JP2002204209A - Optical branching and inserting multiple node device - Google Patents

Optical branching and inserting multiple node device

Info

Publication number
JP2002204209A
JP2002204209A JP2001392676A JP2001392676A JP2002204209A JP 2002204209 A JP2002204209 A JP 2002204209A JP 2001392676 A JP2001392676 A JP 2001392676A JP 2001392676 A JP2001392676 A JP 2001392676A JP 2002204209 A JP2002204209 A JP 2002204209A
Authority
JP
Japan
Prior art keywords
optical
wavelength
signal light
signal
multiplexing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001392676A
Other languages
Japanese (ja)
Other versions
JP3523233B2 (en
Inventor
Masahide Miyaji
正英 宮地
Shigeru Oshima
茂 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001392676A priority Critical patent/JP3523233B2/en
Publication of JP2002204209A publication Critical patent/JP2002204209A/en
Application granted granted Critical
Publication of JP3523233B2 publication Critical patent/JP3523233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical ADM node device which can effectively reduce the influence of noise caused by ASE of an optical amplifier. SOLUTION: The optical ADM node devices has an optical amplifier 11 which amplifies a wavelength-multiplex signal light transmitted through an optical transmission line 10, an optical demultiplexer 12 which demultiplexes the amplified wavelength-multiplex signal into signal lights of respective wavelengths and also branches a signal light of a desired wavelength, an optical receiver 16 which receives the branched signal light of the desired wavelength, an optical transmitter 19 which outputs the signal light of the desired wavelength, and an optical multiplexer 13 which multiplexes and sends out of the signal light of the respective wavelengths demultiplexed by the optical demultiplexer 12 and the signal light from the optical transmitter 19 to the optical transmission line 10; and optical filters 32-1 to 32-3 which are tuned to the respective wavelengths of the signal light demultiplexed by the optical demultiplexer 12 are inserted into optical paths 31-1 to 31-2 between the optical demultiplexer 12 and optical multiplexer 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、波長多重(Wave
length Division Multiplexing:WDM)技術を用いた
光分岐挿入多重(Add-Drop Multiplexing:ADM)ノー
ド装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to an add-drop multiplexing (ADM) node device using a length division multiplexing (WDM) technique.

【0002】[0002]

【従来の技術】近年、光ファイバ増幅器の進歩に伴い長
距離・大容量光伝送システムの研究が盛んに行われてい
る。波長多重(Wavelength Division Multiplexing:W
DM)伝送方式は、一チャンネル当たりの伝送容量を上
げることなく波長領域で光信号を多重することにより、
飛躍的に全体の伝送容量を増加でき、しかも柔軟性の高
いネットワークの構築が可能であるため、長距離・大容
量光伝送システムを実現するために有効な方式として大
いに注目されている。
2. Description of the Related Art In recent years, with the progress of optical fiber amplifiers, long-distance, large-capacity optical transmission systems have been actively studied. Wavelength Division Multiplexing (W)
DM) transmission method is to multiplex optical signals in the wavelength region without increasing the transmission capacity per channel,
Since the total transmission capacity can be dramatically increased and a highly flexible network can be constructed, it has attracted much attention as an effective method for realizing a long-distance, large-capacity optical transmission system.

【0003】WDM伝送方式を用いた光波ネットワーク
として、特定波長の信号光の分岐・挿入を行う機能を有
する光分岐挿入多重(Add-Drop Multiplexing:ADM)
が挙げられる。光ADMは、ネットワーク内のノードで
電気信号が介在しないトランスペアレントな光波ネット
ワークの実現形態の一つである。
[0003] As a lightwave network using the WDM transmission method, an add-drop multiplexing (ADM) having a function of dropping / adding signal light of a specific wavelength.
Is mentioned. Optical ADM is one of the implementations of a transparent lightwave network in which no electric signal is interposed at nodes in the network.

【0004】図11に、光ADMノードの基本構成を示
す。光伝送路10を介して伝送されてきた波長多重信号
光は、光増幅器11で増幅された後、光分波器12で各
波長の光信号に分波される。分波された信号光のうち、
ノードに割り当てられた特定波長(λj )の信号光は分
岐され、光受信器16で受信される。その他の波長の信
号光は光合波器13で合波され、光増幅器14で増幅さ
れた後、光伝送路10に送出される。また、ノードでは
分岐された信号光の波長と等しい波長(λj )を有する
信号光を光送信器19から出力し、光合波器13を介し
て光伝送路10に送出する。
FIG. 11 shows a basic configuration of an optical ADM node. The wavelength-division multiplexed signal light transmitted via the optical transmission line 10 is amplified by an optical amplifier 11 and then demultiplexed into an optical signal of each wavelength by an optical demultiplexer 12. Of the split signal light,
The signal light of the specific wavelength (λ j ) assigned to the node is split and received by the optical receiver 16. The signal lights of other wavelengths are multiplexed by the optical multiplexer 13, amplified by the optical amplifier 14, and transmitted to the optical transmission line 10. In the node, a signal light having a wavelength (λ j ) equal to the wavelength of the branched signal light is output from the optical transmitter 19 and transmitted to the optical transmission line 10 via the optical multiplexer 13.

【0005】このような光ADMノードにおいては、光
分波器12で分岐されるべき信号光の波長と光分波器1
2の透過波長特性にある程度のずれが生じることは避け
られない。このような波長ずれが生じた場合には、光受
信器16に光増幅器11の自然放出光(Amplified Spon
taneous Emission:ASE)の信号光と同一波長成分の
みならず、他の波長成分も混入するため、ASEどうし
のビート雑音が発生する。このビート雑音の影響によっ
て、光受信器16の信号対雑音比(Signal toNoise Rat
io:SNR)が低下し、受信感度が著しく劣化する。
In such an optical ADM node, the wavelength of the signal light to be split by the optical splitter 12 and the optical splitter 1
It is inevitable that the transmission wavelength characteristics of No. 2 will be shifted to some extent. When such a wavelength shift occurs, the spontaneous emission light (Amplified Spond light) of the optical amplifier 11 is transmitted to the optical receiver 16.
Since not only the same wavelength component as the signal light of the ASE (ASE), but also other wavelength components are mixed, beat noise occurs between the ASEs. Due to the influence of the beat noise, the signal to noise ratio of the optical receiver 16 (Signal to Noise Rat)
io: SNR), and the receiving sensitivity is significantly degraded.

【0006】また、上述した光ADMノードにおいて
は、波長ずれが生じた場合に光分波器12および光合波
器13の透過波長特性により信号スペクトルが非対称と
なるため、信号波形に歪が生じる。この波形歪は、ノー
ド数が増加するに従って僅かな波長ずれでも大きな感度
劣化を引き起こす。
In the above-described optical ADM node, when a wavelength shift occurs, the signal spectrum becomes asymmetric due to the transmission wavelength characteristics of the optical demultiplexer 12 and the optical multiplexer 13, so that the signal waveform is distorted. This waveform distortion causes a large sensitivity degradation even with a slight wavelength shift as the number of nodes increases.

【0007】さらに、上述した従来の光ADMノードに
おいては、光分波器12の1つのポートからは1つの波
長λi の信号光のみが出力されることが望ましいが、光
分波器12の分波特性の不完全性により、他のポートに
も波長λi の信号光がある程度漏れ込んでしまう。この
他ポートへの信号光の漏れ込みは、光分波器12で分波
された光信号が光合波器13で再び合波される場合に、
コヒーレントクロストークと呼ばれる干渉性クロストー
クを発生させる原因となり、光伝送特性を劣化させる。
Further, in the above-described conventional optical ADM node, it is desirable that only one signal light of one wavelength λ i be output from one port of the optical demultiplexer 12. Due to the imperfect demultiplexing characteristics, the signal light of the wavelength λ i leaks to other ports to some extent. The leakage of the signal light to the other port is caused when the optical signal split by the optical splitter 12 is multiplexed again by the optical multiplexer 13.
This causes coherent crosstalk called coherent crosstalk, and deteriorates optical transmission characteristics.

【0008】文献:IEEE Photon.Technol.Lett.,vol.6,
pp657-660,1994によると、コヒーレントクロストークに
よる受信感度劣化Pは式(1)のように表される。 P=−5log(1−4Q2 Nε) (1) N:コヒーレントクロストークを生じさせる経路の数 ε:一経路当たりのクロストーク量 Q:所定の誤り率を得るために必要なSNR(信号対雑
音比) ここで、各ノードに固有の波長をそれぞれ割り当てるよ
うな光波ネットワークを考えると、Nはおおよそ波長数
(=ノード数)の自乗に比例する。従って、波長多重信
号光の波長数やノード数の増加に伴って光分波器12や
光合波器13のクロストーク特性に対する要求が厳しく
なるが、これらのクロストーク特性は約25dB程度で
あることを考慮すると、波長数が16程度では約1dB
の受信感度劣化を生じてしまう。このため、波長多重信
号光の波長数およびノード数の増加に従ってコヒーレン
トクロストークが問題となる。また、送信器19から出
力される信号光の波長と光分波器12の透過波長特性に
ずれが生じた場合、光分波器12や光合波器13のクロ
ストーク特性が劣化するため、コヒーレントクロストー
クによる伝送特性の劣化は、さらに深刻な問題となる。
Reference: IEEE Photon.Technol.Lett., Vol. 6,
According to pp. 657-660, 1994, the reception sensitivity degradation P due to coherent crosstalk is expressed as in equation (1). P = −5 log (1−4Q 2 Nε) (1) N: Number of paths causing coherent crosstalk ε: Crosstalk amount per path Q: SNR (signal pair required to obtain a predetermined error rate) Noise ratio) Here, considering a lightwave network in which a unique wavelength is assigned to each node, N is approximately proportional to the square of the number of wavelengths (= the number of nodes). Therefore, as the number of wavelengths and the number of nodes of the wavelength multiplexed signal light increase, the requirements for the crosstalk characteristics of the optical demultiplexer 12 and the optical multiplexer 13 become strict, but these crosstalk characteristics should be about 25 dB. Considering that, when the number of wavelengths is about 16, about 1 dB
, The reception sensitivity is deteriorated. For this reason, coherent crosstalk becomes a problem as the number of wavelengths and the number of nodes of the wavelength multiplexed signal light increase. Also, if there is a difference between the wavelength of the signal light output from the transmitter 19 and the transmission wavelength characteristic of the optical demultiplexer 12, the crosstalk characteristics of the optical demultiplexer 12 and the optical multiplexer 13 are deteriorated. Degradation of transmission characteristics due to crosstalk becomes a more serious problem.

【0009】[0009]

【発明が解決しようとする課題】上述したように従来の
光ADMノードでは、光分波器で分岐されるべき信号光
の波長と光分波器の透過波長特性にずれが生じた場合、
光受信器において光増幅器のASEどうしのビート雑音
の影響で受信SNRが低下し、受信感度が著しく劣化す
るという問題があった。
As described above, in the conventional optical ADM node, when a difference occurs between the wavelength of the signal light to be split by the optical demultiplexer and the transmission wavelength characteristic of the optical demultiplexer,
In the optical receiver, there is a problem that the reception SNR is reduced due to the influence of beat noise between ASEs of the optical amplifier, and the reception sensitivity is significantly deteriorated.

【0010】また、信号光の波長と光合分波器の透過波
長特性にずれが生じた場合、信号波形に歪が生じ、受信
感度を劣化させるという問題があった。
In addition, when the wavelength of the signal light deviates from the transmission wavelength characteristic of the optical multiplexer / demultiplexer, there is a problem that a signal waveform is distorted and the receiving sensitivity is deteriorated.

【0011】さらに、波長多重信号光の波長数やノード
数の増加に伴い、光分波器の分波特性の不完全性に起因
するコヒーレントクロストークによる光伝送特性の劣化
という問題があり、特に信号光の波長と光分波器の透過
波長特性にずれが生じた場合にその問題が顕著となって
いた。
Further, as the number of wavelengths and the number of nodes of the wavelength division multiplexed signal light increase, there is a problem that optical transmission characteristics are deteriorated due to coherent crosstalk due to imperfect demultiplexing characteristics of the optical demultiplexer. In particular, the problem has been remarkable when there is a deviation between the wavelength of the signal light and the transmission wavelength characteristic of the optical demultiplexer.

【0012】本発明の目的は、光増幅器のASEに起因
する雑音の影響を効果的に低減できる光ADMノード装
置を提供することにある。
An object of the present invention is to provide an optical ADM node device that can effectively reduce the influence of noise caused by ASE of an optical amplifier.

【0013】本発明の他の目的は、光増幅器のASEに
起因する雑音の影響を低減し、かつ信号光の波長と光合
分波器の透過波長特性波長ずれに伴う信号波形の歪によ
る伝送特性の劣化を抑圧できる光ADMノード装置を提
供することにある。
Another object of the present invention is to reduce the influence of noise caused by ASE of an optical amplifier, and to reduce the influence of noise on the wavelength of signal light and the transmission wavelength characteristics of an optical multiplexer / demultiplexer. It is an object of the present invention to provide an optical ADM node device capable of suppressing degradation of the optical ADM node device.

【0014】本発明のさらに別の目的は、光増幅器のA
SEに起因する雑音の影響を低減し、かつコヒーレント
クロストークによる光伝送特性の劣化を抑圧できる光A
DMノード装置を提供することにある。
Still another object of the present invention is to provide an optical amplifier having an A
Light A capable of reducing the influence of noise caused by SE and suppressing deterioration of optical transmission characteristics due to coherent crosstalk
A DM node device is provided.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するた
め、本発明に係る第1の光ADMノード装置は、光伝送
路を介して伝送されてきた波長多重信号光を増幅する光
増幅器と、この光増幅器より出力される波長多重信号を
各波長の信号光に分波すると共に所望波長の信号光を分
岐させる光分波手段と、この光分波手段により分岐され
た所望波長の信号光を受信する光受信器と、所望波長の
信号光を出力する光送信器と、光分波手段により分波さ
れた各波長の信号光および光送信器から出力される信号
光を合波して光伝送路へ送出する光合波手段と、光分波
手段と光合波手段との間の光経路に設けられ、光分波手
段により分波された信号光の各波長に同調した複数の光
フィルタとを備えたことを特徴とする。
In order to solve the above problems, a first optical ADM node device according to the present invention comprises: an optical amplifier for amplifying a wavelength multiplexed signal light transmitted via an optical transmission line; An optical demultiplexing means for demultiplexing the wavelength multiplexed signal output from the optical amplifier into signal light of each wavelength and branching the signal light of a desired wavelength; and a signal light of a desired wavelength split by the optical demultiplexing means. An optical receiver for receiving, an optical transmitter for outputting signal light of a desired wavelength, and a signal light for multiplexing the signal light of each wavelength demultiplexed by the optical demultiplexing means and the signal light output from the optical transmitter. An optical multiplexing means for transmitting to a transmission path, and a plurality of optical filters provided on an optical path between the optical demultiplexing means and the optical multiplexing means, and tuned to each wavelength of the signal light demultiplexed by the optical demultiplexing means. It is characterized by having.

【0016】このように第1の光ADMノード装置で
は、光分波器と光合波器との間の光経路にそれぞれの経
路を透過する信号光の波長に同調した光フィルタを挿入
することにより、光増幅器のASE雑音を低減し、かつ
コヒーレントクロストークを抑圧している。従って、波
長数やノード数が増加しても、ASE雑音やコヒーレン
トクロストークによる伝送特性劣化が抑圧される。
As described above, in the first optical ADM node device, the optical filter tuned to the wavelength of the signal light passing through each path is inserted into the optical path between the optical demultiplexer and the optical multiplexer. ASE noise of the optical amplifier is reduced, and coherent crosstalk is suppressed. Therefore, even if the number of wavelengths or the number of nodes increases, deterioration of transmission characteristics due to ASE noise or coherent crosstalk is suppressed.

【0017】本発明に係る第2の光ADMノード装置
は、光伝送路を介して伝送されてきた波長多重信号光を
増幅する光増幅器と、この光増幅器より出力される波長
多重信号光を各波長の信号光に分波すると共に所望波長
の信号光を分岐させる光分波手段と、この光分波手段に
より分岐された所望波長の信号光を受信する光受信器
と、所望波長の信号光を出力する光送信器と、光分波手
段により分波された各波長の信号光および光送信器から
出力される信号光を合波して光伝送路へ送出する光合波
手段と、光分波手段と光合波手段との間の光経路に設け
られ、光分波手段により分波された信号光の各波長に同
調した複数の光フィルタと、光合波手段から出力される
各波長の信号光の出力パワーを検出し、この出力パワー
が最大となるように光フィルタの波長特性を制御する制
御手段とを備えたことを特徴とする。
A second optical ADM node device according to the present invention includes an optical amplifier for amplifying a wavelength multiplexed signal light transmitted through an optical transmission line, and a wavelength multiplexed signal light output from the optical amplifier. An optical demultiplexing means for demultiplexing the signal light of the desired wavelength and branching the signal light of the desired wavelength, an optical receiver for receiving the signal light of the desired wavelength split by the light demultiplexing means, and a signal light of the desired wavelength An optical transmitter for outputting the signal light of each wavelength demultiplexed by the optical demultiplexer and the signal light output from the optical transmitter and transmitting the signal light to the optical transmission path; A plurality of optical filters provided in the optical path between the optical multiplexing means and the optical signal multiplexed to the respective wavelengths of the signal light demultiplexed by the optical demultiplexing means; and a signal of each wavelength output from the optical multiplexing means. Detects the output power of the light and adjusts the light so that this output power is maximized. Characterized in that a control means for controlling the wavelength characteristic of the filter.

【0018】このように第2の光ADMノード装置で
は、光合波器の出力において各波長の信号光パワーが最
大となるように、光分波器と光合波器との間の光経路に
挿入された光フィルタの波長特性を制御することによ
り、信号光の波長と光分波器の波長特性にずれが生じて
も、コヒーレントクロストークによる伝送特性劣化が抑
圧される。
As described above, the second optical ADM node device is inserted into the optical path between the optical demultiplexer and the optical multiplexer so that the signal light power of each wavelength is maximized at the output of the optical multiplexer. By controlling the wavelength characteristic of the optical filter, even if the wavelength of the signal light deviates from the wavelength characteristic of the optical demultiplexer, transmission characteristic deterioration due to coherent crosstalk is suppressed.

【0019】さらに、光分波器と光合波器との間に挿入
された光フィルタは、ノードにおける信号光と光分波器
および光合波器の透過波長特性との波長ずれを緩和する
機能を有するので、波長ずれに伴う信号波形の歪が低減
される。
Further, the optical filter inserted between the optical demultiplexer and the optical multiplexer has a function of reducing a wavelength shift between the signal light at the node and the transmission wavelength characteristics of the optical demultiplexer and the optical multiplexer. Accordingly, distortion of the signal waveform due to the wavelength shift is reduced.

【0020】本発明に係る第3の光ADMノード装置
は、光伝送路を介して伝送されてきた波長多重信号光を
増幅する光増幅器と、この光増幅器より出力される波長
多重信号光を各波長の信号光に分波すると共に所望波長
の信号光を分岐させる光分波手段と、この光分波手段に
より分岐された所望波長の信号光を受信する光受信器
と、所望波長の信号光を出力する光送信器と、光分波手
段により分波された各波長の信号光および光送信器から
出力される信号光を合波して光伝送路へ送出する光合波
手段と、光分波手段と光合波手段との間の光経路に設け
られた複数の光フィルタと、光分波手段および光合波手
段の透過中心波長と信号光の波長との波長ずれを検出
し、この波長ずれに対応した信号を出力する検出手段
と、この検出手段からの出力信号に基づいて光フィルタ
の波長特性を制御する制御手段とを備えたことを特徴と
する。
A third optical ADM node device according to the present invention comprises an optical amplifier for amplifying a wavelength multiplexed signal light transmitted via an optical transmission line, and a wavelength multiplexed signal light output from the optical amplifier. An optical demultiplexing means for demultiplexing the signal light of the desired wavelength and branching the signal light of the desired wavelength, an optical receiver for receiving the signal light of the desired wavelength split by the light demultiplexing means, and a signal light of the desired wavelength An optical transmitter for outputting the signal light of each wavelength demultiplexed by the optical demultiplexer and the signal light output from the optical transmitter and transmitting the signal light to the optical transmission path; A plurality of optical filters provided in the optical path between the multiplexing means and the optical multiplexing means, and detecting a wavelength shift between the transmission center wavelength of the optical demultiplexing means and the optical multiplexing means and the wavelength of the signal light; Detecting means for outputting a signal corresponding to the Characterized in that a control means for controlling the wavelength characteristic of the optical filter on the basis of the signal.

【0021】このように第3の光ADMノード装置で
は、光分波器および光合波器の透過中心波長と信号光波
長との波長ずれを検出し、この波長ずれを補償するよう
に光分波器と光合波器との間の光経路に挿入された光フ
ィルタの波長特性を制御することにより、信号光の波長
と光分波器および光合波器の透過波長特性にずれが生じ
ても、信号波形の歪による伝送特性劣化が抑圧される。
As described above, in the third optical ADM node device, the wavelength deviation between the transmission center wavelength of the optical demultiplexer and the optical multiplexer and the signal light wavelength is detected, and the optical demultiplexer is compensated for this wavelength deviation. By controlling the wavelength characteristics of the optical filter inserted in the optical path between the optical device and the optical multiplexer, even if there is a deviation between the wavelength of the signal light and the transmission wavelength characteristics of the optical demultiplexer and the optical multiplexer, Transmission characteristic degradation due to signal waveform distortion is suppressed.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】(第1の実施形態)図1に、本発明の第1
の実施形態に係る光ADMノード装置の構成を示す。図
1において光伝送路10は光ファイバ伝送路であり、こ
の光伝送路10を介して伝送されてきた波長多重信号光
(波長λ1 ,…,λ4 )は、まず光増幅器11で増幅さ
れる。光増幅器11から出力される波長多重信号光は、
光分波器12で各波長λ1 ,…,λ4 の信号光に分波さ
れる。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
1 shows a configuration of an optical ADM node device according to the embodiment. In FIG. 1, an optical transmission line 10 is an optical fiber transmission line, and wavelength multiplexed signal light (wavelengths λ 1 ,..., Λ 4 ) transmitted through the optical transmission line 10 is first amplified by an optical amplifier 11. You. The wavelength multiplexed signal light output from the optical amplifier 11 is
The optical demultiplexer 12 demultiplexes the signal light of each wavelength λ 1 ,..., Λ 4 .

【0024】光分波器12で分波された各波長λ1
…,λ4 の信号光のうち、ノードに割り当てられた特定
波長λj の信号光は分岐され、光フィルタ18を介して
光受信器16に入力される。分岐されなかった信号光お
よび光送信器19からの信号光(波長λ4 )は光合波器
13で合波され、光増幅器14で増幅された後、光伝送
路10に送出される。
Each wavelength λ 1 , demultiplexed by the optical demultiplexer 12,
, Λ 4, the signal light of the specific wavelength λ j assigned to the node is branched and input to the optical receiver 16 via the optical filter 18. The signal light that has not been split and the signal light (wavelength λ 4 ) from the optical transmitter 19 are multiplexed by the optical multiplexer 13, amplified by the optical amplifier 14, and transmitted to the optical transmission line 10.

【0025】光受信器16の受信光信号の一部は、SN
R検出部17に入力される。SNR検出部17では、受
信光信号の信号対雑音比(Signal to Noise Ratio:SN
R)を検出し、その受信SNRに応じた信号を制御部1
8に出力する。制御部18では、SNR検出部17で検
出された受信SNRが最大となるように光フィルタ15
の透過波長特性、具体的には透過中心波長を制御する。
Part of the optical signal received by the optical receiver 16 is SN
It is input to the R detection unit 17. In the SNR detection unit 17, the signal-to-noise ratio (SN) of the received optical signal is
R), and outputs a signal corresponding to the received SNR to the control unit 1.
8 is output. The control unit 18 controls the optical filter 15 so that the reception SNR detected by the SNR detection unit 17 is maximized.
, Specifically, the transmission center wavelength.

【0026】図2に、光分波器12で分岐された信号光
の波長(λ4 )と光分波器12の透過波長特性との間に
ずれが生じた場合の光受信器16に入力される光スペク
トルを示す。図2(a)は光フィルタ15がない場合、
図2(b)は光フィルタ15の透過中心波長を送信光の
波長に一致させた場合、図2(c)は本実施形態のみう
せいにより受信SNRが最大となるように光フィルタ1
5の透過中心波長を制御した場合をそれぞれ示す。これ
らから、光フィルタ15により光増幅器11のASE雑
音が低減されていることが分かる。すなわち、光フィル
タ15は光増幅器11のASE雑音のうち、光分波器1
2で分岐されかつ光受信器16で受信される波長λj
信号光の波長成分のみを透過させるので、それ以外の波
長成分のASE雑音は光受信器16に入力されない。
FIG. 2 shows an input signal to the optical receiver 16 when there is a difference between the wavelength (λ 4 ) of the signal light branched by the optical demultiplexer 12 and the transmission wavelength characteristic of the optical demultiplexer 12. FIG. FIG. 2A shows a case where the optical filter 15 is not provided.
FIG. 2B shows the case where the transmission center wavelength of the optical filter 15 is matched with the wavelength of the transmission light, and FIG. 2C shows the optical filter 1 so that the reception SNR becomes maximum due to the present embodiment only.
5 shows a case where the transmission center wavelength is controlled. From these, it is understood that the ASE noise of the optical amplifier 11 is reduced by the optical filter 15. That is, the optical filter 15 outputs the optical demultiplexer 1 of the ASE noise of the optical amplifier 11.
Since only the wavelength component of the signal light having the wavelength λ j that is branched at 2 and received by the optical receiver 16 is transmitted, the ASE noise of the other wavelength components is not input to the optical receiver 16.

【0027】図3に、種々の場合における光受信器16
での平均受信光パワーに対する誤り率特性を示す。図3
の(a)〜(c)はそれぞれ図2の(a)〜(c)に対
応しており、(d)は波長ずれがない場合を示す。この
図から明らかなように、光フィルタ15を受信SNRが
最大となるように制御した場合には、光分波器12で分
岐される信号光の波長と光分波器12の透過波長特性と
の間の波長ずれによる受信感度劣化を最小限に抑圧でき
ることが分かる。
FIG. 3 shows the optical receiver 16 in various cases.
5 shows the error rate characteristics with respect to the average received light power in the case of FIG. FIG.
(A) to (c) correspond to (a) to (c) in FIG. 2, respectively, and (d) shows a case where there is no wavelength shift. As is apparent from this figure, when the optical filter 15 is controlled so that the reception SNR is maximized, the wavelength of the signal light branched by the optical demultiplexer 12 and the transmission wavelength characteristics of the optical demultiplexer 12 It can be seen that the deterioration of the receiving sensitivity due to the wavelength shift during the period can be suppressed to the minimum.

【0028】このように本実施形態の光ADMノード装
置では、光分波器12で分岐した特定波長の信号光を光
フィルタ15を介して光受信器16で受信するように
し、その受信SNRが最大となるように光フィルタ15
の透過波長特性を制御することによって、光受信器16
におけるASE雑音どうしのビート雑音を低減し、分岐
した光信号の波長と光分波器12の透過波長特性との波
長ずれによる受信感度劣化を最小限に抑圧することがで
きる。
As described above, in the optical ADM node device according to the present embodiment, the signal light of a specific wavelength branched by the optical demultiplexer 12 is received by the optical receiver 16 via the optical filter 15, and the reception SNR is reduced. Optical filter 15 to be maximum
Of the optical receiver 16 by controlling the transmission wavelength characteristic of
In this case, the beat noise between the ASE noises can be reduced, and the deterioration of the receiving sensitivity due to the wavelength shift between the wavelength of the branched optical signal and the transmission wavelength characteristic of the optical demultiplexer 12 can be suppressed to a minimum.

【0029】尚、本実施形態においては、光分波器12
と光合波器13を用いて特定波長の信号光の分岐・挿入
を行ったが、音響光学フィルタや光ラティス型フィルタ
などのように、特定波長の信号光のみ分岐・挿入し、他
の波長の信号光は透過させることが可能な光回路を用い
てもよい。
In the present embodiment, the optical demultiplexer 12
And the optical multiplexer 13 to drop / add a signal light of a specific wavelength. However, as in an acousto-optic filter or an optical lattice filter, only a signal light of a specific wavelength is dropped / added, and other wavelengths of signal light are added. An optical circuit that can transmit signal light may be used.

【0030】(第2の実施形態)図4に、本発明の第2
の実施形態に係る光ADMノード装置の構成を示す。図
1と同一部分に同一参照符号を付して、相違点を中心に
説明する。
(Second Embodiment) FIG. 4 shows a second embodiment of the present invention.
1 shows a configuration of an optical ADM node device according to the embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description will focus on differences.

【0031】光伝送路10を介して伝送されてきた波長
多重信号光を増幅する光増幅器11の出力は、光学共振
器21を介して光分波器12に入力される。光学共振器
21は、図1における光フィルタ15に代えて用いられ
る光フィルタであり、例えばファイバーファブリペロー
共振器やリング共振器などにより構成される。また、光
学共振器21のフリースペクトルレンジは波長多重信号
光の波長間隔に一致している。
The output of the optical amplifier 11 for amplifying the wavelength multiplexed signal light transmitted via the optical transmission line 10 is input to the optical demultiplexer 12 via the optical resonator 21. The optical resonator 21 is an optical filter used in place of the optical filter 15 in FIG. 1, and is constituted by, for example, a fiber Fabry-Perot resonator, a ring resonator, or the like. The free spectrum range of the optical resonator 21 matches the wavelength interval of the wavelength multiplexed signal light.

【0032】そして、光受信器16の受信SNRを検出
するSNR検出部17からの出力信号は光学共振器制御
部22に入力され、光学共振器制御部22は受信SNR
が最大となるように光学共振器21の透過波長特性を制
御する。
The output signal from the SNR detector 17 for detecting the reception SNR of the optical receiver 16 is input to the optical resonator controller 22, and the optical resonator controller 22
Is controlled so as to maximize the transmission wavelength characteristic of the optical resonator 21.

【0033】本実施形態においても、第1の実施形態と
同様に光分波器12で光受信器16側に分岐される信号
光の受信SNRが最大となるように光学共振器21の透
過波長特性を制御することによって、光受信器16にお
けるASE雑音どうしのビート雑音を低減し、分岐した
光信号の波長と光分波器12の透過波長特性との波長ず
れによる受信感度劣化を最小限に抑圧することができ
る。
Also in the present embodiment, as in the first embodiment, the transmission wavelength of the optical resonator 21 is set so that the reception SNR of the signal light branched to the optical receiver 16 by the optical demultiplexer 12 is maximized. By controlling the characteristics, the beat noise between the ASE noises in the optical receiver 16 is reduced, and the deterioration of the receiving sensitivity due to the wavelength shift between the wavelength of the branched optical signal and the transmission wavelength characteristic of the optical demultiplexer 12 is minimized. Can be suppressed.

【0034】尚、本実施形態においても、第1の実施形
態と同様に、光分波器12と光合波器13を用いて特定
波長の信号光の分岐・挿入を行う代わりに、音響光学フ
ィルタや光ラティス型フィルタなどのように、特定波長
の信号光のみ分岐・挿入し、他の波長の信号光は透過さ
せることが可能な光回路を用いてもよい。
In this embodiment, as in the first embodiment, instead of using the optical demultiplexer 12 and the optical multiplexer 13 to drop / add a signal light of a specific wavelength, an acousto-optic filter is used. An optical circuit, such as a filter or an optical lattice filter, capable of dropping / inserting only signal light of a specific wavelength and transmitting signal light of another wavelength may be used.

【0035】(第3の実施形態)図5に、本発明の第3
の実施形態に係る光ADMノード装置の構成を示す。図
1と同一部分に同一参照符号を付して、相違点を中心に
説明する。
(Third Embodiment) FIG. 5 shows a third embodiment of the present invention.
1 shows a configuration of an optical ADM node device according to the embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description will focus on differences.

【0036】光分波器12で分波された各波長の信号光
λ1 ,λ2 ,λ3 ,λ4 は、それぞれ光経路31−1,
31−2,31−3,31−4に送出される。波長λ4
の信号光は光経路31−4を通して分岐され、残りの波
長λ1 ,λ2 ,λ3 の信号光は光経路31−1,31−
2,31−3にそれぞれ挿入された光フィルタ32−
1,32−2,32−3を介して光合波器13で合波さ
れる。
The signal lights λ 1 , λ 2 , λ 3 , and λ 4 of the respective wavelengths demultiplexed by the optical demultiplexer 12 are respectively transmitted through optical paths 31-1, 31-1.
It is sent to 31-2, 31-3, 31-4. Wavelength λ 4
Is split through an optical path 31-4, and the remaining signal lights of wavelengths λ 1 , λ 2 , λ 3 are split into optical paths 31-1, 31-.
2, 31-3. Optical filters 32-
The signals are multiplexed by the optical multiplexer 13 via 1, 32-2 and 32-3.

【0037】光フィルタ32−1,32−2,32−3
は、その透過中心波長が信号光の波長λ1 ,λ2 ,λ3
にそれぞれ一致、すなわち同調している。従って、例え
ば光経路31−1に漏れ込む波長λ2 ,λ3 ,λ4 の信
号光成分は、光増幅器11のASE雑音と共に光フィル
タ32−1で抑圧される。同様に、光経路31−2に漏
れ込む波長λ1 ,λ3 ,λ4 の信号光成分は、光増幅器
11のASE雑音と共に光フィルタ32−2で抑圧さ
れ、さらに光経路31−3に漏れ込む波長λ1 ,λ2
λ4 の信号光成分は光増幅器11のASE雑音と共に光
フィルタ32−3で抑圧される。
Optical filters 32-1, 32-2, 32-3
Are the transmission center wavelengths of the signal light wavelengths λ 1 , λ 2 , λ 3
Are in agreement with each other. Therefore, for example, the signal light components of the wavelengths λ 2 , λ 3 and λ 4 leaking into the optical path 31-1 are suppressed by the optical filter 32-1 together with the ASE noise of the optical amplifier 11. Similarly, the signal light components of wavelengths λ 1 , λ 3 , λ 4 leaking into the optical path 31-2 are suppressed by the optical filter 32-2 together with the ASE noise of the optical amplifier 11, and further leaked into the optical path 31-3. Wavelengths λ 1 , λ 2 ,
The signal light component of λ 4 is suppressed by the optical filter 32-3 together with the ASE noise of the optical amplifier 11.

【0038】この結果、光合波器13で合波したときの
コヒーレントクロストークおよびASE雑音を低減でき
る。特に、所望の波長から離れた波長の信号光成分に対
して抑圧効果が大きいため、コヒーレントクロストーク
を生じさせる光経路の数を大幅に低減できる。
As a result, coherent crosstalk and ASE noise when multiplexed by the optical multiplexer 13 can be reduced. In particular, since the effect of suppressing signal light components having wavelengths apart from the desired wavelength is large, the number of optical paths that cause coherent crosstalk can be significantly reduced.

【0039】このように本実施形態においては、波長多
重信号光を光分波器12で分波した後、それぞれの波長
に同調させた光フィルタ32−1,32−2,32−3
を介して光合波器13で合波することにより、波長数や
ノード数が増大してもコヒーレントクロストークおよび
光増幅器のASE雑音を低減でき、良好な光伝送特性を
達成できる。
As described above, in the present embodiment, the wavelength division multiplexed signal light is demultiplexed by the optical demultiplexer 12, and then the optical filters 32-1, 32-2, and 32-3 tuned to the respective wavelengths.
Multiplexed by the optical multiplexer 13 via the optical communication device, coherent crosstalk and ASE noise of the optical amplifier can be reduced even if the number of wavelengths or the number of nodes increases, and good optical transmission characteristics can be achieved.

【0040】(第4の実施形態)図6に、本発明の第4
の実施形態に係る光ADMノード装置の構成を示す。図
5と同一部分に同一参照符号を付して、相違点を中心に
説明する。
(Fourth Embodiment) FIG. 6 shows a fourth embodiment of the present invention.
1 shows a configuration of an optical ADM node device according to the embodiment. The same parts as those in FIG. 5 are denoted by the same reference numerals, and the description will focus on the differences.

【0041】本実施形態では、光合波器13の出力側に
光カプラ41が設けられ、この光カプラ41によって光
合波器13の出力光の一部が取り出されてパワー検出部
42に入力される。パワー検出部42は各波長の信号光
のパワーを検出し、検出した光パワーに応じた信号を光
フィルタ制御部43に出力する。
In this embodiment, an optical coupler 41 is provided on the output side of the optical multiplexer 13, and a part of the output light of the optical multiplexer 13 is extracted by the optical coupler 41 and input to the power detector 42. . The power detector 42 detects the power of the signal light of each wavelength and outputs a signal corresponding to the detected optical power to the optical filter controller 43.

【0042】光フィルタ制御部43は、各波長の光パワ
ーが最大となるように、光経路31−1,31−2,3
1−3,31−4にそれぞれ挿入された光フィルタ32
−1,32−2,32−3の透過波長特性を制御する。
The optical filter control section 43 controls the optical paths 31-1, 31-2, 3 so that the optical power of each wavelength is maximized.
Optical filters 32 respectively inserted in 1-3 and 31-4
-1, 32-2 and 32-3 are controlled.

【0043】光分波器12および光合波器13の透過波
長特性と信号光の波長との間にずれが生じるとクロスト
ーク特性が劣化するが、各光フィルタ32−1,32−
2,32−3が信号光の波長と同調しており、所望の信
号光以外の波長成分を抑圧しているので、良好なクロス
トーク特性を保持することが可能である。
If a shift occurs between the transmission wavelength characteristics of the optical demultiplexers 12 and the optical multiplexer 13 and the wavelength of the signal light, the crosstalk characteristics deteriorate, but the optical filters 32-1 and 32-
2, 32-3 are tuned to the wavelength of the signal light and suppress wavelength components other than the desired signal light, so that good crosstalk characteristics can be maintained.

【0044】また、図7に光フィルタ32−1,32−
2,32−3を挿入したときのノードにおける波長ずれ
が低減される割合を示す。横軸は、光フィルタ32−
1,32−2,32−3の透過帯域幅(f2)と光分波
器12もしくは光合波器13の透過帯域幅(f1)の比
m(=f2/f1)を示す。縦軸は、光フィルタ32−
1,32−2,32−3を挿入したと気の波長ずれ量
(Δλ2)と挿入しないと気の波長ずれ量(Δλ1)の
比Δλ(=Δλ2/Δλ1)を示す。なお、光フィルタ
32−1,32−2,32−3としてはガウス型フィル
タを仮定した。
FIG. 7 shows optical filters 32-1 and 32-
The ratio at which the wavelength shift at the node when 2, 32-3 is inserted is reduced. The horizontal axis is the optical filter 32-
The ratio m (= f2 / f1) of the transmission bandwidth (f2) of 1, 32-2, 32-3 to the transmission bandwidth (f1) of the optical demultiplexer 12 or the optical multiplexer 13 is shown. The vertical axis indicates the optical filter 32-
The ratio Δλ (= Δλ2 / Δλ1) of the wavelength shift amount (Δλ2) of the gas when 1, 32-2 and 32-3 are inserted and the wavelength shift amount (Δλ1) of the gas without the insertion are shown. Note that Gaussian filters are assumed as the optical filters 32-1, 32-2, and 32-3.

【0045】図7より、光フィルタ32−1,32−
2,32−3を挿入することで、波長ずれ量はm=1の
場合で半分に低減され、またm=0.5の場合には5分
の1に低減されることが分かる。
FIG. 7 shows that the optical filters 32-1 and 32-
By inserting 2,32-3, it can be seen that the wavelength shift amount is reduced to half when m = 1, and to one-fifth when m = 0.5.

【0046】このように本実施形態においては、光分波
器12と光合波器13との間に挿入した各光フィルタ3
2−1,32−2,32−3が常に信号光の各波長と同
調しているため、光分波器12および光合波器13の透
過波長特性と信号光の波長との間にずれが生じても、光
増幅器11のASE雑音を低減し、かつコヒーレントク
ロストークおよび信号波形の歪による伝送特性劣化を抑
圧できる。
As described above, in the present embodiment, each optical filter 3 inserted between the optical demultiplexer 12 and the optical multiplexer 13 is
Since 2-1, 32-2 and 32-3 are always tuned to each wavelength of the signal light, there is a deviation between the transmission wavelength characteristic of the optical demultiplexer 12 and the optical multiplexer 13 and the wavelength of the signal light. Even if it occurs, ASE noise of the optical amplifier 11 can be reduced, and deterioration of transmission characteristics due to coherent crosstalk and signal waveform distortion can be suppressed.

【0047】(第5の実施形態)図8に、本発明の第5
の実施形態に係る光ADMノード装置の構成を示す。図
6と同一部分に同一参照符号を付して、相違点を中心に
説明する。
(Fifth Embodiment) FIG. 8 shows a fifth embodiment of the present invention.
1 shows a configuration of an optical ADM node device according to the embodiment. The same parts as those in FIG. 6 are denoted by the same reference numerals, and the description will focus on the differences.

【0048】本実施形態では、光カプラ41によって光
合波器13から出力される信号光の位置部が取り出され
て波長ずれ検出部45に入力される。波長ずれ検出部4
5では、信号光の波長と光分波器12および光合波器1
3の透過中心波長とのずれを検出し、検出したずれ量に
応じた信号を光フィルタ制御部44に出力する。
In the present embodiment, the position portion of the signal light output from the optical multiplexer 13 is extracted by the optical coupler 41 and input to the wavelength shift detector 45. Wavelength shift detector 4
5, the wavelength of the signal light and the optical demultiplexer 12 and the optical multiplexer 1
3 and outputs a signal corresponding to the detected shift amount to the optical filter control unit 44.

【0049】光フィルタ制御部44は、光フィルタ32
−1,32−2,32−3がガウス型フィルタの場合、
式(2)に従って光経路31−1,31−2,31−3
にそれぞれ挿入された光フィルタ32−1,32−2,
32−3の透過中心波長を制御する。
The optical filter controller 44 controls the optical filter 32
When -1, 32-2, and 32-3 are Gaussian filters,
The optical paths 31-1, 31-2, 31-3 according to equation (2)
, The optical filters 32-1, 32-2,
Control the transmission center wavelength of 32-3.

【0050】 b=−2m2 a (2) a:信号光の波長と光分波器12および光合波器13の
透過中心波長とのずれ m:光分波器12および光合波器13の帯域幅と光フィ
ルタ32−1,32−2,32−3の帯域幅の比 b:光フィルタ32−1,32−2,32−3の透過中
心波長の信号光波長からの制御量 このように本実施形態においては、光分波器12と光合
波器13との間に挿入された光フィルタ32−1,32
−2,32−3が、光分波器12および光合波器13の
透過中心波長と信号光の波長と波長ずれを常に相殺させ
るため、波長ずれが生じても、光増幅器11のASE雑
音をより効果的に低減し、かつ信号波形の歪による伝送
特性劣化を抑圧することができる。
B = −2m 2 a (2) a: deviation between the wavelength of the signal light and the transmission center wavelength of the optical demultiplexer 12 and the optical multiplexer 13 m: band of the optical demultiplexer 12 and the optical multiplexer 13 The ratio between the width and the bandwidth of the optical filters 32-1, 32-2, and 32-3. B: Control amount of the transmission center wavelength of the optical filters 32-1, 32-2, and 32-3 from the signal light wavelength. In the present embodiment, the optical filters 32-1 and 32 inserted between the optical demultiplexer 12 and the optical multiplexer 13 are provided.
−2 and 32-3 always cancel the transmission center wavelength of the optical demultiplexer 12 and the optical multiplexer 13, the wavelength of the signal light, and the wavelength shift. Therefore, even if the wavelength shift occurs, the ASE noise of the optical amplifier 11 is reduced. It is possible to more effectively reduce and suppress deterioration of transmission characteristics due to distortion of a signal waveform.

【0051】(第6の実施形態)図9に、本発明の第6
の実施形態に係る光ADMノード装置の構成を示す。図
1と同一部分に同一参照符号を付して、相違点を中心に
説明する。
(Sixth Embodiment) FIG. 9 shows a sixth embodiment of the present invention.
1 shows a configuration of an optical ADM node device according to the embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description will focus on differences.

【0052】光分波器12で分波された信号光のうち波
長λ4 の信号光は分岐され、光受信器16で受信され
る。光受信器16は、受信した信号光の光パワーに応じ
た信号を光分波器制御部51に出力する。光分波器制御
部51は、受信光パワーが最大となるように光分波器1
2の透過波長特性を制御する。
The signal light having the wavelength λ 4 of the signal light split by the optical splitter 12 is split and received by the optical receiver 16. The optical receiver 16 outputs a signal corresponding to the optical power of the received signal light to the optical demultiplexer control unit 51. The optical demultiplexer controller 51 controls the optical demultiplexer 1 so that the received optical power is maximized.
2 is controlled.

【0053】また、光合波器13の出力光の一部は、第
4の実施形態と同様に光カプラ41を介してパワー検出
部42に入力される。パワー検出部42では、ノードを
透過してきた波長λ1 ,λ2 ,λ3 の信号光の光パワー
を検出し、検出した光パワーに応じた信号を光合波器制
御部52に出力する。光合波器制御部52では、光合波
器13の出力光の各波長の信号光パワーが最大となるよ
うに光合波器13の透過波長特性を制御する。
A part of the output light from the optical multiplexer 13 is input to the power detector 42 via the optical coupler 41 as in the fourth embodiment. The power detector 42 detects the optical power of the signal light of the wavelengths λ 1 , λ 2 , λ 3 transmitted through the node, and outputs a signal corresponding to the detected optical power to the optical multiplexer controller 52. The optical multiplexer control unit 52 controls the transmission wavelength characteristic of the optical multiplexer 13 so that the signal light power of each wavelength of the output light of the optical multiplexer 13 is maximized.

【0054】本実施形態においては、光分波器12およ
び光合波器13の透過波長特性を信号光の波長を基準と
して制御しているので、信号光の波長と光分波器12お
よび光合波器13の透過波長特性との波長ずれに伴うA
SEどうしのビート雑音による光受信器16での受信感
度劣化や、コヒーントクロストークの増加および信号波
形の歪を抑圧することができる。
In this embodiment, since the transmission wavelength characteristics of the optical demultiplexer 12 and the optical multiplexer 13 are controlled with reference to the wavelength of the signal light, the wavelength of the signal light and the wavelength of the optical demultiplexer 12 and the optical multiplexer are controlled. A due to the wavelength shift from the transmission wavelength characteristic of the detector 13
It is possible to suppress reception sensitivity deterioration in the optical receiver 16 due to beat noise between SEs, increase in coherent crosstalk, and signal waveform distortion.

【0055】(第7の実施形態)図10に、本発明の第
7の実施形態に係る光ADMノード装置の構成を示す。
図7と同一部分に同一参照符号を付して、相違点を中心
に説明する。
(Seventh Embodiment) FIG. 10 shows a configuration of an optical ADM node device according to a seventh embodiment of the present invention.
The same parts as those in FIG.

【0056】パワー検出部42では、ノードを通過して
きた波長λ1 ,λ2 ,λ3 の信号光の光パワーを検出
し、検出した光パワーに応じた信号を光合波器制御部5
2に出力する。さらに、パワー検出部42は挿入された
波長λ4 の信号光の光パワーを検出し、検出した光パワ
ーに応じた号を光送信器19に出力する。光送信器19
では、パワー検出部42からの信号に基づいて、光合波
器13を透過する光パワーが最大なるように送信波長が
制御される。
The power detector 42 detects the optical power of the signal light of wavelengths λ 1 , λ 2 , λ 3 passing through the node, and outputs a signal corresponding to the detected optical power to the optical multiplexer controller 5.
Output to 2. Further, the power detector 42 detects the optical power of the inserted signal light having the wavelength λ 4 and outputs a signal corresponding to the detected optical power to the optical transmitter 19. Optical transmitter 19
In, the transmission wavelength is controlled based on the signal from the power detection unit so that the optical power transmitted through the optical multiplexer 13 is maximized.

【0057】本実施形態においては、ノードを通過して
きた波長を基準として光合波器13の透過波長特性を安
定化させ、さらに光合分波器13の透過波長特性を用い
て、光送信器19によって挿入される信号光の波長を制
御している。従って、分岐した波長と正確に同一の波長
を有する信号光を挿入できるので、他の光ADMノード
においてコヒーレントクロストークを増加させることの
ない良好な光伝送特性を達成できる。
In the present embodiment, the transmission wavelength characteristic of the optical multiplexer / demultiplexer 13 is stabilized with reference to the wavelength passing through the node, and the transmission wavelength characteristic of the optical multiplexer / demultiplexer 13 is further used by the optical transmitter 19. The wavelength of the signal light to be inserted is controlled. Therefore, a signal light having the same wavelength as the branched wavelength can be inserted, so that good optical transmission characteristics can be achieved without increasing coherent crosstalk in other optical ADM nodes.

【0058】[0058]

【発明の効果】以上説明したように、本発明によれば光
増幅器のASEに起因する雑音の影響を効果的に低減で
き、さらにはコヒーレントクロストークによる光伝送特
性の劣化を抑圧することができる。
As described above, according to the present invention, the influence of noise due to the ASE of the optical amplifier can be effectively reduced, and furthermore, the deterioration of the optical transmission characteristics due to coherent crosstalk can be suppressed. .

【0059】すなわち、本発明に係る第1の光ADMノ
ード装置では、光分波器と光合波器との間の光経路にそ
れぞれの経路を透過する信号光の波長に同調した光フィ
ルタを挿入することにより、光増幅器のASE雑音を低
減し、かつコヒーレントクロストークを抑圧しているた
め、波長数やノード数が増加しても、ASE雑音やコヒ
ーレントクロストークによる伝送特性劣化を抑圧するこ
とができる。
That is, in the first optical ADM node device according to the present invention, an optical filter tuned to the wavelength of the signal light passing through each path is inserted into the optical path between the optical demultiplexer and the optical multiplexer. As a result, the ASE noise of the optical amplifier is reduced and the coherent crosstalk is suppressed. Therefore, even if the number of wavelengths and the number of nodes increase, it is possible to suppress the transmission characteristic deterioration due to the ASE noise and the coherent crosstalk. it can.

【0060】本発明に係る第2の光ADMノード装置で
は、光合波器の出力において各波長の信号光パワーが最
大となるように、光分波器と光合波器との間の光経路に
挿入された光フィルタの波長特性を制御することによ
り、信号光の波長と光分波器および光合波器の波長特性
にずれが生じても、コヒーレントクロストークおよび信
号波形の歪による光伝送特性の劣化を抑圧することがで
きる。
In the second optical ADM node device according to the present invention, the optical path between the optical demultiplexer and the optical multiplexer is set so that the signal light power of each wavelength becomes maximum at the output of the optical multiplexer. By controlling the wavelength characteristics of the inserted optical filter, even if the wavelength of the signal light deviates from the wavelength characteristics of the optical demultiplexer and the optical multiplexer, the optical transmission characteristics due to coherent crosstalk and distortion of the signal waveform can be improved. Deterioration can be suppressed.

【0061】本発明に係る第3の光ADMノード装置で
は、信号光の波長と光分波器および光合波器の波長との
波長ずれを相殺するように、光分波器と光合波器との間
に挿入された光フィルタの波長特性を制御することによ
り、このような波長ずれか生じても、信号波形の歪によ
る光伝送特性の劣化を抑圧することができる。
In the third optical ADM node device according to the present invention, the optical demultiplexer and the optical multiplexer are combined so as to cancel the wavelength shift between the wavelength of the signal light and the wavelength of the optical demultiplexer and the optical multiplexer. By controlling the wavelength characteristics of the optical filter inserted between the optical filters, it is possible to suppress the deterioration of the optical transmission characteristics due to the distortion of the signal waveform even if such a wavelength shift occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態に係る光ADMノードの構成を
示す図
FIG. 1 is a diagram showing a configuration of an optical ADM node according to a first embodiment.

【図2】種々の光ADMノードにおいて分岐される信号
光の光受信器入力光スペクトルを示す図
FIG. 2 is a diagram showing an optical receiver input optical spectrum of signal light split in various optical ADM nodes.

【図3】種々の光ADMノードにおいて分岐される信号
光の誤り率特性を示す図
FIG. 3 is a diagram illustrating error rate characteristics of signal light branched in various optical ADM nodes;

【図4】第2の実施形態に係る光ADMノードの構成を
示す図
FIG. 4 is a diagram illustrating a configuration of an optical ADM node according to a second embodiment;

【図5】第3の実施形態に係る光ADMノードの構成を
示す図
FIG. 5 is a diagram illustrating a configuration of an optical ADM node according to a third embodiment;

【図6】第4の実施形態に係る光ADMノードの構成を
示す図
FIG. 6 is a diagram illustrating a configuration of an optical ADM node according to a fourth embodiment;

【図7】光フィルタの挿入により波長ずれが低減される
割合を示す図
FIG. 7 is a diagram showing a rate at which a wavelength shift is reduced by inserting an optical filter.

【図8】第5の実施形態に係る光ADMノードの構成を
示す図
FIG. 8 is a diagram showing a configuration of an optical ADM node according to a fifth embodiment.

【図9】第6の実施形態に係る光ADMノードの構成を
示す図
FIG. 9 is a diagram showing a configuration of an optical ADM node according to a sixth embodiment.

【図10】第7の実施形態に係る光ADMノードの構成
を示す図
FIG. 10 is a diagram showing a configuration of an optical ADM node according to a seventh embodiment.

【図11】光ADMノードの基本構成を示す図FIG. 11 is a diagram showing a basic configuration of an optical ADM node;

【符号の説明】[Explanation of symbols]

10…光伝送路 11…光増幅器 12…光分波器 13…光合波器 14…光増幅器 16…光受信器 17…SNR検出部 18…光フィルタ制御部 19…光送信器 21…光学共振器 22…光学共振器制御部 31−1〜31−4…光経路 32−1〜32−3…光フィルタ 41…光カプラ 42…光パワー検出部 43…光フィルタ制御部 44…光フィルタ制御部 45…波長ずれ検出部 51…光分波器制御部 52…光合波器制御部 DESCRIPTION OF SYMBOLS 10 ... Optical transmission line 11 ... Optical amplifier 12 ... Optical demultiplexer 13 ... Optical multiplexer 14 ... Optical amplifier 16 ... Optical receiver 17 ... SNR detection part 18 ... Optical filter control part 19 ... Optical transmitter 21 ... Optical resonator 22 optical resonator controller 31-1 to 31-4 optical path 32-1 to 32-3 optical filter 41 optical coupler 42 optical power detector 43 optical filter controller 44 optical filter controller 45 … Wavelength shift detecting section 51… optical demultiplexer control section 52… optical multiplexer control section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光伝送路を介して伝送されてきた波長多重
信号光を増幅する光増幅器と、 この光増幅器より出力される波長多重信号を各波長の信
号光に分波すると共に所望波長の信号光を分岐させる光
分波手段と、 この光分波手段により分岐された所望波長の信号光を受
信する光受信器と、 前記所望波長の信号光を出力する光送信器と、 前記光分波手段により分波された各波長の信号光および
前記光送信器から出力される信号光を合波して光伝送路
へ送出する光合波手段と、 前記光分波手段と前記光合波手段との間の光経路に設け
られ、前記光分波手段により分波された信号光の各波長
に同調した複数の光フィルタとを備えたことを特徴とす
る光分岐挿入多重ノード装置。
An optical amplifier for amplifying a wavelength-division multiplexed signal light transmitted via an optical transmission line, a wavelength-division multiplexed signal output from the optical amplifier is demultiplexed into signal lights of respective wavelengths, and a desired wavelength is multiplexed. An optical demultiplexing unit that splits the signal light; an optical receiver that receives the signal light of a desired wavelength split by the optical demultiplexing unit; an optical transmitter that outputs the signal light of the desired wavelength; Optical multiplexing means for multiplexing the signal light of each wavelength demultiplexed by the multiplexing means and the signal light output from the optical transmitter and sending the multiplexed signal light to an optical transmission line; the optical multiplexing means and the optical multiplexing means And a plurality of optical filters tuned to each wavelength of the signal light demultiplexed by the optical demultiplexing means.
【請求項2】光伝送路を介して伝送されてきた波長多重
信号光を増幅する光増幅器と、 この光増幅器より出力される波長多重信号光を各波長の
信号光に分波すると共に所望波長の信号光を分岐させる
光分波手段と、 この光分波手段により分岐された所望波長の信号光を受
信する光受信器と、 前記所望波長の信号光を出力する光送信器と、 前記光分波手段により分波された各波長の信号光および
前記光送信器から出力される信号光を合波して光伝送路
へ送出する光合波手段と、 前記光分波手段と前記光合波手段との間の光経路に設け
られた複数の光フィルタと、 前記光合波手段から出力される各波長の信号光の出力パ
ワーを検出し、この出力パワーが最大となるように前記
光フィルタの波長特性を制御する制御手段とを備えたこ
とを特徴とする光分岐挿入多重ノード装置。
2. An optical amplifier for amplifying a wavelength multiplexed signal light transmitted via an optical transmission line, a wavelength multiplexed signal light output from the optical amplifier being demultiplexed into signal lights of respective wavelengths, and a desired wavelength Optical demultiplexing means for splitting the signal light of the above, an optical receiver for receiving the signal light of a desired wavelength split by the optical demultiplexing means, an optical transmitter for outputting the signal light of the desired wavelength, and the light Optical multiplexing means for multiplexing the signal light of each wavelength demultiplexed by the demultiplexing means and the signal light output from the optical transmitter and sending the multiplexed signal light to an optical transmission line; the optical demultiplexing means and the optical multiplexing means A plurality of optical filters provided in an optical path between the optical filter, detecting the output power of the signal light of each wavelength output from the optical multiplexing means, the wavelength of the optical filter so that this output power is maximized And control means for controlling characteristics. That the optical add-drop multiplexing node device.
【請求項3】光伝送路を介して伝送されてきた波長多重
信号光を増幅する光増幅器と、 この光増幅器より出力される波長多重信号光を各波長の
信号光に分波すると共に所望波長の信号光を分岐させる
光分波手段と、 この光分波手段により分岐された所望波長の信号光を受
信する光受信器と、 前記所望波長の信号光を出力する光送信器と、 前記光分波手段により分波された各波長の信号光および
前記光送信器から出力される信号光を合波して光伝送路
へ送出する光合波手段と、 前記光分波手段と前記光合波手段との間の光経路に設け
られた複数の光フィルタと、 前記光分波手段および前記光合波手段の透過中心波長と
信号光の波長との波長ずれを検出し、この波長ずれに対
応した信号を出力する検出手段と、 この検出手段からの出力信号に基づいて前記光フィルタ
の波長特性を制御する制御手段とを備えたことを特徴と
する光分岐挿入多重ノード装置。
3. An optical amplifier for amplifying a wavelength-division multiplexed signal light transmitted via an optical transmission line; a wavelength-division multiplexed signal light output from the optical amplifier is demultiplexed into signal lights of respective wavelengths; Optical demultiplexing means for splitting the signal light of the above, an optical receiver for receiving the signal light of a desired wavelength split by the optical demultiplexing means, an optical transmitter for outputting the signal light of the desired wavelength, and the light Optical multiplexing means for multiplexing the signal light of each wavelength demultiplexed by the demultiplexing means and the signal light output from the optical transmitter and sending the multiplexed signal light to an optical transmission line; the optical demultiplexing means and the optical multiplexing means A plurality of optical filters provided in the optical path between the optical demultiplexing means and the optical demultiplexing means and the optical multiplexing means detect a wavelength shift between the transmission center wavelength and the wavelength of the signal light, and a signal corresponding to the wavelength shift. Detecting means for outputting a signal, and an output signal from the detecting means. Control means for controlling the wavelength characteristic of the optical filter based on the optical filter.
JP2001392676A 2001-12-25 2001-12-25 Optical add / drop multiplex node equipment Expired - Fee Related JP3523233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001392676A JP3523233B2 (en) 2001-12-25 2001-12-25 Optical add / drop multiplex node equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001392676A JP3523233B2 (en) 2001-12-25 2001-12-25 Optical add / drop multiplex node equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8161785A Division JPH1013382A (en) 1996-06-21 1996-06-21 Optical add-drop multiplexing node equipment

Publications (2)

Publication Number Publication Date
JP2002204209A true JP2002204209A (en) 2002-07-19
JP3523233B2 JP3523233B2 (en) 2004-04-26

Family

ID=19188672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001392676A Expired - Fee Related JP3523233B2 (en) 2001-12-25 2001-12-25 Optical add / drop multiplex node equipment

Country Status (1)

Country Link
JP (1) JP3523233B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019858A (en) * 2005-07-07 2007-01-25 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiple signal transmitter/receiver
US7630644B2 (en) 2005-12-14 2009-12-08 Fujitsu Limited Optical add/drop multiplexer, control method therefor and control program therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019858A (en) * 2005-07-07 2007-01-25 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiple signal transmitter/receiver
JP4598615B2 (en) * 2005-07-07 2010-12-15 日本電信電話株式会社 Optical wavelength division multiplexing signal transmitter / receiver
US7630644B2 (en) 2005-12-14 2009-12-08 Fujitsu Limited Optical add/drop multiplexer, control method therefor and control program therefor

Also Published As

Publication number Publication date
JP3523233B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
JP3544210B2 (en) Multi-channel optical signal transmission method and multi-channel communication system
JP3995781B2 (en) Optical branching / inserting device and optical branching device using wavelength selective filter
CA2571414C (en) Optical fiber transmission system with noise loading
US8705952B2 (en) Optical wavelength division multiplex (WDM) transmission system
US20120087658A1 (en) Wavelength Selective Switch Band Aggregator and Band Deaggregator and Systems and Methods Using Same
JP4252219B2 (en) Optical node device and system including the device
WO2005096534A1 (en) Low-density wavelength multiplex optical transmission system and low-density wavelength multiplex optical transmission method
KR100334432B1 (en) Bidirectional add/drop optical amplifier module using one arrayed-waveguide grating multiplexer
JPH09116492A (en) Wavelength multiplex light amplifying/repeating method/ device
JPH06258545A (en) Optical branching device
JP2012182725A (en) Optical multiplexing/branching device and optical multiplexing/branching method
US7860396B2 (en) Noise reduction in optical communications networks
JP2008503886A (en) Wavelength division multiplexing (WDM) optical demultiplexer
US6735394B1 (en) Per-channel optical amplification using saturation mode
JP2002016550A (en) Optical amplifier system
US8195048B2 (en) Optical transport system architecture for remote terminal connectivity
US10805008B1 (en) Optical amplifiers that support gain clamping and optionally power loading
US7130542B2 (en) Modular multiplexing/demultiplexing units in optical transmission systems
JPH1013382A (en) Optical add-drop multiplexing node equipment
JP2002290331A (en) Optical add drop multiplexer node unit
JP3523233B2 (en) Optical add / drop multiplex node equipment
JP3314745B2 (en) Optical insertion / separation device and optical transmission device having the same
JPWO2008126134A1 (en) Optical transmission equipment
JP2005210264A (en) Optical receiver and optical transmitter
US8503881B1 (en) Systems for extending WDM transmission into the O-band

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees