JP2002203538A - Mounting type lithium battery - Google Patents

Mounting type lithium battery

Info

Publication number
JP2002203538A
JP2002203538A JP2001053839A JP2001053839A JP2002203538A JP 2002203538 A JP2002203538 A JP 2002203538A JP 2001053839 A JP2001053839 A JP 2001053839A JP 2001053839 A JP2001053839 A JP 2001053839A JP 2002203538 A JP2002203538 A JP 2002203538A
Authority
JP
Japan
Prior art keywords
current collector
lithium battery
resin layer
positive electrode
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001053839A
Other languages
Japanese (ja)
Inventor
Hiromitsu Mishima
洋光 三島
Makoto Osaki
誠 大崎
Toshihiko Kamimura
俊彦 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001053839A priority Critical patent/JP2002203538A/en
Publication of JP2002203538A publication Critical patent/JP2002203538A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Credit Cards Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a short circuit between a sheath body and a current collector in a mounting type lithium battery. SOLUTION: At an inner side of the sheath body consisting of a metallic foil, a power generating element comprised by equipping an electrolyte between a positive electrode and a negative electrode is arranged and installed, and the current collector is equipped at least at one outside of the positive electrode and the negative electrode, and further an opening part is installed at the sheath body in order to expose the current collector, and a sheath part where this opening part is installed is adhered on the current collector via an insulating resin layer, and at least a part of this insulating resin layer is made to be protruded from an end of this current collector, and the mounting type lithium battery is constituted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム電池に関
し、特に発電要素を金属箔製外装体に収容し、正負極端
子を同一面から取出せる構造とした実装型リチウム電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery, and more particularly to a mounted lithium battery having a structure in which a power generating element is housed in a metal foil outer casing and positive and negative terminals are taken out from the same surface.

【0002】[0002]

【従来の技術】近年、ICカードやメモリーカードに代
表される半導体装置の電源として、エネルギー密度や厚
みの観点からコイン型や偏平型と称される薄形のリチウ
ム電池が開発されている。
2. Description of the Related Art In recent years, as a power source for a semiconductor device represented by an IC card or a memory card, a thin lithium battery called a coin type or a flat type has been developed in view of energy density and thickness.

【0003】しかしながら、従来の薄形リチウム電池に
おいては、外装体が正極と負極に分かれており、互いに
対向した面から、双方の電極を取出す構造であり、その
ため半導体装置に実装した場合、配線が複雑となり、そ
の結果、半導体装置の厚みが増加し、さらにコストがア
ップしていた。
However, in the conventional thin lithium battery, the outer package is divided into a positive electrode and a negative electrode, and both electrodes are taken out from the surfaces facing each other. Therefore, when mounted on a semiconductor device, the wiring is reduced. As a result, the thickness of the semiconductor device is increased, and the cost is further increased.

【0004】このような半導体装置においては、ICチ
ップを組み込んだ構成であり、電池はこのICチップの
主電源あるいはメモリーバックアップ電源として使用さ
れる。したがって、これら電池とICチップとを直接接
合することができれば、配線が簡略化でき、半導体装置
の厚みの増加やコストアップを抑えることができる。こ
の場合、電池には同一面から両端子を取出せる電池構造
がよい。
In such a semiconductor device, an IC chip is incorporated, and a battery is used as a main power supply or a memory backup power supply for the IC chip. Therefore, if these batteries and the IC chip can be directly joined, wiring can be simplified, and increase in thickness and cost of the semiconductor device can be suppressed. In this case, the battery preferably has a battery structure that allows both terminals to be taken out from the same surface.

【0005】特開平1−140553号によれば、同一
面から正負極両端子を取出す電池構造が提案されてい
る。
[0005] According to Japanese Patent Application Laid-Open No. 1-140553, a battery structure is proposed in which both positive and negative terminals are taken out from the same surface.

【0006】図3は同公報にて提案された封止性の高い
密閉構造を有する扁平型電源素子であり、同一面から正
負極端子を取出す電池構造の概略図である。
FIG. 3 is a schematic view of a flat type power supply element having a hermetically sealed structure proposed in the publication and having positive and negative terminals taken out from the same surface.

【0007】偏平型電源素子として、金属箔からなる第
1のケース半体1および第2のケース半体2を備え、ケ
ースの周縁部3において溶接されることによって封止さ
れる。第1のケース半体1には開口部9が形成され、こ
の開口部9に臨むように、金属箔からなる電極板(集電
体)7が配置されている。さらに、電極板7と第1のケ
ース半体1は絶縁性樹脂層8によって互いに絶縁され、
かつ封止された状態となっている。このようにして密閉
された収納部には第1の電極4と第2の電極5との間に
セパレータ6を配設してなる発電要素が収納されてい
る。
As a flat type power supply element, a first case half 1 and a second case half 2 made of metal foil are provided, and are sealed by welding at a peripheral portion 3 of the case. An opening 9 is formed in the first case half 1, and an electrode plate (current collector) 7 made of a metal foil is arranged so as to face the opening 9. Further, the electrode plate 7 and the first case half 1 are insulated from each other by the insulating resin layer 8,
It is in a sealed state. A power generation element in which the separator 6 is disposed between the first electrode 4 and the second electrode 5 is stored in the storage section sealed in this manner.

【0008】以上のとおり、第1のケース半体1に開口
部9を設けることで、同一面から両端子を取出し、IC
チップと直接接合することができる。
As described above, by providing the opening 9 in the first case half 1, both terminals are taken out from the same surface,
Can be directly bonded to the chip.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記構
成の扁平型電源素子(実装型リチウム電池)によれば、
第1のケース半体1と電極板7を絶縁性樹脂層8を介し
て封止する工程において、電極板7の周辺の端部10付
近にて第1のケース半体1と接触しやすくなっていると
ともに、第1のケース半体1に設けられた開口部9の端
が電極板7と接触しやすくなっている。そのために電極
板7と第1のケース半体1とが短絡することが頻繁に発
生することがわかった。
However, according to the flat power supply element (mounting type lithium battery) having the above structure,
In the step of sealing the first case half 1 and the electrode plate 7 with the insulating resin layer 8 interposed therebetween, the first case half 1 is more likely to come into contact with the first case half 1 in the vicinity of the peripheral end 10 of the electrode plate 7. In addition, the end of the opening 9 provided in the first case half 1 is easily brought into contact with the electrode plate 7. As a result, it has been found that a short circuit between the electrode plate 7 and the first case half 1 frequently occurs.

【0010】このような問題を解決するために、絶縁性
樹脂層8の厚みを大きくする方法が考えられるが、それ
によって短絡が防止できた反面、電池全体の厚みが大き
くなってしまい、本来の薄形リチウム電池としてのメリ
ットが低減していた。
In order to solve such a problem, a method of increasing the thickness of the insulating resin layer 8 can be considered. However, while short-circuiting can be prevented by doing so, the thickness of the whole battery increases, and the original thickness increases. The advantage as a thin lithium battery was reduced.

【0011】また、上記構成の扁平型電源素子(実装型
リチウム電池)を半導体装置に実装し、耐久試験をおこ
なうと、その薄型構造に起因し電池が曲がり易くなり、
そして、ICチップに対し直に力がかかり、ICチップ
が破損するという課題がある。
When the flat power supply element (mounting type lithium battery) having the above structure is mounted on a semiconductor device and subjected to a durability test, the battery is easily bent due to its thin structure.
Then, there is a problem that a force is directly applied to the IC chip and the IC chip is damaged.

【0012】かかる課題を解決するために、ICチップ
を保護すべくICチップと重なるように補強板を設け、
ICチップに直に力がかかることを防ぐ技術が提案され
ている。
In order to solve such a problem, a reinforcing plate is provided so as to overlap the IC chip to protect the IC chip,
Techniques have been proposed for preventing direct application of force to an IC chip.

【0013】図4は、このような補強板を用いて、扁平
型電源装置(実装型リチウム電池)を半導体装置11に
実装した断面構造を示す。
FIG. 4 shows a cross-sectional structure in which a flat power supply device (mounted lithium battery) is mounted on a semiconductor device 11 using such a reinforcing plate.

【0014】この半導体装置11において、12は実装
型リチウム電池であり、実装型リチウム電池12の上に
ICチップ13を設け、実装型リチウム電池12の下側
に補強板14を配している。
In this semiconductor device 11, reference numeral 12 denotes a mountable lithium battery. An IC chip 13 is provided on the mountable lithium battery 12, and a reinforcing plate 14 is provided below the mountable lithium battery 12.

【0015】しかしながら、上記構成の半導体装置11
によれば、補強板14を用いても、半導体装置11の所
定の厚み(たとえば、ICカードの場合には、0.76
mmである)に収まらなくなり、実用上支障がある。
However, the semiconductor device 11 having the above configuration
According to the above, even when the reinforcing plate 14 is used, a predetermined thickness of the semiconductor device 11 (for example, 0.76
mm) and there is a problem in practical use.

【0016】ちなみに、実際の半導体装置においては、
実装型リチウム電池12およびICチップ13との組合
せと補強板14とは別々に離して収納し、ICチップ1
3と実装型リチウム電池12とを配線で接続する構造で
ある。
Incidentally, in an actual semiconductor device,
The combination of the mountable lithium battery 12 and the IC chip 13 and the reinforcing plate 14 are housed separately and separately.
3 and the mounting type lithium battery 12 are connected by wiring.

【0017】以上のとおり、補強板14を用いること
で、半導体装置11の厚みが大幅に増加し、近年の薄型
および小型化の市場ニーズにあっていない。しかも部品
数が増加することで、コストが上がっていた。
As described above, the use of the reinforcing plate 14 significantly increases the thickness of the semiconductor device 11 and does not meet the market needs of recent thinner and smaller devices. Moreover, the increase in the number of parts has increased the cost.

【0018】したがって本発明の目的は厚みを増大させ
ないで、外装体と集電体との短絡を防ぎ、これによって
信頼性を高めた高性能かつ低コストな実装型リチウム電
池を提供することを目的としている。
Accordingly, an object of the present invention is to provide a high-performance and low-cost mounted lithium battery which prevents short-circuit between an outer package and a current collector without increasing the thickness, thereby improving reliability. And

【0019】[0019]

【課題を解決するための手段】本発明の実装型リチウム
電池は、金属箔からなる外装体の内側に、正極と負極と
の間に電解質を配設してなる発電要素を配設した構成に
おいて、正極および負極の少なくとも一方の外側に集電
体を備え、さらに該集電体を露出すべく外装体に開口部
を設け、この開口部を設けた外装部分を絶縁性樹脂層を
介して前記集電体上に接着するとともに、この絶縁性樹
脂層の少なくとも一部を集電体の端より突出せしめたこ
とを特徴とする。
According to the present invention, there is provided a mounted lithium battery having a structure in which a power generating element having an electrolyte disposed between a positive electrode and a negative electrode is provided inside an outer package made of metal foil. A current collector is provided outside at least one of the positive electrode and the negative electrode, and an opening is provided in the exterior body to further expose the current collector, and the exterior part having the opening is provided via an insulating resin layer. It is characterized in that it is adhered on the current collector and at least a part of the insulating resin layer is protruded from an end of the current collector.

【0020】また、前記絶縁性樹脂層の少なくとも一部
が、前記外装体の開口部よりも内側に突出していること
を特徴とする。
Further, at least a part of the insulating resin layer protrudes inward from an opening of the exterior body.

【0021】さらに本発明は、上記正極と負極のそれぞ
れの外側に集電体を備え、かつ外装体が1枚の金属箔を
二つ折りにして形成したことを特徴とする。
Further, the present invention is characterized in that a current collector is provided outside each of the positive electrode and the negative electrode, and the exterior body is formed by folding a single metal foil into two.

【0022】[0022]

【発明の実施の形態】以下、本発明の実装型リチウム電
池の実施形態を添付図面に基づいて説明する。図1は実
装型リチウム電池15の断面図であり、図2は他の実装
型リチウム電池16の断面図である。なお、図3に示す
実装型リチウム電池と同一箇所には同一符号を付す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a mounted lithium battery according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a sectional view of a mounted lithium battery 15, and FIG. 2 is a sectional view of another mounted lithium battery 16. The same parts as those of the mounted lithium battery shown in FIG. 3 are denoted by the same reference numerals.

【0023】図1に示す実装型リチウム電池15におい
ては、外装体は金属箔にて構成した第1のケース半体1
および第2のケース半体2とから成り、前記外装体の一
方の外装部分は第1のケース半体1に相当し、これら第
1のケース半体1と第2のケース半体2は周縁部3にお
いて溶接されることによって封止される。
In the mounted lithium battery 15 shown in FIG. 1, the outer case is made of a first case half 1 made of metal foil.
And the second case half 2, and one of the outer parts of the outer case corresponds to the first case half 1, and the first case half 1 and the second case half 2 Sealed by welding at the part 3.

【0024】第1のケース半体1には開口部9が形成さ
れ、この開口部9から一部が露出するように、集電体と
して金属箔からなる電極板7が配設されている。さら
に、電極板7と第1のケース半体1は絶縁性樹脂層8に
よって互いに絶縁され、かつ封止された状態となってい
る。
An opening 9 is formed in the first case half 1, and an electrode plate 7 made of metal foil is provided as a current collector so that a part of the opening 9 is exposed. Further, the electrode plate 7 and the first case half 1 are insulated from each other by the insulating resin layer 8 and are sealed.

【0025】このような外装体に、第1の電極4と第2
の電極5との間に電解質を含むセパレータ6を配設して
なる発電要素が収納されている。この第1の電極4と第
2の電極5は正極および負極を成すものであり、第1の
電極4は集電体である電極板7に接続して開口部9より
露出し、一方、第2の電極5は第2のケース半体2およ
び第1のケース半体1に接続して上記開口部9と同一面
に導出される。
The first electrode 4 and the second electrode 4
A power generating element in which a separator 6 containing an electrolyte is disposed between the electrode 5 and the electrode 5 is housed. The first electrode 4 and the second electrode 5 form a positive electrode and a negative electrode. The first electrode 4 is connected to an electrode plate 7 serving as a current collector and is exposed from an opening 9. The second electrode 5 is connected to the second case half 2 and the first case half 1 and is led out on the same plane as the opening 9.

【0026】そして、絶縁性樹脂層8の少なくとも一部
を電極板7の端面より突き出した突出部と成すことによ
って、第1のケース半体1と電極板7の短絡を防止して
いる。図1の例ではポリエチレンテレフタレートなどか
らなる窓枠状あるいはドーナツ状の耐熱樹脂層からなる
絶縁フィルム17を短絡防止フィルムとなし、突出部と
して設けているが、絶縁性樹脂層8を電極板7の端より
さらに延在してもよい。
The short-circuit between the first case half 1 and the electrode plate 7 is prevented by forming at least a part of the insulating resin layer 8 as a protrusion protruding from the end face of the electrode plate 7. In the example of FIG. 1, an insulating film 17 made of a window frame-like or donut-like heat-resistant resin layer made of polyethylene terephthalate or the like is formed as a short-circuit prevention film and provided as a protruding portion. It may extend further than the end.

【0027】絶縁フィルム17の突出量は、電極板7の
端と全く同じ以上であり、発電要素の厚み(図1では、
第1の電極4、第2の電極5、セパレータ6の各厚みの
合算)の2倍以下であることが望ましい。
The amount of protrusion of the insulating film 17 is exactly the same as or greater than the end of the electrode plate 7, and the thickness of the power generating element (in FIG. 1,
It is desirable that the thickness be equal to or less than twice the sum of the respective thicknesses of the first electrode 4, the second electrode 5, and the separator 6.

【0028】また、絶縁性樹脂層8は、少なくとも一部
を第1のケース半体1の開口部9よりも内側に突出させ
ることによって、この部分においても第1のケース半体
1と電極板7の短絡を防止している。
The insulating resin layer 8 has at least a portion protruding inward from the opening 9 of the first case half 1 so that the first case half 1 and the electrode plate are also formed in this portion. 7 is prevented from being short-circuited.

【0029】第1のケース半体1の開口部9に対する絶
縁性樹脂層8の突出量は、絶縁性樹脂層8の開口部9が
負荷と電極板7との接続を妨げない範囲であればよい。
さらに、絶縁性樹脂層8の開口部9の形状は、負荷との
接続に影響を及ぼさない限り特に限定されない。
The amount of protrusion of the insulating resin layer 8 with respect to the opening 9 of the first case half 1 is such that the opening 9 of the insulating resin layer 8 does not hinder the connection between the load and the electrode plate 7. Good.
Furthermore, the shape of the opening 9 of the insulating resin layer 8 is not particularly limited as long as it does not affect the connection with the load.

【0030】また、絶縁性樹脂層8の厚みは、薄いほど
電池全体の厚みに対する影響が少ないが、薄すぎると熱
圧着等の工程において、絶縁性樹脂層8にピンホール等
が生じ、電極板7と第1の半体ケース1が短絡すること
がある。従って絶縁性樹脂層8の厚みは、1μm以上1
00μm以下であることが好ましい。
The thinner the insulating resin layer 8 is, the less the thickness of the insulating resin layer 8 affects the thickness of the whole battery. 7 and the first half case 1 may be short-circuited. Therefore, the thickness of the insulating resin layer 8 is 1 μm or more and 1 μm or more.
It is preferably not more than 00 μm.

【0031】かくして上記構成の実装型リチウム電池1
5によれば、第1のケース半体1と電極板7を絶縁性樹
脂層8を介して封止する工程において、電極板7の周辺
付近に、突出部としての絶縁フィルム17を配し、さら
に絶縁性樹脂層8を第1のケース半体1の開口部9より
も内側に突出させたことで、電極板7と第1のケース半
体1とが接触しなくなり、双方の間にて短絡しなくなっ
た。
Thus, the mounted lithium battery 1 having the above structure
According to 5, in the step of sealing the first case half 1 and the electrode plate 7 with the insulating resin layer 8 interposed therebetween, an insulating film 17 as a protruding portion is arranged near the periphery of the electrode plate 7, Further, since the insulative resin layer 8 protrudes inward from the opening 9 of the first case half 1, the electrode plate 7 and the first case half 1 are not in contact with each other. No short circuit.

【0032】なお、本例にように別の絶縁フィルム17
を用いてもよいが、これに代えて絶縁性樹脂層8を延在
してもよく、電極板7のほぼ全周に延在したり、もしく
は部分的に延在してもよい。
It should be noted that another insulating film 17 as in this example is used.
However, instead of this, the insulating resin layer 8 may be extended, may be extended almost all around the electrode plate 7, or may be partially extended.

【0033】次に本発明の他の実施形態を説明する。Next, another embodiment of the present invention will be described.

【0034】図2に示す実装型リチウム電池16におい
ては、正極および負極のそれぞれの外側に金属箔からな
る集電体を導電性接着剤により接着させるという構成
と、外装体を二つ折りに成した構成とを組合せること
で、半導体装置の厚みを小さくしながらも、その曲げを
防止している。
In the mounted lithium battery 16 shown in FIG. 2, a current collector made of a metal foil is bonded to the outside of each of the positive electrode and the negative electrode with a conductive adhesive, and the outer package is folded in two. By combining with the configuration, the bending of the semiconductor device is prevented while the thickness of the semiconductor device is reduced.

【0035】外装体18は、折り返し部19と接合部2
0を有し、正極21と負極22の間に電解質23を配設
し、それぞれの外側に正極集電体24、負極集電体25
を導電性接着剤26a、26b、26cで接合し、正極
集電体24と外装体18の間は絶縁性樹脂層27で絶縁
し、外装体18には正極集電体24を露出する開口部2
8を備えている。ここで、正極21と負極22と電解質
23を合わせて発電要素と呼ぶ場合がある。
The exterior body 18 includes the folded portion 19 and the joint 2
0, an electrolyte 23 is disposed between the positive electrode 21 and the negative electrode 22, and a positive electrode current collector 24 and a negative electrode current collector 25
Are bonded by conductive adhesives 26a, 26b, and 26c, and the positive electrode current collector 24 and the exterior body 18 are insulated by an insulating resin layer 27. The exterior body 18 has an opening that exposes the positive electrode current collector 24. 2
8 is provided. Here, the positive electrode 21, the negative electrode 22, and the electrolyte 23 may be collectively referred to as a power generation element.

【0036】そして、絶縁性樹脂層27の少なくとも一
部を正極集電体24の端より突き出した突出部と成して
いる。図2の例では、突出部として絶縁フィルム17を
設けているが、絶縁性樹脂層27をさらに延在してもよ
い。
At least a part of the insulating resin layer 27 is formed as a protruding portion protruding from an end of the positive electrode current collector 24. In the example of FIG. 2, the insulating film 17 is provided as the protruding portion, but the insulating resin layer 27 may further extend.

【0037】絶縁性樹脂層27の突出量は、正極集電体
24の端と全く同じ以上であり、発電要素の厚み(図2
では、正極21、負極22、電解質23の各厚みの合
算)の2倍以下であることが望ましい。
The projecting amount of the insulating resin layer 27 is exactly the same as or greater than the end of the positive electrode current collector 24, and the thickness of the power generating element (FIG. 2)
In this case, it is preferable that the thickness be equal to or less than twice the sum of the thicknesses of the positive electrode 21, the negative electrode 22, and the electrolyte 23).

【0038】また、絶縁性樹脂層27の少なくとも一部
を外装体18の開口部28よりも内側に突出させてい
る。
Further, at least a part of the insulating resin layer 27 is protruded inward from the opening 28 of the exterior body 18.

【0039】外装体18の開口部28に対する絶縁性樹
脂層27の突出量は、絶縁性樹脂層27の開口部28が
負荷と正極集電体24との接続を妨げない範囲であれば
よい。さらに、絶縁性樹脂層27の開口部28の形状
は、負荷との接続に影響を及ぼさない限り特に限定され
ない。
The amount of protrusion of the insulating resin layer 27 with respect to the opening 28 of the exterior body 18 may be within a range in which the opening 28 of the insulating resin layer 27 does not prevent the connection between the load and the positive electrode current collector 24. Further, the shape of the opening 28 of the insulating resin layer 27 is not particularly limited as long as it does not affect the connection with the load.

【0040】また、絶縁性樹脂層27の厚みは、薄いほ
ど電池全体の厚みに対する影響が少ないが、薄すぎると
熱圧着等の工程において、絶縁性樹脂層27にピンホー
ル等が生じ、正極集電体24と外装体18が短絡するこ
とがある。従って絶縁性樹脂層27の厚みは、1μm以
上100μm以下であることが好ましい。
Further, as the thickness of the insulating resin layer 27 is smaller, the influence on the thickness of the whole battery is less. The electric body 24 and the exterior body 18 may be short-circuited. Therefore, the thickness of the insulating resin layer 27 is preferably 1 μm or more and 100 μm or less.

【0041】さらに、この実装型リチウム電池16は、
正極21と負極22のそれぞれの外側に正極集電体2
4、負極集電体25を備え、かつ外装体18が1枚の金
属箔を二つ折りにして形成したものであることから、機
械的強度を向上させることができる。
Further, the mounted lithium battery 16 is
A positive electrode current collector 2 is provided outside each of the positive electrode 21 and the negative electrode 22.
4. Since the negative electrode current collector 25 is provided and the exterior body 18 is formed by folding one metal foil into two, the mechanical strength can be improved.

【0042】図2に示した本発明に係る実装型リチウム
電池の製造方法は、先ずシート状に形成された正極21
と同じくシート状に形成された負極22にそれぞれ正極
集電体24と負極集電体25とを導電性接着剤26a、
26bを用いて接着する。
In the method of manufacturing the mounted lithium battery according to the present invention shown in FIG. 2, first, the sheet-shaped positive electrode 21 is formed.
A positive electrode current collector 24 and a negative electrode current collector 25 are respectively applied to the negative electrode 22 formed in a sheet
26b.

【0043】次にゲル電解質溶液を含浸させた不織布を
前記正極21と負極22で挟みゲル電解質溶液を固化す
ることで正極21と負極22との間に電解質23を配設
した発電要素を作製する。
Next, a non-woven fabric impregnated with a gel electrolyte solution is sandwiched between the positive electrode 21 and the negative electrode 22 to solidify the gel electrolyte solution, thereby producing a power generating element having an electrolyte 23 disposed between the positive electrode 21 and the negative electrode 22. .

【0044】この集電体を接着した発電要素を外装体1
8の負極側に導電性接着剤26cを用いて接着し、さら
に発電要素との対峙部を凹状に加工した開口部28を有
する正極側の外装体18を折返し部19で二つ折りにし
て、前記一方の外装部分を発電要素に被せ、絶縁性樹脂
層27で正極集電体24と接着した後、三辺の接合部2
0を順次レーザー溶接することで作製される。
The power generation element to which the current collector was adhered was used as an exterior body 1
The negative electrode 8 was adhered to the negative electrode side using a conductive adhesive 26c, and the positive-electrode-side exterior body 18 having an opening 28 in which the portion facing the power generation element was processed into a concave shape was folded in two at the folded portion 19, After covering one exterior part on the power generation element and bonding it to the positive electrode current collector 24 with the insulating resin layer 27, the three-sided joint 2
0 are sequentially laser-welded.

【0045】このように絶縁性樹脂層27を配する際
に、絶縁フィルム17を形成する。
When disposing the insulating resin layer 27, the insulating film 17 is formed.

【0046】外装体18に用いる金属箔は、特に限定さ
れるものではないが、ステンレス、アルミニウム、ニッ
ケル、銅、コバール、鉄、チタンあるいはアルミニウム
合金のいずれかであれば、工業的に生産されており、入
手のし易さやコストの面から有利である。また、このよ
うな外装体18につていは、製造方法や純度には特に限
定されない。
The metal foil used for the exterior body 18 is not particularly limited, but any of stainless steel, aluminum, nickel, copper, kovar, iron, titanium, and aluminum alloys may be industrially produced. This is advantageous in terms of availability and cost. Further, the manufacturing method and the purity of such an exterior body 18 are not particularly limited.

【0047】かかる金属箔の厚みは、電池のエネルギー
密度の観点から薄いものを用いるのが望ましいが、ピン
ホールの有無や外装材としての強度の面から適当な厚み
が選択されるべきである。たとえば、アルミニウムの場
合30μm以上とすることが望ましい。
The thickness of the metal foil is desirably thin from the viewpoint of the energy density of the battery. However, an appropriate thickness should be selected in view of the presence or absence of pinholes and the strength of the exterior material. For example, in the case of aluminum, the thickness is desirably 30 μm or more.

【0048】外装体18の集電体との対峙部の一方もし
くは両方を凹状に成形してもよい。前記対峙部を凹状に
加工することで接合部20で外装体18に隙間が空くこ
とがなく、溶接不良や樹脂による接着不良を低減するこ
とができる。
One or both of the facing portions of the exterior body 18 facing the current collector may be formed in a concave shape. By processing the facing portion into a concave shape, a gap is not formed in the exterior body 18 at the joint portion 20, and it is possible to reduce poor welding and poor bonding due to resin.

【0049】また、樹脂接着の場合であれば、予め樹脂
の厚みを考慮した隙間を形成できることから接着時に樹
脂が必要以上に潰れて流れたり、外装が無理に歪み接合
部の樹脂に剥がれ方向の応力が掛かったり、接着不良を
引き起こすことを少なくできる。
In the case of resin bonding, since a gap can be formed in consideration of the thickness of the resin in advance, the resin may be crushed and flow more than necessary at the time of bonding, or the exterior may be forcibly distorted and peeled off from the resin at the joint. It is possible to reduce occurrence of stress and poor adhesion.

【0050】この凹状の形成方法には既存の従来技術を
用いることができる。たとえば、成形金型によるプレス
加工が一般的である。形状は、発電要素収容部から見て
凹状であればよく、深さや寸法は特に限定されないが、
集電体を含めた発電要素の厚みや上述の封着方法の違い
による外装体18同士に必要な隙間を考慮して発電要素
と外装体が面で接触できる寸法、形状にするとよい。
An existing conventional technique can be used for this concave forming method. For example, press working with a molding die is common. The shape may be concave as viewed from the power generation element housing, and the depth and dimensions are not particularly limited,
In consideration of the thickness of the power generation element including the current collector and the gap required between the exterior bodies 18 due to the difference in the sealing method described above, it is preferable that the dimensions and the shape are such that the power generation element and the exterior body can come into contact with each other.

【0051】また、成形方法によっては成形する際に図
2に示されるような外装体18の凹状の発電要素収容部
を台形としたり、外装体18を加工した際の屈曲部や集
電体の四隅が隣接する部分において曲面となしてもよ
く、成形方法に適した任意の設計とすればよい。
Further, depending on the molding method, the concave power generation element accommodating portion of the exterior body 18 as shown in FIG. The four corners may be curved at adjacent portions, and any design suitable for the molding method may be used.

【0052】外装体18の開口部28はチップとの接続
に利用されるもので、チップから出ている正負極端子の
間隔や、大きさ、また接続方法に応じた任意の大きさ、
面積にすればよい。
The opening 28 of the exterior body 18 is used for connection with the chip, and has an arbitrary size according to the interval and size of the positive and negative terminals coming out of the chip, and the connection method.
What is necessary is just to make an area.

【0053】ただし、水分は開口部28の樹脂断面を通
って実装型リチウム電池内へ侵入することから、水分の
侵入を抑制するためにできるだけ開口部28の樹脂断面
積は小さくすることが望ましい。そのめた、開口部28
の形状は樹脂断面を最も小さくできる円形が好適といえ
る。しかしながら、開口部28の形状は特に限定される
ものではなく、他の加工条件や電池デザインなどを考慮
した任意の形状であっても差し支えない。
However, since water penetrates into the mounted lithium battery through the resin cross section of the opening 28, it is desirable that the resin cross section of the opening 28 be as small as possible to suppress the penetration of water. The opening 28
It can be said that the shape is preferably a circle that can minimize the resin cross section. However, the shape of the opening 28 is not particularly limited, and may be any shape in consideration of other processing conditions, battery design, and the like.

【0054】開口部28の形成方法には既存の従来技術
を用いることができる。たとえば、成形金型による打抜
きやレーザーなどによる切抜きである。
An existing conventional technique can be used for forming the opening 28. For example, punching using a molding die or cutting using a laser is used.

【0055】発電要素の構成部材である正極21、負極
22、電解質23の構成部材、つまり活物質や導電剤、
結着材、あるいは電解質などの構成材料や組成は限定さ
れるものではなく、従来のリチウム電池で使用可能なす
べての材料とその組み合わせが使用できる。また、発電
要素の作製方法も従来のリチウム電池で行われている手
法が全て適用できるほか、活物質を焼き固めた新たな焼
結体電極も適用可能である。
The constituent members of the positive electrode 21, the negative electrode 22, and the electrolyte 23 which are constituent members of the power generating element, that is, the active material and the conductive agent,
The constituent materials and compositions such as the binder and the electrolyte are not limited, and all materials usable in conventional lithium batteries and combinations thereof can be used. In addition, all the methods used in the conventional lithium battery can be applied to the method of manufacturing the power generation element, and a new sintered body electrode obtained by sintering the active material is also applicable.

【0056】また、正極集電体24ならびに負極集電体
25には外装体18と同様の金属箔を用いることができ
る。金属箔の厚みは、電池のエネルギー密度の観点から
薄いものを用いるのが望ましいが、電池に補強板として
の機能を付与する観点から材質ごとに適当な厚みが選択
される。たとえば、アルミニウムの場合20μm以上と
することが望ましい。なお、集電体の材質の選定はそれ
ぞれの電極の動作電圧範囲などを考慮して選択されれば
よく、必ずしも同じ材質、厚みである必要はない。
Further, the same metal foil as that of the outer package 18 can be used for the positive electrode current collector 24 and the negative electrode current collector 25. It is desirable to use a thin metal foil from the viewpoint of the energy density of the battery, but an appropriate thickness is selected for each material from the viewpoint of providing the battery with a function as a reinforcing plate. For example, in the case of aluminum, it is desirable to be 20 μm or more. Note that the material of the current collector may be selected in consideration of the operating voltage range of each electrode and the like, and does not necessarily have to be the same material and thickness.

【0057】発電要素を直列に多層積層して用いる場合
には各発電要素間に金属箔を配置し、さらに発電要素と
金属箔の固定と積層体の強度向上を目的として金属箔と
発電要素の電極とを導電性接着剤で接着した。
When a plurality of power generating elements are used in series and stacked, a metal foil is arranged between the power generating elements, and the metal foil and the power generating element are fixed for the purpose of fixing the power generating element and the metal foil and improving the strength of the laminate. The electrodes were bonded with a conductive adhesive.

【0058】正極21と正極集電体24あるいは負極2
2と負極集電体25などの接着に用いられる導電性接着
剤26a,26b,26cには、金、銀、アルミニウム
などの金属粉やカーボンを分散させた市販の導電性接着
剤を用いることができる。特に、接着形態が面接着のた
め溶剤の揮発が難しいので(株)スリーボンド社製33
15Eのように塗布、乾燥後、加熱加圧接着することに
より接着できるタイプが望ましい。
The positive electrode 21 and the positive electrode current collector 24 or the negative electrode 2
For the conductive adhesives 26a, 26b, 26c used for bonding the second electrode 2 and the negative electrode current collector 25, a commercially available conductive adhesive in which metal powder such as gold, silver, and aluminum or carbon is dispersed is used. it can. In particular, since the solvent is difficult to volatilize due to surface bonding, it is manufactured by Three Bond Co., Ltd. 33
A type that can be bonded by applying heat and pressure after coating, drying, and the like as in 15E is desirable.

【0059】正極集電体24と外装体18を接着する絶
縁性樹脂層27には、変性ポリエチレンや変性ポリプロ
ピレンからなる絶縁性熱融着樹脂を用いるのが好適であ
る。これら熱融着性樹脂であれば接着時に溶剤が揮発し
実装型リチウム電池内に溶剤が残留することもなく、ま
た、外部からの短時間の加圧加熱で接着できることから
生産性にも優れている。
The insulating resin layer 27 for bonding the positive electrode current collector 24 and the package 18 is preferably made of an insulating heat-sealing resin made of modified polyethylene or modified polypropylene. With these heat-fusible resins, the solvent does not volatilize during bonding and the solvent does not remain in the mounted lithium battery, and it is also excellent in productivity because it can be bonded by short-time pressurized heating from the outside. I have.

【0060】発電要素を収容した外装体18の周縁部3
辺(接合部20)の接着には、レーザー溶接や抵抗溶接
などの溶接法、熱融着性樹脂や樹脂製接着剤を用いた接
着法など既存の接合方法を用いることができる。接合部
20については、折返し部19で正極側と負極側の外装
体18の導通が確保されているため特に導通を確保する
必要はない。
Peripheral portion 3 of exterior body 18 containing power generation element
An existing bonding method such as a welding method such as laser welding or resistance welding, or a bonding method using a heat-fusible resin or a resin adhesive can be used for bonding the side (joining portion 20). Regarding the joint portion 20, the conduction between the positive electrode side and the negative electrode side exterior body 18 is ensured by the folded portion 19, so that it is not particularly necessary to ensure the conduction.

【0061】かくして本発明の実装型リチウム電池にお
いては、正極集電体24ならびに負極集電体25を導電
性接着剤26によって接着し、その上で、さらに外装体
18を二つ折りに成し、一方の外装部分を絶縁性樹脂層
27を介して正極集電体24上に接着させたことで、半
導体装置に搭載しても、従来のように補強板を使用しな
いことから、その厚みを小さくしながらも、その曲げを
防止でき、その結果、信頼性を高めることができた。
Thus, in the mounting type lithium battery of the present invention, the positive electrode current collector 24 and the negative electrode current collector 25 are bonded by the conductive adhesive 26, and then the outer package 18 is folded in two. Since one of the exterior parts is adhered to the positive electrode current collector 24 via the insulating resin layer 27, the thickness can be reduced even when the semiconductor device is mounted on a semiconductor device because a reinforcing plate is not used unlike the conventional case. However, the bending was prevented, and as a result, the reliability was improved.

【0062】しかも、折返し部19で外装体18を二つ
折りにし、発電要素に被せ、ポリエチレンテレフタレー
トから成る窓枠状の絶縁フィルム17を介して熱融着性
変性ポリプロピレンから成る絶縁性樹脂層27で接着し
たことで、正極集電体24と外装体18の一方の外装部
分とが接触しなくなり、双方の間にて短絡しなくなっ
た。
Further, the outer package 18 is folded in two at the folded portion 19, is placed over the power generating element, and is interposed by the insulating resin layer 27 made of heat-fused modified polypropylene via the window frame-shaped insulating film 17 made of polyethylene terephthalate. Due to the adhesion, the positive electrode current collector 24 and one of the exterior parts of the exterior body 18 did not come into contact with each other, and no short circuit occurred between them.

【0063】上述の通り正極集電体24と外装体18を
絶縁性樹脂層27を用いて接着する際に、前記絶縁性樹
脂層27と同じ厚み、もしくは薄い耐熱樹脂製短絡防止
フィルムを併せて接着することで集電体周縁部での短絡
を完全に防ぐことができる。ここで短絡防止フィルムに
は、電池組立工程ならびに電池実装時の加熱や圧力に対
して安定に形状を保持できる樹脂であれば何でも用いる
ことができ、特に耐熱樹脂の種類は限定はされないが、
ポリエチレンテレフタレートであれば工業的に種々の厚
みのフィルムが生産されており、入手のし易さや、コス
トの面で有利である。
As described above, when the positive electrode current collector 24 and the outer package 18 are bonded using the insulating resin layer 27, a short-circuit preventing film made of a heat-resistant resin having the same thickness as the insulating resin layer 27 or a thin film is also used. By bonding, a short circuit at the peripheral edge of the current collector can be completely prevented. Here, for the short-circuit prevention film, any resin can be used as long as it can maintain its shape stably with respect to heating and pressure during the battery assembly process and battery mounting, and the type of heat-resistant resin is not particularly limited,
Polyethylene terephthalate is industrially produced in films of various thicknesses, and is advantageous in terms of availability and cost.

【0064】なお、本発明は上記の実施形態例に限ら
ず、本発明の要旨を逸脱しない範囲内で種々の変更や改
良等は何ら差し支えない。たとえば、上述の実施形態例
では開口部28と対峙する電極を正極21としたが、こ
れに代えて、開口部28と対峙する電極を負極22とし
てもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and various changes and improvements may be made without departing from the scope of the present invention. For example, in the above-described embodiment, the electrode facing the opening 28 is the positive electrode 21. Alternatively, the electrode facing the opening 28 may be the negative electrode 22.

【0065】[0065]

【実施例】(実施例1)本実施例においては、実装型リ
チウム電池16と実装型リチウム電池15との厚みにつ
いて、双方の差を求め、実装型リチウム電池16の薄型
化の評価をおこなった。
(Example 1) In this example, the difference between the thickness of the mountable lithium battery 16 and the thickness of the mountable lithium battery 15 was determined, and the thinning of the mountable lithium battery 16 was evaluated. .

【0066】正極活物質にLiMn24を、負極活物質
にLi4Ti512を用いることで、本発明に係る実装型
リチウム電池を以下に示すようにして作製した。
By using LiMn 2 O 4 as the positive electrode active material and Li 4 Ti 5 O 12 as the negative electrode active material, a mounted lithium battery according to the present invention was produced as follows.

【0067】LiMn24とLi4Ti512のそれぞれ
と低融点ガラス、ここでは10Li 2O−25B23
15SiO2−50ZnOとを重量比80:20で乾式
混合し混合粉とした。この混合粉100に対して成形助
剤のポリビニルブチラールが重量比で10となるように
加え、さらにトルエンを加えてスラリーを調製した。
LiMnTwoOFourAnd LiFourTiFiveO12Each of
And low melting glass, here 10Li TwoO-25BTwoOThree
15SiOTwoDrying with -50 ZnO at a weight ratio of 80:20
It was mixed to make a mixed powder. Molding aid for this mixed powder 100
So that the weight ratio of polyvinyl butyral of the agent is 10
In addition, toluene was further added to prepare a slurry.

【0068】このスラリーをポリエチレンテレフタレー
ト(PET)フィルム上に塗布した後に乾燥させてシー
ト状に成形したものをロールプレスにより加圧圧縮成形
して、正極は厚さ0.2mm、負極は厚さ0.2mmの
シートとした。それぞれのシートを金型で打ち抜き20
mm角のシート状の正極および負極成形体を得た。
The slurry was applied on a polyethylene terephthalate (PET) film, dried and formed into a sheet. The resulting sheet was press-compressed by a roll press, and the positive electrode was 0.2 mm thick and the negative electrode was 0 mm thick. .2 mm sheet. Each sheet is punched with a die 20
A sheet-shaped positive electrode and negative electrode molded body having a square shape of mm were obtained.

【0069】これら成形体を大気中、550℃で加熱す
ることで18mm角、厚さ0.15mmの正極21と1
8mm角、厚さ0.15mmの負極22を作製した。
By heating these compacts at 550 ° C. in the air, the positive electrodes 21 and 1 each having a size of 18 mm square and 0.15 mm thick were heated.
A negative electrode 22 having a size of 8 mm square and a thickness of 0.15 mm was produced.

【0070】ここで、正極21と負極22にそれぞれ厚
さ20μmのチタン箔からなる同寸の集電体を(株)ス
リーボンド社製導電性接着剤3315Eを用いて接着し
た。
Here, current collectors of the same size, each made of a titanium foil having a thickness of 20 μm, were adhered to the positive electrode 21 and the negative electrode 22 using a conductive adhesive 3315E manufactured by Three Bond Co., Ltd.

【0071】電解質23に用いるゲル電解質を次の方法
で作製した。
A gel electrolyte used for the electrolyte 23 was prepared by the following method.

【0072】先ず、プロピレンカーボネートにLiBF
4を1mol/lになるように溶解して電解液を調製
し、そこへ電解液:ポリアクリロニトリルが重量比で3
0:70になるようにポリアクリルニトリルを加え、加
熱しながら十分撹拌してゲル電解質溶液とした。このゲ
ル電解質溶液を20mm角に裁断した不織布に含浸さ
せ、正極21と負極22で挟んで冷却させることにより
ゲル電解質を形成し、正極21と負極22との間に電解
質23を介した発電要素を作製した。
First, LiBF was added to propylene carbonate.
4 was dissolved at a concentration of 1 mol / l to prepare an electrolytic solution. The electrolytic solution: polyacrylonitrile was added therein in a weight ratio of 3%.
Polyacrylonitrile was added so that the ratio became 0:70, and the mixture was sufficiently stirred while heating to obtain a gel electrolyte solution. The gel electrolyte solution is impregnated into a non-woven fabric cut into a square of 20 mm, and cooled by being sandwiched between the positive electrode 21 and the negative electrode 22 to form a gel electrolyte. A power generating element having the electrolyte 23 between the positive electrode 21 and the negative electrode 22 is formed. Produced.

【0073】外装体18には厚さ50μmのステンレス
箔を縦50mm、横25mmに裁断したものを用いた。
開口部28には、プレスによる打抜きで直径5mmの穴
を開けた。また、開口部28を有する正極集電体24と
対峙する面をプレス成形により凹状に加工した。
As the outer package 18, a 50 μm-thick stainless steel foil cut to 50 mm in length and 25 mm in width was used.
A hole having a diameter of 5 mm was formed in the opening 28 by punching with a press. The surface facing the positive electrode current collector 24 having the opening 28 was processed into a concave shape by press molding.

【0074】このように成形した外装体18の負極側平
面と負極集電体25とを導電性接着剤26cを用いて接
着した。次に折返し部19で外装体18を二つ折りにし
発電要素に被せ開口部28を有する正極側平面と正極集
電体24を熱融着性変性ポリプロピレンから成る絶縁性
樹脂層で接着するとともに、絶縁フィルム17を配し
た。
The negative electrode-side flat surface of the outer package 18 thus formed was bonded to the negative electrode current collector 25 using a conductive adhesive 26c. Next, the outer package 18 is folded in two at the folded portion 19, and the positive electrode-side flat surface having the opening 28 and the positive electrode current collector 24 are bonded to the power generating element with an insulating resin layer made of heat-fusible modified polypropylene. The film 17 was provided.

【0075】最後に周縁部三辺からなる接合部20をレ
ーザー溶接して図2に示した本発明にかかる実装型リチ
ウム電池を完成した。
Finally, the junction 20 consisting of the three peripheral edges was laser-welded to complete the mounted lithium battery according to the present invention shown in FIG.

【0076】一方、図1に示す実装型リチウム電池15
を、次の方法により作製した。
On the other hand, the mounted lithium battery 15 shown in FIG.
Was produced by the following method.

【0077】上述と同様にして正極4と負極5を作製し
た。この正極4と負極5との間にゲル電解質溶液を含浸
した不織布を挟んで冷却し、ゲル電解質溶液を固化して
発電要素とした。
A positive electrode 4 and a negative electrode 5 were produced in the same manner as described above. The non-woven fabric impregnated with the gel electrolyte solution was sandwiched between the positive electrode 4 and the negative electrode 5 and cooled, and the gel electrolyte solution was solidified to form a power generating element.

【0078】第1の半体ケース1ならびに第2の半体ケ
ース2には厚さ50μmのステンレス泊を用い、いずれ
のケースも発電要素収納部を凹状に加工した。第1の半
体ケース1には直径5mmの開口部9を実施例と同様に
して設けた。電極板7には厚さ30μmのステンレス箔
を用いた。第2の半体ケース2と電極板7を上述と同じ
導電性接着剤を用いて発電要素に接着した。次に絶縁フ
ィルム17を配するとともに、電極板7の外側の面を同
じく実施例で用いた熱融着性変性ポリプロピレンからな
る絶縁樹脂層8を用いて第1の半体ケース1に接着し
た。
The first half case 1 and the second half case 2 were made of stainless steel having a thickness of 50 μm, and each of the cases had a recessed power generation element housing. An opening 9 having a diameter of 5 mm was provided in the first half case 1 in the same manner as in the example. A 30 μm thick stainless steel foil was used for the electrode plate 7. The second half case 2 and the electrode plate 7 were bonded to the power generating element using the same conductive adhesive as described above. Next, the insulating film 17 was disposed, and the outer surface of the electrode plate 7 was bonded to the first half case 1 using the insulating resin layer 8 made of the heat-fusible modified polypropylene similarly used in the example.

【0079】第1および第2のケース半体1および2の
周縁部3をレーザー溶接して封止して実装型リチウム電
池15を完成した。
The peripheral portions 3 of the first and second case halves 1 and 2 were sealed by laser welding to complete the mounted lithium battery 15.

【0080】かくして、上記実施例で作製した実装型リ
チウム電池16によれば、発電要素の両端に集電体が接
着され、さらに一枚の金属箔からなる外装体18を用い
ているため、半導体装置に搭載しても、曲がりにくくな
った。
Thus, according to the mounted lithium battery 16 manufactured in the above embodiment, since the current collectors are adhered to both ends of the power generating element and the exterior body 18 made of one sheet of metal foil is used, Even when mounted on the device, it became difficult to bend.

【0081】そこで、本発明者は塩化ビニル製のICカ
ードに実装型リチウム電池とICチップを実装し曲げ耐
久試験を行い、チップ破損の有無を確認した。
Therefore, the present inventor mounted a mounted lithium battery and an IC chip on an IC card made of vinyl chloride and performed a bending durability test to confirm the presence or absence of chip breakage.

【0082】実施例で作製した各実装型リチウム電池1
5,16を塩化ビニル製のICカード基板縦86mm、
横54mm、厚さ0.76mmに実装し、縦方向から力
を加えICカードをたわませては戻す操作を20回繰り
返し、ICチップの破損の有無を調べた。なお、試験に
はそれぞれ5個作製して用いた。
Each mounting type lithium battery 1 manufactured in the example
5 and 16 are 86mm length of vinyl chloride IC card board,
The mounting was performed 54 mm in width and 0.76 mm in thickness, and the operation of applying a force from the vertical direction to bend and return the IC card was repeated 20 times, and the presence or absence of breakage of the IC chip was examined. In addition, five were produced and used for the test, respectively.

【0083】上述の曲げ耐久試験をそれぞれ5個の電池
に対して行った結果、図1の実装型リチウム電池15で
はICチップの破損が部分的に発生したが、図2の実装
型リチウム電池16を用いた場合には、すべてのICチ
ップの破損は確認されなかった。
As a result of performing the bending durability test on each of the five batteries, the IC chip was partially damaged in the mounted lithium battery 15 in FIG. 1, but the mounted lithium battery 16 in FIG. When no was used, no breakage of all IC chips was confirmed.

【0084】この結果の差は発電要素に対して集電体が
しっかりと接着され、かつ外装体が1枚の金属箔二つ折
りにして形成されているためであると考えられる。
It is considered that the difference between the results is due to the fact that the current collector is firmly adhered to the power generating element, and the exterior body is formed by folding one metal foil in two.

【0085】このように図2に示す実装型リチウム電池
16の構造においては、機械的強度を飛躍的に向上させ
るものである。
As described above, in the structure of the mounted lithium battery 16 shown in FIG. 2, the mechanical strength is dramatically improved.

【0086】なお、本発明においては、発電要素を多層
具備した実装型リチウム電池でも本発明の構造を採れ
ば、同様の効果が得られることは明らかである。
In the present invention, it is apparent that the same effect can be obtained by adopting the structure of the present invention even in a mounted lithium battery having a plurality of power generating elements.

【0087】(実施例2)本実施例においては、実装型
リチウム電池16について、絶縁フィルム17を配しな
い実装型リチウム電池を比較例として、短絡を評価し
た。
Example 2 In this example, a short circuit was evaluated for the mounted lithium battery 16 using a mounted lithium battery without the insulating film 17 as a comparative example.

【0088】この比較例においては、絶縁フィルム17
を用いず、正極集電体24と同じ大きさの絶縁性樹脂層
27で二つ折りにした外装体18と正極集電体24を接
着したこと以外は実施例と同様にして実装型リチウム電
池を作製した。
In this comparative example, the insulating film 17
The mounting type lithium battery was manufactured in the same manner as in the example except that the package 18 and the positive electrode current collector 24 which were folded in two with the insulating resin layer 27 having the same size as the positive electrode current collector 24 were bonded. Produced.

【0089】そして、本実施例および比較例をそれぞれ
30個を作製し、短絡の有無を確認した。なお、短絡の
有無は電圧と抵抗値により確認した。
Then, 30 pieces each of this example and the comparative example were prepared, and the presence or absence of a short circuit was confirmed. The presence or absence of a short circuit was confirmed by the voltage and the resistance value.

【0090】その結果、本発明例の実装型リチウム電池
は30個すべてにおいて短絡が発生しなかったが、これ
に対し、比較例の実装型リチウム電池では、22個の電
池にて短絡が発生した。
As a result, no short circuit occurred in all of the 30 mounted lithium batteries of the present invention, while a short circuit occurred in 22 of the mounted lithium batteries of the comparative example. .

【0091】したがって、本発明の実装型リチウム電池
16は短絡を防止する効果が優れていることがわかる。
Therefore, it can be seen that the mounted lithium battery 16 of the present invention has an excellent effect of preventing a short circuit.

【0092】[0092]

【発明の効果】以上のように、本発明に係る実装型リチ
ウム電池によれば、金属箔からなる外装体の内側に、正
極と負極との間に電解質を備えてなる発電要素を配設
し、正極および負極の少なくとも一方の外側に集電体を
備え、さらに集電体を露出すべく外装体に開口部を設
け、この開口部を設けた外装部分を絶縁性樹脂層を介し
て集電体上に接着するとともに、この絶縁性樹脂層の少
なくとも一部をその集電体の端より突出せしめ、さらに
絶縁性樹脂層の少なくとも一部を外装体の開口部よりも
内側に突出させたことによって、厚みを増大させない
で、外装体と集電体との短絡を防ぎ、これによって信頼
性を高めた高性能かつ低コストな実装型リチウム電池が
提供できた。
As described above, according to the mounting type lithium battery according to the present invention, the power generating element having the electrolyte between the positive electrode and the negative electrode is disposed inside the outer casing made of the metal foil. A current collector outside at least one of the positive electrode and the negative electrode, further providing an opening in the exterior body so as to expose the current collector, and collecting the exterior part having the opening through an insulating resin layer. At least a part of the insulating resin layer is made to protrude from the end of the current collector while being adhered on the body, and at least a part of the insulating resin layer is made to protrude inward from the opening of the exterior body. As a result, a short circuit between the exterior body and the current collector was prevented without increasing the thickness, thereby providing a high-performance and low-cost mounted lithium battery with improved reliability.

【0093】また、本発明においては、特に電池組立工
程において短絡を確実に防止することができ、これによ
って製造歩留まりが高くなり、その結果、低コストな実
装型リチウム電池が提供できた。
Further, in the present invention, a short circuit can be reliably prevented particularly in the battery assembling step, thereby increasing the production yield, and as a result, a low-cost mounted lithium battery can be provided.

【0094】さらにまた、本発明の実装型リチウム電池
によれば、上記正極および負極のそれぞれの外側に金属
箔からなる集電体を備え、かつ外装体を二つ折りにして
構成したことによって、半導体装置の厚みを小さくしな
がらも、その機械的強度を向上させ、これによって信頼
性を高めた低コスト化の実装型リチウム電池が提供でき
た。
Further, according to the mounting type lithium battery of the present invention, a current collector made of a metal foil is provided outside each of the positive electrode and the negative electrode, and the outer package is folded in two. Although the thickness of the device was reduced, its mechanical strength was improved, thereby providing a low-cost mounted lithium battery with improved reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実装型リチウム電池の断面図である。FIG. 1 is a cross-sectional view of a mounted lithium battery according to the present invention.

【図2】本発明の実装型リチウム電池の他の実施形態を
示す断面図である。
FIG. 2 is a cross-sectional view showing another embodiment of the mountable lithium battery of the present invention.

【図3】従来の実装型リチウム電池の断面図である。FIG. 3 is a cross-sectional view of a conventional mounted lithium battery.

【図4】従来の半導体装置の断面である。FIG. 4 is a cross section of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1:第1の半体ケース1 2:第2の半体ケース2 3:周縁部 4:第1の電極 5:第2の電極 6:セパレータ 7:電極板 8:絶縁性樹脂層 9、28:開口部 10:端部 15、16:実装型リチウム電池 17:絶縁フィルム 18:外装体 19:折り返し部 20:接合部 21:正極 22:負極 23:電解質 24:正極集電体 25:負極集電体 26a,26b,26c:導電性接着剤 27:絶縁性樹脂層 1: First half case 1 2: Second half case 2 3: Peripheral part 4: First electrode 5: Second electrode 6: Separator 7: Electrode plate 8: Insulating resin layer 9, 28 : Opening 10: End 15, 16: Mounting type lithium battery 17: Insulating film 18: Outer body 19: Folding portion 20: Joint 21: Positive electrode 22: Negative electrode 23: Electrolyte 24: Positive electrode collector 25: Negative electrode collector Conductors 26a, 26b, 26c: conductive adhesive 27: insulating resin layer

フロントページの続き Fターム(参考) 2C005 MA06 MA07 MA10 NB34 PA18 PA25 PA27 5H011 AA01 AA03 AA07 AA09 CC06 DD06 DD13 DD23 5H022 AA09 BB11 CC03 EE01 EE06 KK03 5H024 AA02 AA03 AA12 BB14 CC03 CC06 CC20 DD01 DD12 EE01 EE09 HH15 Continued on the front page F term (reference) 2C005 MA06 MA07 MA10 NB34 PA18 PA25 PA27 5H011 AA01 AA03 AA07 AA09 CC06 DD06 DD13 DD23 5H022 AA09 BB11 CC03 EE01 EE06 KK03 5H024 AA02 AA03 AA12 BB14 CC03 CC06 CC20 DD01 DD12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金属箔からなる外装体の内側に、正極と負
極との間に電解質を備えてなる発電要素を配設した実装
型リチウム電池であって、正極と負極の少なくとも一方
の外側に集電体を備え、該集電体を露出すべく前記外装
体に開口部を設け、この開口部を設けた外装部分を絶縁
性樹脂層を介して前記集電体上に接着するとともに、こ
の絶縁性樹脂層の少なくとも一部を集電体の端より突出
せしめたことを特徴とする実装型リチウム電池。
1. A mountable lithium battery having a power generating element having an electrolyte between a positive electrode and a negative electrode disposed inside a package made of a metal foil, wherein at least one of the positive electrode and the negative electrode is disposed outside. A current collector is provided, an opening is provided in the exterior body to expose the current collector, and the exterior part provided with the opening is adhered onto the current collector via an insulating resin layer, and A mounted lithium battery, wherein at least a part of the insulating resin layer protrudes from an end of the current collector.
【請求項2】前記絶縁性樹脂層の少なくとも一部が、前
記外装体の開口部よりも内側に突出していることを特徴
とする請求項1に記載の実装型リチウム電池。
2. The mounted lithium battery according to claim 1, wherein at least a part of the insulating resin layer protrudes inward from an opening of the exterior body.
【請求項3】上記正極と負極のそれぞれの外側に集電体
を備え、かつ外装体が1枚の金属箔を二つ折りにして形
成したものであることを特徴とする請求項1または2記
載の実装型リチウム電池。
3. The device according to claim 1, wherein a current collector is provided outside each of the positive electrode and the negative electrode, and the exterior body is formed by folding one metal foil into two. Mountable lithium battery.
JP2001053839A 2000-10-30 2001-02-28 Mounting type lithium battery Pending JP2002203538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053839A JP2002203538A (en) 2000-10-30 2001-02-28 Mounting type lithium battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000331537 2000-10-30
JP2000-331537 2000-10-30
JP2001053839A JP2002203538A (en) 2000-10-30 2001-02-28 Mounting type lithium battery

Publications (1)

Publication Number Publication Date
JP2002203538A true JP2002203538A (en) 2002-07-19

Family

ID=26603091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053839A Pending JP2002203538A (en) 2000-10-30 2001-02-28 Mounting type lithium battery

Country Status (1)

Country Link
JP (1) JP2002203538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054115A1 (en) * 2017-09-14 2019-03-21 日産自動車株式会社 Stacked battery, and battery module
JP2020136137A (en) * 2019-02-21 2020-08-31 セイコーインスツル株式会社 Electrochemical cell
WO2021230206A1 (en) * 2020-05-14 2021-11-18 株式会社村田製作所 Secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054115A1 (en) * 2017-09-14 2019-03-21 日産自動車株式会社 Stacked battery, and battery module
JP2019053893A (en) * 2017-09-14 2019-04-04 日産自動車株式会社 Laminate type battery and battery module
CN111247659A (en) * 2017-09-14 2020-06-05 远景Aesc日本有限公司 Laminated battery and battery module
CN111247659B (en) * 2017-09-14 2022-08-30 远景Aesc日本有限公司 Laminated battery and battery module
JP2020136137A (en) * 2019-02-21 2020-08-31 セイコーインスツル株式会社 Electrochemical cell
JP7257180B2 (en) 2019-02-21 2023-04-13 セイコーインスツル株式会社 electrochemical cell
WO2021230206A1 (en) * 2020-05-14 2021-11-18 株式会社村田製作所 Secondary battery
JPWO2021230206A1 (en) * 2020-05-14 2021-11-18
JP7414129B2 (en) 2020-05-14 2024-01-16 株式会社村田製作所 secondary battery

Similar Documents

Publication Publication Date Title
CN108598491B (en) Secondary battery and pole piece thereof
JP4961673B2 (en) Method for producing tab lead for non-aqueous electrolyte battery
US11271274B2 (en) Secondary battery
EP1868257A1 (en) Sealed battery with a film casing
JP2006331874A (en) Thin battery
JP4006921B2 (en) Thin battery
CN210136972U (en) Secondary battery
JP2004515879A (en) Lithium ion battery and / or lithium ion polymer battery with shielded leads
JP2011076838A (en) Laminate type battery
JP2006313655A (en) Thin battery
JP5229440B2 (en) Electrochemical devices
KR101520168B1 (en) pauch type lithium secondary battery
JP3486968B2 (en) Manufacturing method of laminated battery
JP2000164195A (en) Nonaqueous electrolyte secondary battery
JP4637305B2 (en) Battery pack
JP2002334692A (en) Battery
JP2002203538A (en) Mounting type lithium battery
JP2002042885A (en) Mounting type lithium battery
JP2019029642A (en) Electrochemical cell module and manufacturing method of electrochemical cell module
JP7132168B2 (en) SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY
JP4702969B2 (en) Thin battery manufacturing method
JP2002313311A (en) Lithium secondary battery
JP2018073518A (en) Secondary battery module
JP4375148B2 (en) Nonaqueous electrolyte battery and lead wire for nonaqueous electrolyte battery
JPH05159808A (en) Layered thin-type battery