JP2002206448A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2002206448A
JP2002206448A JP2001257190A JP2001257190A JP2002206448A JP 2002206448 A JP2002206448 A JP 2002206448A JP 2001257190 A JP2001257190 A JP 2001257190A JP 2001257190 A JP2001257190 A JP 2001257190A JP 2002206448 A JP2002206448 A JP 2002206448A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust gas
amount
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001257190A
Other languages
Japanese (ja)
Inventor
Tsukasa Kuboshima
司 窪島
Yasuhiro Kariya
安浩 苅谷
Toshio Kondo
利雄 近藤
Tatsuya Fujita
達也 藤田
Kiyonori Sekiguchi
清則 関口
Masumi Kinugawa
眞澄 衣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001257190A priority Critical patent/JP2002206448A/en
Priority to DE2001154516 priority patent/DE10154516A1/en
Publication of JP2002206448A publication Critical patent/JP2002206448A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0017Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0022Controlling intake air for diesel engines by throttle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To significantly reduce generation amount of smoke and NOx over a wide operation region and moreover restrain deterioration of fuel consumption. SOLUTION: When engine output is in an intermediate load region, a fuel injection time is delayed in a range where the fuel consumption amount is not greatly increased, (for example, in a range where the fuel consumption deterioration is 5% or less), and an EGR amount is increased compared to the conventional level, and an EGR amount is increased to the region wherein the smoke amount is reduced after peaking. When the engine output is in a low load region, the EGR amount is increased further than in the case of the intermediate load region, and the fuel injection time is made to advance to a degree where the generation amount of the NOx is not increased greatly. Thus, the generation both of the smoke and the NOx can be restrained over a wide operation region, while improving the fuel consumption.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関(特にデ
ィーゼルエンジン)の排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust purification system for an internal combustion engine (particularly, a diesel engine).

【0002】[0002]

【従来の技術】近年、ディーゼルエンジンにおいては、
排気中の有害成分であるスモーク(いわゆる黒煙)とN
Ox(窒素酸化物)を同時に低減するために、種々のデ
ィーゼル燃焼技術が検討されている。例えば、特許第2
864896号公報には、多量の排気還流(EGR)を
行うとともに、燃料の噴射時期を上死点後まで遅らせる
ことにより、スモークとNOxの発生を同時に抑制する
技術が開示されている。これは、燃焼温度を低下させる
ことでNOxの発生を抑えるとともに、着火遅れ期間の
大幅な延長により燃焼のほとんどを予混合燃焼化する、
すなわち空気と燃料との混合を促進することでスモーク
の発生を抑制するものである。
2. Description of the Related Art In recent years, in diesel engines,
Smoke (so-called black smoke), which is a harmful component in exhaust gas, and N
In order to simultaneously reduce Ox (nitrogen oxide), various diesel combustion technologies are being studied. For example, Patent No. 2
Japanese Patent Publication No. 864896 discloses a technique for simultaneously suppressing the generation of smoke and NOx by performing a large amount of exhaust gas recirculation (EGR) and delaying the fuel injection timing until after the top dead center. This is because the generation of NOx is suppressed by lowering the combustion temperature, and most of the combustion is converted to premixed combustion by greatly extending the ignition delay period.
That is, the generation of smoke is suppressed by promoting the mixing of air and fuel.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記の燃焼
方法では、スモークの発生量がピークに達する以前の領
域でEGRを増やしているに過ぎないため、この領域で
スモークとNOxの両方を大幅に低減することは困難で
ある。また、多量のEGRや噴射時期の遅角は、ともに
燃焼を悪化させる要因となるため、これらを運転領域全
域で行うと燃費が悪化するという問題もある。
However, in the above-described combustion method, since only the EGR is increased in a region before the amount of smoke generation reaches a peak, both smoke and NOx are significantly reduced in this region. It is difficult to reduce. Further, since a large amount of EGR and the retardation of the injection timing both cause deterioration of combustion, there is also a problem that when these are performed in the entire operation region, fuel efficiency is deteriorated.

【0004】更に、従来の方法では、スモーク排出量を
大幅に低減できないため、排気浄化手段として例えばト
ラップフィルタを用いる場合は、捕集したスモークを焼
却除去するために頻繁な再生操作が必要となる。これ
は、フィルタの耐久性の大幅な低下を招く可能性があっ
た。これを避けるためには、より大きなフィルタを用い
て再生頻度を下げる必要があるが、車両への搭載性を考
慮すると実用上困難である。本発明は、上記事情に基づ
いて成されたもので、その目的は、広い運転領域にわた
り、スモークとNOxの発生量を大幅に低減でき、且つ
燃費の悪化を抑制できる内燃機関の排気浄化装置を提供
することにある。
Further, the conventional method cannot significantly reduce the amount of smoke emitted. Therefore, when a trap filter is used as an exhaust gas purifying means, frequent regeneration operations are required to incinerate and remove the collected smoke. . This could lead to a significant decrease in the durability of the filter. In order to avoid this, it is necessary to reduce the reproduction frequency by using a larger filter, but it is practically difficult in consideration of the mountability to a vehicle. The present invention has been made based on the above circumstances, and an object of the present invention is to provide an exhaust gas purification device for an internal combustion engine that can significantly reduce the amount of smoke and NOx generated over a wide operation range and suppress deterioration of fuel efficiency. To provide.

【0005】[0005]

【課題を解決するための手段】(請求項1の手段)内燃
機関の出力が中負荷域に入る時に、算出された燃料噴射
時期を遅角させた状態で排気還流量を増加させると、そ
の排気還流量の増加に伴って内燃機関から排出されるス
モーク量が次第に増加し、ピークに達した後、減少する
特性を示し、この特性を中負荷域スモーク特性と呼ぶ時
に、燃焼温度低減手段は、出力算出手段で算出される出
力が中負荷域を示す所定値T1 と所定値T2 (T1 >T
2 )との間に入る場合に、内燃機関の燃料消費量が大き
く増加しない範囲で、中負荷域スモーク特性が得られる
まで燃料噴射時期を遅角させ、且つスモーク量がピーク
後に減少する領域まで排気還流量を増加させることを特
徴とする。なお、上記の「燃料消費量が大きく増加しな
い範囲」とは、例えば「燃費悪化が5%以内の範囲」で
ある。
When the output of the internal combustion engine enters a medium load range, the exhaust gas recirculation amount is increased with the calculated fuel injection timing delayed. The amount of smoke discharged from the internal combustion engine gradually increases with the increase in the amount of exhaust gas recirculation, and shows a characteristic that decreases after reaching a peak.When this characteristic is referred to as a medium load region smoke characteristic, the combustion temperature reducing means The output calculated by the output calculation means is a predetermined value T1 indicating a middle load range and a predetermined value T2 (T1> T
2) If the fuel consumption of the internal combustion engine does not increase significantly, the fuel injection timing is retarded until the smoke characteristic in the medium load range is obtained, and until the smoke amount decreases after the peak. The exhaust gas recirculation amount is increased. The “range in which the fuel consumption does not greatly increase” is, for example, a “range in which fuel consumption deterioration is within 5%”.

【0006】本発明の作用を図5及び図6に基づいて説
明する。図5は、エンジン出力が中負荷域(例えば出力
トルク30〜70Nm)の時に排気還流量(以下EGR
量と呼ぶ)を増やした場合のエミッションと燃料消費量
(燃費)との関係を示すもので、図中の破線は、基本の
噴射時期で燃料を噴射した場合であり、図中の実線は、
基本の噴射時期より遅角して燃料を噴射した場合であ
る。
The operation of the present invention will be described with reference to FIGS. FIG. 5 shows the exhaust gas recirculation amount (hereinafter referred to as EGR) when the engine output is in a middle load range (for example, output torque of 30 to 70 Nm).
(Referred to as an amount), the relationship between the emission and the fuel consumption (fuel consumption) when the fuel consumption is increased. The broken line in the figure is the case where fuel is injected at the basic injection timing, and the solid line in the figure is
This is a case where fuel is injected with a delay from the basic injection timing.

【0007】以下、EGR量とスモーク、NOx、燃費
との関係について説明する。 a)スモーク:EGR量を増やすと、シリンダ内の燃焼
悪化に伴い、スモークの発生量が徐々に増加する。従来
は、この範囲内(EGR量の増加に伴ってスモーク発生
量が増加する範囲)で、NOx及びその他の項目との兼
ね合いからEGR量が決定されていた。この場合、噴射
時期を遅角することでスモークを低減することが可能で
ある(図5の(A)において破線から実線まで減少)。
この範囲内では、スモークの発生を抑制した上で、十分
にEGR量を増やすことができないため、大幅にNOx
を低減することは困難である。言い換えれば、この場
合、燃料と空気との混合を促進することでスモークは減
少するが、それだけでは十分な量を減少させることは困
難であった。
The relationship between the EGR amount and smoke, NOx, and fuel consumption will be described below. a) Smoke: When the EGR amount is increased, the amount of smoke generated gradually increases due to deterioration of combustion in the cylinder. Conventionally, the EGR amount has been determined within this range (a range in which the amount of smoke generation increases with an increase in the EGR amount) in consideration of NOx and other items. In this case, it is possible to reduce smoke by retarding the injection timing (reduced from the broken line to the solid line in FIG. 5A).
Within this range, it is not possible to sufficiently increase the EGR amount while suppressing the generation of smoke, so that the NOx
Is difficult to reduce. In other words, in this case, although the smoke is reduced by promoting the mixing of the fuel and the air, it has been difficult to reduce the amount by itself.

【0008】しかし、従来より更にEGR量を増やす
と、図5の実線で示す様に、スモーク量は一旦ピークに
達した後、急激に低下し、その後、ほとんど発生しなく
なる。このメカニズムは、多量のEGR(70%を超え
る超多量EGR)により、シリンダ内の不活性ガスが増
加して酸素濃度が低下するため、燃焼が緩慢になり、ま
たシリンダ内の熱容量が増加して燃料燃焼時のシリンダ
内温度が低下するためである。この領域では、シリンダ
内の未燃HCが酸素不足の中で蒸し焼きにならないた
め、スモークとならず、そのままあるいはSOF(排気
中に含まれる粒子状物質のうち有機溶剤に可溶な成分)
として排出される。これは、従来のディーゼル燃焼の単
なる延長ではなく、新たな低スモーク燃焼と言えるもの
である。
However, when the EGR amount is further increased as compared with the prior art, as shown by a solid line in FIG. 5, the smoke amount once reaches a peak, then drops sharply, and thereafter hardly occurs. This mechanism is based on the fact that a large amount of EGR (ultra-high amount of EGR exceeding 70%) increases the inert gas in the cylinder and lowers the oxygen concentration, so that the combustion becomes slower and the heat capacity in the cylinder increases. This is because the temperature in the cylinder during fuel combustion decreases. In this region, the unburned HC in the cylinder does not become steamed due to lack of oxygen, so that it does not become smoked, or it remains as it is or SOF (a component soluble in an organic solvent among particulate matter contained in exhaust gas).
Is discharged as This is not simply an extension of conventional diesel combustion, but a new low smoke combustion.

【0009】この燃焼の結果排出されるHCやSOF
は、排気管に設置される排気浄化手段に担持された酸化
触媒の作用により容易に浄化される。もし、これらが蒸
し焼き状態で一旦スモークになってしまうと、その浄化
のためには大掛かりで複雑な後処理装置が必要となる
が、本発明の燃焼によれば、排出されるスモーク量が極
めて少ないので、前記の後処理装置は不要である。ま
た、本発明では、燃費悪化抑制を優先するため、燃費が
大きく悪化するまでEGRを過剰に増やすことはしな
い。従って、条件によっては、従来と比較して極少量で
あるがスモークが排出される場合がある。しかし、その
量が少ないことから、簡素な排気浄化手段により容易に
浄化される。
The HC and SOF emitted as a result of this combustion
Is easily purified by the action of the oxidation catalyst carried by the exhaust purification means provided in the exhaust pipe. If these are once smoked in a steamed state, a large and complicated after-treatment device is required for purification, but according to the combustion of the present invention, the amount of smoke discharged is extremely small. Therefore, the post-processing device is unnecessary. Further, in the present invention, since the priority is given to suppressing fuel consumption deterioration, the EGR is not excessively increased until the fuel consumption is significantly deteriorated. Therefore, depending on the conditions, smoke may be discharged, although the amount is extremely small as compared with the conventional case. However, since the amount is small, it is easily purified by a simple exhaust gas purifying means.

【0010】b)NOx:EGR量の増加とともにシリ
ンダ内の酸素濃度の低下及びシリンダ内熱容量の増加の
ため、燃焼が緩慢となり、且つ燃焼時のシリンダ内温度
が低下する。その結果、予混合燃焼に伴う急激な熱発生
が抑制され、サーマルNOxの発生量が減少する。この
NOxの発生量は、EGR量が多いほど少なくなる。ス
モーク発生量がピークを超えた領域では、従来にない多
量のEGRが可能となるため、スモーク、NOxともに
非常に少ない燃焼が可能となる。
B) NOx: As the amount of EGR increases, the oxygen concentration in the cylinder decreases and the heat capacity in the cylinder increases, so that combustion becomes slow and the temperature in the cylinder during combustion decreases. As a result, rapid heat generation accompanying premix combustion is suppressed, and the amount of generated thermal NOx is reduced. The generation amount of NOx decreases as the EGR amount increases. In a region where the amount of smoke generation exceeds the peak, a much larger amount of EGR than ever before is possible, so that very small amounts of smoke and NOx can be burned.

【0011】c)燃費:EGR量の増加は、燃焼の悪化
による熱効率の低下を招くため、これを過度に行うと、
図5(C)に示すように、燃料消費量の増大を引き起こ
す。しかし、実験の結果、スモーク発生量がピークとな
るEGR量を超えても、しばらくの間は、燃料消費量が
それほど増加しない領域(図5(B)の領域)が存在す
ることが明らかになった。これに基づき、EGR量を、
図5(B)の領域まで増やすことで、スモークとNOx
の発生量を共に大幅に低減した上で、燃費悪化を抑制す
ることが可能となる。
C) Fuel efficiency: An increase in the amount of EGR causes a decrease in thermal efficiency due to deterioration of combustion.
As shown in FIG. 5C, the fuel consumption increases. However, as a result of the experiment, even if the smoke generation amount exceeds the peak EGR amount, there is a region (the region in FIG. 5B) where the fuel consumption does not increase so much for a while. Was. Based on this, the EGR amount is
By increasing to the region of FIG. 5B, smoke and NOx
It is possible to significantly reduce the fuel consumption while significantly reducing the generation amount of both.

【0012】次に、エンジン出力が中負荷域の時に、多
量のEGR(図5の(B)の領域)を実施した上で、噴
射時期の遅角量を増やした場合のエミッションと燃費と
の関係を図6に示す。以下、噴射時期遅角量とスモー
ク、NOx、燃費との関係について説明する。 d)スモーク:遅角量を増やすと、スモークは減少する
が、図6(D)に示す様に、遅角量が過小の場合は、ス
モークの減少量は少ない。さらに遅角量を増やすと、ス
モークは急激に低下し、ほとんど発生しなくなる。これ
は、多量のEGRと噴射時期の遅角により、シリンダ内
の温度が低下した状態で燃料が燃焼するため、燃焼が緩
慢になり、その結果、シリンダ内の未燃HCが酸素不足
の中で蒸し焼き状態にならないため、スモークとなら
ず、そのままあるいはSOFとして排出されるからであ
る。これは、排気管に設けた排気浄化手段により容易に
浄化される。
Next, when the engine output is in the middle load range, a large amount of EGR is performed (region (B) of FIG. 5), and then the emission and fuel consumption are increased when the amount of retard of the injection timing is increased. FIG. 6 shows the relationship. Hereinafter, the relationship between the injection timing retard amount, smoke, NOx, and fuel consumption will be described. d) Smoke: When the retard amount is increased, the smoke decreases, but as shown in FIG. 6D, when the retard amount is too small, the decrease amount of the smoke is small. When the retard amount is further increased, the smoke rapidly decreases and hardly occurs. This is because the fuel burns in a state where the temperature in the cylinder is lowered due to a large amount of EGR and the retardation of the injection timing, so that the combustion is slowed down. This is because the steamed state does not occur, so that the smoke is not generated and is discharged as it is or as SOF. This is easily purified by exhaust gas purification means provided in the exhaust pipe.

【0013】e)NOx:遅角量の増加とともに燃焼時
のシリンダ内温度が低下する。その結果、サーマルNO
xの発生量が減少する。このNOxの発生量は、遅角量
が多いほど少なくなる。スモーク発生量がピークを超え
た領域では、従来にない多量のEGRが可能となるた
め、スモーク、NOxともに非常に少ない燃焼が可能と
なる。
E) NOx: The temperature in the cylinder during combustion decreases as the retard amount increases. As a result, thermal NO
The generation amount of x decreases. The generation amount of NOx decreases as the retard amount increases. In a region where the amount of smoke generation exceeds the peak, a much larger amount of EGR than ever before is possible, so that very small amounts of smoke and NOx can be burned.

【0014】f)燃費:遅角量の増加は、燃焼の悪化に
よる熱効率の低下を招くため、これを過度に行うと、図
6(F)に示すように、燃料消費量の増大を引き起こ
す。しかし、実験の結果、スモークがほとんど発生しな
くなった後でも、しばらくの間は、燃料消費量がそれほ
ど増加しない領域(図6(E)の領域)が存在すること
が明らかになった。従って、噴射時期の遅角量を、図6
(E)の領域まで増やすことで、スモークとNOxの発
生量を共に大幅に低減した上で、燃費悪化を抑制するこ
とが可能となる。
F) Fuel efficiency: An increase in the amount of retardation causes a decrease in thermal efficiency due to deterioration of combustion, and if this is done excessively, an increase in fuel consumption will occur, as shown in FIG. 6 (F). However, as a result of the experiment, it became clear that there is a region where the fuel consumption does not increase so much (the region in FIG. 6 (E)) for a while even after almost no smoke is generated. Therefore, the amount of retard of the injection timing is calculated as shown in FIG.
By increasing to the region (E), it is possible to significantly reduce both the amount of smoke and the generation of NOx and to suppress the deterioration of fuel efficiency.

【0015】以上、説明したように、スモークとNOx
を同時に低減するためには、燃料燃焼時のシリンダ内温
度を低下させることが重要であり、その効果が非常に大
きい。そこで、この効果をより有効に引き出すために、
内燃機関に吸入される吸入ガスを冷却する吸入ガス冷却
手段を設ける。これにより、シリンダ内に吸入される吸
入ガスの温度を低下させることができるため、燃料燃焼
時のシリンダ内温度を低下させることができる。また、
燃焼温度低減手段は、検出された排気中の酸素濃度が、
運転状態検出手段の出力から求められた所定値となる様
に排気還流量を補正する。図5に示した様に、低スモー
クと低NOxを両立するEGR量の範囲は比較的狭く、
これが適正量からずれるとエミッションあるいは燃費の
大きな悪化を招く可能性がある。
As described above, smoke and NOx
In order to simultaneously reduce the temperature, it is important to lower the temperature in the cylinder during fuel combustion, and the effect is very large. So, to bring out this effect more effectively,
An intake gas cooling unit is provided for cooling the intake gas taken into the internal combustion engine. Thus, the temperature of the intake gas sucked into the cylinder can be reduced, so that the temperature in the cylinder during fuel combustion can be reduced. Also,
The combustion temperature reducing means, the detected oxygen concentration in the exhaust,
The exhaust gas recirculation amount is corrected so as to have a predetermined value obtained from the output of the operating state detecting means. As shown in FIG. 5, the range of the EGR amount that achieves both low smoke and low NOx is relatively narrow.
If this deviates from the appropriate amount, there is a possibility that emission or fuel consumption will be greatly deteriorated.

【0016】一方、実際には、各部品の性能バラツキあ
るいは特性の経時変化、さらには車両加速中に新気ある
いは還流排気量の増加に遅れが生じてEGR量が適正値
からずれることがある。特に、スモークの排出特性は、
EGR量に対して敏感であるため、スモーク抑制のため
には精度の高いEGR制御が必要となる。これに対し、
本発明では、EGR量が適正値からずれることを防ぐた
め、EGRのフィードバック制御を行う。この時、燃焼
状態に関する情報を含み、エミッション(特にスモー
ク)と密接な関係がある排気中の酸素濃度を検出する。
これにより、吸気系、EGR系、噴射系に含まれる全て
の誤差を吸収したうえで、精度の高いフィードバック制
御が可能となる。
On the other hand, in practice, the EGR amount may deviate from an appropriate value due to a variation in performance or a change with time of characteristics of each part or a delay in an increase in fresh air or recirculated exhaust gas during vehicle acceleration. In particular, the emission characteristics of smoke
Since it is sensitive to the EGR amount, highly accurate EGR control is required for suppressing smoke. In contrast,
In the present invention, EGR feedback control is performed in order to prevent the EGR amount from deviating from an appropriate value. At this time, the oxygen concentration in the exhaust gas including the information on the combustion state and closely related to the emission (especially, smoke) is detected.
As a result, all errors included in the intake system, the EGR system, and the injection system can be absorbed, and highly accurate feedback control can be performed.

【0017】(請求項2の手段)請求項1に記載した内
燃機関の排気浄化装置において、吸入ガス冷却手段は、
排気還流通路の途中に設けられ、排気還流通路を通って
吸気側へ還流する排気を冷却する還流排気冷却手段であ
る。この還流排気冷却手段は、例えば、水冷式で冷却性
能が高いものを用いる。これにより、排気還流通路を通
って吸気管へ流入する排気の温度が低下するので、シリ
ンダ内に吸入される吸入ガスの温度を低下させることが
できる。
According to a second aspect of the present invention, in the exhaust gas purifying apparatus for an internal combustion engine according to the first aspect, the intake gas cooling means includes:
This is a recirculation exhaust gas cooling means provided in the middle of the exhaust gas recirculation passage to cool the exhaust gas recirculating to the intake side through the exhaust gas recirculation passage. As the recirculated exhaust gas cooling means, for example, a water-cooled type having high cooling performance is used. As a result, the temperature of the exhaust gas flowing into the intake pipe through the exhaust gas recirculation passage decreases, so that the temperature of the intake gas sucked into the cylinder can be reduced.

【0018】(請求項3の手段)請求項2に記載した内
燃機関の排気浄化装置において、還流排気冷却手段の容
量を内燃機関の排気量よりも大きくする。これにより、
還流排気を十分に冷却できるため、容易にエミッション
を低下することができる。
According to a third aspect of the present invention, in the exhaust gas purifying apparatus for an internal combustion engine according to the second aspect, the capacity of the recirculation exhaust gas cooling means is made larger than the displacement of the internal combustion engine. This allows
Since the recirculated exhaust gas can be sufficiently cooled, the emission can be easily reduced.

【0019】(請求項4の手段)請求項1〜3に記載し
た何れかの内燃機関の排気浄化装置において、内燃機関
の圧縮比を通常よりも小さくする。これにより、燃料燃
焼前の圧縮端温度を低下させることができるため、燃料
燃焼時のシリンダ内温度を低下させることができる。
According to a fourth aspect of the present invention, in any one of the first to third aspects, the compression ratio of the internal combustion engine is made smaller than usual. Thus, the compression end temperature before the fuel combustion can be reduced, so that the cylinder internal temperature during the fuel combustion can be reduced.

【0020】(請求項5の手段)請求項1〜3に記載し
た何れかの内燃機関の排気浄化装置において、内燃機関
の出力が中負荷域となった時、内燃機関の圧縮機を小さ
い方へ変更する。これにより、燃料燃焼前の圧縮端温度
を低下させることができるため、燃料燃焼時のシリンダ
内温度を低下させることができる。
According to a fifth aspect of the present invention, in the exhaust gas purifying apparatus for an internal combustion engine according to any one of the first to third aspects, when the output of the internal combustion engine is in a medium load range, the compressor of the internal combustion engine is set to a smaller one. Change to Thus, the compression end temperature before the fuel combustion can be reduced, so that the cylinder internal temperature during the fuel combustion can be reduced.

【0021】(請求項6の手段)請求項3または4に記
載した内燃機関の排気浄化装置において、内燃機関の圧
縮比を18以下とする。これは、燃料が燃焼する直前の
シリンダ内のガスの温度(圧縮上死点におけるシリンダ
内のガス圧縮温度)を低下することで、その分だけ燃焼
後のピーク温度を低下させることを狙ったものである。
従来18〜20に設定される圧縮比を、18以下とする
ことで、より容易に低スモークと低NOxを両立できる
燃焼を実現できる。
(Means of Claim 6) In the exhaust gas purifying apparatus for an internal combustion engine according to claim 3 or 4, the compression ratio of the internal combustion engine is set to 18 or less. This aims at lowering the peak temperature after combustion by reducing the temperature of the gas in the cylinder just before the fuel burns (the gas compression temperature in the cylinder at the compression top dead center). It is.
By setting the compression ratio, which is conventionally set at 18 to 20, to 18 or less, it is possible to more easily realize combustion that can achieve both low smoke and low NOx.

【0022】(請求項7の手段)請求項1〜6に記載し
た何れかの内燃機関の排気浄化装置において、排気浄化
手段は、酸化触媒を担持したトラップフィルタである。
本発明の燃焼によって発生した未燃HCあるいはSOF
分は、酸化触媒で容易に浄化可能である。また、条件に
よって少量発生するスモークは、トラップフィルタで捕
集され、徐々に堆積するが、その発生量が少ないため、
フィルタ再生の頻度は低い。また、酸化触媒を担持して
いるので、フィルタ上に堆積したスモークは内燃機関の
排気温度程度の比較的低い温度でも容易に焼却可能とな
る。従って、排気浄化手段は、従来と比較して簡素な構
成にすることができる。
(Embodiment 7) In the exhaust gas purifying apparatus for an internal combustion engine according to any one of claims 1 to 6, the exhaust gas purifying means is a trap filter carrying an oxidation catalyst.
Unburned HC or SOF generated by the combustion of the present invention
The fraction can be easily purified with an oxidation catalyst. In addition, smoke generated in small amounts depending on the conditions is collected by the trap filter and gradually deposited, but since the amount of generated smoke is small,
The frequency of filter regeneration is low. In addition, since the oxidation catalyst is supported, the smoke deposited on the filter can be easily incinerated even at a relatively low temperature such as the exhaust temperature of the internal combustion engine. Therefore, the exhaust gas purifying means can have a simple configuration as compared with the conventional one.

【0023】(請求項8の手段)請求項1〜7に記載し
た何れかの内燃機関の排気浄化装置において、燃焼温度
低減手段は、出力算出手段で算出される出力が低負荷域
を示す所定値T2 以下の場合に、噴射時期算出手段によ
り算出された燃料噴射時期を進角させる。エンジン出力
が低負荷域(例えば出力トルク30Nm以下)の時に、
噴射時期を図8(e)の領域に設定してEGR量を増や
した場合のエミッションと燃費との関係を図7に示す。
(Eighth Means) In the exhaust gas purifying apparatus for an internal combustion engine according to any one of the first to seventh aspects, the combustion temperature reducing means may be configured so that the output calculated by the output calculating means indicates a low load range. When the value is equal to or less than the value T2, the fuel injection timing calculated by the injection timing calculation means is advanced. When the engine output is in a low load range (for example, an output torque of 30 Nm or less),
FIG. 7 shows the relationship between emission and fuel efficiency when the injection timing is set in the region of FIG. 8E and the EGR amount is increased.

【0024】低負荷時には、シリンダ内の空気(酸素)
量が多いため、EGR量を増加してもスモークはほとん
ど発生しない。但し、EGR量が過小(図7(a)の領
域)になると、NOxの発生が増大し、EGR量が過大
(図7(c)の領域)になると、燃費が悪化する。従っ
て、NOxの排出防止と燃費悪化の防止とを両立可能な
範囲(図7(b)の領域)にEGR量が設定される。そ
の結果、スモークの排出も防止できる。
At low load, air (oxygen) in the cylinder
Since the amount is large, almost no smoke occurs even if the EGR amount is increased. However, when the EGR amount becomes too small (the region in FIG. 7A), the generation of NOx increases, and when the EGR amount becomes too large (the region in FIG. 7C), the fuel efficiency deteriorates. Therefore, the EGR amount is set in a range (the region of FIG. 7B) in which both the prevention of NOx emission and the prevention of deterioration of fuel efficiency can be achieved. As a result, the discharge of smoke can also be prevented.

【0025】一方、EGR量を図7(b)の領域に設定
して噴射時期を変更した場合のエミッションと燃費との
関係を図8に示す。この条件では、シリンダ内の空気
(酸素)量が多いため、遅角量を増加してもスモークは
発生しない。また、NOxは、図8(d)に示す様に噴
射時期を極端に進角しない限りは大きく増加しない。こ
れに対し、燃料消費量は、噴射時期を遅角するに連れて
多くなる。従って、図8(f)に示す様に、中負荷時と
同様に噴射時期を遅角すると、燃費のみが悪化してしま
うので、燃費を向上するために、特にNOxの発生量が
大きく増加しない程度に噴射時期を進角させる(図8
(e)の領域)。これにより、燃費を改善した上でスモ
ークとNOxの発生を抑えることができる。
On the other hand, FIG. 8 shows the relationship between the emission and the fuel efficiency when the injection timing is changed by setting the EGR amount in the region shown in FIG. 7B. Under this condition, since the amount of air (oxygen) in the cylinder is large, no smoke is generated even if the amount of retard is increased. NOx does not increase significantly unless the injection timing is advanced extremely as shown in FIG. 8D. On the other hand, the fuel consumption increases as the injection timing is retarded. Accordingly, as shown in FIG. 8 (f), when the injection timing is retarded in the same manner as in the case of the medium load, only the fuel efficiency is deteriorated. The injection timing is advanced to the extent shown in FIG.
(E) area). Thereby, it is possible to suppress the generation of smoke and NOx while improving the fuel efficiency.

【0026】(請求項9の手段)請求項1〜8に記載し
た何れかの内燃機関の排気浄化装置において、燃焼温度
低減手段が具備する噴射量補正手段は、出力算出手段で
算出される出力が所定値T1 以下の値からT1 より大き
い値に、またはT1 より大きい値からT1 以下の値に変
化した場合、あるいは出力算出手段で算出される出力が
所定値T2 以下の値からT2 より大きい値に、またはT
2 より大きい値からT2 以下の値に変化した場合に、内
燃機関の出力が連続的に変化する様に燃料噴射量を補正
する。
According to a ninth aspect of the present invention, in the exhaust gas purifying apparatus for an internal combustion engine according to any one of the first to eighth aspects, the injection amount correcting means included in the combustion temperature reducing means includes an output calculated by the output calculating means. Is changed from a value less than the predetermined value T1 to a value greater than T1, or from a value greater than T1 to a value less than T1 or the output calculated by the output calculation means is a value greater than T2 from a value less than the predetermined value T2 Or T
When the value changes from a value greater than 2 to a value equal to or less than T2, the fuel injection amount is corrected so that the output of the internal combustion engine changes continuously.

【0027】本発明による燃焼を行う場合、EGR量あ
るいは噴射時期遅角量が多い領域では若干の燃焼悪化を
伴うため、従来の燃焼と比較して熱効率が低下する。ま
た、極低負荷時に噴射時期を進角する場合には、中負荷
域と比較して熱効率が向上する。従って、内燃機関の運
転状態により、同量の燃料を噴射しても得られる出力ト
ルクに差が生じる場合がある。即ち、内燃機関の運転領
域が中負荷域と高負荷域(所定値T1 より大きい領域)
との間、または中負荷域と低負荷域との間で変化する場
合は、出力トルクが滑らかに変化する様に、運転領域変
化後の燃料噴射量を補正する必要がある。
When the combustion according to the present invention is performed, in a region where the EGR amount or the injection timing retard amount is large, the combustion is slightly deteriorated, so that the thermal efficiency is reduced as compared with the conventional combustion. Further, when the injection timing is advanced at an extremely low load, the thermal efficiency is improved as compared with the middle load region. Therefore, depending on the operation state of the internal combustion engine, the output torque obtained even when the same amount of fuel is injected may differ. That is, the operation range of the internal combustion engine is a medium load range and a high load range (a range larger than the predetermined value T1).
Or between the middle load range and the low load range, it is necessary to correct the fuel injection amount after the change in the operating range so that the output torque changes smoothly.

【0028】[0028]

【発明の実施の形態】次に、本発明の実施形態を図面に
基づいて説明する。図1は排気浄化装置の処理手順を示
すフローチャート、図2は排気浄化装置の概略構成図で
ある。本排気浄化装置が適用されるディーゼルエンジン
1は、図2に示す様に、コモンレール式の燃料噴射装置
を具備し、図示しない高圧ポンプから圧送された高圧の
燃料が常時コモンレール2に蓄えられ、所望の圧力、噴
射量、噴射時期でインジェクタ3から噴射される。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing a processing procedure of the exhaust gas purification device, and FIG. 2 is a schematic configuration diagram of the exhaust gas purification device. As shown in FIG. 2, the diesel engine 1 to which the present exhaust emission control device is applied is provided with a common rail type fuel injection device, in which high-pressure fuel pumped from a high-pressure pump (not shown) is constantly stored in the common rail 2. Is injected from the injector 3 at the pressure, injection amount, and injection timing.

【0029】排気浄化装置は、エンジン1の排気管4と
吸気管5とを接続する排気還流管6、この排気還流管6
内に設けられるEGR量制御弁7、排気還流管6の途中
に設けられるEGR冷却装置8、吸気管5内に設けられ
る吸気絞り弁9、排気管4に設置されるトラップフィル
タ10、及び本システムの作動を制御する電子制御装置
(以下ECU11と呼ぶ)等より構成される。
The exhaust gas purifier includes an exhaust gas recirculation pipe 6 connecting the exhaust pipe 4 and the intake pipe 5 of the engine 1,
EGR amount control valve 7 provided in the inside, EGR cooling device 8 provided in the middle of exhaust gas recirculation pipe 6, intake throttle valve 9 provided in intake pipe 5, trap filter 10 provided in exhaust pipe 4, and the present system And an electronic control unit (hereinafter, referred to as an ECU 11) for controlling the operation of the ECU.

【0030】EGR量制御弁7と吸気絞り弁9は、例え
ば電気モータで直接駆動する高応答なバルブを具備し、
エンジン1の運転条件に応じて速やかにバルブ開度を設
定可能に設けられている。EGR冷却装置8は、図示し
ない冷却水が導入され、その冷却水との熱交換によって
EGRガスを冷却するもので、例えば冷却効率の高い積
層フィンタイプが用いられる。但し、このEGR冷却装
置8は、その容量(冷却水通過部容量+EGRガス通過
部容量)がエンジン1の排気量より大きく設定されてい
る。
The EGR amount control valve 7 and the intake throttle valve 9 are provided with high-response valves which are directly driven by, for example, an electric motor.
The valve opening can be set quickly according to the operating condition of the engine 1. The EGR cooling device 8 receives cooling water (not shown) and cools the EGR gas by heat exchange with the cooling water. For example, a laminated fin type having high cooling efficiency is used. However, the capacity of the EGR cooling device 8 (the capacity of the cooling water passage portion + the capacity of the EGR gas passage portion) is set to be larger than the displacement of the engine 1.

【0031】従来は、主としてEGR量制御弁7の開度
を所定量とすることで、吸気管5内の圧力と排気管4内
の圧力との差に応じてEGRが行われていた。これに対
し、本実施例では、低エミッションを実現するための多
量EGRを実施するために、EGR量制御弁7に加えて
吸気絞り弁9とEGR冷却装置8を備えている。即ち、
吸気絞り弁9を大きく絞り(開度を小さくし)、吸気管
5内の圧力が低い状態でEGR量制御弁7を開くと、E
GR量制御弁7の前後差圧が増大して、EGR量を従来
と比較して大きく増加することができる。
Conventionally, the EGR is performed in accordance with the difference between the pressure in the intake pipe 5 and the pressure in the exhaust pipe 4 mainly by setting the opening of the EGR amount control valve 7 to a predetermined amount. In contrast, in the present embodiment, an intake throttle valve 9 and an EGR cooling device 8 are provided in addition to the EGR amount control valve 7 in order to perform a large amount of EGR for realizing low emission. That is,
When the intake throttle valve 9 is greatly throttled (opening degree is reduced) and the EGR amount control valve 7 is opened while the pressure in the intake pipe 5 is low, E
The differential pressure across the GR amount control valve 7 is increased, and the EGR amount can be greatly increased as compared with the related art.

【0032】この時、吸気管5に還流するEGRガスを
EGR冷却装置8で冷却することにより、高温で膨張し
た状態ではなく、冷却されて収縮した高密度なEGRガ
スを吸気管5からシリンダ内へ導入することができる。
これにより、燃料の燃焼に必要な酸素量を確保したうえ
で、シリンダ内のガスの熱容量を最大限に増加できる。
その結果、燃料燃焼時のシリンダ内温度が大きく低下す
る。さらに、EGRガスを十分に冷却することで、シリ
ンダ内吸入ガスの温度を低下させることができる。これ
も、燃料燃焼時のシリンダ内温度低下に大きく寄与す
る。従って、低スモークと低NOxを両立できる燃焼が
可能となる。
At this time, the EGR gas flowing back to the intake pipe 5 is cooled by the EGR cooling device 8 so that the high-density EGR gas that has been cooled and contracted, instead of being expanded at a high temperature, is transferred from the intake pipe 5 into the cylinder. Can be introduced.
As a result, the heat capacity of the gas in the cylinder can be maximized while securing the amount of oxygen necessary for fuel combustion.
As a result, the temperature in the cylinder during fuel combustion drops significantly. Further, by sufficiently cooling the EGR gas, the temperature of the cylinder intake gas can be reduced. This also greatly contributes to the temperature reduction in the cylinder during fuel combustion. Therefore, combustion that can achieve both low smoke and low NOx can be performed.

【0033】トラップフィルタ10は、例えばコージェ
ライトや炭化珪素等の多孔質セラミックから成るハニカ
ム状の流路を交互に目封じして形成され、フィルタ表面
にはPtやPd等の貴金属を主成分とする酸化触媒が担
持されている。このトラップフィルタ10は、排気管4
に設けられるターボ12の下流に設置され、エンジン1
から排出されたスモークを含む排気が多孔質セラミック
の壁面内を通過する際に、フィルタ細孔径より大きなス
モーク粒子を主にフィルタ表面で捕集する。また、酸化
触媒の作用により、燃焼時に排出されるHC、CO、S
OFを酸化して容易に浄化することができる。
The trap filter 10 is formed by alternately plugging honeycomb-shaped channels made of porous ceramics such as cordierite and silicon carbide, and has a filter surface containing a precious metal such as Pt or Pd as a main component. Oxidation catalyst is carried. The trap filter 10 is connected to the exhaust pipe 4
The engine 1 is installed downstream of the turbo 12
When the exhaust containing smoke discharged from the filter passes through the wall surface of the porous ceramic, smoke particles larger than the filter pore diameter are mainly collected on the filter surface. HC, CO, S discharged during combustion by the action of the oxidation catalyst.
The OF can be oxidized and easily purified.

【0034】ECU11は、後述する各種センサで検出
されたエンジン1の運転状態に基づき、インジェクタ3
を駆動する電磁弁13、吸気絞り弁9、及びEGR量制
御弁7の開閉動作を制御するとともに、排気酸素濃度に
応じて吸気絞り弁9とEGR量制御弁7の開度を補正制
御する。
The ECU 11 controls the injector 3 based on the operating state of the engine 1 detected by various sensors described later.
In addition to controlling the opening and closing operations of the electromagnetic valve 13, the intake throttle valve 9, and the EGR amount control valve 7, which drive the ECU, the opening degrees of the intake throttle valve 9 and the EGR amount control valve 7 are corrected and controlled according to the exhaust oxygen concentration.

【0035】各種センサは、エンジン回転速度を検出す
るエンジン回転センサ14、図示しないアクセルペダル
の踏み込み量からアクセル開度を検出するアクセル開度
センサ15、コモンレール2内の噴射圧力を検出する噴
射圧センサ16、トラップフィルタ10の上流で排気管
4内の酸素濃度を検出する排気酸素濃度センサ17(例
えば限界電流方式)等が設けられている。
Various sensors include an engine rotation sensor 14 for detecting an engine rotation speed, an accelerator opening sensor 15 for detecting an accelerator opening from an amount of depression of an accelerator pedal (not shown), and an injection pressure sensor for detecting an injection pressure in the common rail 2. 16. An exhaust oxygen concentration sensor 17 (for example, a limiting current method) for detecting the oxygen concentration in the exhaust pipe 4 upstream of the trap filter 10 is provided.

【0036】なお、ディーゼルエンジン1の圧縮比は、
通常18〜20程度に設定されるが、本実施例では、1
8以下に設定される。これにより、圧縮上死点における
シリンダ内温度を低下し、その結果、燃料燃焼時のシリ
ンダ内温度を大きく低下することができる。
The compression ratio of the diesel engine 1 is
Usually, it is set to about 18 to 20, but in this embodiment, 1 is set.
8 or less. As a result, the temperature in the cylinder at the compression top dead center is reduced, and as a result, the temperature in the cylinder during fuel combustion can be significantly reduced.

【0037】次に、本排気浄化装置の作動を図1に示す
フローチャートに基づいて説明する。但し、ここでは、
エンジン1の運転条件等に応じてEGR量及び噴射時期
を設定する部分についてのみ説明する。 Step100 …エンジン回転センサ14、アクセル開度セン
サ15の出力からエンジン回転数NEとアクセル開度を
読み込む。 Step101 (本発明の出力算出手段)…Step100 で読み込
んだセンサ出力からエンジン1の出力トルクTを算出す
る。両者の関係は、予めECU11のメモリに記憶され
ている。
Next, the operation of the exhaust gas purifying apparatus will be described with reference to the flowchart shown in FIG. However, here
Only the part that sets the EGR amount and the injection timing according to the operating conditions of the engine 1 and the like will be described. Step 100: The engine speed NE and the accelerator opening are read from the outputs of the engine rotation sensor 14 and the accelerator opening sensor 15. Step 101 (output calculation means of the present invention): The output torque T of the engine 1 is calculated from the sensor output read in Step 100. The relationship between the two is stored in the memory of the ECU 11 in advance.

【0038】Step102 …エンジン1の運転領域が変化し
たか否かを判定する。具体的には、前回算出した出力ト
ルクと今回算出した出力トルクとを比較し、両者が図3
に示すトルクT1 あるいはT2 (T1 >T2 )を跨いで
いるか否かを判定する。エンジン1の運転領域が変化し
ている場合、つまりT1 あるいはT2 を跨いでいる場合
は、Step103 へ進み、エンジン1の運転領域が変化して
いない場合、つまりT1 あるいはT2 を跨いでいない場
合は、Step104 へ進む。
Step 102: It is determined whether or not the operating range of the engine 1 has changed. Specifically, the output torque calculated last time is compared with the output torque calculated this time, and both are compared with those in FIG.
It is determined whether the torque straddles the torque T1 or T2 (T1> T2). If the operating region of the engine 1 is changing, that is, if the vehicle is straddling T1 or T2, the process proceeds to Step 103. If the operating region of the engine 1 is not changing, that is, if the vehicle is not straddling T1 or T2, Proceed to Step104.

【0039】Step103 (本発明の噴射量補正手段)…出
力トルクが急変するのを防ぐための噴射量補正量を算出
する。 エンジン1の運転領域が図3に示す高負荷域と中負
荷域との間、あるいは中負荷域と低負荷域との間で
変化する場合は、同じ燃料消費量であっても若干燃焼効
率が異なる(とではの方が良い、とではの
方が良い)ため、出力トルクが若干変化する。そこで、
この差によるトルク急変によりドライバビリティが悪化
するのを防止するために噴射量を補正する。
Step 103 (Injection amount correction means of the present invention): An injection amount correction amount for preventing a sudden change in output torque is calculated. When the operating region of the engine 1 changes between the high load region and the medium load region shown in FIG. 3, or between the medium load region and the low load region, the combustion efficiency slightly increases even with the same fuel consumption. Since they are different (and better than and better), the output torque slightly changes. Therefore,
The injection amount is corrected in order to prevent drivability from being deteriorated due to a sudden change in torque due to this difference.

【0040】例として、出力トルクがT1 を跨いで変化
する場合を図3及び図4により説明する。例えば、アク
セルを踏み込んで急加速する際に、図3に示す中負荷
域(低スモークと低NOxを両立する燃焼領域)から
高負荷域(従来と同じ燃焼領域)へと運転条件が変化す
るが、その際に燃焼状態の変化を考慮せずに燃料噴射量
を同一(図4のQ0 )とすると、出力トルクがTT0 か
らTT1 へと急増する。これは、トルクショックを生
じ、ドライバビリティを悪化させてしまう。
As an example, a case where the output torque changes over T1 will be described with reference to FIGS. For example, when the accelerator is depressed and the vehicle is rapidly accelerated, the operating conditions change from a medium load region (a combustion region in which low smoke and low NOx are compatible) shown in FIG. 3 to a high load region (the same combustion region as in the past). At this time, assuming that the fuel injection amount is the same (Q0 in FIG. 4) without considering the change in the combustion state, the output torque sharply increases from TT0 to TT1. This causes a torque shock and deteriorates drivability.

【0041】そこで、運転条件が変化する直後には、噴
射量をΔQだけ減量補正したQ1 とすることで、出力ト
ルクTT0 を保持するようにする(図4参照)。これに
より、出力トルクが瞬時に変化することによるドライバ
ビリティの悪化を防止できる。一方、運転領域がから
へと変化する場合には、逆に燃料噴射量を増量補正す
る。なお、この補正量は、出力トルクがT1 を跨いで変
化した後、所定時間経過後から徐々に減少し、やがて0
となる様にすることで、出力トルクを連続的に変化させ
ることができる。出力トルクがT2 を跨いで変化する場
合も上記と同様である。
Therefore, immediately after the operating conditions change, the output torque TT0 is maintained by setting the injection amount to Q1 reduced and corrected by ΔQ (see FIG. 4). Thereby, it is possible to prevent the drivability from being deteriorated due to the instantaneous change in the output torque. On the other hand, when the operating range changes from to, the fuel injection amount is increased and corrected. It should be noted that this correction amount gradually decreases after a lapse of a predetermined time after the output torque changes over T1, and eventually becomes zero.
By so setting, the output torque can be continuously changed. The same applies to the case where the output torque changes across T2.

【0042】Step104 …Step101 で算出した出力トルク
Tと第1の所定値T1 との大小関係を判定する。なお、
T1 は中負荷域の出力であり、例えば出力トルク70N
mに設定される。ここで、T>T1 の場合(図3に示す
高負荷域)は、エンジン出力が大きく、燃焼時の燃焼
温度が高いため、この状態で無理にEGRや噴射時期遅
角を行うと燃費等の悪化が大きく、低スモークと低NO
xを両立する燃焼の成立が困難なため、Step108 へ進ん
で従来のままの燃焼を行う。一方、T<T1 の場合(図
3に示す中負荷域及び低負荷域)は、低スモークと
低NOxを両立する燃焼が可能であるため、Step105 へ
進む。
Step 104... The magnitude relationship between the output torque T calculated in Step 101 and the first predetermined value T1 is determined. In addition,
T1 is an output in a medium load range, for example, an output torque of 70N
m. Here, in the case of T> T1 (high load range shown in FIG. 3), since the engine output is large and the combustion temperature during combustion is high, if EGR or the injection timing retard is forcibly performed in this state, the fuel consumption etc. High deterioration, low smoke and low NO
Since it is difficult to establish a combustion that satisfies x, the process proceeds to Step 108 to perform the conventional combustion. On the other hand, in the case of T <T1 (the middle load range and the low load range shown in FIG. 3), the combustion proceeds to low smoke and low NOx.

【0043】Step105 …Step101 で算出した出力トルク
Tと第2の所定値T2 との大小関係を判定する。なお、
T2 は低負荷域の出力であり、例えば出力トルク30N
mに設定される。ここで、T>T2 の場合(図3に示す
中負荷域)は、Step106 へ進み、T<T2 の場合(図
3に示す低負荷域)は、Step107 へ進む。
Step 105: The magnitude relationship between the output torque T calculated in Step 101 and the second predetermined value T2 is determined. In addition,
T2 is an output in a low load range, for example, an output torque of 30 N
m. Here, if T> T2 (medium load region shown in FIG. 3), the process proceeds to Step 106, and if T <T2 (low load region shown in FIG. 3), the process proceeds to Step 107.

【0044】Step106 …従来より多量のEGRを実施
し、且つ噴射時期を遅角して燃料燃焼時のシリンダ内温
度を低下するためのEGR量と遅角量とを算出する。な
お、EGR量及び遅角量は、各種センサで読み込んだエ
ンジン1の運転条件に基づき決定され、予めECU11
のメモリに記憶されている。また、基本の燃料噴射時期
は、公知な方法によりECU11にて算出される。
Step 106: A larger amount of EGR is performed than before, and an EGR amount and a retard amount are calculated for delaying the injection timing to lower the cylinder temperature during fuel combustion. The EGR amount and the retard amount are determined based on operating conditions of the engine 1 read by various sensors, and are determined in advance by the ECU 11.
Is stored in the memory. The basic fuel injection timing is calculated by the ECU 11 by a known method.

【0045】Step107 …低負荷域では、シリンダ内の空
気(酸素)量が多いため、EGR量を増加してもスモー
クは発生しない。従って、従来より多量のEGRを実施
するとともに、燃費悪化を抑制するために噴射時期を進
角して設定する。このためのEGR量と進角量を算出す
る。なお、EGR量及び進角量は、各種センサで読み込
んだエンジン1の運転条件に基づき決定され、予めEC
U11のメモリに記憶されている。
Step 107... In a low load range, since the amount of air (oxygen) in the cylinder is large, no smoke is generated even if the EGR amount is increased. Accordingly, a larger amount of EGR is performed than in the past, and the injection timing is advanced and set in order to suppress deterioration in fuel efficiency. The EGR amount and the advance angle amount for this are calculated. Note that the EGR amount and the advance amount are determined based on the operating conditions of the engine 1 read by various sensors,
It is stored in the memory of U11.

【0046】Step108 …上記のStep103 の結果、及びSt
ep106 、Step107 で算出した結果に基づき、EGR及び
燃料噴射を行う。なお、EGRは、吸気絞り弁9及びE
GR量制御弁7の開度を所定値にすることで実施する。
噴射時期の変更(遅角または進角)は、ECU11から
電磁弁13に出力する開弁指令時刻を変更することで実
施する。
Step 108: The result of the above Step 103 and St
EGR and fuel injection are performed based on the results calculated in ep106 and Step107. The EGR is determined by the intake throttle valve 9 and E
This is performed by setting the degree of opening of the GR amount control valve 7 to a predetermined value.
The injection timing is changed (retarded or advanced) by changing the valve opening command time output from the ECU 11 to the solenoid valve 13.

【0047】Step109 …排気酸素濃度センサ17の出力
を読み込む。Step110 …Step109 で読み込んだ値を目標
値と比較し、目標値とのずれが所定値より大きいか否か
を判定する。この目標値は、エンジン回転数、アクセル
開度等から決定し、予めECU11のメモリに記憶され
ている。ここで、目標値とのずれが所定値より大きい時
は、Step111 へ進み、所定値以下の時は、Step100 へ戻
る。
Step 109: The output of the exhaust oxygen concentration sensor 17 is read. Step 110: The value read in Step 109 is compared with the target value, and it is determined whether or not the deviation from the target value is larger than a predetermined value. The target value is determined from the engine speed, the accelerator opening, and the like, and is stored in the memory of the ECU 11 in advance. Here, when the deviation from the target value is larger than the predetermined value, the process proceeds to Step 111, and when it is smaller than the predetermined value, the process returns to Step 100.

【0048】Step111 …実際の排気酸素濃度と目標値と
のずれを減らすように吸気絞り弁9の開度を補正制御す
る。ここでは、図5に示した様に、エンジン1の中負荷
域で低スモークと低NOxを両立するEGR量の範囲は
比較的狭く、これが適正量からずれるとエミッション及
び燃費の大きな悪化を招く場合がある。しかし、実際に
は、各部品(例えば、EGR量制御弁7等)の性能バラ
ツキあるいは特性の経時変化等により、EGR量が適正
量からずれることがあるため、これを防ぐためにEGR
のフィードバック制御を行う。
Step 111: The opening of the intake throttle valve 9 is corrected and controlled so as to reduce the difference between the actual exhaust oxygen concentration and the target value. Here, as shown in FIG. 5, the range of the EGR amount that achieves both low smoke and low NOx in the middle load region of the engine 1 is relatively narrow, and if it deviates from the appropriate amount, the emission and fuel consumption are greatly deteriorated. There is. However, in practice, the EGR amount may deviate from an appropriate amount due to performance variation of each component (for example, the EGR amount control valve 7 or the like) or a change in characteristics over time.
Feedback control is performed.

【0049】この時、燃料の燃焼状態に関する情報を含
む排気中の酸素濃度を検出することで精度の高い制御が
可能となる。なお、目標値からずれた酸素濃度を修正す
る場合は、吸気絞り弁9とEGR量制御弁7のどちらの
開度を変更しても良いが、両者を同時に変更すると制御
系が不安定となるため、本システムでは、吸気絞り弁9
のみを修正する。但し、吸気絞り弁9の代わりにEGR
量制御弁7のみを修正しても良い。
At this time, highly accurate control can be performed by detecting the oxygen concentration in the exhaust including information on the combustion state of the fuel. When the oxygen concentration deviating from the target value is corrected, either the opening degree of the intake throttle valve 9 or the opening degree of the EGR amount control valve 7 may be changed, but if both are changed simultaneously, the control system becomes unstable. Therefore, in this system, the intake throttle valve 9
Modify only. However, instead of the intake throttle valve 9, EGR
Only the quantity control valve 7 may be modified.

【0050】(本実施形態の効果)上述した排気浄化装
置によれば、エンジン出力が中負荷域の時に、エンジン
1の燃料消費量が大きく増加しない範囲で、図6(E)
の領域まで燃料噴射時期を遅角させ、且つ従来のEGR
量より更に多い図5(B)の領域(スモーク量がピーク
後に減少する領域)までEGR量を増加させることによ
り、中負荷域におけるスモークとNOxの発生量を共に
大幅に低減した上で、燃費悪化を抑制することが可能と
なる。
(Effect of this Embodiment) According to the above-mentioned exhaust gas purifying apparatus, when the engine output is in the middle load range, as long as the fuel consumption of the engine 1 does not increase significantly, FIG.
And the conventional EGR
By increasing the EGR amount up to the region of FIG. 5B (the region where the smoke amount decreases after the peak), which is larger than the amount, the smoke generation amount and the NOx generation amount in the medium load region are both significantly reduced, and the fuel consumption is reduced. Deterioration can be suppressed.

【0051】また、エンジン出力が低負荷域の時には、
図7(b)の領域まで、中負荷域の時より更にEGR量
を増加させ(図9参照)、且つ図8(e)の領域まで燃
料噴射時期を進角させることにより、低負荷域における
燃費を改善した上で、スモークとNOxの発生を抑える
ことができる。
When the engine output is in a low load range,
The EGR amount is further increased up to the region of FIG. 7B than in the middle load region (see FIG. 9), and the fuel injection timing is advanced to the region of FIG. It is possible to suppress generation of smoke and NOx while improving fuel efficiency.

【0052】なお、図5及び図7は噴射時期を固定して
EGR量のみを変化させた場合の特性を示しており、図
6及び図8はEGR量を固定して噴射時期のみを変化さ
せた場合の特性を示しているが、実際は、図9に示す様
に、EGR量と噴射時期の変更とを同時に行っている。
但し、図9はあくまでも一例であり、例えばT2 <T<
T1 の領域において、必ずしもEGR量を図示の様に一
定にする必要はなく、トルクの増加とともに減らすよう
に設定しても良い。
FIGS. 5 and 7 show characteristics when the injection timing is fixed and only the EGR amount is changed. FIGS. 6 and 8 show the characteristics when the EGR amount is fixed and only the injection timing is changed. In this case, the EGR amount and the injection timing are changed simultaneously as shown in FIG.
However, FIG. 9 is merely an example, and for example, T2 <T <
In the region of T1, the EGR amount is not necessarily required to be constant as shown in the figure, but may be set to decrease as the torque increases.

【0053】噴射時期についても同様であり、T2 以下
の領域では、トルクの増加とともに進角量を減らし、T
2 <T<T1 の領域ではトルクの増加とともに遅角量を
減らすように設定することも可能である。なお、図9の
縦軸は絶対量ではなく、従来のEGR量に対する増減
量、あるいは従来の噴射時期に対する進角量及び遅角量
として相対的な量を示すものである。
The same applies to the injection timing. In the region below T2, the amount of advance is reduced with an increase in torque, and
In the range of 2 <T <T1, it is also possible to set so that the retard amount is reduced as the torque increases. Note that the vertical axis in FIG. 9 is not an absolute amount but a relative amount as an increase / decrease amount with respect to the conventional EGR amount or an advance amount and a retard amount with respect to the conventional injection timing.

【0054】更に、本システムの燃焼によれば、条件に
よっては従来の燃焼と比較して少量とは言え若干のスモ
ークが発生する場合がある。しかし、発生した少量のス
モークは、排気管4内に設置されるトラップフィルタ1
0の表面で捕集された後、フィルタ温度が昇温されて焼
却される。この時、フィルタ表面に担持した酸化触媒の
作用により、スモーク粒子は従来より低い温度(触媒が
ない場合はスモーク粒子を燃焼させるために600℃以
上の温度が必要であるが、触媒がある場合には450℃
で燃焼する)で容易に燃焼するため、フィルタの温度上
昇量は僅かで済み、高速運転時には排気温度のみでフィ
ルタを再生することも可能である。
Further, according to the combustion of the present system, a small amount of smoke may be generated even though the amount is small compared to the conventional combustion, depending on conditions. However, a small amount of generated smoke is trapped in the trap filter 1 installed in the exhaust pipe 4.
After being collected on the zero surface, the filter temperature is increased and incinerated. At this time, due to the action of the oxidation catalyst carried on the filter surface, the smoke particles have a lower temperature than before (a temperature of 600 ° C. or higher is required to burn the smoke particles without a catalyst. Is 450 ° C
Therefore, the amount of temperature rise of the filter is small, and it is possible to regenerate the filter only at the exhaust gas temperature during high-speed operation.

【0055】以上の結果、フィルタ再生のための昇温に
伴う燃費悪化等の不具合を最小限に抑えることができ
る。更に、トラップフィルタ10を高温に晒すことによ
る耐久性の低下を防止できる。なお、トラップフィルタ
10の再生時期は、図示しないフィルタ前後の差圧を測
定するセンサの出力に基づいて判断し、吸気絞りやコモ
ンレール2のポスト噴射(主噴射の後に噴射される)等
の公知の方法によりフィルタ温度が上昇して再生が成さ
れる。
As a result, it is possible to minimize problems such as deterioration of fuel efficiency due to temperature rise for filter regeneration. Further, it is possible to prevent a decrease in durability due to exposing the trap filter 10 to a high temperature. The regeneration time of the trap filter 10 is determined based on the output of a sensor that measures the differential pressure across the filter (not shown), and is determined by a known method such as an intake throttle or post-injection of the common rail 2 (injected after the main injection). The method raises the filter temperature and regenerates.

【0056】上記の実施形態では、燃料が燃焼する直前
のシリンダ内のガスの温度を低下させ、その分だけ燃焼
後のピーク温度を低下させることを狙って、エンジン1
の圧縮比を通常より低い18以下に設定しているが、圧
縮比そのものを下げる方法の他にも、例えば、中負荷域
では公知のバルブタイミング可変機構を用いて吸気弁の
閉弁時期を遅らせることにより、圧縮開始時期を遅らせ
て有効圧縮比を低下させる方法を用いても良い。また、
吸気絞り弁9とEGR量制御弁7の両方の開度を小さく
することでシリンダ内のガス量を減らしても良い。いず
れの方法においても、燃焼着火前の圧縮温度が低下し、
その結果、燃焼温度を低下させることができる。
In the above embodiment, the engine 1 is designed to reduce the temperature of the gas in the cylinder immediately before the combustion of the fuel and to reduce the peak temperature after the combustion by that much.
The compression ratio is set to 18 or lower, which is lower than usual. However, besides the method of lowering the compression ratio itself, for example, in a middle load region, the closing timing of the intake valve is delayed by using a known variable valve timing mechanism. Thus, a method of delaying the compression start timing to lower the effective compression ratio may be used. Also,
The gas amount in the cylinder may be reduced by reducing the opening of both the intake throttle valve 9 and the EGR amount control valve 7. In either method, the compression temperature before combustion ignition decreases,
As a result, the combustion temperature can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】排気浄化装置の処理手順を示すフローチャート
である。
FIG. 1 is a flowchart showing a processing procedure of an exhaust gas purification device.

【図2】排気浄化装置の概略構成図である。FIG. 2 is a schematic configuration diagram of an exhaust gas purification device.

【図3】運転領域をエンジン回転数とトルクとの関係で
示す特性図である。
FIG. 3 is a characteristic diagram showing an operation range in a relationship between an engine speed and a torque.

【図4】運転領域に対するトルクと燃料噴射量との関係
を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a torque and a fuel injection amount with respect to an operation range.

【図5】中負荷域でのEGR量とエミッションとの関係
を示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between an EGR amount and an emission in a medium load region.

【図6】中負荷域での噴射時期とエミッションとの関係
を示す特性図である。
FIG. 6 is a characteristic diagram showing a relationship between an injection timing and an emission in a medium load region.

【図7】低負荷域でのEGR量とエミッションとの関係
を示す特性図である。
FIG. 7 is a characteristic diagram showing a relationship between an EGR amount and an emission in a low load region.

【図8】低負荷域での噴射時期とエミッションとの関係
を示す特性図である。
FIG. 8 is a characteristic diagram showing a relationship between injection timing and emission in a low load region.

【図9】出力トルクに対するEGR量と噴射時期との相
関を示す特性図である。
FIG. 9 is a characteristic diagram showing a correlation between an EGR amount and an injection timing with respect to an output torque.

【符号の説明】[Explanation of symbols]

1 エンジン(内燃機関) 4 排気管 5 吸気管 6 排気還流管(排気還流通路) 7 EGR量制御弁(排気還流手段) 8 EGR冷却装置(還流排気冷却手段) 9 吸気絞り弁(排気還流手段) 10 トラップフィルタ(排気浄化手段) 11 ECU(燃焼温度低減手段、噴射時期算出手段) 17 排気酸素濃度センサ(酸素濃度検出手段) Reference Signs List 1 engine (internal combustion engine) 4 exhaust pipe 5 intake pipe 6 exhaust recirculation pipe (exhaust recirculation passage) 7 EGR amount control valve (exhaust recirculation means) 8 EGR cooling device (recirculation exhaust cooling means) 9 intake throttle valve (exhaust recirculation means) Reference Signs List 10 trap filter (exhaust gas purifying means) 11 ECU (combustion temperature reducing means, injection timing calculating means) 17 exhaust oxygen concentration sensor (oxygen concentration detecting means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 43/00 301 F02D 43/00 301Z 3G301 310 310A F01N 3/02 321 F01N 3/02 321A 321D 321H 321Z 3/24 3/24 E R S F02D 15/04 F02D 15/04 B C 21/08 301 21/08 301D 301E 41/04 385 41/04 385C 41/14 310 41/14 310N 310P 45/00 314 45/00 314Z 320 320A F02M 25/07 F02M 25/07 A B 550 550A 550G 550R 580 580E (72)発明者 近藤 利雄 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 藤田 達也 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 関口 清則 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 衣川 眞澄 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 3G062 AA01 AA03 AA05 AA06 BA04 BA05 BA06 CA06 DA01 DA02 EA10 ED08 FA12 GA00 GA04 GA06 GA17 3G084 AA01 AA03 AA04 BA05 BA08 BA09 BA13 BA15 BA20 BA22 BA24 CA03 CA04 CA05 DA10 DA27 EA11 EB01 EC01 FA10 FA26 FA29 FA33 3G090 AA01 AA03 BA01 DA01 DA10 DA18 DA20 EA05 EA06 EA07 3G091 AA02 AA10 AA11 AA18 AA28 AB02 AB13 BA00 BA14 BA15 BA19 BA36 CA13 CB02 CB03 CB07 CB08 DA01 DA02 DB10 DC01 EA00 EA01 EA07 EA34 FA11 FA17 FA18 FB10 GA06 GA20 GA24 GB01X GB06W GB10X GB13X GB17X HA14 HA36 HB03 HB05 HB06 3G092 AA02 AA06 AA12 AA13 AA17 AA18 AB03 BA01 BA04 BA06 BA07 BB01 BB06 DB03 DC03 DC08 DC09 DC10 DC14 DC15 DD07 DD10 DE03S DE06S DF01 DF06 DG07 EA03 EA04 EA11 EC01 FA17 FA18 GA03 HB03X HB03Z HD05X HD05Z HE01X HE01Z HF08X HF08Z 3G301 HA02 HA06 HA11 HA13 HA15 JA24 JA25 JA26 KA06 LA03 LB11 MA01 MA11 MA18 NA07 NA08 ND01 ND03 NE01 NE06 NE11 NE12 NE15 PB08A PB08Z PD02A PD02Z PE01A PE01Z PF03A PF03Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 43/00 301 F02D 43/00 301Z 3G301 310 310A F01N 3/02 321 F01N 3/02 321A 321D 321H 321Z 3 / 24 3/24 ERS F02D 15/04 F02D 15/04 BC 21/08 301 21/08 301D 301E 41/04 385 41/04 385C 41/14 310 41/14 310N 310P 45/00 314 45 / 00 314Z 320 320A F02M 25/07 F02M 25/07 AB 550 550A 550G 550R 580 580E (72) Inventor Toshio Kondo 1-chome, Showa-cho, Kariya-shi, Aichi, Japan Denso Co., Ltd. (72) Inventor Tatsuya Fujita Aichi 1-1, Showa-cho, Kariya-shi (72) Inventor Kiyonori Sekiguchi 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture In-house Denso (72) Inventor, Masumi Kinukawa 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture In-house Denso, Inc. F-term (reference) 3G062 AA01 AA03 AA05 AA06 BA04 BA05 BA06 CA06 DA01 DA02 EA10 ED08 FA12 GA00 GA04 GA06 GA17 3G084 AA01 AA03 AA04 BA05 BA08 BA09 BA13 BA15 BA20 BA22 BA24 CA03 CA04 CA05 DA10 DA27 EA11 FA03 A01 FA01 FA01 FA01 FA01 BA01 DA01 DA10 DA18 DA20 EA05 EA06 EA07 3G091 AA02 AA10 AA11 AA18 AA28 AB02 AB13 BA00 BA14 BA15 BA19 BA36 CA13 CB02 CB03 CB07 CB08 DA01 DA02 DB10 DC01 EA00 EA01 EA07 EA34 FA11 FA17 GB10 GB01 GA06 GBX GA06 HB06 3G092 AA02 AA06 AA12 AA13 AA17 AA18 AB03 BA01 BA04 BA06 BA07 BB01 BB06 DB03 DC03 DC08 DC09 DC10 DC14 DC15 DD07 DD10 DE03S DE06S DF01 DF06 DG07 EA03 EA04 EA11 EC01 FA17 FA18 HA03 HEB03X08 HD03 HB03X01 HA13 HA15 JA24 JA25 JA26 KA06 LA03 LB11 MA01 MA11 MA18 NA07 NA08 ND01 ND03 NE01 NE06 NE11 NE12 NE15 PB08A PB08Z PD02A PD02Z PE01A PE01Z PF03A PF03Z

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の出力を算出する出力算出手段
と、 前記内燃機関の運転状態を検出する運転状態検出手段
と、 前記内燃機関への燃料噴射時期を算出する噴射時期算出
手段と、 前記内燃機関の排気管と吸気管とを接続する排気還流通
路を有し、この排気還流通路を通って前記内燃機関から
排出される排気の一部を吸気に戻す排気還流手段と、 前記内燃機関に吸入される吸入ガスを冷却する吸入ガス
冷却手段と、 前記内燃機関の出力に基づき、前記噴射時期算出手段に
より算出された燃料噴射時期、及び前記排気還流手段に
よる排気還流量を変更して、前記内燃機関の燃料燃焼時
のシリンダ内温度を低減する燃焼温度低減手段と、 前記内燃機関の排気管に設置される酸化触媒を担持した
排気浄化手段と、 前記排気管内に設置した酸素濃度検出手段とを備えた内
燃機関の排気浄化装置であって、 前記内燃機関の出力が中負荷域に入る時に、算出された
燃料噴射時期を遅角させた状態で排気還流量を増加させ
ると、その排気還流量の増加に伴って前記内燃機関から
排出されるスモーク量が次第に増加し、ピークに達した
後、減少する特性を示し、この特性を中負荷域スモーク
特性と呼ぶ時に、 前記燃焼温度低減手段は、前記出力算出手段で算出され
る出力が前記中負荷域を示す所定値T1 と所定値T2
(T1 >T2 )との間に入る場合に、前記内燃機関の燃
料消費量が大きく増加しない範囲で、前記中負荷域スモ
ーク特性が得られるまで燃料噴射時期を遅角させ、且つ
スモーク量が前記ピーク後に減少する領域まで排気還流
量を増加させ、その際に検出された排気中の酸素濃度が
前記運転状態検出手段の出力から求めた所定値となる様
に排気還流量を補正することを特徴とする内燃機関の排
気浄化装置。
An output calculating unit that calculates an output of the internal combustion engine; an operating state detecting unit that detects an operating state of the internal combustion engine; an injection timing calculating unit that calculates a fuel injection timing to the internal combustion engine; An exhaust recirculation passage connecting an exhaust pipe and an intake pipe of the internal combustion engine, and an exhaust recirculation unit that returns a part of exhaust discharged from the internal combustion engine through the exhaust recirculation passage to intake air; An intake gas cooling unit that cools the intake gas to be sucked in, a fuel injection timing calculated by the injection timing calculation unit based on an output of the internal combustion engine, and an exhaust gas recirculation amount changed by the exhaust gas recirculation unit. Combustion temperature reducing means for reducing the temperature in the cylinder during fuel combustion of the internal combustion engine; exhaust purification means carrying an oxidation catalyst installed in an exhaust pipe of the internal combustion engine; and oxygen concentration installed in the exhaust pipe. An exhaust gas purification device for an internal combustion engine comprising a degree detection means, wherein when the output of the internal combustion engine enters the medium load range, the exhaust gas recirculation amount is increased with the calculated fuel injection timing delayed. The amount of smoke discharged from the internal combustion engine gradually increases with an increase in the amount of exhaust gas recirculation, and shows a characteristic of decreasing after reaching a peak.When this characteristic is called a medium load region smoke characteristic, The temperature reducing means is configured to determine whether the output calculated by the output calculating means is a predetermined value T1 and a predetermined value T2 indicating the middle load range.
(T1> T2), the fuel injection timing is retarded until the smoke characteristic in the middle load range is obtained, and the smoke amount is reduced within a range where the fuel consumption of the internal combustion engine does not greatly increase. The exhaust gas recirculation amount is increased to a region that decreases after the peak, and the exhaust gas recirculation amount is corrected so that the oxygen concentration in the exhaust gas detected at that time becomes a predetermined value obtained from the output of the operating state detecting means. An exhaust gas purification device for an internal combustion engine.
【請求項2】請求項1に記載した内燃機関の排気浄化装
置において、 前記吸入ガス冷却手段は、前記排気還流通路の途中に設
けられ、前記排気還流通路を通って吸気側へ還流する排
気を冷却する還流排気冷却手段であることを特徴とする
内燃機関の排気浄化装置。
2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein said intake gas cooling means is provided in a middle of said exhaust gas recirculation passage, and recirculates exhaust gas recirculated to an intake side through said exhaust gas recirculation passage. An exhaust gas purification device for an internal combustion engine, which is a recirculation exhaust gas cooling means for cooling.
【請求項3】請求項2に記載した内燃機関の排気浄化装
置において、 前記還流排気冷却手段の容量が前記内燃機関の排気量よ
りも大きいことを特徴とする内燃機関の排気浄化装置。
3. An exhaust gas purifying apparatus for an internal combustion engine according to claim 2, wherein a capacity of said recirculating exhaust gas cooling means is larger than a displacement of said internal combustion engine.
【請求項4】請求項1〜3に記載した何れかの内燃機関
の排気浄化装置において、 前記内燃機関の圧縮比を通常よりも小さくすることを特
徴とする内燃機関の排気浄化装置。
4. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein a compression ratio of said internal combustion engine is made smaller than usual.
【請求項5】請求項1〜3に記載した何れかの内燃機関
の排気浄化装置において、 前記内燃機関の出力が中負荷域となった時に、前記内燃
機関の圧縮比を小さい方へ変更することを特徴とする内
燃機関の排気浄化装置。
5. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein a compression ratio of the internal combustion engine is changed to a smaller one when an output of the internal combustion engine is in a middle load range. An exhaust gas purification device for an internal combustion engine, comprising:
【請求項6】請求項3または4に記載した内燃機関の排
気浄化装置において、 前記内燃機関の圧縮比が18以下であることを特徴とす
る内燃機関の排気浄化装置。
6. The exhaust gas purification apparatus for an internal combustion engine according to claim 3, wherein the compression ratio of the internal combustion engine is 18 or less.
【請求項7】請求項1〜6に記載した何れかの内燃機関
の排気浄化装置において、 前記排気浄化手段は、酸化触媒を担持したトラップフィ
ルタであることを特徴とする内燃機関の排気浄化装置。
7. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein said exhaust gas purifying means is a trap filter carrying an oxidation catalyst. .
【請求項8】請求項1〜7に記載した何れかの内燃機関
の排気浄化装置において、 前記燃焼温度低減手段は、前記出力算出手段で算出され
る出力が低負荷域を示す前記所定値T2 以下の場合に、
前記噴射時期算出手段により算出された燃料噴射時期を
進角させることを特徴とする内燃機関の排気浄化装置。
8. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein said combustion temperature reducing means is configured to output said predetermined value T2 indicating that the output calculated by said output calculating means indicates a low load range. In the following cases,
An exhaust purification device for an internal combustion engine, wherein the fuel injection timing calculated by the injection timing calculation means is advanced.
【請求項9】請求項1〜8に記載した何れかの内燃機関
の排気浄化装置において、 前記燃焼温度低減手段は、前記内燃機関の出力に基づ
き、内燃機関の燃料噴射量を補正する噴射量補正手段を
具備し、 前記噴射量補正手段は、前記出力算出手段で算出される
出力が前記所定値T1以下の値からT1 より大きい値
に、またはT1 より大きい値からT1 以下の値に変化し
た場合、あるいは前記出力算出手段で算出される出力が
前記所定値T2 以下の値からT2 より大きい値に、また
はT2 より大きい値からT2 以下の値に変化した場合
に、前記内燃機関の出力が連続的に変化する様に燃料噴
射量を補正することを特徴とする内燃機関の排気浄化装
置。
9. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein said combustion temperature reducing means corrects a fuel injection amount of the internal combustion engine based on an output of the internal combustion engine. The injection amount correcting means changes the output calculated by the output calculating means from a value equal to or less than the predetermined value T1 to a value greater than T1 or from a value greater than T1 to a value equal to or less than T1. Or when the output calculated by the output calculating means changes from a value less than the predetermined value T2 to a value greater than T2, or from a value greater than T2 to a value less than T2, the output of the internal combustion engine is continuously An exhaust gas purifying apparatus for an internal combustion engine, wherein a fuel injection amount is corrected so as to change in a timely manner.
JP2001257190A 2000-11-08 2001-08-28 Exhaust emission control device for internal combustion engine Pending JP2002206448A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001257190A JP2002206448A (en) 2000-11-08 2001-08-28 Exhaust emission control device for internal combustion engine
DE2001154516 DE10154516A1 (en) 2000-11-08 2001-11-07 Exhaust gas emission control system, has half load soot characteristic achieved by increasing quantity of exhaust gas fed back in response to engine output change in half load operating range

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-340094 2000-11-08
JP2000340094 2000-11-08
JP2001257190A JP2002206448A (en) 2000-11-08 2001-08-28 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2002206448A true JP2002206448A (en) 2002-07-26

Family

ID=26603572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001257190A Pending JP2002206448A (en) 2000-11-08 2001-08-28 Exhaust emission control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2002206448A (en)
DE (1) DE10154516A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7677222B2 (en) 2004-10-06 2010-03-16 Isuzu Motors Limited Diesel engine control device
WO2015029117A1 (en) * 2013-08-26 2015-03-05 日本碍子株式会社 Internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6755167B2 (en) 2016-12-05 2020-09-16 いすゞ自動車株式会社 Control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130248A (en) * 1998-10-20 2000-05-09 Toyota Motor Corp Internal combustion engine
JP2000145509A (en) * 1998-11-12 2000-05-26 Toyota Motor Corp Internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130248A (en) * 1998-10-20 2000-05-09 Toyota Motor Corp Internal combustion engine
JP2000145509A (en) * 1998-11-12 2000-05-26 Toyota Motor Corp Internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7677222B2 (en) 2004-10-06 2010-03-16 Isuzu Motors Limited Diesel engine control device
WO2015029117A1 (en) * 2013-08-26 2015-03-05 日本碍子株式会社 Internal combustion engine
WO2015029985A1 (en) * 2013-08-26 2015-03-05 日本碍子株式会社 Internal combustion engine
JPWO2015029985A1 (en) * 2013-08-26 2017-03-02 日本碍子株式会社 Internal combustion engine
US9951740B2 (en) 2013-08-26 2018-04-24 Ngk Insulators, Ltd. Internal combustion engine

Also Published As

Publication number Publication date
DE10154516A1 (en) 2002-08-01

Similar Documents

Publication Publication Date Title
JP4158645B2 (en) Combustion control device for internal combustion engine
EP1512860B1 (en) Exhaust gas purifying system
JP4029795B2 (en) Combustion control device for internal combustion engine
JP2007040221A (en) Exhaust emission control device
JP2004340032A (en) Exhaust emission control device for internal combustion engine
JP2010151058A (en) Exhaust emission control device for diesel engine
WO2016027736A1 (en) Regeneration device for exhaust-gas purifying device
US20090087364A1 (en) Exhaust gas purifying apparatus for internal combustion engine
JP6331231B2 (en) Engine exhaust purification system
JP2005048746A (en) Fuel control device for internal combustion engine
JP2006250120A (en) Fuel injection control device of diesel engine
JP2005048747A (en) Combustion control device for internal combustion engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP2005042662A (en) Combustion control device for internal combustion engine
JP2003322015A (en) Exhaust emission control device for internal combustion engine
JP2008144726A (en) Exhaust emission control device for internal combustion engine
JP2002206448A (en) Exhaust emission control device for internal combustion engine
JP4352635B2 (en) Exhaust gas purification device for internal combustion engine
JP2002242732A (en) Exhaust emission control device for internal combustion engine
JP2004245046A (en) Exhaust emission control device of internal combustion engine
JP3906726B2 (en) Exhaust gas purification device for internal combustion engine
JP2005042663A (en) Combustion control device of internal combustion engine
JP4500765B2 (en) Exhaust gas purification device for internal combustion engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP4433921B2 (en) DPF regeneration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100420

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100528