料を流動部3に送出させた時点から試料が流動部3
を流動して流出口3bより流出が終了する時点までの経
過時間を計測し、この経過時間により試料のレオロジー
定数をコンピュータ14で演算するとよい。
In a manufacturing process for manufacturing a liquid material, a sample sending means 2 comprising a device for sending a liquid material is used.
A flow part positioning means 5 supporting a flow part 3 for receiving and flowing a sample delivered from a delivery port 2d of the sample delivery means 2 at a required inclination angle;
A moving part 24 for moving the sample to be sent from the outlet 2d to a position for receiving the sample, and a moving part 3 supported at a required inclination angle by the moving part moving means 24 to the above-mentioned position. A sample receiving portion 8 is provided at a position where the sample is sent out from the sending port 3b of the means 2 and receives the sample flowing through the flowing portion 3 and flowing out from the outlet 3b. The outlet 3b and the sample receiving portion 8 are provided. The sensor unit 7 of the sample detecting means 6 for detecting the sample flowing out from the outlet 3b is provided between them. The signal of the sample detecting means 6 detected by the sensor unit 7 is input to the computer 14, and the sample sending means 2 From the point in time when the sample is sent out to the
, And the computer 14 calculates the rheological constant of the sample based on this elapsed time.

【0014】また、試料を流動さす断面形状がV字形状
をした流動部3を用いとよい。
Further, it is preferable to use a flow part 3 having a V-shaped cross section for flowing the sample.

【0015】また、断面形状がV字形状をした流動部支
持具4を流動部位置決め手段5に取り付け、この流動部
支持具4に断面形状がV字形状をした流動部材3cを取
り付けて試料を流動さす流動部3にするとよい。
Further, a fluid part support 4 having a V-shaped cross section is attached to the fluid part positioning means 5, and a fluid member 3c having a V-shaped cross section is attached to the fluid part support 4 to load a sample. It is good to make the fluidization part 3 to be fluidized.

【0016】[0016]

【作用】以下、上記構成からなるレオロジー測定装置の
作用について述べる。尚、本レオロジー測定方法及び装
置で測定するレオロジー定数は、試料を流動さす流動部
のサイズ(長さや断面形状や寸法)、流動部傾斜角度
(水平の90度から160度の傾斜角度)、流動部の種
類、試料の温度、試料の量、試料送出装置の構造や性能
等の条件下で測定した条件付きレオロジー定数である。
The operation of the rheology measuring device having the above configuration will be described below. The rheological constants measured by the present rheology measuring method and apparatus are as follows: the size (length, cross-sectional shape and dimensions) of the flowing part through which the sample flows, the inclination angle of the flowing part (horizontal 90 to 160 degree inclination angle), Conditional rheological constants measured under conditions such as part type, sample temperature, sample volume, and the structure and performance of the sample delivery device.

【0017】そして、レオロジー定数の流動性は、試料
の流れやすさの程度を示し、試料送出手段2により製造
タンク15や移送パイプ19内の試料をサンプルパイプ
2bを介してポンプ2a(定量ポンプ)で送出し、この
サンプルパイプ2bの先端部に設けたポンプ2aと連動
した電磁弁2cの送出口2dを開けた時点または電磁弁
2cの送出口2dを閉じた時点から所定量の試料が所要
傾斜角度の流動部3に流出し、この試料が流動部3を流
動して流出口3bより初めて流出した試料を試料検出手
段6のセンサ部7で検出した時点までの途中経過時間を
コンピュータ14で計測し、この途中経過時間を流動経
過時間(秒)とし、流動経過時間が短いと流動性が良
く、流動経過時間が長いと流動性が悪いと評価する。
The fluidity of the rheological constant indicates the degree of ease of flow of the sample, and the sample delivery means 2 pumps the sample in the production tank 15 or the transfer pipe 19 through the sample pipe 2b to a pump 2a (a fixed pump). And a predetermined amount of sample is tilted from the point when the outlet 2d of the solenoid valve 2c linked to the pump 2a provided at the tip of the sample pipe 2b is opened or the point when the outlet 2d of the solenoid valve 2c is closed. The computer 14 measures the time elapsed until the sensor part 7 of the sample detecting means 6 detects the sample flowing out of the angled flow part 3 and flowing out of the flow part 3 and flowing out of the outlet 3 b for the first time by the sensor part 7 of the sample detection means 6. The intermediate elapsed time is defined as the flow elapsed time (second), and it is evaluated that the shorter the elapsed flow time, the better the flowability, and the longer the elapsed flow time, the poor the flowability.

【0018】次に、レオロジー定数の粘性は、試料の粘
さの程度を示し、試料送出手段2の送出口2dを開けた
時点または送出口2dを閉じた時点から試料が流動部3
を流動して流出口3bより最後に流出した試料を試料検
出手段6のセンサ部7で検出した時点までの積算経過時
間をコンピュータ14で計測し、この積算経過時間を流
出終了経過時間(秒)とし、流出終了経過時間が長いと
粘性が高く、流出終了経過時間が短いと粘性が低いと評
価する
Next, the viscosity of the rheological constant indicates the degree of viscosity of the sample, and the sample flows from the flowing part 3d when the outlet 2d of the sample sending means 2 is opened or when the outlet 2d is closed.
The computer 14 measures the integrated elapsed time until the sensor section 7 of the sample detecting means 6 detects the sample that has flowed through the outlet 3b and finally flowed out from the outlet 3b. Assume that the viscosity is high if the elapsed time of the end of the outflow is long, and low if the elapsed time of the end of the outflow is short.

【0019】次に、レオロジー定数の切れ性は、試料が
ポトポトと垂れ落ちる程度の切れの良さを示し、試料送
出手段2の送出口2dを開けた時点または送出口2dを
閉じた時点から試料が流動部3を流動して流出口3bよ
り流出する状態は、最初は連続した連続状態で流出する
が、流出の途中からポトポトと途切れた断続状態で流出
し、この流出開始時点から断続流出に変化した時点まで
の試料の流出を試料検出手段6のセンサ部7で検出し、
この区間経過時間をコンピュータ14で計測して連続流
出区間経過時間(秒)とし、そして断続流出に変化した
時点から流出終了時点までの試料の流出を試料検出手段
6のセンサ部7で検出し、この区間経過時間をコンピュ
ータ14で計測して断続流出区間経過時間(秒)とし、
チキソトロピー性を顕著に現す試料は、流出開始時点か
ら断続流出をするので、流出開始時点から流出終了時点
までの断続流出区間経過時間をコンピュータ14で計測
し、試料の切れ性評価は目的により、連続流出区間経過
時間での評価と、断続流出区間経過時間での評価をする
が、通常は両方で評価し、連続流出区間経過時間や断続
流出区間経過時間が短いと切れ性が良く、長いと切れ性
が悪いと評価する。
Next, the sharpness of the rheological constant indicates the sharpness of the sample such that the sample droops, and the sample is removed from the point when the outlet 2d of the sample sending means 2 is opened or the point when the outlet 2d is closed. The state in which the fluid flows through the fluidizing section 3 and flows out from the outlet 3b initially flows out in a continuous and continuous state, but flows out in the middle of the outflow in an intermittent state in which it is interrupted, and changes from this outflow start point to an intermittent outflow. The outflow of the sample up to the point in time is detected by the sensor unit 7 of the sample detection means 6,
This section elapsed time is measured by the computer 14 to be a continuous outflow section elapsed time (seconds), and the outflow of the sample from the time when it changes to intermittent outflow to the time when the outflow ends is detected by the sensor unit 7 of the sample detecting means 6, This section elapsed time is measured by the computer 14 and taken as an intermittent outflow section elapsed time (second).
Samples that show remarkable thixotropy flow intermittently from the outflow start time, so the intermittent outflow section elapsed time from the outflow start time to the outflow end time is measured by the computer 14, and the sharpness of the sample is continuously evaluated depending on the purpose. The evaluation is based on the elapsed time of the outflow section and the evaluation of the elapsed time of the intermittent outflow section.In general, both evaluations are performed. Evaluate the badness.

【0020】次に、レオロジー定数のチキソトロピー性
は、試料の流出が途切れた断続状態の程度で示し、例え
ばトマトケチャップは長く静置すると流れにくく、しか
し、激しくかき混ぜると流れやすくなり、このような現
象をチキソトロピーといい、この性質は粒子間の凝集力
により結合構造を形成することにより現れ、粒子の表面
の性質に強く支配され、構造破壊によりチキソトロピー
的現象が顕著に現れた試料は流出開始時点からポトポト
と途切れた断続状態で流出し、この流出する試料の流出
開始時点から流出終了時点までの途切れた区間を試料検
出手段6のセンサ部7で検出し、この途切れた区間経過
時間をコンピュータ14で計測して、流出開始時点途切
れた区間経過時間(秒)、中間時点途切れた区間経過時
間(秒)、流出終了時途切れた区間経過時間(秒)と
し、このうち流出開始時点途切れた区間経過時間が最も
重要であり、途切れた区間経過時間が長い程チキソトロ
ピー性が大きく、短い程チキソトロピー性が小さいと評
価する。
Next, the thixotropic property of the rheological constant is indicated by the degree of the intermittent state in which the outflow of the sample is interrupted. For example, tomato ketchup is difficult to flow when left standing for a long time, but it becomes easier to flow when vigorously stirred. This property is called thixotropic, and this property appears by forming a bonding structure by the cohesive force between particles, is strongly governed by the properties of the particle surface, and the sample in which the thixotropic phenomenon appears remarkably due to structural destruction is The sample flows out in an intermittent state in which the sample flows out, and the section of the sample flowing out from the start point to the end point of the outflow is detected by the sensor unit 7 of the sample detecting means 6. Measured, the elapsed time of the section where the outflow started was interrupted (seconds), the elapsed time of the section where the outflow was interrupted (seconds), and the end of the outflow And when interruption interval elapsed time (in seconds), the most important is these flow start time interval elapsed time interrupted, interrupted interval elapsed time is long enough thixotropy large, evaluates short enough thixotropy is small.

【0021】次に、本発明の使用方法について、図1、
図2、図3、図4、図5、図9により説明をすると、測
定前作業70の試料送出手段2の送出口2dより送出す
る試料を受け取る所要位置に、流動部材3cを流動部支
持具4に係止具4eで取り付けてセットし、試料の種類
と目的により流動部位置決め手段5と傾斜度計で流動部
3を所要傾斜角度にセットし、この流動部3の流出口3
bより流出する試料を検出する試料検出手段6のセンサ
部7を図1や図2及び図3に示すように、流出口3bと
試料受部8の間上下二箇所の位置に設けた投光器7aや
7bから発射した信号光を受光器7cや7dで確実に受
光されているかの確認作業(センサアンプ9aや9bで
行う)と、調整作業(取付金具やセンサアンプの調整)
を行う。
Next, the method of use of the present invention will be described with reference to FIG.
2, 3, 4, 5, and 9, the flow member 3 c is placed at a required position for receiving a sample to be sent from the outlet 2 d of the sample sending means 2 in the pre-measurement operation 70. 4 and set with a stopper 4e, and set the flowing part 3 at a required inclination angle with the flowing part positioning means 5 and the inclinometer according to the type and purpose of the sample.
1, 2, and 3, light transmitters 7 a provided at two upper and lower positions between an outlet 3 b and a sample receiver 8 as shown in FIGS. 1, 2, and 3. Work to check whether the signal light emitted from the optical receivers 7c and 7d is reliably received by the light receivers 7c and 7d (performed by the sensor amplifiers 9a and 9b), and adjustment work (adjustment of mounting brackets and sensor amplifiers)
I do.

【0022】次に、コンピュータ14のキー(図示せ
ず)を使用して初期設定作業71の各設定データの測定
者、試料の種類、測定NO、測定日、流動部の種類、流
動部のサイズ、流動部傾斜角度、検出終了設定時間、室
温、湿度、試料温度(自動計測する場合または測定中や
測定後に温度計測する場合には測定終了後に入力す
る)、センサ種類、試料の量等を設定し、作業72のデ
ータ入力済かの確認をする。
Next, using a key (not shown) of the computer 14, the operator of each setting data of the initial setting operation 71, the kind of the sample, the measurement number, the measurement date, the type of the flowing part, the size of the flowing part , Flow section tilt angle, detection end setting time, room temperature, humidity, sample temperature (enter after measurement when measuring automatically or during or after measurement), sensor type, sample amount, etc. Then, it is confirmed whether the data of the operation 72 has been input.

【0023】次に、作業73のコンピュータ14のキー
(図示せず)のスタートキー(図示せず)を操作して、
制御盤12の制御コントローラ10に信号を送ると、制
御コントローラ10からの信号により試料送出手段2の
ポンプ2aが起動するのと同時に電磁弁2cが作動して
送出口2dが開き、送出口2dより試料が流動部3に送
出されるのと、制御コントローラ10からの信号により
試料検出手段6が作動してセンサ部7の投光器7aや7
bから信号光が発射され、この信号光を受光器7cや7
dで受光し、作業74の測定がスタートする。
Next, the start key (not shown) of the key (not shown) of the computer 14 in the operation 73 is operated,
When a signal is sent to the controller 10 of the control panel 12, the pump 2a of the sample sending means 2 is activated by the signal from the controller 10, and at the same time, the solenoid valve 2c is operated to open the outlet 2d, and the outlet 2d is opened. When the sample is sent to the flow section 3, the sample detecting means 6 is operated by a signal from the controller 10, and the light emitters 7 a and 7 of the sensor section 7 are activated.
b, a signal light is emitted, and this signal light is
The light is received at d, and the measurement of operation 74 starts.

【0024】次に、流動部3に送出された試料が流動部
3を流動して流出口3bより流出し、この流出した試料
がセンサ部7の投光器7aや7bから発射されている信
号光をしゃ光して試料の流出を検出し、そして流出口3
bより試料の流出が途切れると投光器7aや7bから発
射されている信号光を受光器7cや7dで再び受光され
ることにより試料の流出が途切れたことを検出し、この
検出した信号(データ)を作業75のデータ収集機器1
3に収集される。
Next, the sample sent to the flowing unit 3 flows through the flowing unit 3 and flows out of the outlet 3b, and the outflowing sample transmits the signal light emitted from the projectors 7a and 7b of the sensor unit 7. Shield to detect sample outflow, and
When the outflow of the sample is interrupted from b, the signal light emitted from the projectors 7a and 7b is received again by the light receivers 7c and 7d, thereby detecting that the outflow of the sample is interrupted, and the detected signal (data) Work 75 data collection equipment 1
Collected in 3.

【0025】一方、流出口3bより流出してセンサ部7
で検出された試料は、試料受部8の受け部8aで受け止
めて流出部8bより製造タンク15や移送パイプ19に
流出したり、図4や図5に示される受け容器8cで受け
取る。
On the other hand, it flows out from the outlet 3b and
Is received by the receiving portion 8a of the sample receiving portion 8 and flows out of the outflow portion 8b to the production tank 15 or the transfer pipe 19, or is received by the receiving container 8c shown in FIGS.

【0026】次に、流出口3bより試料の流出が途切れ
た経過時間(受光時間)が、作業71で初期設定した検
出終了設定時間(試料の種類や流動部傾斜角度により所
要設定時間を30秒から15分の間で設定する)の例え
ば設定時間60秒を過ぎると、作業76の測定終了かを
コンピュータ14が判断して測定を終了する。
Next, the elapsed time during which the outflow of the sample from the outflow port 3b is interrupted (light receiving time) is determined by the detection end set time initially set in the operation 71 (the required set time is 30 seconds depending on the type of the sample and the inclination angle of the flow part). For example, when the set time exceeds 60 seconds (set between 15 minutes and 15 minutes), the computer 14 determines whether the measurement of the operation 76 is completed, and ends the measurement.

【0027】次に、作業77は作業75のデータ収集機
器13に収集された測定データをパソコン14に入力
し、投光器7aや7bより発射された信号光を受光器7
cや7dに入光された経過時間(秒)と、試料の流出に
より信号光がしゃ光された経過時間(秒)により、レオ
ロジー定数をパソコン14で演算する。
Next, in operation 77, the measurement data collected by the data collection device 13 in operation 75 is input to the personal computer 14, and the signal light emitted from the light emitters 7a and 7b is received by the light receiver 7.
The rheological constant is calculated by the personal computer 14 based on the elapsed time (seconds) that the light enters c and 7d and the elapsed time (seconds) when the signal light is blocked by the outflow of the sample.

【0028】それと、作業78のその他の演算として、
流動経過時間(秒)により流動性を、流出終了経過時間
(秒)により粘性を、連続流出経過時間(秒)や断続経
過時間(秒)により切れ性を、途切れた経過時間により
チキソトロピー性を同時に測定することができ、試料検
出手段6のセンサ部7を図1や図2及び図3に示すよう
に、流出口3bと試料受部8の間上下二箇所の位置に設
けることにより、試料の流出速度(mm/秒)が測定で
き、流出速度(mm/秒)が速い程流動性が良い(大き
い)と評価でき、また流出速度(mm/秒)が遅い程粘
性が大きい(粘い)と評価ができるのと、流出速度(m
m/秒)を測定することにより図11に示す様に試料の
流動曲線を作成すことができる。
As another operation of the operation 78,
Simultaneously flowability by flow time (seconds), viscosity by flow time (seconds), flowability by continuous flow time (seconds) and intermittent time (seconds), and thixotropic property by flow time. The sensor section 7 of the sample detecting means 6 can be measured, and the sensor section 7 of the sample detecting section 6 is provided at two upper and lower positions between the outlet 3b and the sample receiving section 8 as shown in FIGS. The outflow speed (mm / sec) can be measured. The higher the outflow speed (mm / sec), the better the flowability (larger), and the lower the outflow speed (mm / sec), the greater the viscosity (sticky). And outflow velocity (m
m / sec), a flow curve of the sample can be created as shown in FIG.

【0029】また、既知データをパソコン14に入力
し、試料の性状を評価指数で表したり、換算粘度で表し
たり、吐出性や充填性等を評価指数で表すこともでき、
また測定したレオロジー定数から複数の原材料の混合比
の決定や試料の濃度推定や水分量の推定等を行い、作業
79のパソコン14の画面にデータを表示し、作業80
の表示したデータをプリンタ(図示せず)でプリントす
る。
It is also possible to input the known data into the personal computer 14 and express the properties of the sample by an evaluation index, the converted viscosity, and the dischargeability and filling property by the evaluation index.
Further, the mixing ratio of a plurality of raw materials is determined from the measured rheological constants, the concentration of the sample is estimated, and the amount of water is estimated.
Is printed by a printer (not shown).

【0030】次に、測定後作業81の清掃作業として、
流動部支持具4より流動部材3cの取外作業と、受け容
器8cに受け取った試料を取り除く作業を行い、図4や
図5に示す流動部移動手段24により移動した流動部3
を、流動部移動手段24により製造作業に支障のない所
定位置まで移動する。
Next, as a cleaning work of the post-measurement work 81,
The work of removing the fluid member 3c from the fluid part supporter 4 and the work of removing the sample received in the receiving container 8c are performed, and the fluid part 3 moved by the fluid part moving means 24 shown in FIGS.
Is moved to a predetermined position which does not hinder the manufacturing operation by the flowing portion moving means 24.

【0031】そして、作業82の次の測定を開始する場
合には、作業70の測定前作業より行い、測定作業を終
了する場合は測定を終了する。
When the next measurement of the operation 82 is started, the measurement is performed from the pre-measurement operation of the operation 70, and when the measurement operation is ended, the measurement is ended.

【0032】[0032]

【発明の実施の形態】発明の実施の形態を実施例にもと
ずき図面を参照して説明すると、図1、図2、図3、図
4、図5に示す本発明の要部をなす試料検出手段6は、
センサ部7とセンサアンプ9と制御コントローラ10と
データ収集機器13及びコンピュータ14からなり、流
出口3bより流出する試料を検出するセンサ部7は、試
料の種類によりサイズ(最小検出物体、検出距離)や試
料が不透明体か透明体等により適正な性能のセンサ部7
を適宜選定して使用し、センサ部7は、通常可視光線や
赤外線及びレーザ光等の光を信号光として発射する光電
スイッチの投光器と検出物体によつてしゃ光される光量
の変化を検出する受光器からなるエリアタイプの透過型
を用いるが、スポットタイプや回帰反射型または反射型
の光電スイッチも使用可能であり、サンサ部7を試料の
種類や測定目的により試料の流出速度を測定する場合に
は上下二箇所の位置に設けるが、試料の流出速度を測定
しない場合には図5に示す一箇所の位置に設けて用い
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings based on the embodiments. FIG. 1, FIG. 2, FIG. 3, FIG. The sample detection means 6 is
The sensor unit 7, which includes the sensor unit 7, the sensor amplifier 9, the control controller 10, the data collection device 13, and the computer 14, and detects the sample flowing out from the outlet 3b, has a size (minimum detection object, detection distance) according to the type of the sample. Sensor part 7 with proper performance due to opaque or transparent material
The sensor unit 7 normally detects a change in the amount of light blocked by the light-emitter of the photoelectric switch that emits light such as visible light, infrared light, laser light, or the like as signal light, and the detection object. An area type transmission type consisting of a light receiver is used, but a spot type, regression reflection type or reflection type photoelectric switch can also be used. When the sensor 7 measures the outflow speed of the sample according to the type of the sample and the measurement purpose. Are provided at two upper and lower positions, but are used at one position shown in FIG. 5 when the outflow velocity of the sample is not measured.

【0033】次に、センサ部7は流動部3の流出口3b
より流出した試料を検出するために流動部3の下側V状
溝方向に位置し、流出口3bより流出する試料を検出す
るのに支障がなく、検出距離が確保できるV状溝方向に
所要間距離(10cm〜200cm)を離した一直線上
の所要位置に対向させて、上段側のサンサ部7の投光器
7aと受光器7cを取付金具(図示せず)で定着して配
設し、上段側の投光器7aと受光器7cと相互干渉防止
や試料を検出するのに支障がない下段側に所要間隔(5
cm〜20cm)で、通常は10cmの間隔で下段側セ
ンサ部7の投光器7bと7dを取付金具(図示せず)で
定着して配設する。
Next, the sensor section 7 is connected to the outlet 3b of the flow section 3.
It is located in the lower V-shaped groove direction of the flow portion 3 to detect the sample flowing out, and has no problem in detecting the sample flowing out from the outlet 3b, and is required in the V-shaped groove direction where the detection distance can be secured. The light transmitter 7a and the light receiver 7c of the upper-side sensor 7 are fixedly mounted with a mounting bracket (not shown) so as to face a required position on a straight line separated by a distance (10 cm to 200 cm). The necessary distance (5) is provided at the lower side where there is no problem in preventing mutual interference between the light emitter 7a and the light receiver 7c and detecting the sample.
cm to 20 cm), and the light emitters 7b and 7d of the lower sensor section 7 are fixedly provided by mounting brackets (not shown) at intervals of 10 cm.

【0034】また、センサ部7に小型カメラで高分解能
の高速処理(例えば60回/秒)やグレー処理機能及び
タイミングシャッター機能等の画像センサ(図示せず)
を用いて、流出口3bより流出する試料を検出すること
も可能である。
An image sensor (not shown) such as a high-speed processing with high resolution (for example, 60 times / second), a gray processing function, a timing shutter function, etc.
, It is also possible to detect the sample flowing out from the outlet 3b.

【0035】そして、センサ部7で検出した出力信号を
光フアイバ(図示せず)でセンサアンプ9a、9b(調
整器で受光量を数字で表示、検出の安定性の表示、セン
サ取り付け時の光軸あわせや状態の把握、稼働中の不安
定検出の発見をする)に送信し、センサアンプ9a、9
bよりセンサケーブル32a、32bで制御コントロー
ラ10に送信され、この制御コントローラ10はプログ
ラマブルコントローラで、CPUに外部インターフェー
スやI/o及びポンプの起動停止機能や電磁弁の開閉機
能と移動装置等のモータの位置決め機能ができ、データ
を超高速で処理する特殊機能付きを使用し、この制御コ
ントローラ10がセンサケーブル31cでデータ収集機
器13に接続されている。
The output signal detected by the sensor unit 7 is output by an optical fiber (not shown) to the sensor amplifiers 9a and 9b (the received light amount is indicated by a numeral by the adjuster, the detection stability is indicated, and the light at the time of mounting the sensor). Axis alignment, grasping the state, and finding instability detection during operation) are transmitted to the sensor amplifiers 9a, 9
b to the controller 10 via the sensor cables 32a and 32b. The controller 10 is a programmable controller. The CPU has an external interface, an I / O and a pump start / stop function, a solenoid valve opening / closing function, and a motor such as a moving device. The control controller 10 is connected to the data collection device 13 by a sensor cable 31c.

【0036】次に、制御コントローラ10に送信された
データはセンサケーブル31aでデータ収集機器13に
送信され、このデータ収集機器13はメモリ機能を内蔵
し、パソコンが無くてもデータ収集が可能で、制御コン
トローラ10のデータを表計算ソフトのワークシート上
に取り込め、データはリアルタイムに収集可能で、取り
込んだデータは自由に加工でき、一旦メモリーカードに
データを保存し、あとでまとめてコンピュータ14に集
計することもできるのと、RS−232Cインターフエ
イスでコンピュータ14と接続でき、またPCカード型
のインターフェイスで制御コントローラ10の信号をパ
ソコン14に入力することも可能であり、測定する試料
の種類や量及び目的により経過時間を1.0秒〜0.0
01秒単位で測定するが、通常は0.01単位で測定す
る。
Next, the data transmitted to the controller 10 is transmitted to the data collection device 13 via the sensor cable 31a. The data collection device 13 has a built-in memory function and can collect data without a personal computer. The data of the controller 10 can be imported into a spreadsheet worksheet, the data can be collected in real time, the imported data can be processed freely, the data can be saved once on a memory card, and later compiled and compiled into a computer 14 It is also possible to connect to the computer 14 with the RS-232C interface, and also to input the signal of the controller 10 to the personal computer 14 with a PC card type interface. 1.0 seconds to 0.0
It is measured in units of 01 seconds, but is usually measured in units of 0.01.

【0037】また、制御コントローラ10に操作パネル
(高品位タッチパネルディスプレイ表示機能、スイツチ
機能、図形属性制御、通信機能、画面データ内部記憶、
カレンダタイマ、データバックアップ等の機能があり、
初期設定作業やスタート指示やストップ指示を行うこと
ができる)を接続し、この操作パネル(図示せず)とデ
ータ収集機器13を接続して使用することも可能であ
る。
The control controller 10 is provided with an operation panel (high-quality touch panel display display function, switch function, graphic attribute control, communication function, screen data internal storage,
It has functions such as a calendar timer and data backup,
It is also possible to connect an operation panel (not shown) to the data collection device 13 and use it.

【0038】そして、データ収集機器13に収集された
データはメモリーカードやRS−232Cインターフエ
イスのパソコン入力手段30によりコンピュータ14に
入力する。尚、コンピュータ14は、通常パーソナル・
コンピュータのノート型を用いるが、他の形式のコンピ
ュータも使用可能である。
The data collected by the data collection device 13 is input to the computer 14 by a personal computer input means 30 of a memory card or RS-232C interface. The computer 14 is usually a personal computer.
Although a notebook computer is used, other types of computers can be used.

【0039】次に、図1、図2、図3、図4、図5、図
7に示す試料を流動さす流動部3の流動部材3cは、通
常試料送出手段2の送出口3bより試料を流動部3に送
出した時に、試料が流動部3より溢れ出ないのを考慮し
た図8に示す流動部支持具4のV形状外周縁と同じ所要
長さ(10cm〜120cm)で、試料の種類と量及び
目的により所要長さ(10cm〜200cm)の厚さ
(0.1mm〜1.5mm)からなる長方形状をした図
6に示す流動部材料3aの点線部分を折り曲げて、試料
を流出口3bの中央より流出さすために断面形状が図7
に示す形成角度90度のV字形状に曲成した流動部材3
cをV字形状をした流動部支持具4の内面に係止具4e
で固定し、流出口3bより流出した試料で流動部支持具
4の先端部分を汚さないために、通常は先端部より5m
m〜20mm位突き出した流動部材3cを使用するが、
試料の種類により形成角度45度〜120度やU字形状
に曲成や成形または成型した流動部材3cを適宜選定し
て使用する。
Next, the flow member 3c of the flow part 3 for flowing the sample shown in FIGS. 1, 2, 3, 4, 5 and 7 usually receives the sample from the outlet 3b of the sample sending means 2. In consideration of the fact that the sample does not overflow from the flowing portion 3 when the sample is sent out to the flowing portion 3, the required length (10 cm to 120 cm) is the same as the length of the V-shaped outer peripheral edge of the flowing portion support 4 shown in FIG. The bent portion of the flow portion material 3a shown in FIG. 6 having a thickness (0.1 mm to 1.5 mm) having a required length (10 cm to 200 cm) depending on the amount and purpose is bent, and the sample is discharged to the outlet. FIG. 7B shows a cross-sectional shape for flowing out from the center of FIG.
Flow member 3 bent into a V-shape having a formation angle of 90 degrees shown in FIG.
c is attached to the inner surface of the V-shaped fluid support member 4 by a locking device 4e.
In order to prevent the sample flowing out from the outlet 3b from soiling the tip of the fluid part support 4, it is usually 5 m from the tip.
Although the flow member 3c protruding about m to 20 mm is used,
Depending on the type of the sample, the flow member 3c formed or formed into a forming angle of 45 to 120 degrees or a U-shape is appropriately selected and used.

【0040】尚、流動部3の材質は、通常は紙(試料が
滲みでない紙材を使用し、通常はコート紙を使用する)
や合成樹脂のプラスチックをV字形状に曲成や成形また
は成型した流動部材料3cを流動部支持具4にピンチ4
cで固定して使用し、測定後に流動部3を洗浄しない使
い捨てにするが、金属の薄板も使用可能であり、この金
属の薄板や合成樹脂等で成形または成型した流動部材3
cは、測定終了後にまとめて一度に洗浄して再使用する
ことも可能であり、また、低粘度試料で測定後に試料が
流動部に付着しない場合には金属製や合成樹脂製または
試料を付着しないようにフッソ樹脂をコーテングした流
動部支持具4の内面を流動部3にして、測定後に空気の
圧力風によりこの流動部3を清掃することも可能であ
る。
The material of the flow section 3 is usually paper (use a paper material in which the sample does not bleed, and usually use coated paper).
Material 3c obtained by bending, molding or molding plastic or synthetic resin plastic into a V-shape is pinched 4
c, which is disposable without washing the flow portion 3 after measurement. A thin metal plate can also be used, and the flow member 3 molded or molded with the thin metal plate, synthetic resin, or the like can be used.
c can be washed at once after measurement is completed, and can be reused at a time. Also, if a low-viscosity sample does not adhere to the fluidized part after measurement, a metal or synthetic resin or sample can be attached. It is also possible to make the inner surface of the flowing part support 4 coated with a fluororesin into a flowing part 3 so as to prevent the flow part 3 from being cleaned by the pressure air of the air after measurement.

【0041】次に、図1、図2、図3、図4、図5、図
8に示した流動部材3cを取り付けて流動部3にする流
動部支持具4と、この流動部3を所要傾斜角度(水平の
90度から下り勾配の160度)の位置で支持する流動
部位置決め手段5について説明すると、流動部材3cを
着脱自在にして所要傾斜角度の位置で支持する流動部支
持具4は、所要寸法からなるV字形状の側部4cの端部
(流出口の反対側)に所要寸法からなる四角形状(三角
形状でも可能)の受板4bを定着し、この側部4cのV
状溝の下側に流動部位置決め手段5に所要傾斜角度で支
持さす所要寸法からなる取付孔(図示せず)を設けた取
付金具部4aを定着してなる流動部支持具4と、この流
動部支持具4の内面に流動部材3cを固定して取り付け
る係止具4eからなり、係止具4eは所要機能がある通
常はグリップを使用する。
Next, a fluid part support 4 for attaching the fluid member 3c shown in FIGS. 1, 2, 3, 4, 5 and 8 to form the fluid part 3, and the fluid part 3 A description will be given of the fluidizing portion positioning means 5 that supports at a position of an inclination angle (horizontal 90 degrees to a downward gradient of 160 degrees). A square-shaped (triangular-shaped) receiving plate 4b having a required dimension is fixed to an end of the V-shaped side 4c having a required dimension (the side opposite to the outlet), and the V of this side 4c is fixed.
A fluid fitting support 4 formed by fixing a fitting 4a having a fitting hole (not shown) having a required dimension to be supported at a required inclination angle by the fluid positioning means 5 below the groove; A locking member 4e is provided to fix and attach the flow member 3c to the inner surface of the part support member 4. The locking member 4e usually uses a grip having a required function.

【0042】一方、流動部位置決め手段5は流動部3を
所要傾斜角度で支持さすために、測定室21の底板21
fや基台38の所要位置に立設固定された所要寸法の取
付支柱5dの上部に定着された取付部5aの取付孔(図
示せず)と、流動部支持具4の取付金具部4aの取付孔
(図示せず)を流動部位置決め手段5の取付ボルト5b
を通し、傾斜度計(図示せず)で流動部3を所要傾斜角
度の位置に設定し、取付ナット5cで流動部支持具4を
流動部位置決め手段5の取付部5aに定着して流動部3
を試料の種類や目的により所要傾斜角度の位置で支持す
る構造である。
On the other hand, in order to support the flowing part 3 at a required inclination angle, the flowing part positioning means 5
f and a mounting hole (not shown) of the mounting portion 5a fixed to the upper portion of a mounting column 5d of a required size which is erected and fixed at a required position of the base 38, and a mounting bracket portion 4a of the flow portion supporting tool 4. The mounting holes (not shown) are attached to the mounting bolts 5 b of the flow portion positioning means 5.
, The flow portion 3 is set to a position of a required inclination angle by a tilt meter (not shown), and the flow portion support 4 is fixed to the mounting portion 5a of the flow portion positioning means 5 by the mounting nut 5c. 3
Is supported at a required inclination angle depending on the type and purpose of the sample.

【0043】また、図示しない傾斜度計を流動部支持具
4や流動部位置決め手段5に取り付けたり、流動部位置
決め手段5に高精度な位置決めができ、コンピュータに
も接続できるステッピングモータ(図示せず)を使用
し、このステッピングモータ(図示せず)により流動部
3を送出口2dより送出する試料を受ける所要傾斜角度
(30度〜70度)まで起立させて、この起立させた流
動部3に試料送出手段2の送出口2dより試料を送出
し、この起立させた状態で受け取った試料をステッピン
グモータ(図示せず)により流動部3を所要傾斜角度
(水平の90度から160度)の位置まで傾倒させ、試
料を流動部3の流出口3bより流出させて測定すること
も可能である。
A stepping motor (not shown) which can attach an inclinometer (not shown) to the fluid portion support 4 or the fluid portion positioning means 5 or can position the fluid portion positioning means 5 with high accuracy and can be connected to a computer. ), The flow portion 3 is raised by the stepping motor (not shown) to a required inclination angle (30 to 70 degrees) for receiving the sample to be sent from the outlet 2d. The sample is sent out from the outlet 2d of the sample sending means 2, and the sample received in this standing state is moved by the stepping motor (not shown) to the flowing section 3 at a required inclination angle (horizontal 90 to 160 degrees). It is also possible to measure the sample by inclining the sample until the sample flows out from the outlet 3b of the flow unit 3.

【0044】また、図4に示す充填機の電磁弁2cの送
出口2dと充填した製品を搬送するコンベヤー25間の
高さが低い場合には、流動部支持具4の内面に流動部材
3cを固定した流動部3を所要傾斜角度の位置で支持さ
すために、基台38の所要位置に横設固定された所要寸
法の流動部移動手段24の移動装置24gのシヤフト2
4aの先端に定着された取付部5aの取付孔(図示せ
ず)と、流動部支持具4の取付金具部4aの取付孔(図
示せず)に流動部位置決め手段5の取付ボルト5bを通
し、傾斜度計(図示せず)で流動部3を所要傾斜角度の
位置に設定し、取付ナット5cで流動部支持具4を流動
部位置決め手段5の取付部5aに定着して流動部3を所
要傾斜角度で支持し、この流動部3を送出口2dより送
出する試料を受ける位置まで流動部移動手段24の移動
装置24gのシャフト24aの作動により移動する構造
である。
When the height between the delivery port 2d of the solenoid valve 2c of the filling machine shown in FIG. 4 and the conveyor 25 for transporting the filled product is low, the flow member 3c is attached to the inner surface of the flow portion support 4. In order to support the fixed fluidized portion 3 at a position of a required inclination angle, the shaft 2 of the moving device 24g of the fluidized portion moving means 24 of a required size which is laterally fixed at a required position of the base 38.
The mounting bolt 5b of the fluid-portion positioning means 5 is passed through the mounting hole (not shown) of the mounting portion 5a fixed to the tip of the 4a and the mounting hole (not shown) of the mounting portion 4a of the fluid-portion support 4. The flow part 3 is set at a position of a required inclination angle by a tilt meter (not shown), and the flow part support 4 is fixed to the mounting part 5a of the flow part positioning means 5 by the mounting nut 5c to fix the flow part 3. The moving part 3 is supported at a required inclination angle, and is moved by the operation of the shaft 24a of the moving device 24g of the moving part moving means 24 to a position for receiving the sample sent out from the outlet 2d.

【0045】また、図5に示す充填機の電磁弁2cの送
出口2dと充填した製品を搬送するコンベヤー25間の
高さが高くて、所要傾斜角度で流動部3を流動部位置決
め手段5の取付支柱5dで支持できる場合には、流動部
位置決め手段5の取付支柱5dを所要位置に立設固定し
た基台38の所要位置を流動部移動手段24の移動装置
24gのシヤフト24aの先端に定着された取付部5a
に定着し、この基台38を流動部移動手段24の移動装
置24gのシャフト24aの作動により流動部3を送出
口2dより送出する試料を受ける位置まで移動する構造
である。
The height between the delivery port 2d of the solenoid valve 2c of the filling machine shown in FIG. 5 and the conveyor 25 for transporting the filled product is high, and the flow section 3 is positioned at a required inclination angle by the flow section positioning means 5. If the mounting column 5d can be supported, the required position of the base 38, on which the mounting column 5d of the flowing section positioning means 5 is erected and fixed at a required position, is fixed to the tip of the shaft 24a of the moving device 24g of the flowing section moving means 24. Mounting part 5a
Then, the base 38 is moved to a position for receiving the sample to be sent from the outlet 2d by the operation of the shaft 24a of the moving device 24g of the moving part moving means 24.

【0046】次に、図4や図5に示す流動部移動手段2
4の移動装置24gは、通常直線動作の用途に最適なラ
ック・ピニオン機能とステッピングモータを組み付けた
リニアドモータや電動シリンダを使用し、流動部3の長
さや重さ等により所要の性能や機能(特に水平方向最大
可搬質量やストローク長さ)があり制御コントローラ1
0に接続できるる機種を適宜選定して使用し、このリニ
アドモータや電動シリンダのシヤフト24aの先端に取
付部24bを定着して、設置台24dの所要位置に設置
して流動部3を直線方向に移動する直動方式で用いる
が、図示していないが流動部3を横から旋回して移動す
る旋回方式や電動式でなくストッパーを設けて手動によ
り流動部3を移動することも可能である。
Next, the moving part moving means 2 shown in FIGS.
The moving device 24g of 4 uses a linear motor or an electric cylinder in which a rack and pinion function and a stepping motor which are most suitable for normal linear operation are used, and the required performance and functions (especially, the length and weight of the flow section 3) Controller 1 with horizontal maximum payload and stroke length)
The model can be connected to 0 and appropriately used. The mounting portion 24b is fixed to the tip of the shaft 24a of the linear motor or the electric cylinder, and is installed at a required position on the mounting table 24d to move the flowing portion 3 in the linear direction. Although it is used in a moving linear motion system, it is not shown, but it is also possible to manually move the fluid unit 3 by providing a stopper instead of a swivel system in which the fluid unit 3 is swiveled from the side or an electric system.

【0047】尚、流動部支持具4や流動部位置決め手段
5の取付部5aと取付支柱5d及びセンサ取付支柱22
の材質は、通常ステンレス鋼を使用するが、鉄、非鉄合
金、合成樹脂等を試料の種類等により適宜選定して使用
する。
The mounting portion 5a and the mounting support 5d of the flow portion support 4 and the flow portion positioning means 5 and the sensor mounting support 22
As a material for the above, stainless steel is usually used, but iron, non-ferrous alloy, synthetic resin and the like are appropriately selected and used depending on the type of the sample and the like.

【0048】次に、図1、図2、図3に示す試料を受け
る試料受部8は、測定試料の種類と量(50g〜10k
g)により、所要寸法の漏斗形状で試料を受ける四角錐
形状の受け部8aと、試料を流出さす円筒形状の流出部
8bからなるが、製造タンク15の上部に所要寸法の流
入穴(図示せず)を設けて、流出口3bより流出した試
料を直接流出することも可能であり、図4、図5に示す
受け容器8cは所要寸法の四角形状の容器を用いるが、
円筒形状及び任意形状の容器を用いてもよい。
Next, the sample receiving section 8 for receiving the samples shown in FIGS. 1, 2 and 3 is provided with the type and amount (50 g to 10 k) of the measurement sample.
g), a square-shaped pyramid-shaped receiving portion 8a for receiving a sample in a funnel shape having a required size, and a cylindrical-shaped outlet portion 8b for allowing the sample to flow out. 4), the sample flowing out from the outlet 3b can be directly discharged. The receiving container 8c shown in FIG. 4 and FIG.
You may use the container of cylindrical shape and arbitrary shapes.

【0049】尚、試料受部8の受け部8aや流出部8b
及び受け容器8cの材質は、通常は紙(試料が滲みでな
い紙材の通常はコート紙を使用)や合成樹脂のプラスチ
ックを使用するが、金属の薄板も使用可能であり、この
金属の薄板に試料を付着しないようにフッソ樹脂をコー
テングした材質を用いることも好適な態様である。
The receiving portion 8a of the sample receiving portion 8 and the outflow portion 8b
The material of the receiving container 8c is usually paper (usually coated paper, in which the sample does not bleed) or plastic of synthetic resin, but a thin metal plate can also be used. It is also a preferable embodiment to use a material obtained by coating a fluororesin so as not to attach the sample.

【0050】次に、図1、図2、図3に示すレオロジー
測定装置1の測定室21は、所要寸法の底板21fに立
設固定した側壁21a、21c、21dと扉21b(通
常は内部が観察できるように、透明なアクリル板製で把
手21gを取り付け蝶番21hで開閉自在である)及び
天板21eからなり、側壁21aにはセンサアンプ9
a、9bと制御コントローラ10を収納した制御盤12
が取り付けられており、この測定室21の底板21fに
立設固定した流動部位置決め手段6の取付支柱5dに所
要寸法の流動部3が所要傾斜角度で支持され、この流動
部3の流出口3bより流出する試料を受ける位置に試料
受部を配置して、流出口3bより流出する試料を検出す
るセンサ部7を流動部3の下側V形溝方向に所要間隔で
上下二箇所の位置に配設し、側壁21aに投光器7aと
受光器7cが取付金具(図示せず)で定着され、一方、
センサ取付支柱22に投光器7bと受光器7dが取付金
具(図示せず)で定着され、この投光器7aと受光器7
cがセンサアンプ9aに、投光器7bと受光器7dがセ
ンサアンプ9bに、それぞれ光ファイバーケーブル(図
示せず)で接続され、このセンサアンプ9aと9bが制
御コントローラ10にセンサケーブル32aと32bで
接続され、この制御コントローラ10がデータ収集機器
13にセンサケーブル31aで接続され、このデータ収
集機器13とコンピュータ14がパソコン入力手段30
で接続されている。
Next, the measurement chamber 21 of the rheology measuring apparatus 1 shown in FIGS. 1, 2 and 3 is provided with side walls 21a, 21c, 21d which are erected and fixed on a bottom plate 21f of required dimensions and a door 21b (usually the inside is The handle 21g is made of a transparent acrylic plate and can be freely opened and closed with a hinge 21h so that the sensor amplifier 9 can be observed.
a control panel 12 containing a, 9b and a controller 10
The flow part 3 having a required dimension is supported at a required inclination angle on a mounting post 5d of the flow part positioning means 6 which is erected and fixed to a bottom plate 21f of the measurement chamber 21, and an outlet 3b of the flow part 3 is provided. The sample receiving portion is arranged at a position for receiving the sample flowing out, and the sensor portion 7 for detecting the sample flowing out from the outlet 3b is located at two positions above and below the flow portion 3 at a required interval in the direction of the lower V-shaped groove. The light emitting device 7a and the light receiving device 7c are fixed to the side wall 21a by a mounting bracket (not shown).
The light emitting device 7b and the light receiving device 7d are fixed to the sensor mounting support 22 with mounting hardware (not shown), and the light emitting device 7a and the light receiving device 7 are fixed.
c is connected to the sensor amplifier 9a, the projector 7b and the light receiver 7d are connected to the sensor amplifier 9b by optical fiber cables (not shown), and the sensor amplifiers 9a and 9b are connected to the controller 10 by the sensor cables 32a and 32b. The controller 10 is connected to the data collection device 13 by a sensor cable 31a, and the data collection device 13 and the computer 14 are connected to the personal computer input means 30.
Connected.

【0051】また、測定室21には室温や試料の温度を
計測する温度センサ(図示せず)を設けるのは好適な態
様である。
In a preferred embodiment, the measurement chamber 21 is provided with a temperature sensor (not shown) for measuring the room temperature or the temperature of the sample.

【0052】それと、製造タンク15や移送パイプ19
内の試料を流動部3に所要量送出する試料送出手段2
は、製造タンク15や移送パイプ19内の試料を送出す
るポンプ2aは所要吐出能力がある定量ポンプを試料の
種類により選定し、通常モーノポンプ(スネークポン
プ)を使用するが他の形式のダイヤフラム式定量ポンプ
やギアポンプも使用可能であり、このポンプ2aに所要
材質で所要寸法のサンプルパイプ2bを接続し、このサ
ンプルパイプ2bを介してポンプ2aより送られた試料
を流動部3に所要量送出するポンプ2aと連動した所要
機能の電磁弁2cからなり、この電磁弁2cの送出口2
d(図示せず)より送出される試料が流動部3の所要位
置に送出されるようにサンプルパイプ2bに接続された
電磁弁2cが測定室21の所要位置に設けられ、この電
磁弁2cとポンプ2aの電動機(図示せず)がケーブル
(図示せず)で制御コントローラ10に接続されてい
る。
The manufacturing tank 15 and the transfer pipe 19
Sending means 2 for sending a required amount of the sample in the flow section 3
As the pump 2a for sending out the sample in the production tank 15 and the transfer pipe 19, a metering pump having a required discharge capacity is selected according to the type of the sample, and usually a mono pump (snake pump) is used. A pump or a gear pump can also be used, and a sample pipe 2b of a required material and dimensions is connected to the pump 2a, and a pump for sending a required amount of the sample sent from the pump 2a to the flow unit 3 via the sample pipe 2b. A solenoid valve 2c having a required function in conjunction with the solenoid valve 2a.
d (not shown), an electromagnetic valve 2c connected to the sample pipe 2b is provided at a required position in the measurement chamber 21 so that the sample sent from the fluid part 3 is sent to a required position. An electric motor (not shown) of the pump 2a is connected to the controller 10 via a cable (not shown).

【0053】次に、図1について説明すると、レオロジ
ー測定装置1を図3に示す平面図のAからAの一点鎖線
で切断した状態の正面図で、攪拌機18が付いた製造タ
ンク15の上部の所要位置にレオロジー測定装置本体を
設置し、ポンプ2a側のサンプルパイプ2bを製造タン
ク15の下部に接続し、試料受部8の流出部8bが製造
タンク15の上部に接続され、矢印で試料の流れを示し
た図である。
Next, referring to FIG. 1, a front view of the rheology measuring device 1 taken along the dashed line A to A in the plan view shown in FIG. The main body of the rheology measuring device is installed at a required position, the sample pipe 2b on the pump 2a side is connected to the lower part of the manufacturing tank 15, the outlet part 8b of the sample receiving part 8 is connected to the upper part of the manufacturing tank 15, and It is a figure showing a flow.

【0054】次に、図2について説明すると、レオロジ
ー測定装置1を図3に示す平面図のAからAの一点鎖線
で切断した状態の正面図で、レオロジー測定装置1を作
業台25に配設して、ポンプ2a側のサンプルパイプ2
bを移送パイプ19の下部に接続し、試料受部8の流出
部8bが移送パイプ19の上部に接続され、矢印で試料
の流れを示した図である。
Next, referring to FIG. 2, the rheology measuring device 1 is disposed on a work table 25 in a front view in a state where the rheological measuring device 1 is cut along a dashed line from A to A in the plan view shown in FIG. And the sample pipe 2 on the pump 2a side
FIG. 3B is a view showing the flow of a sample connected to the lower part of a transfer pipe 19, the outflow part 8b of the sample receiving part 8 connected to the upper part of the transfer pipe 19, and arrows.

【0055】次に、図3について説明すると、図2に示
すレオロジー測定装置1の天板21e部分を取り除いた
平面図で、レオロジー測定装置1を作業台25に配置し
て、ポンプ2a側のサンプルパイプ2bを移送パイプ1
9に接続されている。
Next, referring to FIG. 3, a plan view of the rheology measuring apparatus 1 shown in FIG. 2 from which the top plate 21e has been removed will be described. Transfer pipe 2b to transfer pipe 1
9 is connected.

【0056】次に、図4について説明すると、既設の製
品を容器に充填する製造ラインの充填機を試料送出手段
2とし、この充填機の電磁弁2cの送出口2dと充填し
た製品を搬送するコンベヤー25の間に、流動部3の流
動部材3cをセットした流動部支持具4の取付金具4a
を、流動部移動手段24の移動装置24gのシャフト2
4aに定着した取付部24bに所要傾斜角度で定着して
支持し、この流動部3を送出口2dより送出する試料を
受ける位置まで流動部移動手段24の移動装置24gの
シャフト24aの作動により移動し、流動部3を流動し
て流出口3bより流出した試料を受ける位置に試料を受
ける試料受部8の受け容器8cを設け、この流出口3b
と受け容器8cの間に流出口3bより流出した試料を検
出する試料検出手段6のセンサ部7を基台38に立設固
定したセンサ取付支柱22に上下二箇所の位置に配設
し、移動装置24gを設置台24dに定着し、矢印で試
料の流れを示し、二点鎖線で流動部3の移動状態を示し
た図である。
Next, referring to FIG. 4, the filling machine of the production line for filling the existing product into the container is used as the sample sending means 2, and the filled product is conveyed to the outlet 2d of the solenoid valve 2c of this filling machine. The mounting member 4a of the fluid part support member 4 in which the fluid member 3c of the fluid part 3 is set between the conveyors 25.
To the shaft 2 of the moving device 24g of the fluidized portion moving means 24.
The flow unit 3 is moved to the position for receiving the sample to be sent out from the outlet 2d by the operation of the shaft 24a of the moving unit 24g of the flow unit moving unit 24, with the mounting unit 24b fixed to the mounting unit 24a fixed at a required inclination angle and supported. Then, a receiving container 8c of the sample receiving portion 8 for receiving a sample is provided at a position for receiving the sample flowing through the flowing portion 3 and flowing out from the outlet 3b.
The sensor section 7 of the sample detecting means 6 for detecting the sample flowing out of the outlet 3b between the sensor and the receiving container 8c is disposed at two upper and lower positions on a sensor mounting column 22 which is fixed upright on a base 38, and moves. FIG. 14 is a diagram in which the device 24g is fixed on the installation table 24d, the flow of the sample is indicated by an arrow, and the moving state of the flow unit 3 is indicated by a two-dot chain line.

【0057】次に、図5について説明すると、製造ライ
ンの充填機の電磁弁2cの送出口2dと充填した製品を
搬送するコンベヤー25の間に、流動部3の流動部材3
cをセットした流動部支持具4の取付金具4aを、流動
部位置決め手段5の取付部5aに所要傾斜角度で定着し
て支持し、この流動部位置決め手段5の取付支柱5dを
基台38に立設固定し、この基台38を流動部移動手段
24の移動装置24gのシャフト24aに定着した取付
部24bに定着して支持し、流動部3を送出口2dより
送出する試料を受ける位置まで流動部移動手段24の移
動装置24gのシャフト24aの作動により移動し、流
動部3を流動して流出口3bより流出した試料を受ける
位置に試料を受ける試料受部8の受け容器8cを基台3
8に設け、この流出口3bと受け容器8cの間に流出口
3bより流出した試料を検出する試料検出手段6のセン
サ部7を一組だけを基台38に立設固定したセンサ取付
支柱22とセンサ取付支柱22の所要位置に配設して移
動装置24gを設置台24dに定着し、コンピュータ1
4のノート型パソコンとデータ収集機器13を配置し、
移動装置24gの電動機(図示せず)が制御盤12内の
制御コントローラ10(図示せず)に位置決めモータケ
ーブル37で接続され、矢印で試料の流れを示し、二点
鎖線で流動部3の移動状態を示した図である。
Referring to FIG. 5, the flow member 3 of the flow section 3 is located between the outlet 2d of the solenoid valve 2c of the filling machine of the production line and the conveyor 25 for conveying the filled product.
c, the mounting bracket 4a of the fluid part support 4 is fixed to the mounting part 5a of the fluid part positioning means 5 at a required inclination angle and supported, and the mounting column 5d of the fluid part positioning means 5 is mounted on the base 38. The base 38 is fixed to the mounting portion 24b fixed to the shaft 24a of the moving device 24g of the moving portion moving means 24 and fixedly supported. The moving portion 3 is moved to a position for receiving the sample to be sent from the outlet 2d. The receiving container 8c of the sample receiving portion 8 which is moved by the operation of the shaft 24a of the moving device 24g of the flowing portion moving means 24 and receives the sample flowing through the flowing portion 3 and flowing out from the outlet 3b is mounted on the base. 3
The sensor mounting column 22 is provided between the outflow port 3b and the receiving container 8c, and is provided with only one set of the sensor unit 7 of the sample detecting means 6 for detecting the sample flowing out of the outflow port 3b on the base 38. And the moving device 24g is fixed to the installation stand 24d by disposing the moving device 24g at a required position of the sensor mounting support 22 and the computer 1
4 and a data collection device 13
An electric motor (not shown) of the moving device 24g is connected to the controller 10 (not shown) in the control panel 12 by a positioning motor cable 37, the flow of the sample is indicated by an arrow, and the movement of the flow unit 3 is indicated by a two-dot chain line. It is a figure showing a state.

【0058】次に、測定値のグラフ化を実施するための
実施例を図10に示して説明すると、縦軸に流動部3の
傾斜角度を、横軸に経過時間をとり、0点はスタートス
イッチをONしてセンサ部7の投光器より信号光を発射
して受光器が受光した時点で、S1時点は流出口から試
料が最初に流出して信号光をしゃ光した時点を示し、n
1は再び受光器が受光した時点を示し、OFF時点は測
定を終了した時点をA試料で例示し、B試料は切れ性測
定状況を例示し、C試料はチキソトロピー性測定状況を
例示説明したものである。
Next, an embodiment for graphing the measured values will be described with reference to FIG. 10. In FIG. 10, the vertical axis indicates the inclination angle of the flow part 3, the horizontal axis indicates the elapsed time, and the zero point indicates the start point. When the switch is turned on and the signal light is emitted from the light emitter of the sensor unit 7 and received by the light receiver, the time point S1 indicates the time point at which the sample first flows out of the outlet and blocks the signal light, and n
Reference numeral 1 indicates a time point at which the light receiver receives light again, an OFF time point illustrates the time point at which the measurement is completed with the A sample, a B sample illustrates the cutting property measurement situation, and the C sample illustrates a thixotropic property measurement situation. It is.

【0059】次に、測定値のグラフ化を実施するための
実施例を図11に示して説明すると、縦軸に試料流出速
度(mm/秒)を、横軸に経過時間(秒)をとり、S1
時点からn4時点までの試料流出速度と経過時間を示し
たグラフである。
Next, an embodiment for graphing the measured values will be described with reference to FIG. 11. The vertical axis indicates the sample outflow speed (mm / sec), and the horizontal axis indicates the elapsed time (second). , S1
It is the graph which showed the sample outflow speed and elapsed time from time point to time point n4.

【0060】次に、測定表の実施例を図12に示して説
明すると、上段側センサ部と下段側センサ部に分け、S
点とn点経過時間及びS点とn点流出速度をS1点から
最終n点までを例示したものである。
Next, an embodiment of the measurement table will be described with reference to FIG.
The point and the elapsed time of the n point and the outflow speed of the S point and the n point are illustrated from the S1 point to the final n point.

【0061】以上、本発明の実施の形態について説明し
たが、ただし、この実施の形態に記載されている構成方
法、構成装置、構成内容、構成部品の寸法、材質、形
状、その相対配置などは、特に特定的な記載がないかぎ
りは、この発明の範囲をそれらのみに限定する趣旨のも
のでなく、単なる説明例にすぎず、本発明はこのような
実施の形態に何等限定されるものでなく、本発明の要旨
を逸脱しない範囲において種々なる態様で実施得ること
はもちろんである。
The embodiment of the present invention has been described above. However, the configuration method, the configuration device, the configuration content, the dimensions, the materials, the shapes, and the relative arrangements of the components described in this embodiment are not described. Unless otherwise specified, the scope of the present invention is not intended to be limited to them only, but is merely an illustrative example, and the present invention is not limited to such an embodiment. It goes without saying that the present invention can be implemented in various modes without departing from the gist of the present invention.

【0062】[0062]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0063】液状物質を製造する製造工程において、手
作業を必要とせずに試料を直接試料送出手段2により所
要傾斜角度の流動部3に送出して試料のレオロジー定数
を自動的に
In the production process for producing a liquid material, the sample is directly sent to the flowing section 3 at a required inclination angle by the sample sending means 2 without any manual operation, and the rheological constant of the sample is automatically set.

【0003】記載の方法や装置より、より正確に測定で
きる効果がある。
[0003] There is an effect that the measurement can be performed more accurately than the described method and apparatus.

【0064】また、手作業を必要とせずに自動的に途中
経過時間や積算経過時間及び途切れた区間経過時間計測
することにより、レオロジー定数の流動性や粘性及び切
れ性やチキソトロピー性が簡単容易に
Further, by automatically measuring the elapsed time, the accumulated elapsed time, and the elapsed time of a broken section without requiring any manual operation, the fluidity, viscosity, cutting property, and thixotropic property of the rheological constant can be easily and easily measured.

【0003】記載の方法や装置より、より正確に測定で
きる利点がある。
There is an advantage that the measurement can be performed more accurately than the described method and apparatus.

【0065】また、センサ部7に光電スイツチや画像セ
ンサを用いることにより、センサ部7が直接試料に接触
することなく自動的にレオロジー定数が測定できて、測
定後にセンサ部7の洗浄作業がなく、また液状食品にお
いては衛生的に測定できる著しい効果がある。
Further, by using a photoelectric switch or an image sensor for the sensor unit 7, the rheological constant can be automatically measured without the sensor unit 7 coming into direct contact with the sample, and there is no need to clean the sensor unit 7 after the measurement. In addition, liquid foods have a remarkable effect that can be measured hygienically.

【0066】また、試料検出手段6のセンサ部7を流出
口と受け容器の間上下二箇所の位置に設けることによ
り、試料の流出速度が測定できるので試料のレオロジー
定数がより正確に測定でき、この測定した流出速度と経
過時間により流動曲線が作成できる利点がある。
Further, by providing the sensor section 7 of the sample detecting means 6 at two positions above and below between the outflow port and the receiving container, the flow rate of the sample can be measured, so that the rheological constant of the sample can be measured more accurately. There is an advantage that a flow curve can be created from the measured outflow velocity and elapsed time.

【0067】また、センサー部7で検出した試料を試料
受部8で受けて試料流出手段2の製造タンク15や移送
パイプ19に流出して循環再利用することにより、試料
の無駄が無くなり測定に使用した試料の廃棄作業がなく
なる利点がある。
The sample detected by the sensor section 7 is received by the sample receiving section 8 and flows out to the production tank 15 or the transfer pipe 19 of the sample outlet means 2 and is circulated and reused. There is an advantage that there is no need to dispose of used samples.

【0068】また、製造タンク内で複数の原材料を混合
したり反応させて液状物質の製品を製造する時に、攪拌
機18を運転しながらでも手作業を必要とせずに試料を
直接試料送出手段2により流動部3に送出して試料のレ
オロジー定数を自動的に測定でき、この測定データをも
とに製造タンク内での原材料調合割合の管理や製造時の
品質管理が簡単容易に、また迅速に行える著しい効果が
ある。
Further, when mixing and reacting a plurality of raw materials in a production tank to produce a liquid substance product, the sample is directly supplied to the sample delivery means 2 without the need for manual operation while operating the stirrer 18. The rheological constant of the sample can be automatically measured by sending it to the fluidizing section 3, and based on this measurement data, the control of the mixing ratio of raw materials in the manufacturing tank and the quality control at the time of manufacturing can be performed easily and quickly. Has a significant effect.

【0069】また、移送パイプ19内の試料を移送中で
も、手作業を必要とせずに試料を直接試料送出手段2に
より流動部3に送出して試料のレオロジー定数を自動的
に測定でき、この測定データをもとに原材料の受け入れ
検査や製品の中間検査が簡単容易に、また迅速に行える
著しい効果がある。
Further, even during the transfer of the sample in the transfer pipe 19, the sample can be directly sent to the flowing section 3 by the sample sending means 2 without any manual operation, and the rheological constant of the sample can be automatically measured. Based on the data, there is a remarkable effect that the raw material acceptance inspection and the intermediate inspection of the product can be performed easily, easily and quickly.

【0070】また、既設の液状物質を送出する装置の例
えば、図4や図5に示す製品を容器に充填する製造ライ
ンの充填機においては、充填機の送出口2dと充填した
製品を搬送するコンベヤー25の間に流動部3を流動部
移動手段24により移動させて手作業を必要とせずに試
料を直接充填機の送出口2dより流動部3に送出して試
料のレオロジー定数を自動的に測定でき、この測定デー
タをもとに製品の品質検査や品質管理が簡単容易に、ま
た迅速に行える著しい効果がある。
In the case of an existing apparatus for delivering a liquid substance, for example, in a filling machine of a production line shown in FIGS. 4 and 5 for filling a product into a container, the filled product is conveyed through an outlet 2d of the filling machine. The fluid part 3 is moved by the fluid part moving means 24 between the conveyors 25, and the sample is directly sent to the fluid part 3 from the outlet 2d of the filling machine without any manual operation, and the rheological constant of the sample is automatically set. It can be measured, and there is a remarkable effect that the quality inspection and quality control of the product can be easily, easily and quickly performed based on the measured data.

【0071】また、断面形状がV字形状をした流動部3
を用いることにより、試料がV形溝に添って流動して、
流出口3bの中央から流出することにより、センサ部7
で確実に試料の流出が検出できる効果がある。
The flow portion 3 having a V-shaped cross section
By using the sample, the sample flows along the V-shaped groove,
By flowing out from the center of the outlet 3b, the sensor unit 7
Thus, there is an effect that outflow of the sample can be reliably detected.

【0072】また、本測定装置によれば、多くの不確定
要素(バラツキ)を包含する複合材料で、高粘性のため
にレオロジー測定が非常に難しいレトルトカレーや果実
入りのジヤムにおいても複数のレオロジー定数を同時に
測定できるので、製造工程時に使用する増粘剤量の調整
や製品容器に充填する充填性等の改善をする工程管理
と、製品の品質管理には著しい効果がある。
Further, according to the present measuring device, a composite material containing many uncertainties (variations) and having a plurality of rheology even in retort curry or fruit-containing jam which is very difficult to measure rheology due to high viscosity. Since the constants can be measured at the same time, there is a remarkable effect on the process control for adjusting the amount of the thickener used in the manufacturing process and improving the filling property of the product container and the quality control of the product.

【0073】また、本測定装置を用いて砕石工場等の排
水タンク等の排水の流動性や粘性を測定し、この測定値
により排水の濃度を推定して排水処理に使用する沈降剤
の使用量の管理や、汚泥のヘドロ等の流動性や粘性を測
定してヘドロの水分量を推定し、ヘドロ処理に使用する
固化材の使用量管理に用いることも可能である。
Further, the fluidity and viscosity of the waste water in a waste water tank of a crushed stone factory or the like are measured using the present measuring device, and the concentration of the waste water is estimated based on the measured values to determine the amount of the sedimentation agent used in the waste water treatment. It is also possible to estimate the water content of sludge by measuring the fluidity and viscosity of sludge and the like of sludge, and to use the amount of solidified material used for sludge treatment.

【0074】尚、本測定装置での測定には直接手作業を
必要としないので、測定に個人差がなく、また
Since the measurement with this measuring apparatus does not require direct manual work, there is no individual difference in the measurement, and

【0002】記載の測定装置では観察することができな
い試料の流れを試料が流動部3を流動する時に、試料の
種類により層流、栓流、乱流等の流れ状態が観察でき、
コンピュータで測定するので再現性があり、低粘度試料
の場合には空気の圧力風により流動部3や試料受部8の
受け部8aと流出部8bを清掃したり、使い捨て流動部
材3cや使い捨て試料受部8を用いると測定終了時に洗
浄作業が無くなり、レオロジー測定が迅速に行えるの
で、品質管理に係る時間が短縮でき、人件費の節約にも
なる実用価値が大である液体物質のレオロジー測定方法
や装置を提供できる。
[0002] When a sample flows through the flow section 3, the flow state such as laminar flow, plug flow, and turbulent flow can be observed depending on the type of the sample.
It is reproducible because it is measured by a computer, and in the case of a low-viscosity sample, the flowing part 3 and the receiving part 8a and the outflow part 8b of the sample receiving part 8 are cleaned by the air pressure, and the disposable flow member 3c and the disposable sample The use of the receiving part 8 eliminates the need for cleaning work at the end of the measurement, and allows the rheology measurement to be performed quickly, so that the time required for quality control can be reduced and labor costs can be saved. And equipment can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】測定装置の実施例を示す製造タンクの上部に測
定装置を設置した説明図ある。
FIG. 1 is an explanatory view in which a measuring device is installed on an upper part of a production tank showing an embodiment of the measuring device.

【図2】測定装置の実施例を示す移送パイプの上部に測
定装置を設置した説明図ある。
FIG. 2 is an explanatory view in which a measuring device is installed above a transfer pipe, showing an embodiment of the measuring device.

【図3】移送パイプの上部に設置した測定装置を上から
見た説明図である。
FIG. 3 is an explanatory diagram of a measuring device installed on an upper part of a transfer pipe as viewed from above.

【図4】流動部移動手段24に流動部3を取り付けた説
明図である。
FIG. 4 is an explanatory view in which a flowing unit 3 is attached to a flowing unit moving means 24;

【図5】流動部移動手段24に測定装置本体を取り付け
た実施例を示す説明図である。
FIG. 5 is an explanatory view showing an embodiment in which a measuring device main body is attached to the flowing portion moving means 24.

【図6】流動部材料3aの実施例を示す説明図である。FIG. 6 is an explanatory view showing an example of a fluid part material 3a.

【図7】流動部材3cの実施例を示す説明図である。FIG. 7 is an explanatory diagram showing an example of a flow member 3c.

【図8】流動部位置決め手段5の実施例を示す正面図で
ある。
FIG. 8 is a front view showing an embodiment of the flow portion positioning means 5;

【図9】測定装置を使用した測定作業の実施例を示すフ
ローチャート図である。
FIG. 9 is a flowchart illustrating an example of a measurement operation using the measurement device.

【図10】流出口より流出する試料検出状況の実施例を
示す説明図である。
FIG. 10 is an explanatory diagram showing an example of a state of detecting a sample flowing out from an outlet.

【図11】流動曲線の実施例を示す説明図である。FIG. 11 is an explanatory diagram showing an example of a flow curve.

【図12】測定表の実施例を示す説明図である。FIG. 12 is an explanatory diagram showing an example of a measurement table.

【符号の説明】[Explanation of symbols]

1 レオロジー測定装置 2 試料送出手段 3 流動部 3b 流出口 4 流動部支持具 5 流動部位置決め手段 6 試料検出手段 7 センサ部 8 試料受部 14 コンピュータ 15 製造タンク 19 移送パイプ 24 流動部移動手段 DESCRIPTION OF SYMBOLS 1 Rheology measuring device 2 Sample sending means 3 Flowing part 3b Outlet 4 Flowing part support tool 5 Flowing part positioning means 6 Sample detecting means 7 Sensor part 8 Sample receiving part 14 Computer 15 Manufacturing tank 19 Transfer pipe 24 Flowing part moving means

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 試料を試料送出手段(2)により所要傾
斜角度の流動部(3)に送出し、この流動部(3)に送
出した試料を流動させ、該流動部(3)の流出口(3
b)より流出した試料を受ける位置に試料を受ける試料
受部(8)を設け、この流出口(3b)と試料受部
(8)の間に流出口(3b)より流出した試料を検出す
る試料検出手段(6)のセンサ部(7)を設け、このセ
ンサ部(7)で検出した試料検出手段(6)の信号をコ
ンピュータ(14)に入力し、前記試料送出手段(2)
により流動部(3)に送出させた時点から試料が流動部
(3)を流動して流出口(3b)より流出が終了する時
点までの経過時間を計測し、この経過時間により試料の
レオロジー定数をコンピュータ(14)で演算すること
を特徴とする液状物質のレオロジー測定方法。
1. A sample is sent to a flowing part (3) having a required inclination angle by a sample sending means (2), and the sample sent to the flowing part (3) is caused to flow, and an outlet of the flowing part (3) is provided. (3
b) A sample receiving portion (8) for receiving the sample is provided at a position for receiving the sample flowing out from the outlet, and the sample flowing out from the outlet (3b) is detected between the outlet (3b) and the sample receiving portion (8). A sensor section (7) of the sample detecting means (6) is provided, and a signal of the sample detecting means (6) detected by the sensor section (7) is input to a computer (14), and the sample sending means (2) is provided.
The elapsed time from the time when the sample is sent to the flowing portion (3) to the time when the sample flows through the flowing portion (3) and the outflow ends from the outlet (3b) is measured, and the rheological constant of the sample is calculated based on the elapsed time. Is measured by a computer (14).
【請求項2】 試料を試料送出手段(2)により所要傾
斜角度の流動部(3)に送出させた時点から試料が流動
部(3)を流動して流出口(3b)より流出が終了する
時点までの途中経過時間と積算経過時間を計測し、この
途中経過時間と積算経過時間により試料のレオロジー定
数をコンピュータ(14)で演算することを特徴とする
請求項1記載の液状物質のレオロジー測定方法。
2. The sample flows through the flow portion (3) from the time when the sample is sent out to the flow portion (3) having a required inclination angle by the sample sending means (2), and the outflow from the outlet (3b) ends. 2. The rheological measurement of a liquid material according to claim 1, wherein the intermediate time elapsed until the time point and the accumulated elapsed time are measured, and the rheological constant of the sample is calculated by the computer based on the intermediate elapsed time and the accumulated elapsed time. Method.
【請求項3】 試料が所要傾斜角度の流動部(3)を流
動して流出口(3b)より流出が開始した時点から試料
が流出口(3b)より流出が終了する時点までの間に試
料の流出が途切れた区間経過時間を計測し、この途切れ
た区間経過時間により試料のレオロジー定数をコンピュ
ータ(14)で演算することを特徴とする請求項1記載
の液状物質のレオロジー測定方法。
3. The sample from the time when the sample flows through the flow portion (3) having a required inclination angle and starts flowing out from the outlet (3b) to the time when the sample ends flowing out from the outlet (3b). 2. The rheological measurement method for a liquid substance according to claim 1, wherein the elapsed time of the section where the outflow of the liquid is interrupted is measured, and the rheological constant of the sample is calculated by the computer (14) based on the elapsed time of the interrupted section.
【請求項4】 流出口(3b)より流出した試料をセン
サ部(7)で検出し、この検出した試料を試料受部
(8)で受けて試料送出手段(2)の製造タンク(1
5)や移送パイプ(19)に流出させることを特徴とす
る請求項1記載の液状物質のレオロジー測定方法。
4. A sample flowing out of an outlet (3b) is detected by a sensor section (7), and the detected sample is received by a sample receiving section (8), and the production tank (1) of a sample sending means (2) is received.
5. The method for measuring rheology of a liquid substance according to claim 1, wherein the liquid is flowed out to 5) or a transfer pipe.
【請求項5】 液状物質を製造する製造工程において、
液状物質を送出する装置を試料送出手段(2)とし、こ
の試料送出手段(2)の送出口(2d)より送出される
試料を受ける位置まで所要傾斜角度の流動部(3)を動
かし、この流動部(3)に試料送出手段(2)から送出
した試料を流動させて試料のレオロジー定数を測定する
ことを特徴とする請求項1、2、3記載の液状物質のレ
オロジー測定方法。
5. A manufacturing process for manufacturing a liquid substance,
A device for delivering a liquid substance is referred to as a sample delivery means (2), and a flow part (3) having a required inclination angle is moved to a position for receiving a sample delivered from an outlet (2d) of the sample delivery means (2). 4. The method according to claim 1, wherein the rheological constant of the sample is measured by flowing the sample sent from the sample sending means (2) to the flowing section (3).
【請求項6】 試料を入れる製造タンク(15)や試料
を移送する移送パイプ(19)にサンプルパイプ(2
b)の一端を取り付けて、このサンプルパイプ(2b)
の他端には試料を流動部(3)に送出する電磁弁(2
c)を取り付け、このサンプルパイプ(2b)の途中に
は製造タンク(15)や移送パイプ(19)の試料を送
出するポンプ(2a)を取り付けた試料送出手段(2)
と、該試料送出手段(2)により送出した試料を受ける
位置に試料を流動さす流動部3を所要傾斜角度で支持す
る流動部位置決め手段(5)を設け、この流動部位置決
め手段(5)に流動部(3)を取り付けて、この流動部
(3)に試料送出手段(2)の送出口(3b)より試料
を送出し、該流動部(3)を流動して流出口(3b)よ
り流出した試料を受ける位置に試料を受ける試料受部
(8)を設け、この流出口(3b)と試料受部(8)の
間に流出口(3b)より流出した試料を検出する試料検
出手段(6)のセンサ部(7)を設け、このセンサ部
(7)で検出した試料検出手段(6)の信号をコンピュ
ータ(14)に入力し、前記試料送出手段(2)により
試料を流動部(3)に送出させた時点から試料が流動部
(3)を流動して流出口(3b)より流出が終了する時
点までの経過時間を計測し、この経過時間により試料の
レオロジー定数をコンピュータ(14)で演算すること
を特徴とする液状物質のレオロジー測定装置。
6. A sample pipe (2) is connected to a manufacturing tank (15) for storing a sample and a transfer pipe (19) for transferring a sample.
b) Attach one end of this sample pipe (2b)
The other end of the solenoid valve (2) for sending the sample to the fluidizing section (3)
c), and a sample sending means (2) equipped with a pump (2a) for sending a sample from the production tank (15) or the transfer pipe (19) in the middle of the sample pipe (2b).
And a fluid part positioning means (5) for supporting the fluid part 3 for flowing the sample at a required inclination angle at a position for receiving the sample delivered by the sample delivering means (2). A fluid part (3) is attached, a sample is delivered to the fluid part (3) from the outlet (3b) of the sample delivery means (2), and flows through the fluid part (3) to the outlet (3b). A sample receiving portion (8) for receiving a sample is provided at a position for receiving the sample that has flowed out, and a sample detecting means for detecting a sample flowing out from the outlet (3b) between the outlet (3b) and the sample receiving portion (8). (6) A sensor section (7) is provided, and a signal of the sample detecting means (6) detected by the sensor section (7) is input to a computer (14), and the sample is sent to the flowing section by the sample sending means (2). The sample flows from the flowing part (3) and flows out from the point when it is sent to (3). Outflow from (3b) is measures an elapsed time until the point of completion, rheology measuring device of the liquid material, which comprises calculating the rheological constants of the sample in the computer (14) by the elapsed time.
【請求項7】 液状物質を製造する製造工程において、
液状物質を送出する装置からなる試料送出手段(2)
と、この試料送出手段(2)の送出口(2d)より送出
する試料を受けて流動さす流動部(3)を所要傾斜角度
で支持する流動部位置決め手段(5)と、この流動部
(3)を試料送出手段(2)の送出口(2d)より送出
する試料を受ける位置まで動かす流動部移動手段(2
4)と、この流動部移動手段(24)により所要傾斜角
度で支持された流動部3を前記位置まで動かし、この流
動部(3)に試料送出手段(2)の送出口(3b)より
試料を送出し、該流動部(3)を流動して流出口(3
b)より流出した試料を受ける位置に試料を受ける試料
受部(8)を設け、この流出口(3b)と試料受部
(8)の間に流出口(3b)より流出した試料を検出す
る試料検出手段(6)のセンサ部(7)を設け、このセ
ンサ部(7)で検出した試料検出手段(6)の信号をコ
ンピュータ(14)に入力し、前記試料送出手段(2)
により試料を流動部(3)に送出させた時点から試料が
流動部(3)を流動して流出口(3b)より流出が終了
する時点までの経過時間を計測し、この経過時間により
試料のレオロジー定数をコンピュータ(14)で演算す
ることを特徴とする液状物質のレオロジー測定装置。
7. In a manufacturing process for manufacturing a liquid substance,
Sample sending means (2) consisting of a device for sending a liquid substance
A fluid part positioning means (5) for supporting a fluid part (3) for receiving and flowing a sample delivered from a delivery port (2d) of the sample delivering means (2) at a required inclination angle; ) To the position for receiving the sample to be sent from the outlet (2d) of the sample sending means (2).
4) and moving the fluidized part 3 supported by the fluidized part moving means (24) at a required inclination angle to the above-mentioned position, and moving the fluidized part (3) to the sample through the outlet (3b) of the sample sending means (2). And flows through the flow part (3) to flow out the outlet (3).
b) A sample receiving portion (8) for receiving the sample is provided at a position for receiving the sample flowing out from the outlet, and the sample flowing out from the outlet (3b) is detected between the outlet (3b) and the sample receiving portion (8). A sensor section (7) of the sample detecting means (6) is provided, and a signal of the sample detecting means (6) detected by the sensor section (7) is input to a computer (14), and the sample sending means (2) is provided.
, The elapsed time from the point when the sample is sent to the flowing part (3) to the point when the sample flows through the flowing part (3) and finishes flowing out from the outlet (3b) is measured. A rheological measuring device for a liquid substance, wherein a rheological constant is calculated by a computer (14).
【請求項8】 試料を流動さす断面形状がV字形状をし
た流動部(3)を用いることを特徴とする請求項6及び
7記載の液状物質のレオロジー測定装置。
8. The rheology measuring apparatus for liquid material according to claim 6, wherein a flow portion (3) having a V-shaped cross section for flowing the sample is used.
【請求項9】 断面形状がV字形状をした流動部支持具
(4)を流動部位置決め手段(5)に取り付け、この流
動部支持具(4)に断面形状がV字形状をした流動部材
(3c)を取り付けて試料を流動さす流動部(3)にす
ることを特徴とする請求項6及び7記載の液状物質のレ
オロジー測定装置。
9. A fluid part support member (4) having a V-shaped cross section is attached to the fluid part positioning means (5), and the fluid member having a V-shaped cross section is attached to the fluid part support (4). The rheology measuring device for a liquid material according to claim 6, wherein (3c) is attached to form a flow part (3) for flowing the sample.
JP2001040959A 2001-01-11 2001-01-11 Rheology measuring method of liquid material and its device Pending JP2002214108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040959A JP2002214108A (en) 2001-01-11 2001-01-11 Rheology measuring method of liquid material and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001040959A JP2002214108A (en) 2001-01-11 2001-01-11 Rheology measuring method of liquid material and its device

Publications (1)

Publication Number Publication Date
JP2002214108A true JP2002214108A (en) 2002-07-31

Family

ID=18903465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040959A Pending JP2002214108A (en) 2001-01-11 2001-01-11 Rheology measuring method of liquid material and its device

Country Status (1)

Country Link
JP (1) JP2002214108A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533846A (en) * 2007-07-19 2010-10-28 グノイス クンストシュトッフテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Equipment for measuring the viscosity of plastic melts
CN105092416A (en) * 2015-08-29 2015-11-25 华南理工大学 Device for measuring silica mortar liquidity and using method of device
KR101959881B1 (en) * 2018-10-17 2019-03-19 한국화학연구원 Viscosity diagnostic system for CVD Process
KR20210026417A (en) * 2019-08-30 2021-03-10 주식회사 엘지화학 Method for evaluating flowability of resin composition in equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533846A (en) * 2007-07-19 2010-10-28 グノイス クンストシュトッフテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Equipment for measuring the viscosity of plastic melts
CN105092416A (en) * 2015-08-29 2015-11-25 华南理工大学 Device for measuring silica mortar liquidity and using method of device
KR101959881B1 (en) * 2018-10-17 2019-03-19 한국화학연구원 Viscosity diagnostic system for CVD Process
KR20210026417A (en) * 2019-08-30 2021-03-10 주식회사 엘지화학 Method for evaluating flowability of resin composition in equipment
KR102437160B1 (en) * 2019-08-30 2022-08-26 주식회사 엘지화학 Method for evaluating flowability of resin composition in equipment

Similar Documents

Publication Publication Date Title
US6876904B2 (en) Portable concrete plant dispensing system
JP2004000953A (en) Automatic system and automatic process for preparing high viscosity fluid compound
CN109352821B (en) Concrete batching, stirring and conveying system and control method thereof
CN101304802A (en) Machine for dosing and mixing liquid products and operating method thereof
JP2002214108A (en) Rheology measuring method of liquid material and its device
CN110948702B (en) Balancing weight mixing station system and using method
KR101224846B1 (en) Hopper conveyor for kimchi packing
CN106584676A (en) Aluminum powder metering and burdening system and method
WO2010125454A1 (en) Microwave resonator for measurements on a flowable material
CN205868063U (en) Allotment jar that can accurately measure
CN106994314A (en) A kind of auto-scheduling system of material and moisture mixing
CN213021882U (en) Grit material moisture content measuring device
JP2010189073A (en) Fixed quantity feeder device for powder
CN112129394A (en) Grit material moisture content measuring device
CN208790018U (en) A kind of micro chemical supply machine suitable for prepared slices of Chinese crude drugs automatic weighing device in bulk
JP2001337024A (en) Method and apparatus for measuring rheology of liquid substance
CN107754715A (en) A kind of automatic blanking system of confectionary pellets mixture
JP2002116126A (en) Rheology testing method of liquid substance and device therefor
CN206911282U (en) A kind of auto-scheduling system of material and moisture mixing
EP1664732A1 (en) A method of measuring the consistency of a mixture as well as an apparatus for carrying out the method
CN204841442U (en) Agitator of area measurement
JP2001165837A (en) Rheology measuring apparatus of liquid substance
CN207614770U (en) A kind of automatic blanking system of confectionary pellets mixture
CN215973575U (en) Mixed conveying equipment is used in processing of high strength gypsum
KR200373052Y1 (en) The bulk-cement store tank equipted meausurement apparatus