JP2002212132A - Method for producing aromatic carboxylic acids - Google Patents

Method for producing aromatic carboxylic acids

Info

Publication number
JP2002212132A
JP2002212132A JP2001013986A JP2001013986A JP2002212132A JP 2002212132 A JP2002212132 A JP 2002212132A JP 2001013986 A JP2001013986 A JP 2001013986A JP 2001013986 A JP2001013986 A JP 2001013986A JP 2002212132 A JP2002212132 A JP 2002212132A
Authority
JP
Japan
Prior art keywords
aromatic carboxylic
producing
reaction
carboxylic acids
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001013986A
Other languages
Japanese (ja)
Other versions
JP4692702B2 (en
Inventor
Tsutomu Numamoto
勉 沼本
Masashi Ogiwara
雅司 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2001013986A priority Critical patent/JP4692702B2/en
Publication of JP2002212132A publication Critical patent/JP2002212132A/en
Application granted granted Critical
Publication of JP4692702B2 publication Critical patent/JP4692702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing aromatic carboxylic acids by industrially advantageous method when producing the corresponding aromatic carboxylic acids by oxidizing alkyl-substituted aromatic aldehydes. SOLUTION: Aromatic aldehydes are brought into contact with molecular oxygen in a self-solvent or an organic solvent in the presence of a metal catalyst and a basic compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は主として医薬品、農
薬、液晶化合物等に用いられる高純度の芳香族カルボン
酸類を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity aromatic carboxylic acids mainly used for pharmaceuticals, agricultural chemicals, liquid crystal compounds and the like.

【0002】[0002]

【従来の技術】従来、アルキル置換芳香族カルボン酸類
は、対応する芳香族アルデヒド類の酸化方法として例え
ば、過マンガン酸、クロム酸、硝酸などの酸化剤を用い
て製造されていた。しかし、これらの酸化剤では多量の
副生物の生成または触媒による環境汚染等の問題があっ
た。近年それに変わる反応がいくつか提案されている。
例えば、飽和もしくは不飽和の脂環式または芳香族のア
ルデヒド類を塩基性有機溶媒中で有機過酸で処理するこ
とにより対応するカルボン酸類に誘導することからなる
カルボン酸類の合成方法(特開平3−157345号公
報参照)や、芳香族アルデヒドと有機過酸を有機酸アル
カリ金属塩類の添加存在下に水非混和性有機溶媒中で酸
化する方法(特開平7−2729号公報参照)が開示さ
れている。
2. Description of the Related Art Hitherto, alkyl-substituted aromatic carboxylic acids have been produced by using an oxidizing agent such as permanganic acid, chromic acid or nitric acid as a method for oxidizing corresponding aromatic aldehydes. However, these oxidizing agents have problems such as generation of a large amount of by-products or environmental pollution by a catalyst. Recently, several alternative reactions have been proposed.
For example, a method for synthesizing a carboxylic acid comprising treating a saturated or unsaturated alicyclic or aromatic aldehyde with an organic peracid in a basic organic solvent to obtain a corresponding carboxylic acid (Japanese Unexamined Patent Publication No. JP-A-157345) and a method of oxidizing an aromatic aldehyde and an organic peracid in a water-immiscible organic solvent in the presence of an alkali metal salt of an organic acid (see JP-A-7-2729). ing.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの方法
では酸化剤に過酸化水素または過酸化物を用いたところ
の酸化であるため工業的に有利とは言い難い。また4−
アルキルベンズアルドキシム類を酸の存在下に加熱反応
させることにより、4−アルキル安息香酸類を得る方法
(特開平8―134013号公報参照)も開示されてい
るが、加熱反応させることで不純物が生成しやすいとい
う問題点がある。本発明の目的はアルキル置換芳香族ア
ルデヒドを酸化して対応する芳香族カルボン酸類を製造
するに際し、工業的に有利な方法で芳香族カルボン酸類
を製造する方法を提供することである。
However, these methods are not industrially advantageous because they are oxidations using hydrogen peroxide or peroxide as an oxidizing agent. 4-
A method for obtaining 4-alkylbenzoic acids by heating and reacting alkylbenzaldoximes in the presence of an acid is also disclosed (see Japanese Patent Application Laid-Open No. 8-134003). However, impurities are generated by the heating reaction. There is a problem that it is easy to do. An object of the present invention is to provide a method for producing an aromatic carboxylic acid by an industrially advantageous method in producing an aromatic carboxylic acid by oxidizing an alkyl-substituted aromatic aldehyde.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記のごと
き従来技術の課題を改善し、工業的に有利な芳香族カル
ボン酸類の製造方法を検討した。その結果、金属触媒お
よび塩基性化合物の存在下、自己溶媒又は有機溶媒中で
芳香族アルデヒド類を酸化して芳香族カルボン酸類を製
造するに際し、緩和な反応条件で分子状酸素と接触させ
ることにより高純度、高収率の芳香族カルボン酸類を得
られることを見出した。更に反応に使用した有機溶媒お
よび自己溶媒は回収して反復使用することができコスト
的にも有利であることを見出し本発明を完成させた。即
ち本発明は、一般式(1)
Means for Solving the Problems The present inventors have solved the above-mentioned problems of the prior art and studied a method for producing an aromatic carboxylic acid which is industrially advantageous. As a result, in the presence of a metal catalyst and a basic compound, in producing an aromatic carboxylic acid by oxidizing an aromatic aldehyde in a self-solvent or an organic solvent, by contacting with molecular oxygen under mild reaction conditions, It has been found that aromatic carboxylic acids with high purity and high yield can be obtained. Further, they have found that the organic solvent and the self-solvent used in the reaction can be recovered and used repeatedly, which is advantageous in terms of cost, and completed the present invention. That is, the present invention provides a compound represented by the general formula (1):

【化3】 [式中、n=1〜3、RはC1〜C4の低級アルキル基を示
す]で表される芳香族アルデヒド類を、金属触媒および
塩基性化合物の存在下、自己溶媒又は有機溶媒中で分子
状酸素と接触させることにより酸化反応させ、一般式
(2)
Embedded image [Wherein n = 1 to 3, R represents a lower alkyl group of C 1 to C 4 ], in the presence of a metal catalyst and a basic compound in a self-solvent or an organic solvent. Oxidation reaction by contacting with molecular oxygen by the general formula (2)

【化4】 [式中、n=1〜3、RはC1〜C4の低級アルキル基を示
す]で表される芳香族カルボン酸類を得ることを特徴と
する芳香族カルボン酸類の製造方法に関するものであ
る。
Embedded image Wherein n = 1 to 3 and R represents a lower alkyl group of C 1 to C 4. A method for producing an aromatic carboxylic acid, characterized by obtaining an aromatic carboxylic acid represented by the formula: .

【0005】[0005]

【発明の実施の形態】本発明で原料として使用する芳香
族アルデヒド類は、置換基として炭素数1〜4の低級ア
ルキル基を1〜3個有する芳香族アルデヒドであり、例
えば、クミンアルデヒド、パラメチルベンズアルデヒ
ド、2,4-ジメチルベンズアルデヒド、3,4-ジメチルベン
ズアルデヒド、イソブチルベンズアルデヒド、パラエチ
ルベンズアルデヒド、2,4,5-トリメチルベンズアルデヒ
ド、メシチルアルデヒド等が例示できる。この中でも、
クミンアルデヒド、パラエチルベンズアルデヒドやメシ
チルアルデヒドが好適に使用できる。
BEST MODE FOR CARRYING OUT THE INVENTION The aromatic aldehyde used as a raw material in the present invention is an aromatic aldehyde having from 1 to 3 lower alkyl groups having 1 to 4 carbon atoms as substituents. Examples include methylbenzaldehyde, 2,4-dimethylbenzaldehyde, 3,4-dimethylbenzaldehyde, isobutylbenzaldehyde, paraethylbenzaldehyde, 2,4,5-trimethylbenzaldehyde, mesitylaldehyde and the like. Among them,
Cuminaldehyde, paraethylbenzaldehyde and mesitylaldehyde can be suitably used.

【0006】触媒として使用する金属元素としてはクロ
ム、マンガン、鉄、コバルト、ニッケル、銅等があり、
これらは単独、あるいは2種以上を混合して触媒に用い
ることができる。これらに挙げた中で特にコバルトが触
媒成分として好適である。コバルト源としては有機酸
塩、無機塩酸、酸化物、水酸化物、ハロゲン化物等の化
合物を使用することができるが、有機酸塩の使用が好適
である。たとえば酢酸コバルト、プロピオン酸コバル
ト、酪酸コバルト、ナフテン酸コバルト、オクチル酸コ
バルトとして使用するのが有利である。使用量は金属分
濃度が原料芳香族アルデヒド類に対し重量比で0.01〜50
0ppmの範囲であり、好ましくは0.05〜100ppmである。
The metal elements used as catalysts include chromium, manganese, iron, cobalt, nickel, copper, etc.
These can be used alone or as a mixture of two or more. Of these, cobalt is particularly preferred as the catalyst component. As the cobalt source, compounds such as organic acid salts, inorganic hydrochloric acid, oxides, hydroxides and halides can be used, but the use of organic acid salts is preferred. For example, they are advantageously used as cobalt acetate, cobalt propionate, cobalt butyrate, cobalt naphthenate, cobalt octylate. The amount of metal used is 0.01 to 50 by weight ratio to the raw material aromatic aldehydes.
The range is 0 ppm, preferably 0.05 to 100 ppm.

【0007】塩基性化合物としては、NaOH、Na2CO3、KO
H、Ca(OH)2、等の無機アルカリ金属塩、有機酸アルカ
リ金属塩、トリエチルアミン等の第3級アミン類を使用
できる。有機酸アルカリ金属塩としては、例えば乳酸、
酢酸、プロピオン酸、クエン酸、りんご酸、酒石酸など
の有機酸のナトリウム塩、カリウム塩などを挙げること
ができる。また、芳香族カルボン酸のナトリウム塩、カ
リウム塩なども使用することができる。塩基性化合物の
添加方法としては、無機アルカリ金属塩、有機酸アルカ
リ金属塩の場合は、アルコール類に溶解し、金属塩アル
コラートとして使用することが好適である。使用するア
ルコール類はメタノール、エタノール、イソプロピルア
ルコール等が使用できる。塩基性化合物の使用量は、原
料芳香族アルデヒド類に対しての金属濃度が重量比で50
〜5000ppmの範囲で任意に選択できる。一方、第3級ア
ミン類の場合は、原料芳香族アルデヒド類に対し重量比
で500〜3000ppmの範囲で使用する。これらの塩基性化合
物は単独または2種以上混合して用いることができる。
塩基性化合物を添加しないと当該の芳香族アルデヒドが
エステルになるいわゆるバイヤー・ビリガー反応が起こ
り蟻酸エステルが増加し、選択率が低下する。また蟻酸
エステルは水分の存在によりフェノール類となる。反応
母液を回収し反応に使用する場合は、このフェノール類
が反応率低下の原因になってくる。
The basic compounds include NaOH, Na 2 CO 3 , KO
Inorganic alkali metal salts such as H and Ca (OH) 2 , alkali metal salts of organic acids, and tertiary amines such as triethylamine can be used. As organic acid alkali metal salts, for example, lactic acid,
Examples thereof include sodium salts and potassium salts of organic acids such as acetic acid, propionic acid, citric acid, malic acid and tartaric acid. Further, a sodium salt, a potassium salt and the like of an aromatic carboxylic acid can also be used. As a method of adding the basic compound, in the case of an inorganic alkali metal salt or an organic acid alkali metal salt, it is preferable to dissolve in an alcohol and use it as a metal salt alcoholate. As the alcohols used, methanol, ethanol, isopropyl alcohol and the like can be used. The amount of the basic compound used is such that the metal concentration relative to the raw material aromatic aldehyde is 50 by weight.
It can be arbitrarily selected within the range of ~ 5000 ppm. On the other hand, in the case of tertiary amines, the tertiary amine is used in a weight ratio of 500 to 3,000 ppm with respect to the raw material aromatic aldehyde. These basic compounds can be used alone or in combination of two or more.
If a basic compound is not added, a so-called Bayer-Villiger reaction in which the aromatic aldehyde is converted into an ester occurs, formic acid ester increases, and selectivity decreases. In addition, formate esters become phenols due to the presence of water. When the reaction mother liquor is recovered and used for the reaction, the phenols cause a reduction in the reaction rate.

【0008】本発明は液相酸化で実施されるが、反応を
順調に進行せしめるため、有機溶媒もしくは自己溶媒存
在下で行う。有機溶媒としては、ベンゼン、トルエン、
キシレン等の芳香族炭化水素、ヘキサン、ヘプタン、オ
クタン、デカン等の炭素数6〜10の脂肪族炭化水素が
好適である。有機溶媒の使用量は原料芳香族アルデヒド
類に対して重量で1〜20倍、好適には2〜5倍である。自
己溶媒で行う場合は芳香族アルデヒド類の中には転化率
を60モル%以上にすると反応液が固結し反応後の処理が
困難となる場合もあるので転化率を20〜60モル%に制御
するのがよい。より好適には40〜50モル%である。また
使用した有機溶媒および自己溶媒法での未反応の原料芳
香族アルデヒド類は回収して反復使用することができ
る。
[0008] The present invention is carried out by liquid phase oxidation, but is carried out in the presence of an organic solvent or a self-solvent in order to make the reaction proceed smoothly. Organic solvents include benzene, toluene,
Aromatic hydrocarbons such as xylene, and aliphatic hydrocarbons having 6 to 10 carbon atoms such as hexane, heptane, octane and decane are preferred. The amount of the organic solvent used is 1 to 20 times, preferably 2 to 5 times, the weight of the raw material aromatic aldehyde. When using a self-solvent, if the conversion rate of aromatic aldehydes is set to 60 mol% or more, the reaction liquid may solidify and the treatment after the reaction may become difficult. It is better to control. More preferably, it is 40 to 50 mol%. The used organic solvent and the unreacted raw material aromatic aldehyde by the self-solvent method can be recovered and reused.

【0009】酸化剤としては、分子状酸素を使用する。
酸素単独でもよく、他の不活性ガスで希釈された酸素含
有気体、たとえば空気も使用し得る。
As the oxidizing agent, molecular oxygen is used.
Oxygen alone may be used, or an oxygen-containing gas diluted with another inert gas such as air may be used.

【0010】本発明は連続式、回分式のいずれの方式で
も実施できる。また、反応器の形式には特に制限はな
い。
The present invention can be carried out in any of a continuous system and a batch system. The type of the reactor is not particularly limited.

【0011】反応温度は0〜100℃であり、好適には0〜3
0℃である。反応温度は低いほど不純物の生成が少ない
が0℃より低いと酸化速度が遅くなるばかりでなく不純
物量もそれほど低減できない。一方、反応温度の上昇に
ともない、酸化速度は促進されるが100℃をこえると各
種不純物が増加して製品品質を低下させる等、不都合と
なる。
[0011] The reaction temperature is from 0 to 100 ° C, preferably from 0 to 3 ° C.
0 ° C. The lower the reaction temperature, the less impurities are generated. However, if the reaction temperature is lower than 0 ° C., not only the oxidation rate is lowered but also the amount of impurities cannot be reduced so much. On the other hand, as the reaction temperature rises, the oxidation rate is accelerated, but if the temperature exceeds 100 ° C., various impurities increase and the product quality deteriorates.

【0012】反応圧力は常圧でも加圧でもよく多くの場
合、常圧から2000KPa(ゲージ圧)程度であり任意に選
択できる。反応時間は1〜12時間の範囲で任意に選択で
きる。
The reaction pressure may be normal pressure or pressurization. In many cases, the reaction pressure is from normal pressure to about 2000 KPa (gauge pressure) and can be arbitrarily selected. The reaction time can be arbitrarily selected in the range of 1 to 12 hours.

【0013】[0013]

【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明は以下の実施例に限定されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.

【0014】実施例1 内容積2リットルのステンレス製オートクレーブに、ク
ミンアルデヒド333g、nデカン667g、NaOH10g(10重
量%メタノール溶液)、触媒としてナフテン酸コバルト
(Co含量:6重量%)0.055gを仕込んだ。(クミンアル
デヒドに対する重量比として、Co濃度10ppm、Na濃度172
4ppm)反応器内温度を25℃に保持攪拌し8時間にわたっ
て内圧を800KPa(ゲージ)に保ちつつ空気を35NL/時
の割合で吹き込んで反応させた。クミンアルデヒドの転
化率は98.5モル%であった。反応液を分析したところ、
副生物の蟻酸エステルを0.12重量%確認した。反応終了
後反応生成物を濾別し、蒸留後白色固体308gを得た。
分析の結果純度99.5重量%のクミン酸であった。収率は8
4モル%であった。
Example 1 A stainless steel autoclave having an internal volume of 2 liters was charged with 333 g of cuminaldehyde, 667 g of n-decane, 10 g of NaOH (10% by weight methanol solution), and 0.055 g of cobalt naphthenate (Co content: 6% by weight) as a catalyst. It is. (Co concentration 10 ppm, Na concentration 172
(4 ppm) The reaction was carried out by blowing air at a rate of 35 NL / hour while maintaining the internal temperature of the reactor at 25 ° C. and stirring for 8 hours while maintaining the internal pressure at 800 KPa (gauge). The conversion of cuminaldehyde was 98.5 mol%. When the reaction solution was analyzed,
0.12% by weight of by-product formate was confirmed. After completion of the reaction, the reaction product was separated by filtration, and after distillation, 308 g of a white solid was obtained.
As a result of analysis, it was cumic acid having a purity of 99.5% by weight. 8 yield
4 mol%.

【0015】実施例2 実施例1と同様な装置を用い、クミンアルデヒド1000
g、NaOH10g(10重量%メタノール溶液)、ナフテン酸
コバルト(Co含量:6%)0.016gを仕込んだ。(クミン
アルデヒドに対する重量比として、Co濃度1ppm、 Na濃
度575ppm)反応器内温度を25℃に保持攪拌しながら、6
時間にわたって内圧を800KPa(ゲージ)に保ちつつ空気
を35NL/時の割合で吹き込んで反応させた。クミンア
ルデヒドの転化率は45モル%であった。反応液を分析し
たところ、副生物の蟻酸エステルを0.15重量%確認し
た。反応終了後反応液を蒸留し白色固体400gを得た。
分析の結果純度99.5重量%のクミン酸であった。選択率
は81モル%であった。
Example 2 Using the same apparatus as in Example 1, cuminaldehyde 1000
g, 10 g of NaOH (10% by weight methanol solution), and 0.016 g of cobalt naphthenate (Co content: 6%). (Co concentration 1 ppm, Na concentration 575 ppm as weight ratio to cumin aldehyde) While maintaining the temperature inside the reactor at 25 ° C and stirring, 6
While maintaining the internal pressure at 800 KPa (gauge) over time, air was blown at a rate of 35 NL / hour to cause a reaction. The conversion of cuminaldehyde was 45 mol%. When the reaction solution was analyzed, 0.15% by weight of formate as a by-product was confirmed. After the completion of the reaction, the reaction solution was distilled to obtain 400 g of a white solid.
As a result of analysis, it was cumic acid having a purity of 99.5% by weight. The selectivity was 81 mol%.

【0016】実施例3 触媒をナフテン酸鉄ミネラルスピリット溶液(Fe含量:
5重量%)0.066gにした以外は、実施例1と同様に反応
させた。クミンアルデヒドの転化率は97.9モル%であっ
た。反応液を分析したところ、副生物の蟻酸エステルを
0.14重量%確認した。反応終了後反応生成物を濾別し、
純度99.5重量%のクミン酸295gを得た。収率は80モル%
であった。
Example 3 The catalyst was used as an iron naphthenate mineral spirit solution (Fe content:
(5% by weight) The reaction was carried out in the same manner as in Example 1 except that the amount was changed to 0.066 g. The conversion of cuminaldehyde was 97.9 mol%. When the reaction solution was analyzed, it was found that
0.14% by weight was confirmed. After completion of the reaction, the reaction product is filtered off,
295 g of cumic acid having a purity of 99.5% by weight was obtained. 80 mol% yield
Met.

【0017】実施例4 実施例1と同様な装置を用い、パラエチルベンズアルデ
ヒド1000g、NaOH10g(10重量%メタノール溶液)、ナ
フテン酸コバルト(Co含量:6重量%)0.016gを仕込ん
だ。(パラエチルベンズアルデヒドに対する重量比とし
て、Co濃度1ppm、 Na濃度575ppm)反応器内温度を25℃
に保持攪拌し、4時間にわたって内圧を800KPa(ゲー
ジ)に保ちつつ空気を35NL/時の割合で吹き込んで反
応させた。クミンアルデヒドの転化率は47モル%であっ
た。反応液を分析したところ、副生物の蟻酸エステルを
0.15重量%確認した。反応終了後反応液を蒸留し白色固
体421gを得た。分析の結果、純度99.5重量%のパラエ
チル安息香酸であった。選択率は81モル%であった。
Example 4 Using the same apparatus as in Example 1, 1000 g of paraethylbenzaldehyde, 10 g of NaOH (10% by weight methanol solution), and 0.016 g of cobalt naphthenate (Co content: 6% by weight) were charged. (Co concentration 1 ppm, Na concentration 575 ppm as weight ratio to paraethylbenzaldehyde)
The reaction was carried out by blowing air at a rate of 35 NL / hour while maintaining the internal pressure at 800 KPa (gauge) for 4 hours. The conversion of cuminaldehyde was 47 mol%. When the reaction solution was analyzed, it was found that
0.15% by weight was confirmed. After the completion of the reaction, the reaction solution was distilled to obtain 421 g of a white solid. As a result of analysis, it was found to be 99.5% by weight of paraethylbenzoic acid. The selectivity was 81 mol%.

【0018】比較例1 実施例1においてNaOH10g(10重量%メタノール溶液)
を添加しないで反応させた。クミンアルデヒドの転化率
98.8モル%であった。反応液を分析したところ副生物の
蟻酸エステルを2.4重量%確認した。反応終了後反応生
成物を濾別し、蒸留後白色固体295gを得た。分析の結
果純度99.5重量%のクミン酸であった。収率は80モル%
であった。
Comparative Example 1 In Example 1, 10 g of NaOH (10% by weight methanol solution)
The reaction was carried out without the addition of. Cuminaldehyde conversion
98.8 mol%. When the reaction solution was analyzed, formic acid ester as a by-product was confirmed at 2.4% by weight. After completion of the reaction, the reaction product was separated by filtration, and 295 g of a white solid was obtained after distillation. As a result of analysis, it was cumic acid having a purity of 99.5% by weight. 80 mol% yield
Met.

【0019】[0019]

【発明の効果】本発明により、金属触媒および塩基性化
合物の存在下、自己溶媒又は有機溶媒中で芳香族アルデ
ヒド類を分子状酸素と接触させることにより酸化して芳
香族カルボン酸類を製造することで、緩和な反応条件に
て高純度、高収率の芳香族カルボン酸類が得られ、工業
的に有利な該化合物の製造法を提供することができる。
According to the present invention, an aromatic aldehyde is oxidized by contacting it with molecular oxygen in a self-solvent or an organic solvent in the presence of a metal catalyst and a basic compound to produce an aromatic carboxylic acid. Thus, aromatic carboxylic acids of high purity and high yield can be obtained under mild reaction conditions, and an industrially advantageous method for producing the compound can be provided.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】一般式(1) 【化1】 [式中、n=1〜3、RはC1〜C4の低級アルキル基を示
す]で表される芳香族アルデヒド類を、金属触媒および
塩基性化合物の存在下、自己溶媒又は有機溶媒中で分子
状酸素と接触させることにより酸化反応させ、一般式
(2) 【化2】 [式中、n=1〜3、RはC1〜C4の低級アルキル基を示
す]で表される芳香族カルボン酸類を得ることを特徴と
する芳香族カルボン酸類の製造方法。
1. A compound of the general formula (1) [Wherein n = 1 to 3, R represents a C 1 -C 4 lower alkyl group] in an autosolvent or an organic solvent in the presence of a metal catalyst and a basic compound. Oxidation reaction by contacting with molecular oxygen in the general formula (2) Wherein n = 1 to 3, R represents a lower alkyl group of C 1 to C 4. A method for producing aromatic carboxylic acids, characterized by obtaining an aromatic carboxylic acid represented by the formula:
【請求項2】芳香族アルデヒドがクミンアルデヒド、パ
ラエチルベンズアルデヒドまたはメシチルアルデヒドで
ある請求項1に記載の芳香族カルボン酸類の製造方法。
2. The method for producing aromatic carboxylic acids according to claim 1, wherein the aromatic aldehyde is cuminaldehyde, paraethylbenzaldehyde or mesitylaldehyde.
【請求項3】金属触媒中の金属成分が、原料芳香族アル
デヒド類に対し、金属原子として重量比で0.01〜500ppm
の範囲である請求項1または2に記載の芳香族カルボン
酸類の製造方法。
3. The metal catalyst according to claim 1, wherein the metal component is contained in an amount of 0.01 to 500 ppm by weight as a metal atom with respect to the starting aromatic aldehyde.
The method for producing an aromatic carboxylic acid according to claim 1 or 2, wherein
【請求項4】金属触媒がコバルト触媒である請求項1〜
3のいずれかに記載の芳香族カルボン酸類の製造方法。
4. The method according to claim 1, wherein the metal catalyst is a cobalt catalyst.
3. The method for producing an aromatic carboxylic acid according to any one of 3.
【請求項5】塩基性化合物が無機アルカリ金属塩、有機
酸アルカリ金属塩、第3級アミン類から選ばれる少なく
とも1つの化合物である請求項1〜4のいずれかに記載
の芳香族カルボン酸類の製造方法。
5. The aromatic carboxylic acid according to claim 1, wherein the basic compound is at least one compound selected from inorganic alkali metal salts, organic acid alkali metal salts and tertiary amines. Production method.
【請求項6】酸化反応の温度が0〜100℃の範囲である請
求項1〜5のいずれかに記載の芳香族カルボン酸類の製
造方法。
6. The method for producing aromatic carboxylic acids according to claim 1, wherein the temperature of the oxidation reaction is in the range of 0 to 100 ° C.
JP2001013986A 2001-01-23 2001-01-23 Process for producing aromatic carboxylic acids Expired - Fee Related JP4692702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001013986A JP4692702B2 (en) 2001-01-23 2001-01-23 Process for producing aromatic carboxylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001013986A JP4692702B2 (en) 2001-01-23 2001-01-23 Process for producing aromatic carboxylic acids

Publications (2)

Publication Number Publication Date
JP2002212132A true JP2002212132A (en) 2002-07-31
JP4692702B2 JP4692702B2 (en) 2011-06-01

Family

ID=18880737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001013986A Expired - Fee Related JP4692702B2 (en) 2001-01-23 2001-01-23 Process for producing aromatic carboxylic acids

Country Status (1)

Country Link
JP (1) JP4692702B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436396C (en) * 2006-09-11 2008-11-26 浙江树人大学 New method for synthesizing p-isopropyl benzoic acid
CN111925265A (en) * 2020-08-20 2020-11-13 合肥工业大学 Method for preparing carboxylic acid by catalyzing aldehyde oxidation through N-heterocyclic carbene

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264551A (en) * 1987-04-22 1988-11-01 Wako Pure Chem Ind Ltd Production of cuminic acid
EP0424242A2 (en) * 1989-10-16 1991-04-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for preparing carboxylic acids by means of oxidation of corresponding aldehydes
JPH03157345A (en) * 1989-11-15 1991-07-05 Nippon Terupen Kagaku Kk Synthesis of carboxylic acids
JPH0565244A (en) * 1991-06-26 1993-03-19 Mitsubishi Gas Chem Co Inc Simultaneous production of aryl formate and aromatic carboxylic acid
JPH072729A (en) * 1993-06-17 1995-01-06 T Hasegawa Co Ltd Production of aromatic carboxylic acid
JP2002069029A (en) * 2000-08-22 2002-03-08 Daiwa Kasei Kk Method for manufacturing alkyl-substituted benzoic acid
JP2002088014A (en) * 2000-09-18 2002-03-27 Sumikin Chemical Co Ltd Method for producing carbocyclic aromatic carboxylic acids

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264551A (en) * 1987-04-22 1988-11-01 Wako Pure Chem Ind Ltd Production of cuminic acid
EP0424242A2 (en) * 1989-10-16 1991-04-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for preparing carboxylic acids by means of oxidation of corresponding aldehydes
JPH03157345A (en) * 1989-11-15 1991-07-05 Nippon Terupen Kagaku Kk Synthesis of carboxylic acids
JPH0565244A (en) * 1991-06-26 1993-03-19 Mitsubishi Gas Chem Co Inc Simultaneous production of aryl formate and aromatic carboxylic acid
JPH072729A (en) * 1993-06-17 1995-01-06 T Hasegawa Co Ltd Production of aromatic carboxylic acid
JP2002069029A (en) * 2000-08-22 2002-03-08 Daiwa Kasei Kk Method for manufacturing alkyl-substituted benzoic acid
JP2002088014A (en) * 2000-09-18 2002-03-27 Sumikin Chemical Co Ltd Method for producing carbocyclic aromatic carboxylic acids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436396C (en) * 2006-09-11 2008-11-26 浙江树人大学 New method for synthesizing p-isopropyl benzoic acid
CN111925265A (en) * 2020-08-20 2020-11-13 合肥工业大学 Method for preparing carboxylic acid by catalyzing aldehyde oxidation through N-heterocyclic carbene
CN111925265B (en) * 2020-08-20 2023-05-09 合肥工业大学 Method for preparing carboxylic acid by catalyzing aldehyde oxidation through N-heterocyclic carbene

Also Published As

Publication number Publication date
JP4692702B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP4955886B2 (en) Method for producing aliphatic carboxylic acid from aldehyde
JP4942645B2 (en) Method for oxidizing organic compounds
EP0666838B1 (en) Process for the preparation of carboxylic acids and esters thereof by oxidative cleavage of unsaturated fatty acids and esters thereof
JPH10306047A (en) Production of 1,6-hexanediol
JP2000239211A (en) Production of cycloalkanone
JPS6114138B2 (en)
JP2916277B2 (en) Catalytic production of tert-butyl alcohol from tert-butyl hydroperoxide
JP3073961B2 (en) Cycloalkane oxidation method
US7253312B2 (en) Process for producing carboxylic acids
RU2208605C1 (en) Method for oxidation of hydrocarbons, alcohols, and/or ketones
JP4692702B2 (en) Process for producing aromatic carboxylic acids
JPS6052136B2 (en) Alcohol manufacturing method
EP1748042B1 (en) Process for producing adipic acid
JP4409057B2 (en) Method for producing benzenedimethanol compound
JP4237500B2 (en) One-step preparation method of toluene derivatives
US4456555A (en) Manufacture of aryl esters
JP3191337B2 (en) Simultaneous production of lactones and aromatic carboxylic acids
US6927311B2 (en) Method for oxidizing cycloalkane compound
JP3129547B2 (en) Method for producing glycolate
KR101424900B1 (en) Method for preparing a deperoxidation catalyst
US6812354B2 (en) Process for preparing 3-methyltetrahydrofuran
JP2812701B2 (en) A catalytic method for the synthesis of ethylene-tetracarboxylic esters.
JPH06157416A (en) Production of glyoxylic acid ester
JPH022874B2 (en)
JPH0525149A (en) Production of styrene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees