JP2002202129A - 掘削位置測定方法 - Google Patents

掘削位置測定方法

Info

Publication number
JP2002202129A
JP2002202129A JP2000401247A JP2000401247A JP2002202129A JP 2002202129 A JP2002202129 A JP 2002202129A JP 2000401247 A JP2000401247 A JP 2000401247A JP 2000401247 A JP2000401247 A JP 2000401247A JP 2002202129 A JP2002202129 A JP 2002202129A
Authority
JP
Japan
Prior art keywords
magnetic field
noise
vector
measurement
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000401247A
Other languages
English (en)
Other versions
JP3717153B2 (ja
Inventor
Shigeki Matsumoto
重貴 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2000401247A priority Critical patent/JP3717153B2/ja
Priority to US10/006,742 priority patent/US6868922B2/en
Publication of JP2002202129A publication Critical patent/JP2002202129A/ja
Application granted granted Critical
Publication of JP3717153B2 publication Critical patent/JP3717153B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

(57)【要約】 【課題】掘削ヘッド中に格納されたコイルが発生する交
流信号磁界を地上で検出して掘削位置を測定する際に、
位置測定に影響を与える雑音磁界が存在する場合にも、
高い信頼性を維持することができる位置測定方法を提供
する。 【解決手段】磁界発生源から発生されている交流磁界を
地上の磁気センサで測定して、その大きさと方向から磁
界発生源の位置を算出する非開削工法の掘削位置の測定
方法であって、磁界発生源から発生されている信号磁界
以外に近傍の電流によって発生する雑音磁界が存在する
場合に、磁気センサで測定した測定磁界を、雑音磁界の
ベクトルとしての方向と直交する平面上あるいは直線上
に射影した射影成分を用いて、磁界発生源の位置と該磁
界発生源の鉛直方向からの傾きである傾斜角と該磁界発
生源の軸方向の水平面内での方向である方位角の少なく
とも1個を算出することを特徴とする構成を有してい
る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、非開削工法におけ
る掘削位置の測定方法に関するものであり、特に、測定
しようとしている信号磁界の周波数の近傍に周波数成分
を有する雑音磁界が存在する場合に、その雑音磁界の影
響を軽減して確度が高い位置測定を行う方法に関するも
のである。
【0002】
【従来の技術】この種の非開削工法の1つである水平ド
リリング工法では、直径が100mm以下の細径のパイ
プを地中に押し込んで掘り進むために、通常の小口径推
進工法で行われているような精密な位置測定機器を掘削
先端付近に用意することはできない。そこで、通常、ド
リルヘッド内に置いたコイルで交流磁界を発生させ、こ
の磁界を地上のコイルなどの磁気センサで検出して位置
を測定する方法が採用されている。
【0003】
【発明が解決しようとする課題】この方法は簡便である
が、コイルが発生する磁界はダイポール磁界であるため
にコイルからの距離が遠くなると急速に減衰してしま
う。そのために、位置測定を行っている近辺に例えば電
力線などの磁気雑音発生源があると、信頼性の高い測定
ができないという欠点がある。
【0004】本発明の目的は、このように掘削ヘッド中
に格納されたコイルが発生する交流信号磁界を地上で検
出して掘削位置を測定する際に、位置測定に影響を与え
る雑音磁界が存在する場合にも、高い信頼性を維持する
ことができる位置測定方法を提供することにある。
【0005】
【課題を解決するための手段】この目的を達成するため
に、本発明による掘削位置測定方法は、磁界発生源から
発生されている交流磁界を地上の磁気センサで測定し
て、その大きさと方向から該磁界発生源の位置を算出す
る非開削工法の掘削位置の測定方法であって、前記磁界
発生源から発生されている信号磁界以外に近傍の電流に
よって発生する雑音磁界が存在する場合に、前記磁気セ
ンサで測定した測定磁界を、該雑音磁界のベクトルとし
ての方向と直交する平面上あるいは直線上に射影した射
影成分を用いて、前記磁界発生源の位置と該磁界発生源
の鉛直方向からの傾きである傾斜角と該磁界発生源の軸
方向の水平面内での方向である方位角の少なくとも1個
を算出することを特徴とする構成を有している。
【0006】即ち、新エネルギー・産業技術総合開発機
構が実施した平成11年度「エネルギー資源有効利用技
術研究国際化調査 高度通信ネットワーク構築の低消費
エネルギー化技術の研究」において、非開削工法におけ
る位置測定に影響を与える外来雑音磁界の大部分は何ら
かの形態の電流によって発生するものであることが判明
した。この場合、大きさは時間的に不規則に変化する
が、ベクトルとしての方向は各測定地点ごとに一定であ
る。本発明では、次のステップ(イ)(ロ)を採用する
ことにより、その目的を達成している。 (イ)雑音磁界の方向を測定して、雑音磁界と信号磁界
が混在した測定磁界をこの雑音磁界の方向に直交する平
面あるいは直線上に射影した射影成分を得る。射影成分
は原理的に雑音磁界に由来する成分を含まないから、射
影成分の大きさ(直線上への射影の場合)あるいは大き
さと方向(平面上への射影の場合)と磁界発生源が発生
する磁界の対応する量を理論的に計算した値とが実質的
に一致するかあるいは両者の差を最小にするような磁界
発生源の位置,方位角,傾斜角の少なくとも1つを算出
する。磁界発生源の位置,方位角,傾斜角の内の何個が
未知数であるかとどのような計算方法でこれらの未知数
を算出するかによって決まる個数の相異なる位置におい
て、磁界を測定して測定磁界を得る。
【0007】(ロ)雑音磁界の方向を得るために、 a)雑音磁界が実質的に1個である場合には、 信号磁界が実質的に無い状態で、雑音磁界を測定して
雑音磁界の方向を得る。 信号磁界と異なる周波数に雑音磁界が周波数成分を持
つ場合には、その周波数成分を測定して雑音磁界の方向
を得る。 b)雑音磁界が実質的に2個ある場合には、第1の雑音
磁界の周波数成分であって、その周波数成分の周波数の
近傍に第2の雑音磁界と信号磁界が実質的に周波数成分
を持たないその周波数成分を測定することによって、第
1の雑音磁界のベクトルとしての方向を得て、第2の雑
音磁界の周波数成分であって、その周波数成分の周波数
の近傍に第1の雑音磁界と信号磁界が実質的に周波数成
分を持たないその周波数成分を測定することによって、
第2の雑音磁界のベクトルとしての方向を得る。
【0008】
【発明の実施の形態】説明の都合上、以下の説明文章中
ではすべてのベクトルについて「ベクトル」の表示は用
いるが、ベクトル記号表示をしない記号を用いることに
する。
【0009】図1に示すように、地表面1の地下に位置
する測定対象の信号磁界源としての掘削ヘッド2の位
置、すなわち測定しようとする掘削位置の近くに電力線
などの雑音磁界を発生する磁気雑音源3が存在する場合
に、地表面1上の適当な位置に磁気センサ4を配置し
て、この磁気センサ4により、信号磁界源としての掘削
ヘッド2の位置を測定する場合に、掘削ヘッド2からの
信号磁界ベクトルHs と磁気雑音源3からの雑音磁界ベ
クトルHn とが存在する。この場合、磁気センサ4によ
り測定されるのは、信号磁界ベクトルHs と雑音磁界ベ
クトルHn とが合成された測定ベクトルHm である。
【0010】ここで、位置ベクトルr、時刻tにおける
雑音磁界をベクトルHn (r,t)とする。一方、磁界
発生手段が発生する位置測定用の信号磁界をベクトルH
s (r−rc ,θc ,t)とする。ここで、ベクトルθ
c は磁界発生手段の姿勢角であり、磁界発生手段に固定
した座標系の大地に固定した座標系における3個の回転
角である。両者は同時に測定され、かつ雑音磁界ベクト
ルHn (r,t)は時間によりランダムに変化するか
ら、雑音磁界の統計的な性質が既知で、かつ信号磁界と
信号的に直交していない限り、測定磁界ベクトルH
m (r−rc ,θc ,t)から信号磁界ベクトルH
s (r−rc ,θc ,t)のみを取り出すことはできな
い。また、仮に雑音磁界を分離するための統計的な性質
が位置測定に先立ち得られているとしても、分離のため
には大量のデータが必要となり、実用的とは言い難い。
【0011】本発明では、雑音磁界ベクトルHn (r,
t)のベクトルen (r)の方向を別の手段で得て、図
2に示座標系において、図4に示すように、測定磁界ベ
クトルHm (r−rc ,θc ,t)のベクトルe
n (r)の方向に垂直な面への射影成分ベクトルHm P
(r−rc ,θc ,t)を求める(S1,S2,S
3)。
【数1】 この成分は雑音磁界を含まない。なぜなら、
【数2】 であるから、
【数3】 となり、射影成分ベクトルHm P (r−rc ,θc
t)は雑音磁界ベクトルH n (r,t)の成分を含んで
いないことが分かる。
【0012】しかしながら、ベクトルen (r)の方向
に垂直な射影面に射影されることにより射影成分ベクト
ルHm P (r−rc ,θc ,t)は1軸分の情報を失っ
ている。つまり、ベクトルen (r)に平行な成分の大
きさに関わらず同じ射影成分が求められるから、独立な
成分は2個である。
【0013】独立な2成分を求める方法としてはどのよ
うな方法でも構わないが、例えば以下のような方法が使
用可能である。
【0014】測定座標系CM (測定座標系については後
述する)の座標軸のうちで、雑音磁界Hn (r,t)の
方向en (r)と平行でない座標軸を1個選ぶ。その座
標軸方向の単位ベクトルをベクトルem とする。これと
方向en (r)のベクトル積ep,1 =em ×en (r)
はベクトルen (r)の方向に直交するから射影面に含
まれ、かつ座標軸em と直交する。射影成分ベクトルH
m P (r−rc ,θc,t)をこのベクトルep,1 の方
向に射影したものの方向を含めた大きさをHm, 1 P (r
−rc ,θc ,t)とする。すなわち、
【数4】 である(S4)。
【0015】次に、ベクトルep,1 の方向とベクトルe
n (r)の方向に直交する方向のベクトルep,2 を求め
る。ベクトルep,2 の方向はやはり、ベクトルe
n (r)の方向に直交するから射影面に含まれ、かつベ
クトルep,1 の方向とも直交する。この方向への射影成
分ベクトルHm P (r−rc ,θc ,t)の射影をH
m,2 P(r−rc ,θc ,t)とすれば、Hm,1 P (r
−rc ,θc ,t)ep,1 とH m,2 P (r−rc
θc ,t)ep,2 は射影成分ベクトルHm P (r−
c ,θ c ,t)を独立な2個のベクトルに分離したも
のになる。ここで、
【数5】 である。
【0016】そこで、磁界発生源の位置ベクトルrc
姿勢角ベクトルθc とした場合に磁界発生源が位置ベク
トルrに発生する理論的な磁界を計算した計算磁界ベク
トルHe (r−rc ,θc ,t)を測定磁界と同じ平面
に射影した射影成分ベクトルHe P (r−rc ,θc
t)とが実質的に一致するように位置ベクトルrc 、姿
勢角ベクトルθc を決めれば、磁界発生源の位置と姿勢
を得ることができる。
【0017】以上の説明は雑音磁界が実質的に1個の場
合であったが、雑音磁界が2個存在する場合には、図3
に示す座標系において、図5に示すように2個の雑音磁
界ベクトルHn,j (r,t),j=1,2の方向をベク
トルen1(r)、ベクトルe n2(r)とすれば、この両
者に直交する方向ベクトルeN (r)=en1(r)×e
n2(r)への測定磁界の射影を用いる。つまり、
【数6】 を求める(S11,S12,S13)。ただし、
【数7】 である。ここで、×はベクトル積を表す。この場合に
は、射影成分で独立な成分は1個、つまり大きさのみで
ある。
【0018】ここで、磁界発生源の座標をベクトルrc
(x,y,z)、磁界発生源の姿勢角をベクトルθ
c (θx ,θy ,θz )とする。以後、θx を回転角、
θy を傾斜角、θz を方位角と呼ぶことにする。信号磁
界が軸対称である場合には、対称軸がx−軸であるとみ
なして、姿勢角をベクトルθc (θy ,θz )とする。
【0019】雑音磁界源が実質的に1個の場合の図4に
示す。図4の処理を各測定地点ごとに繰り返す。また、
雑音磁界源が実質的に2個の場合も図5に示す処理を各
測定地点ごとに繰り返すことは、図4の場合と同様であ
る。
【0020】位置と姿勢角の求め方: (1)座標系と姿勢角の定義:まず、説明に必要な座標
系を定義する。z−軸を鉛直方向(上向き)とする大地
に固定した座標系を設け、これを測定座標系ベクトルC
M と呼ぶことによする。x−軸とy−軸は右手系をなす
ように適当にとる。例えば、測定用フレームの辺を水平
面に投影した方向に平行にとる。この座標系に対する磁
界発生源の座標ベクトルrc (x,y,z)、磁界発生
源の姿勢角ベクトルθc (θx ,θy ,θz )を求める
ことが目的である。一方、磁界発生源の軸方向をx軸と
し、磁界発生源が水平に置かれた場合にy−軸が水平
で、z−軸が鉛直方向(上向き)であるようにとった座
標系を磁界発生源座標系ベクトルCc とする。
【0021】磁界発生源の姿勢角ベクトルθc は、測定
座標系ベクトルCM と座標系ベクトルCc との間の回転
角として以下のように定義される。測定座標系ベクトル
Mと平行な状態にある座標系ベクトルCc0を、まずz
−軸(どちらの座標系でも同じ)の周りに方位角θz
回転する。この座標系を座標系ベクトルCc1とする。次
いで、座標系ベクトルCc1のy−軸の周りにその座標系
ベクトルCc1を傾斜角θy だけ回転する。この座標系を
座標系ベクトルCc2とする。さらに、座標系ベクトルC
c2のx−軸の周りにその座標系ベクトルCc2を回転角θ
x だけ回転する。この回転後の座標系が座標系ベクトル
c となるように姿勢角ベクトルθc を定める。
【0022】(2)独立な測定量と未知数の説明:雑音
磁界が実質的に1個の場合、1個の場所で磁界を測定す
れば2個の独立な測定量が得られる。また、雑音磁界が
実質的に2個の場合、1個の場所で磁界を測定すれば1
個の独立な測定量が得られる。一方、磁界発生源の座標
ベクトルr c (x,y,z)の3個の座標成分は未知数
である。方位角θz は地磁気の方向など別の基準がない
と求めることができないから、掘削ヘッドが方位センサ
を備えていない限りこれも未知数となる。掘削ヘッドが
磁性体である場合や、掘削ヘッドの近傍に埋設鋼管など
の磁性体があると方位センサがあっても正確な方位を求
めることができないから、多くの場合、方位角ベクトル
θz は未知数となる。傾斜角θy は鉛直方向を検出する
傾斜角センサで容易に求めることができるため、既知で
あることが多い。回転角θx についても傾斜角θy と同
様である。特に、信号磁界が軸対称である場合には、対
称軸をx−軸とみなせば回転角θx は意味を持たないか
ら、無視することができる。いずれの場合においても、
未知数の個数以上の独立な測定量が得られるように異な
る位置で測定磁界を得ればよい。
【0023】測定系の配置:例えば、図1に示すように
地上に相互の位置が既知であるように3軸磁気センサを
必要な個数配置して磁界を測定する。雑音磁界の方向は
測定する場所ごとに異なっている可能性があるから、図
6に本発明における位置測定の処理の流れを示している
ように雑音磁界の方向を求める処理(S21)と測定磁
界の射影成分を求める処理(S22)は各場所ごとに行
う必要がある。
【0024】測定処理の流れ:雑音磁界の方向の測定
(S21)と射影成分による信号磁界源の位置の算出
(S23)については以下に詳細に説明する。
【0025】
【実施例】雑音磁界が実質的に1個の場合の実施例:
知数がNU (≧1)1個で、雑音磁界が実質的に1個の
場合、図7に示すように、NU /2個以上の異なる場所
における測定磁界ベクトルHm (r−rc ,θc ,t)
から、(1)式で表される射影成分ベクトルHm P (r
−rc ,θc,t)を求めて、各測定場所での射影成分
の理論的な計算磁界の射影成分ベクトルHc P (r−r
c ,θc ,t)とが実質的に一致するように位置ベクト
ルrc、姿勢角ベクトルθc を決めれば(S31)、磁
界発生源の位置と姿勢を得ることができる(S32)。
【0026】未知数の個数NU (≧1)が偶数である場
合、未知数の個数と独立な測定量の個数を一致させるこ
とができて、測定磁界ベクトルHm (r−rc ,θc
t)を得る位置の個数Nm をNm =NU /2とすると
【数8】 なるNU 個の方程式を解けばよい。ここで、q=1,2
は射影面に平行で互いに直交する2個の方向を表す(S
33)。したがって、Hm,q P (r−rc ,θc
t),He,q P (r−rc ,θc ,t),q=1,2は
それぞれ測定磁界ベクトルHm (r−rc ,θc ,t)
と理論的な計算磁界ベクトルHe (r−rc ,θc
t)のq方向成分の大きさである。また、ベクトルθc
はθx ,θy ,θ z ,(θy ,θz ),(θz
θx ),(θx ,θy ),(θx ,θy ,θz ),φの
いずれかを、ベクトルrc はx,y,z,(y,z),
(z,x),(x,y),(x,y,z),φのいずれ
かを表すものとする。ただし、φは空集合を表す。
【0027】例えば、未知数が磁界発生源の位置ベクト
ルrc (x,y,z)と磁界発生源の方位角θz である
ときは、異なる2個の測定場所で測定磁界を得て、
【数9】 なる4個の方程式を解けば、磁界発生源の位置ベクトル
c (x,y,z)と方位角θz を得ることができる
(S34)。ただし、< .t は時間平均を表す。
【0028】図8に示すように、未知数の個数NU に対
してNU /2個以上の異なるNm (>NU /2)個の場
所で測定磁界を得た場合には、未知数の個数以上の独立
な測定量が得られるから(S41,S42,S43)、
【数10】 となる位置ベクトルrc (x,y,z)と姿勢角θz
求める(S44)。ただし、< .t は時間平均を表
し、
【外1】 {・}の中身が最小になるベクトルrc とベクトルθc
を求めることを意味する。また、wk,q は重み付けであ
る。(12)式の代わりに
【数11】 などとすることもできる。(12)式,(13),(1
4),(15)式において、ベクトルrc とベクトルθ
c は(10)式の場合と同じ意味を持つものとする。
【0029】なお、以上の説明において測定磁界ベクト
ルHm (r−rc ,θc ,t)は信号磁界の周波数近傍
のみを通過させる帯域通過フィルタを通過した信号であ
っても、帯域通過フィルタを通さない広帯域な信号であ
っても構わないが、帯域通過フィルタを通した信号を用
いる方がより信頼性が高い位置測定結果を得られる可能
性が高い。
【0030】(雑音磁界が実質的に2個の場合の実施
例)未知数がNU (≧1)個で、雑音磁界が実質的に2
個の場合、図9に示すように、NU 個以上の異なる場所
における測定磁界ベクトルHm (r−rc ,θc ,t)
から、(4)式で表される射影成分ベクトルHm P (r
−rc ,θc ,t)を求めて、各測定場所での射影成分
の理論的な計算磁界の射影成分ベクトルHe P (r−r
c ,θc ,t)とが実質的に一致するように位置ベクト
ルrc 、姿勢角ベクトルθc を決めれば(S51,S5
2)、磁界発生源の位置と姿勢を得ることができる(S
53)。
【0031】この場合には必ず未知数の個数NU (≧
1)と独立な測定量の個数を一致させることができて、
未知数の個数NU と同数の異なる位置で測定磁界ベクト
ルHm(r−rc ,θc ,t)を得て、
【数12】 なるNU 個の方程式を解けばよい。ここで、Hm P (r
−rc ,θc ,t)、H e P (r−rc ,θc ,t)は
それぞれ測定磁界ベクトルHm (r−rc ,θc,t)
と理論的な計算磁界ベクトルHe (r−rc ,θc
t)との射影成分ベクトルHm P (r−rc ,θc
t)とベクトルHe P (r−rc ,θc ,t)の大きさ
であ。また、ベクトルθc はθx ,θy ,θz
(θy ,θz ),(θ z ,θx ),(x ,θy ),(θ
x ,θy ,θz ),φのいずれかを、ベクトルrc
x,y,z,(y,z),(z,x),(x,y),
(x,y,z),φのいずれかを表すものとする。ただ
し、φは空集合を表す。
【0032】例えば、未知数が磁界発生源の位置ベクト
ルrc (x,y,z)と磁界発生源の方位角θz 、傾斜
角θy であることき、異なる5個の測定場所で測定磁界
を得て、
【数13】 なる5個の方程式を解けば、磁界発生源の位置ベクトル
c (x,y,z)、方位角θz 、傾斜角θy を得るこ
とができる。ただし、< .t は時間平均を表す。ま
た、ベクトルθc =θc (θy ,θz )である。
【0033】図10に示すように、未知数の個数NU
対してNU 個以上の異なるNm (>NU )個の場所で測
定磁界を得た場合には(S61,S62)、未知数の個
数以上の独立な測定量が得られるから、
【数14】 となる位置ベクトルrc (x,y,z)と姿勢角θz
求める(S63)。ただし、< .t は時間平均を表
し、
【外2】 {・}の中身が最小になるベクトルrc とベクトルθc
を求めることを意味する。また、wk は重み付けであ
る。
【0034】(18)式の代わりに
【数15】 などとすることもできる(S63)。(18)式,(1
9)式,(20)式,(21)式においてベクトルrc
とベクトルθc は(16)式の場合と同じ意味を持つも
のとする。
【0035】なお、以上の説明において測定磁界ベクト
ルHm (r−rc ,θc ,t)は信号磁界の周波数近傍
のみを通過させる帯域通過フィルタを通過した信号であ
っても、帯域通過フィルタを通さない広帯域な信号であ
っても構わないが、帯域通過フィルタを通した信号を用
いる方がさらに信頼性が高い位置測定結果を得られる可
能性が高い。
【0036】以下、上記の2個の実施例において雑音磁
界の方向を得る方法について説明する。
【0037】(雑音磁界が実質的に1個の場合の雑音磁
界の方向の求め方)(第1の方法) 雑音磁界の方向を求める第1の方法は、
信号磁界が無い場合に、信号磁界を測定するのと同一の
測定系を用いて雑音磁界を測定する方法である。このよ
うな状況としては、図11のように掘削経路の一部に雑
音磁界発生源があり、そこでの掘削位置の測定が問題と
なる場合である。また、信号磁界発生源が、例えば地上
から何らかの手段で送信するコマンドを受信する機能が
あり、コマンドにより信号磁界の発生を随意に停止でき
る場合である。
【0038】この場合、図12に示すように、測定磁界
をベクトルHm (r−rc ,θc ,t)とするとき、こ
れは実質的に雑音磁界ベクトルHn (r,t)であるか
ら(S71)、その絶対値の平均値を用いて雑音磁界の
方向ベクトルen (r)=(en,x (r),e
n,y (r),en,z (r))は(S72)、
【数16】 と求めることができる(S73)。あるいは2乗平均の
平方根を用いて
【数17】 から方向を求めることができる(S73)。
【外3】 のα成分であり、αはx,y,zのいずれかである。
【0039】なお、以上の説明において測定磁界ベクト
ルHm (r−rc ,θc ,t)は信号磁界の周波数近傍
のみを通過させる帯域通過フィルタを通過した信号であ
っても、帯域通過フィルタを通さない広帯域な信号であ
っても構わないが、帯域通過フィルタを通した信号を用
いる方がさらに信頼性が高い雑音磁界の方向を得られる
可能性が高い。
【0040】(第2の方法) ステップ1 図13に示すように、
【外4】 すなわち、
【数18】 を求める(S81,S82,S83)。
【外5】 測定磁界ベクトルHm (r−rc ,θc ,t)のx,
y,zの3成分に対してそれぞれフーリエ変換を施すも
のとする。実際には測定磁界ベクトルHm (r−r c
θc ,t)をサンプリングしたものに対してFFT(fa
st Fourier transform:高速フーリエ変換)等を施して
スペクトルを求めればよい。
【0041】ステップ2
【外6】 例えば、線スペクトルのような振幅が大きな成分の角周
波数ωi ,i=1,2,…,Ns を選び出す(S8
4)。各角周波数ωi ,i=1,2,…,Nnsの成分に
対して以下の(1)または(2)の方法により雑音磁界
の方向の候補単位ベクトルen (r,ωi ),i=1,
2,…,Nnsを求める(S85)。
【0042】(1)当該角周波数のフーリエ変換された
x,y,z成分の絶対値を用いて
【数19】 により雑音磁界の方向の候補単位ベクトルen (r,ω
i ),i=1,2,…,Nnsを求める。ただし、
【外7】 測定磁界のα成分のフエリエ変換のωi 成分である。
【0043】(2)角周波数ωi ,i=1,2,…,N
nsに対して当該周波数を通過域の中心周波数とする狭帯
域フィルタを形成し、(20)式あるいは(21)式と
同様な方法により候補単位ベクトルen (r,ωi ),
i=1,…,Nnsを求める。すなわち、
【数20】 あるいは
【数21】 により候補単位ベクトルen (r,ωi )=(e
n,x (r),en,y (r),e n,z (r)),i=1,
…,Nnsを求める。
【0044】ステップ3 候補単位ベクトルen (r,ωi ),i=1,…,Nns
を雑音磁界の方向ベクトルen (r)と考えて、各角周
波数ωi ,i=1,2,…Nnsに対して(1)式と同様
な方法で射影成分ベクトルHm P (r−rc ,θc ,ω
i ,t)を求める。
【数22】 ここで、射影成分の変数として角周波数ωi が入ってい
るのは、この射影成分が角周波数ωi ,i=1,2,
…,Nnsに依存することを明示的に示すためである。N
test個の長さΔtの短時間の時間区間Tt,k ,k=1,
…,Ntestからなる適当な時間区間Ttestをとり、各時
間区間Tt,k ,k=1,…,Ntestに対してこの射影成
分ベクトルHm P (r−rc ,θc ,ωi ,t)の変動
を評価する。(S86)ここで、各時間区間Tt,k
1,…,Ntestは少なくもその一部が他の時間区間と重
複していないものとする。具体的には、例えば、以下の
いずれかの方法で計算するNtest個の統計量v
eval,k(ωi ),k=1,…,Ntestの分散を求める。
【0045】(1)直交する2成分の絶対値の平均
【数23】 の一方あるいは両方。ここで、< .Tt,kは時間区間T
t,k での平均を表し、v eval,kは時間区間Tt,k で計算
した統計量である。
【0046】(2)絶対値の平均
【数24】
【0047】(3)直交する2成分の2乗の平均
【数25】 の一方あるいは両方。
【0048】(4)直交する2成分の2乗の平均の平方
【数26】 の一方あるいは両方。
【0049】これらの式で計算した統計量veval,k ,k
=1,…,Ntestに対して
【数27】 を計算して、var(ωi ) が最小になる角周波数ωi であ
るωi,min を求める(S86)。ここで、meank (.) は
添字kに対する平均をとること、つまり、
【数28】 を意味する。
【0050】この角周波数ωi,min を持つ磁界を求める
雑音磁界に由来するものであり、雑音磁界の方向はベク
トルen (r,ωi,min )となる。なお、var(ωi ) が
最小になる角周波数ωi,min は1箇所で求めれば十分で
あり、測定磁界を得る個々の場所で行う必要はない。
【0051】本方法においては(33)式で与えられる
振幅の揺らぎの他にベクトルHm P(r−rc ,θc
ωi ,t)の方向の揺らぎを算出して方向の揺らぎが最
小になるかあるいは所定の値以下になる角周波数ω
i,min を選ぶことも可能である。
【0052】なお、以上の説明において、ステップ1で
は測定磁界ベクトルHm (r−rc,θc ,t)は広帯
域な信号であり、ステップ3では測定磁界ベクトルHm
(r−rc ,θc ,t)は信号磁界の周波数近傍のみを
通過させる帯域通過フィルタを通過した信号であって
も、帯域通過フィルタを通さない広帯域な信号であって
も構わないが、帯域通過フィルタを通した信号を用いる
方がさらに信頼性が高い雑音磁界の方向を得られる可能
性が高い。
【0053】また、本方法において周波数スペクトルが
極大となる周波数f1 (=ω1 /2π),f2 (=ω2
/2π),…,fn (=ωn /2π,n=Nns),を選
択する様子を図14に、候補ベクトルを求めるステップ
S91を含む処理の流れを図15に、候補ベクトルの評
価と雑音磁界の方向を取得するステップS101,S1
02又はステップS111,S112を含む処理の流れ
を図16と図17に示す。
【外8】 信号磁界を所定の手順で周期的に停止/発信し、その周
期Tperiodを等間隔の時間区間に分割し、各時間区間に
おける測定磁界の方向を候補単位ベクトルen (r,t
i ),i=1,…,Nnsを(25),(26),(2
7)式で求める候補単位ベクトルen (r,ωi ),i
=1,…,Nnsの代わりに用いれば、以後、以上に説明
した処理にしたがって(33)式の分散を最小とする時
間区間を求めれば、その時間区間におけるベクトルen
(r,ti )を雑音磁界の方向として採用することがで
きる。
【0054】(第3の方法)
【外9】 振幅が大きな角周波数ωi ,i=1,2,…,Ns を選
びだしたが、その代わりに信号磁界の周波数の近傍の適
当な周波数帯域を選び、その周波数帯域内に適当な間隔
で、かつ信号磁界の周波数を含まないように試験周波数
を選び、この試験周波数を前記第2の方法の角周波数ω
i とみなせば、第2の方法と全く同じ手法で雑音磁界の
方向はベクトルen (r,ωi,min )を求めることがで
きる。var(ωi ) が最小になる角周波数ωi,min は1箇
所で求めればよいのは第2の方法の場合と同様である。
【0055】本方法において周波数スペクトルが極大と
なる周波数f1 (=ω1 /2π),f2 (=ω2 /2
π),…,fn (=ωn /2π,n=Nns),を選択す
る様子を図18に示す。以下の処理の流れは図13,図
15,図16に示したものと同様である。
【0056】(第4の方法)信号磁界を所定の手順で周
期的に停止する。例えば、周期的に所定の時間だけ信号
磁界を停止する。信号磁界が停止している間は測定磁界
の強度が低下するから、強度の低下が所定の停止期間と
実質的にみなせる期間だけ接続することを以て、信号磁
界の停止期間を同定し、その停止期間中の測定磁界の方
向を雑音ベクトルの方向とする。雑音磁界ベクトルの方
向の求め方としては第1の方法と同じ方法を使用でき
る。この方法における測定磁界の振幅の時間変化の様子
を図19に示す。
【0057】(第5の方法)信号磁界を所定の手順で周
期的に停止する。例えば、次の,のように行う。 矩形波的に停止すること:例えば、周期Tperiod
信号磁界の発信と停止を繰り返す。
【数29】 であって、シーケンスs(t)が「1」のときには信号
磁界を停止し、「−1」のときに発信する。ただし、
【数30】 とする。
【0058】 疑似ランダム信号的に停止すること:
例えば、単位区間Tunitが等しい長さNM のM系列のよ
うなランダムシーケンスにおいて値が「−1」のときに
は信号磁界を発信し、値が「1」のときには信号磁界を
停止するものとして、このシーケンスを繰り返す。
【0059】の方法で信号磁界を停止するときの測定
磁界の振幅の時間変化の様子を図20に示す。また、
の方法で信号磁界を停止するときの測定磁界の振幅の時
間変化の様子を図21に示す。
【0060】次に、図22に示すように、シーケンスs
(t)と測定磁界のノルムあるいは特定の成分の絶対値
との相関関数を求める(S121,S122,S12
3)。相関関数としては、相関を求める時間期間を周期
periodの整数NT 倍であるN T periodとして
【数31】 のようなものが可能である。
【0061】上記のいずれかの相関関数が最大となる時
刻τ=tsyncから(S124)、信号磁界が停止してい
ることを定めることができる(S125)。つまり、時
刻τ=tsyncを開始時刻とするシーケンスs(t−t
sync)により、そのシーケンスs(t)が「1」のとき
には信号磁界がオフであるとして信号磁界のオン/オフ
を決定する。このように決定した信号磁界の停止時間区
間内において測定磁界の方向を求め、その方向を雑音磁
界の方向とみなす(S126)。シーケンスs(t)が
「−1」(第2の数値)のときに信号を発信し、「1」
(第1の数値)のときに停止するものとして、このシー
ケンスを繰り返す。
【0062】(第6の方法)第5の方法と同様に、信号
磁界を例えば、以下に示す如き所定の手順で周期的に停
止する。
【0063】(1)矩形波的に停止する。例えば、周期
periodで信号磁界の発信と停止を繰り返す。
【数32】 であって、シーケンスs(t)が「1」のときには信号
磁界を停止し、「−1」の時には発信する。ただし、
【数33】 とする。
【0064】(2)疑似ランダム信号的に停止する。例
えば、単位区間Tunitが等しい長さNM のM系列のよう
なランダムシーケンスs(t)において値が「−1」の
ときには信号磁界を発信し、値が「1」のときには信号
磁界を停止するものとして、このシーケンスを繰り返
す。ただし、シーケンスs(t)を所定の時間単位Δt
unitを単位として状態が変化するものであるように選
ぶ。また、そのシーケンスの時間平均は「0」である。
【0065】次に、図23に示すように、第5の方法と
同様にシーケンスs(t)と測定磁界のノルムあるいは
特定の成分の絶対値との相関関数を求める(S131,
S132,S133)。相関関数としては、相関を求め
る時間期間を周期Tperiodの整数NT 倍であるNT
periodとして
【数34】 のようなものが可能である。
【0066】このとき相関関数が極大であり、かつ当該
極大値が所定の値以上となる時刻τ=tsync,k ,(k=
1,2,…,Nsync)は一般に複数個存在する(S13
4)。例えば、tsync,k ,(k=1,2,…,Nsync
がこのような時刻を時間が先行する順に並べてるもので
あるとする。シーケンスs(t)と信号磁界の相関値が
適切に求められている場合には、
【数35】 は時間単位Δtunitのほぼ整数倍になる。そこで、この
時間単位Δtunitの整数倍Msync,kΔtunit,(k=
2,…,Nsync)をΔtsync,k,(k=2,…,
sync)から差し引いたもの(S135)の平均
【数36】 を求めれば(S136)、
【数37】 と信号磁界のオン/オフに対応するシーケンス信号の始
まりを与える(137)。従って、シーケンスs(t−
sync)から、信号磁界が無い時間区間を容易に誤定す
ることができる。
【0067】この時間区間の測定磁界ベクトルHm (r
−rc ,θc ,t)に対して第1の方法と同様な方法を
適用すれば、雑音磁界ベクトルHn (r,t)の方向e
n (r)をを求めることができる(S138)。
【0068】(第7の方法)図24,図25,図26,
図27を参照して説明して説明する。第5の方法と同様
に信号磁界を、例えば、以下に示す如き所定の手順で周
期的に停止する。
【0069】(1)矩形波的に停止する。例えば、周期
periodで信号磁界の発信と停止を繰り返す。
【数38】 であって、シーケンスs(t)が「1」のときには信号
磁界を停止し、「−1」のときには発信する。ただし、
【数39】 とする。
【0070】(2)疑似ランダム信号的に停止する。例
えば、単位区間Tunitが等しい長さNM のM系列のよう
なランダムシーケンスs(t)において値が「−1」の
ときには信号磁界を発信し、値が「1」のときには信号
磁界を停止するものとして、このシーケンスを繰り返
す。ただし、そのシーケンスの時間平均は「0」であ
る。
【0071】次に、シーケンスs(t)と測定磁界ベク
トルHm (r−rc,θc ,t)との時間相関関数を求め
る(S141,S142,S143)。周期Tperiod
長さTdiv の等間隔のNdiv 個の区間に分割して、以下
のいずれかの計算を行う。
【数40】 ただし、
【外10】 時間相関である。また、
【数41】 である。周期Tperiodの整数m倍の時間について相関を
とってもよい。すなわち、
【数42】 とする。この場合、シーケンスs(t)をSmp(t)で
置き換える。ただし、
【数43】 である。
【0072】ここで、測定磁界Hm (r−rc ,θc
t)の各成分x,y,zに対応する
【外11】 がなすベクトル
【数44】 への測定磁界ベクトルHm (r−rc ,θc ,t)の射
影成分ベクトルHm P (r−rc ,θc ,tk ,t),
(k=1,…,Ndiv )を算出する(S144)。ここ
で、射影成分の変数にtk が含まれるのは射影成分が変
数tk に依存することを表している。
【0073】本方法では射影成分ベクトルHm (r−r
c ,θc ,tk ,t),(k=1,…,Ndiv )の絶対
値の揺らぎ
【数45】 が最小になるかまたは所定の値以下になる時間tk を探
し、ベクトルen (tk)を雑音磁界の方向とすること
ができる(S145a)。ただし、< .t は時間平均
をとることを意味する。
【0074】また、射影成分ベクトルHm (r−rc
θc ,tk ,t),(k=1,…,Ndiv )のx成分H
m,x (r−rc ,θc ,tk ,t)、y成分Hm,y (r
−r c ,θc ,tk ,t)、z成分Hm,z (r−rc
θc ,tk ,t)のそれぞれの分散
【数46】 を算出して、その和
【数47】 あるいは、
【数48】 を最小または所定の値以下にする時間tk を探し、ベク
トルen (tk )を雑音磁界の方向とすることができる
(S145b)。ただし、ある時刻tk における相関関
数Rx (tk ),Ry (tk ),Rz (tk )は本来の
符号を失っている可能性がある。従って、〔R
x (tk ),Ry (tk ),Rz (tk )〕,〔R
x (tk ),Ry (tk ),−Rz (tk )〕,〔Rx
(tk ),−Ry (tk),Rz (tk )〕,〔R
x (tk ),−Ry (tk ),−Rz (tk )〕の4通
りの組合せに対して、各時刻tk における射影成分のゆ
らぎを評価する必要がある。また、シーケンスs(t−
k )から、信号磁界が無い時間区間を容易に設定する
ことができる(S145c,S145d)。この時間区
間の測定磁界ベクトルHn (r−rc ,θc ,t)に対
して第1の方法と同様な方法を適用すれば、雑音磁界H
n (r,t)の方向en (r)を求めることができる
(S146)。
【0075】上記の説明では周期Tperiodを長さTdiv
の等間隔のNdiv 個の区間に分割した時刻tk を用いた
が、代わりに(39)式あるいは(40)式で与えられ
相関関数が極大となる時刻あるいは相関関数が極大とな
りかつ所定の値以上となる時刻を用いてもよい。
【0076】(雑音磁界が実質的に2個の場合の雑音磁
界の方向の求め方)雑音磁界が2個ある場合であって
も、ある第1の周波数において第1の雑音磁界が第2の
雑音磁気に比べて格段に大きな強度を有し、ある第2の
周波数において第2の雑音磁界が第1の雑音磁界に比べ
て格段に大きな強度を有する場合には、測定磁界中のこ
れらの周波数成分によって磁界の方向を算出すれば、第
1の雑音磁界と第2の雑音磁界の方向を容易に算出する
ことができる。
【0077】もし、第1の周波数あるいは第2の周波数
が信号磁界の周波数と近接している場合には、信号磁界
の周波数近傍のみを通過させる帯域通過フィルタを通過
した測定磁界に対して、雑音磁界が実質的に1個の場合
の第4あるいは第5の方法と同様な方法により雑音磁界
の方向を求めることが可能である。
【0078】第1の周波数と第2の周波数のいずれも信
号磁界の周波数と一致しない場合には、雑音磁界が実質
的に1個の場合の第1の方法と同様な方法でそれぞれの
雑音磁界の方向を算出すればよい。
【0079】(他の実施例)本発明は、磁界発生源が発
生する信号磁界が実質的に軸対象である場合にも有効で
あり、対象性が低い磁界に比べてさらに少ない磁気セン
サの個数あるいはさらに少ない測定場所での測定で位置
測定を行うことが可能である。
【0080】さらに、掘削位置の測定に影響を与える雑
音磁界が実質的に1個のみであり、磁界発生源に設定さ
れた信号磁界の軸方向と対応する対称軸の鉛直方向から
の傾きである傾斜角が既知であるときには、異なる2箇
所以上の位置で得た測定磁界に対して、各測定磁界を得
た位置で測定した雑音磁界の方向に鉛直な平面への射影
成分を算出し、その射影成分から、磁界発生源の位置と
対称軸の水平面内での方向である方位角とを算出するこ
とが可能である。
【0081】また、本発明方法においては、掘削位置の
測定に影響を与える雑音磁界が実質的に1個のみである
ときには、異なる3箇所以上の位置で得た測定磁界に対
して、各測定磁界を得た位置で測定した雑音磁界の方向
に鉛直な平面への射影成分を算出し、その射影成分から
磁界発生源の位置と磁界発生源に設定された信号磁界の
軸方向と対応する対称軸の鉛直方向からの傾きである傾
斜角と対称軸の水平面内での方向である方位角とを算出
することが可能である。
【0082】さらに、掘削位置の測定に影響を与える雑
音磁界が実質的に2個のみであり、磁界発生源に設定さ
れた信号磁界の軸方向と対応する対称軸の鉛直方向から
の傾きである傾斜角が既知である場合には、異なる4箇
所以上の位置で得た測定磁界に対して、各測定磁界を得
た位置で測定した第1の雑音磁界の方向と同じ位置で測
定した第2の雑音磁界の方向との両方に鉛直な直線への
射影成分を算出し、その射影成分から磁界発生源の位置
と該対称軸の水平面内での方向である方位角とを算出す
ることが可能である。
【0083】また、掘削位置の測定に影響を与える雑音
磁界が実質的に2個のみであるときには、異なる5箇所
以上の位置で得た測定磁界に対して、各測定磁界を得た
位置で測定した第1の雑音磁界の方向と同じ位置で測定
した第2の雑音磁界の方向との両方に鉛直な直線への射
影成分を算出し、その射影成分から磁界発生源の位置と
磁界発生源に設定された信号磁界の軸方向と対応する対
称軸の鉛直方向からの傾きである傾斜角と該対称軸の水
平面内での方向である方位角とを算出することが可能で
ある。
【0084】また、さらに掘削位置の測定に影響を与え
る雑音磁界が実質的に2個のみであるときには、第1の
雑音磁界の周波数成分であって、その周波数成分の周波
数の近傍に第2の雑音磁界と信号磁界が実質的に周波数
成分を持たないその周波数成分を測定することによっ
て、第1の雑音磁界のベクトルとしての方向を得るとと
もに、第2の雑音磁界の周波数成分であって、その周波
数成分の周波数の近傍に第1の雑音磁界と信号磁界が実
質的に周波数成分を持たないその周波数成分を測定する
ことによって、第2の雑音磁界のベクトルとしての方向
を得ることが可能である。
【0085】本発明においては、磁界を測定する磁気セ
ンサが実質的に同一場所における互いに直交する3個の
軸方向の磁界を測定する3軸磁気センサを用いることが
有効である。
【0086】本発明で用いる磁気センサとしては、実質
的に同一の位置における互いに直交する3方向の磁界を
測定できるものであればどのようなものでも使用可能で
あるが、実質的に同一の位置における互いに直交する3
方向の磁界を検出する3軸磁気センサが適している。あ
るいは1方向の磁界のみが測定可能な1個の磁気センサ
を同一位置において、順次互いに直交する3方向に向け
て直交する3方向の磁界を測定することもできる。
【0087】本発明を実施するに当たっては、例えば、
図28のように、3軸磁気センサを固定する磁気センサ
固定手段11を予め設けたフレーム12に、さらにフレ
ームの鉛直からの傾きを検出する傾斜計13を設けたも
のを用意することができる。磁気センサ固定手段のフレ
ーム上の位置は既知であり、磁気センサ固定手段は磁気
センサをフレームに対して予め定められた所定の姿勢で
固定する機能を備えている。磁気センサ固定手段11
は、例えば、互いに直交する3面を備えたものであっ
て、磁気センサのケースの所定の面をこれらのいずれか
の面に押しつけて所定の角度で磁気センサを固定するよ
うな仕組みをもつものである。1個の磁気センサあるい
は1個の3軸磁気センサをこれらの磁気センサ固定手段
に順次固定しながら測定磁界を得る。または、フレーム
12上の予め定めた複数個の所定の位置に所定の姿勢で
複数個の磁気センサを固定しておき、同時の複数の位置
で測定磁界を得ることもできる。
【0088】このように、本発明方法には、3軸磁気セ
ンサを設置あるいは固定可能な磁気センサ固定手段を有
するフレームであって、そのフレームに固定して設けた
直交座標系の鉛直方向に対する傾斜角が検知可能な傾斜
角センサを備えたフレーム上に、フレームに対する位置
と姿勢が既知であるように設けた所要の個数の前記磁気
センサ固定手段に磁気センサを設置あるいは固定してそ
の磁気センサにより磁界を測定して、磁界測定時のフレ
ームの傾斜角と各磁気センサ設置場所における磁気セン
サのフレームに対する姿勢とを用いて、各磁気センサ設
置場所において測定した磁界から測定磁界と雑音磁界と
信号磁界を大地に固定した座標系におけるベクトルとし
て算出することができる。
【0089】本発明の信号磁界の磁界発生手段としてコ
イルを用いることができる。または磁界発生手段が一本
の電線であっても構わない。さらに位置測定を行ってい
る近傍のみで直線状の1本の電線であってもよい。
【0090】
【発明の効果】以上の説明したように、本発明によれ
ば、工事現場の近傍に埋設電力線や鉄道線路等の雑音磁
界源がある場合でも、これらが発生する雑音磁界の影響
を受けることなく、信頼性が高い位置測定が可能とな
る。本発明は非開削工法の掘削位置測定法として考案さ
れたが、磁界を測定して位置を測定する多くの分野に応
用が可能である。
【図面の簡単な説明】
【図1】本発明方法における磁気センサの配置を説明す
るための斜視図である。
【図2】雑音磁界源が1個の場合の本発明方法による測
定原理を説明するためのベクトル図である。
【図3】雑音磁界源が2個の場合の本発明方法による測
定原理を説明するためのベクトル図である。
【図4】雑音磁界源が1個の場合の本発明方法において
射影成分を求める処理の流れを示すフロー図である。
【図5】雑音磁界源が2個の場合の本発明方法において
射影成分を求める処理の流れを示すフロー図である。
【図6】本発明方法における測定処理の流れを示すフロ
ー図である。
【図7】雑音磁界源が1個の場合の本発明方法において
信号磁界の位置算出処理の流れを未知数の個数と方程式
の個数が一致する場合について示すフロー図である。
【図8】雑音磁界源が1個の場合の本発明方法において
信号磁界の位置算出処理の流れを未知数の個数より方程
式の個数が多い場合について示すフロー図である。
【図9】雑音磁界源が2個の場合の本発明方法において
信号磁界の位置算出処理の流れを未知数の個数と方程式
の個数が一致する場合について示すフロー図である。
【図10】雑音磁界源が2個の場合の本発明方法におい
て信号磁界の位置算出処理の流れを未知数の個数より方
程式の個数が多い場合について示すフロー図である。
【図11】信号磁界源である掘削ヘッドが測定場所から
離れているときに本発明方法において雑音磁界の方向を
測定する配置を説明するための斜視図である。
【図12】本発明方法において雑音磁界の方向算出の流
れを掘削ヘッドが測定場所から離れている場合で信号磁
界源が磁界発生を停止している場合についてしめすフロ
ー図である。
【図13】本発明方法において雑音磁界の方向算出の流
れを信号磁界源と雑音磁界が混在している場合について
しめすフロー図である。
【図14】本発明方法において周波数スペクトルが極大
となる周波数選択の動作を図13での雑音磁界の方向を
求める処理で用いる方法を説明するための信号周波数ス
ペクトル図である。
【図15】本発明方法において候補ベクトルの算出処理
の流れを図13の雑音磁界の方向を求める処理で用いる
第1の方法を説明するためのフロー図である。
【図16】本発明方法において候補ベクトルの算出処理
の流れを図13の雑音磁界の方向を求める処理で用いる
第2の方法を説明するためのフロー図である。
【図17】本発明方法において候補ベクトルの評価と雑
音磁界方向を取得する処理の流れを図13の雑音磁界の
方向を求める処理で用いる方法を説明するためのフロー
図である。
【図18】本発明方法において周波数スペクトルが極大
となる周波数選択の動作を図13での雑音磁界の方向を
求める処理で用いる方法を説明するための信号周波数ス
ペクトル図である。
【図19】本発明方法において雑音磁界の方向を求める
測定方法を、信号磁界を所定の手順で停止して、測定磁
界信号の振幅が信号磁界の停止中には小さく成ることを
利用して、雑音磁界のみが存在する時間区間を特定動作
を説明するための信号波形図である。
【図20】本発明方法における雑音磁界の方向を求める
測定方法において、信号磁界を周期的に停止したときの
測定磁界信号の振幅の時間変化の様子を示す信号波形図
である。
【図21】本発明方法における雑音磁界の方向を求める
測定方法において、信号磁界を所定のランダムな手順で
停止したときの測定磁界信号の振幅の時間変化の様子を
示す信号波形図である。
【図22】本発明方法における雑音磁界の方向を求める
測定方法において、信号磁界を所定のシーケンスに基づ
いて停止し、そのシーケンスと測定磁界の相関関数が最
大となる時刻を基点とするシーケンスにより特定磁界が
停止している時間区間を特定して、その時間区間内の測
定磁界の方向を雑音磁界の方向とする方法をしめすフロ
ー図である。
【図23】本発明方法における雑音磁界の方向を求める
測定方法において、信号磁界を所定のシーケンスに基づ
いて停止し、そのシーケンスと測定磁界の相関関数が極
大となる複数の時刻から、最も確からしい信号磁界の発
信/停止を表すシーケンスの開始時刻を求める方法をし
めすフロー図である。
【図24】本発明方法における雑音磁界の方向を求める
測定方法において、信号磁界を所定のシーケンスに基づ
いて停止し、そのシーケンスと測定磁界の相関関数をシ
ーケンスの周期を等分割した複数の時刻において算出
し、その時刻において相関関数がなすベクトルに測定磁
界を射影したときの分散が最小となるそのベクトルを雑
音磁界の方向とみなす方法をしめすフロー図である。
【図25】本発明方法における雑音磁界の方向を求める
測定方法において、信号磁界を所定のシーケンスに基づ
いて停止し、そのシーケンスと測定磁界の相関関数をシ
ーケンスの周期を等分割した複数の時刻において算出
し、その時刻において相関関数がなすベクトルに測定磁
界を射影したときの分散が最小となるそのベクトルを雑
音磁界の方向とみなす別の評価方法をしめすフロー図で
ある。
【図26】本発明方法における雑音磁界の方向を求める
測定方法において、信号磁界を所定のシーケンスに基づ
いて停止し、そのシーケンスと測定磁界の相関関数が極
大となる複数の時刻から、最も確からしい信号磁界の発
信/停止を表すシーケンスの開始時刻を求める方法をし
めすフロー図である。
【図27】本発明方法における雑音磁界の方向を求める
測定方法において、信号磁界を所定のシーケンスに基づ
いて停止し、そのシーケンスと測定磁界の相関関数をシ
ーケンスの周期を等分割した複数の時刻において算出
し、その時刻において相関関数がなすベクトルに測定磁
界を射影したときの分散が最小となるそのベクトルを雑
音磁界の方向とみなす別の評価方法をしめすフロー図で
ある。
【図28】本発明の実施の際に用いる測定用フレームの
構成例を示す斜視図である。
【符号の説明】
1 地表面 2 掘削ヘッド 3 磁気雑音源 4 磁気センサ 11 磁気センサ固定手段 12 フレーム 13 傾斜計

Claims (25)

    【特許請求の範囲】
  1. 【請求項1】 磁界発生源から発生されている交流磁界
    を地上の磁気センサで測定して、その測定された測定磁
    界の大きさと方向から該磁界発生源の位置を算出する非
    開削工法の掘削位置の測定方法であって、 前記磁界発生源から発生されている信号磁界以外に近傍
    の電流によって発生する雑音磁界が存在する場合に、 前記磁気センサで測定した前記測定磁界を、該雑音磁界
    のベクトルとしての方向と直交する平面上あるいは直線
    上に射影した射影成分を用いて、 前記磁界発生源の位置と該磁界発生源の鉛直方向からの
    傾きである傾斜角と該磁界発生源の軸方向の水平面内で
    の方向である方位角の少なくとも1個を算出する掘削位
    置測定方法。
  2. 【請求項2】 前記雑音磁界のベクトルとしての方向
    を、近傍に磁界発生源が無い状態で位置測定に先立ち測
    定しておくことを特徴とする請求項1に記載の掘削位置
    測定方法。
  3. 【請求項3】 前記信号磁界と異なる周波数の前記雑音
    磁界の周波数成分のベクトルとしての方向を測定して、
    該信号磁界と同じ周波数成分の雑音磁界のベクトルとし
    ての方向とすることを特徴とする請求項1に記載の掘削
    位置測定方法。
  4. 【請求項4】 前記信号磁界と異なる周波数の測定磁界
    の周波数成分のそれぞれに対してベクトルとしての方向
    を算出して、 該ベクトルとしての方向に直交する面あるいは線に該測
    定磁界を射影した射影成分の振幅あるいは方向の揺らぎ
    が最小となるかあるいは所定の値以下になる該雑音磁界
    の周波数成分のベクトルとして方向を、前記信号磁界と
    同じ周波数成分の前記雑音磁界のベクトルとしての方向
    とすることを特徴とする請求項3に記載の掘削位置測定
    方法。
  5. 【請求項5】 前記信号磁界と異なる周波数の前記雑音
    磁界の線スペクトル成分のそれぞれに対してベクトルと
    しての方向を算出し、 該ベクトルとしての方向に直交する面あるいは線に前記
    測定磁界を射影した射影成分の振幅の揺らぎあるいは方
    向の揺らぎが最小となるかあるいは所定の値以下になる
    該雑音磁界の線スペクトル成分のベクトルとしての方向
    を、前記信号磁界と同じ周波数成分の前記雑音磁界のベ
    クトルとしての方向とすることを特徴とする請求項4に
    記載の掘削位置測定方法。
  6. 【請求項6】 前記信号磁界を予め定められた手順にし
    たがって停止し、該信号磁界の停止している時間を推定
    して、その時間における前記測定磁界の方向を雑音磁界
    のベクトルとしての方向とすることを特徴とする請求項
    1に記載の掘削位置測定方法。
  7. 【請求項7】 前記測定磁界の強度が低下したことを検
    知して、前記信号磁界の停止している時間を推定するこ
    とを特徴とする請求項6に記載の掘削位置測定方法。
  8. 【請求項8】 前記信号磁界を所定の手順で周期的に停
    止し、 前記信号磁界が停止している期間には第1の数値をと
    り、該信号磁界を発生している期間には該第1の数値と
    異なる第2の数値をとり、時間平均が「0」の時間関数
    であるシーケンスと前記測定磁界の絶対値もしくはその
    絶対値の2乗の平方根、または前記測定磁界のベクトル
    としての各成分の絶対値もしくはその絶対値の2乗の平
    方根との有限時間期間における時間相関関数を算出し、 前記第1の数値が前記第2の数値より大きいときには前
    記時間相関関数の最大値を与え、前記第1の数値が前記
    第2の数値より小さいときには前記時間相関関数の最小
    値を与える前記シーケンスの開始時刻を起点とする該シ
    ーケンスにより前記信号磁界が停止している時間区間を
    設定し、該時間区間内の前記測定磁界の方向を雑音磁界
    の方向とみなすことを特徴とする請求項6に記載の掘削
    位置測定方法。
  9. 【請求項9】 前記信号磁界を所定の手順で周期的に停
    止し、 前記信号磁界が停止している期間には第1の数値をと
    り、該信号磁界を発生している期間には該第1の数値と
    異なる第2の数値をとり、時間平均が「0」の時間関数
    であるシーケンスであって、所定の時間単位を以て前記
    信号磁界の発信と停止を行うシーケンスにしたがって前
    記信号磁界を発信および停止し、 前記測定磁界の絶対値もしくはその絶対値の2乗の平方
    根、または前記測定磁界のベクトルとしての各成分の絶
    対値もしくは絶対値の2乗の平方根との有限時間期間に
    おける時間相関関数を算出し、 前記第1の数値が前記第2の数値より大きいときには、
    該時間相関関数の所定の値以上の極大値を与え、前記第
    1の数値が前記第2の数値より小さいときには前記時間
    相関関数の最小値を与える前記シーケンスの開始時刻を
    複数個求め、 該複数個の開始時刻の内の最先のものを残りの開始時刻
    から差し引いた時間差から、該時間差に最も近い前記時
    間単位の整数倍を除いたものの平均値を求め、 該平均値と前記最先の開始時刻との和の時刻を開始時刻
    を起点とするシーケンスにより信号磁界が停止している
    時間区間を設定し、該時間区間内の前記測定磁界の方向
    を雑音磁界の方向とみなすことを特徴とする請求項6に
    記載の掘削位置測定方法。
  10. 【請求項10】 前記信号磁界を所定の手順で周期的に
    停止し、 該信号磁界が停止している期間には第1の数値をとり、
    該信号磁界を発生している期間には該第1の数値と異な
    る第2の数値をとり、時間平均が「0」であるシーケン
    スと前記測定磁界のベクトルとしての各成分の絶対値あ
    るいは絶対値の2乗の平方根との有限時間関数における
    時間相関関数を算出し、 前記3個の時間相関関数がなすベクトルの方向に直交す
    る面あるいは線に前記測定磁界を射影した射影成分の振
    幅あるいは方向の揺らぎが最小となるかあるいは所定の
    値以下になるときの該ベクトルの方向を、前記雑音磁界
    の方向とすることを特徴とする請求項6に記載の掘削位
    置測定方法。
  11. 【請求項11】 前記信号磁界を所定の手順で周期的に
    停止し、 前記信号磁界を停止する周期以上の期間を前記信号磁界
    の停止期間以下の時間長の時間区間に分割し、該各時間
    区間において前記測定磁界に対するベクトルとしての方
    向を測定し、 該各時間区間の該測定磁界のベクトルとしての方向に直
    交する面あるいは線に該測定磁界を射影した射影成分の
    振幅もしくは方向の揺らぎが最小となるかまたは所定の
    値以下になる時間区間のベクトルとして方向を、前記雑
    音磁界のベクトルとしての方向とすることを特徴とする
    請求項6に記載の掘削位置測定方法。
  12. 【請求項12】 前記信号磁界を所定の手順で周期的に
    停止し、 前記信号磁界が停止している期間には第1の数値をと
    り、信号磁界を発生している期間には該第1の数値と異
    なる第2の数値をとり、時間平均が「0」の時間関数で
    あるシーケンスと測定磁界のベクトルとしての3成分の
    絶対値もしくはその絶対値の2乗の平方根との有限時間
    期間における時間相関関数を算出し、 1回の前記シーケンスを実行する時間を前記信号磁界の
    停止期間以下の時間長の時間区間に分割し、各時間区間
    の代表時刻にける前記時間相関関数の3成分がなすベク
    トルに直交する面もしくは線に測定磁界を射影した射影
    成分の振幅または方向の揺らぎが最小となるかもしくは
    所定の値以下になる時間区間のベクトルとして方向を、
    前記雑音磁界のベクトルとしての方向とすることを特徴
    とする請求項6に記載の掘削位置測定方法。
  13. 【請求項13】 前記磁界発生源が発生する前記信号磁
    界が一つの対称軸に関して実質的に軸対称であることを
    特徴とする請求項1に記載の掘削位置測定方法。
  14. 【請求項14】 掘削位置の測定に影響を与える前記雑
    音磁界が実質的に1個のみであり、 前記磁界発生源に設定された前記信号磁界の軸方向と対
    応する前記対称軸の鉛直からの傾きである傾斜角が既知
    であるときに、 異なる2箇所以上の位置で得た他の測定磁界に対して、 該他の各測定磁界を得た位置で測定した前記雑音磁界の
    方向に鉛直な平面への射影成分を算出し、該射影成分か
    ら、 前記磁界発生源の位置と、 該対称軸の水平面内での方向である方位角とを算出する
    ことを特徴とする請求項13に記載の掘削位置測定方
    法。
  15. 【請求項15】 掘削位置の測定に影響を与える前記雑
    音磁界が実質的に1個のみであるときに、 異なる3箇所以上の位置で得た他の測定磁界に対して、 該各測定磁界を得た位置で測定した前記雑音磁界の方向
    に鉛直な平面への射影成分を算出し、該射影成分から、 前記磁界発生源の位置と、 該磁界発生源に設定された前記信号磁界の軸方向と対応
    する対称軸の鉛直からの傾きである傾斜角と、 該対称軸の水平面内での方向である方位角とを算出する
    ことを特徴とする請求項1に記載の掘削位置測定方法。
  16. 【請求項16】 掘削位置の測定に影響を与える雑音磁
    界が実質的に第1の雑音磁界と第2の雑音磁界との2個
    のみであり、 前記磁界発生源に設定された前記信号磁界の軸方向と対
    応する対称軸の鉛直からの傾きである傾斜角が既知であ
    るときに、 異なる4箇所以上の位置で得た前記測定磁界に対して、 該各測定磁界を得た位置で測定した前記第1の雑音磁界
    と前記第2の雑音磁界の各方向との該両方向に鉛直な直
    線への射影成分を算出し、該射影成分から、 前記磁界発生源の位置と、 該対称軸の水平面内での方向である方位角とを算出する
    ことを特徴とする請求項1に記載の掘削位置測定方法。
  17. 【請求項17】 掘削位置の測定に影響を与える前記雑
    音磁界が実質的に第1の雑音磁界と第2の雑音磁界との
    2個のみであるときに、 異なる5箇所以上の位置で得た前記測定磁界に対して、 該各測定磁界を得た位置で測定した該第1の雑音磁界と
    該第2の雑音磁界の方向との該両方向に鉛直な直線への
    射影成分を算出し、該射影成分から前記磁界発生源の位
    置と、 該磁界発生源に設定された前記信号磁界の軸方向と対応
    する対称軸の鉛直からの傾きである傾斜角と、 該対称軸の水平面内での方向である方位角とを算出する
    ことを特徴とする請求項1に記載の掘削位置測定方法。
  18. 【請求項18】 掘削位置の測定に影響を与える雑音磁
    界が実質的に第1の雑音磁界と第2の雑音磁界との2個
    のみであるときに、 該第1の雑音磁界の周波数成分であって、該周波数成分
    の周波数の近傍には前記第2の雑音磁界と前記信号磁界
    が実質的に周波数成分を持たない該周波数成分を測定す
    ることによって、前記第1の雑音磁界のベクトルとして
    の方向を得るとともに、 前記第2の雑音磁界の周波数成分であって、該周波数成
    分の周波数の近傍には前記第1の雑音磁界と前記信号磁
    界が実質的に周波数成分をもたない該周波数成分を測定
    することによって、前記第2の雑音磁界のベクトルとし
    ての方向を得ることを特徴とする請求項1に記載の掘削
    位置測定方法。
  19. 【請求項19】 前記磁気センサが実質的に同一場所に
    おける互いに直交する3個の軸方向の磁界を測定する3
    軸磁気センサであることを特徴とする請求項1に記載の
    掘削位置測定方法。
  20. 【請求項20】 前記3軸磁気センサを設置あるいは固
    定可能な磁気センサ固定手段を有するフレームを備え、 該フレームには該フレームに固定されて直交座標系の鉛
    直方向に対する傾斜角を検知することができる傾斜角セ
    ンサを備え、 該フレームに対する位置と姿勢が既知であるように設け
    た所要の個数の前記磁気センサ固定手段に前記3軸磁気
    センサを設置あるいは固定して該3軸磁気センサにより
    他の磁界を測定して、 該他の磁界測定時のフレームの傾斜角と各3軸磁気セン
    サの設置場所における該3軸磁気センサの前記フレーム
    に対する姿勢とを用いて、 該各3軸磁気センサの設置場所において測定した該他の
    磁界から前記測定磁界と前記雑音磁界と前記信号磁界を
    大地に固定した座標系におけるベクトルとして算出する
    ことを特徴とする請求項19に記載の掘削位置測定方
    法。
  21. 【請求項21】 所要の個数の磁気センサの設置場所の
    それぞれに各1個の前記3軸磁気センサを固定して該他
    の磁界を測定することを特徴とする請求項19に記載の
    掘削位置測定方法。
  22. 【請求項22】 1個の前記3軸磁気センサを前記所要
    の磁気センサの設置場所に順次設置しながら磁界を測定
    することを特徴とする請求項19に記載の掘削位置測定
    方法。
  23. 【請求項23】 前記磁界発生手段がコイルであること
    を特徴とする請求項1に記載の掘削位置測定方法。
  24. 【請求項24】 前記磁界発生手段が一本の電線である
    ことを特徴とする請求項1に記載の掘削位置測定方法。
  25. 【請求項25】 前記磁界発生手段が測定を行っている
    位置の近傍に配置された直線状の1本の電線であること
    を特徴とする請求項1に記載の掘削位置測定方法。
JP2000401247A 2000-11-10 2000-12-28 掘削位置測定方法 Expired - Fee Related JP3717153B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000401247A JP3717153B2 (ja) 2000-12-28 2000-12-28 掘削位置測定方法
US10/006,742 US6868922B2 (en) 2000-11-10 2001-11-08 Method for measuring digging positions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401247A JP3717153B2 (ja) 2000-12-28 2000-12-28 掘削位置測定方法

Publications (2)

Publication Number Publication Date
JP2002202129A true JP2002202129A (ja) 2002-07-19
JP3717153B2 JP3717153B2 (ja) 2005-11-16

Family

ID=18865715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401247A Expired - Fee Related JP3717153B2 (ja) 2000-11-10 2000-12-28 掘削位置測定方法

Country Status (1)

Country Link
JP (1) JP3717153B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015014161A1 (zh) * 2013-07-30 2015-02-05 中国冶金地质总局山东正元地质勘查院 高精度地磁矢量野外测量方法及其装置
CN112050722A (zh) * 2019-06-05 2020-12-08 Tdk株式会社 位置检测装置
CN117110953A (zh) * 2023-10-24 2023-11-24 中国科学院地质与地球物理研究所 一种移动式矿产资源快速勘查方法、装置及其应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015014161A1 (zh) * 2013-07-30 2015-02-05 中国冶金地质总局山东正元地质勘查院 高精度地磁矢量野外测量方法及其装置
US9910183B2 (en) 2013-07-30 2018-03-06 China Metallurgical Geology Bureau Geological Exploration Institute Of Shandong Zhengyuan High precision field measurement method for geomagnetic vectors and a device thereof
CN112050722A (zh) * 2019-06-05 2020-12-08 Tdk株式会社 位置检测装置
CN112050722B (zh) * 2019-06-05 2022-03-29 Tdk株式会社 位置检测装置
CN117110953A (zh) * 2023-10-24 2023-11-24 中国科学院地质与地球物理研究所 一种移动式矿产资源快速勘查方法、装置及其应用
CN117110953B (zh) * 2023-10-24 2024-01-02 中国科学院地质与地球物理研究所 一种移动式矿产资源快速勘查方法、装置及其应用

Also Published As

Publication number Publication date
JP3717153B2 (ja) 2005-11-16

Similar Documents

Publication Publication Date Title
US11480446B2 (en) Tracking positions of personnel, vehicles, and inanimate objects
US11960047B1 (en) Locating devices, systems, and methods using frequency suites for utility detection
US7538555B2 (en) System and method for locating an anomaly ahead of a drill bit
US7356421B2 (en) Precise location of buried metallic pipes and cables in the presence of signal distortion
US7425830B2 (en) System and method for locating an anomaly
CN102741653B (zh) 安装磁信号源以便定位
US10520628B2 (en) Downhole gradiometric ranging for T-intersection and well avoidance utilizing transmitters and receivers having magnetic dipoles
AU2006206838B2 (en) A method and a system for determining the position of a drill bit
AU2016203396B2 (en) Magnetometer signal sampling within time-domain EM transmitters and method
US6868922B2 (en) Method for measuring digging positions
EP0685078A1 (en) Location of buried conductors
US6215888B1 (en) Cable location method and apparatus using modeling data
JP3717153B2 (ja) 掘削位置測定方法
JP3685991B2 (ja) 信号測定方法および雑音除去機能を有する位置測定方法
AU2011367204A1 (en) Method for estimating formation parameters from imaginary components of measured data
Hefford et al. Quantifying the effects that changes in transmitter-receiver geometry have on the capability of an airborne electromagnetic survey system to detect good conductors
CN102979519A (zh) 用于带倾斜线圈的电阻率设备的电阻率测量方法及装置
JPH11201709A (ja) 位置測定方法および装置
RU1774158C (ru) Способ определени рассто ни между выработкой и скважиной
JP3041415B2 (ja) 楕円体パラメータを測定する電磁探査法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees