JP2002201261A - Process for producing polyester or its copolymer - Google Patents

Process for producing polyester or its copolymer

Info

Publication number
JP2002201261A
JP2002201261A JP2001315473A JP2001315473A JP2002201261A JP 2002201261 A JP2002201261 A JP 2002201261A JP 2001315473 A JP2001315473 A JP 2001315473A JP 2001315473 A JP2001315473 A JP 2001315473A JP 2002201261 A JP2002201261 A JP 2002201261A
Authority
JP
Japan
Prior art keywords
reaction
tank
copolymer
esterification reaction
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001315473A
Other languages
Japanese (ja)
Other versions
JP3780897B2 (en
Inventor
Tomiji Matsuki
富二 松木
Yoko Furuta
洋子 古田
Mamoru Horiuchi
衛 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP2001315473A priority Critical patent/JP3780897B2/en
Publication of JP2002201261A publication Critical patent/JP2002201261A/en
Application granted granted Critical
Publication of JP3780897B2 publication Critical patent/JP3780897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing a polyester or its copolymer that can produce a high quality polyester or its copolymer with a high polymerization degree by enhancing the reactivity of esterification of a dicarboxylic acid and a diol in the direct polymerization process with consequent improvement in the reactivity of the following polycondensation reaction. SOLUTION: The production of a high quality polyester or its copolymer with a high polymerization degree can be achieved by the process for producing a polyester or its copolymer which comprises carrying out the esterification reaction of a dicarboxylic acid composed mainly of an aromatic dicarboxylic acid and a diol composed mainly of 1,4-butanediol and 0-90 wt.%, based on the total polymer, polyalkylene ether glycol having a number-average molecular weight of 600-4,000 in the presence of an organic titanium compound, followed by polycondensation reaction, wherein the esterification reaction is carried out under such conditions that a peripheral speed of an agitating blade in the tank is not less than 0.5 m/sec and the difference in height between the highest level and the lowest level of the reaction fluid in the tank is not more than 1/4 of the internal diameter of the tank.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回分式または連続
式のポリエステルまたはその共重合体の製造法、特に芳
香族ジカルボン酸主成分のジカルボン酸と1,4−ブタ
ンジオール主成分のジオールとのエステル化反応を高反
応性にて実施できることから、次いで行う重縮合反応の
反応性を向上でき、結果として高品質のポリマを工業的
に有利に得ることができるポリエステルまたはその共重
合体の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a process for producing a batch type or continuous type polyester or a copolymer thereof, and more particularly to a process for producing a dicarboxylic acid mainly composed of an aromatic dicarboxylic acid and a diol mainly composed of 1,4-butanediol. Since the esterification reaction can be carried out with high reactivity, the reactivity of the subsequent polycondensation reaction can be improved, and as a result, a high-quality polymer can be industrially advantageously obtained, thereby producing a polyester or a copolymer thereof. About.

【0002】[0002]

【従来の技術】芳香族ジカルボン酸と1,4−ブタンジ
オールからなるポリエステルおよびその共重合体は、機
械的性質、成形加工性、耐熱性、耐薬品性などの性能バ
ランスが優れることから、機械部品、自動車部品、電気
・電子部品等の成形樹脂として、さらに、繊維、フィル
ムをはじめ、一般消費財にまで至る幅広い用途に使用さ
れている。特に芳香族ジカルボン酸、1,4−ブタンジ
オールおよびポリアルキレンエーテルグリコールからな
るポリエーテルエステルブロック共重合体は、熱可塑性
エラストマーとしての優れた特性を有する。
2. Description of the Related Art A polyester comprising an aromatic dicarboxylic acid and 1,4-butanediol and a copolymer thereof are excellent in mechanical properties, moldability, heat resistance, chemical resistance and the like. As a molding resin for parts, automobile parts, electric and electronic parts, and the like, it is used in a wide range of applications from fibers and films to general consumer goods. In particular, a polyetherester block copolymer comprising an aromatic dicarboxylic acid, 1,4-butanediol and a polyalkylene ether glycol has excellent properties as a thermoplastic elastomer.

【0003】このポリエステルの製造法は、従来から、
ジカルボン酸とジオールを先ずエステル化反応せしめ、
次いで重縮合せしめる直接重合法とジカルボン酸ジアル
キルエステルとジオールを先ずエステル交換反応せし
め、次いで重縮合せしめるエステル交換重合法の二つに
大別されるが、後者は、ジカルボン酸ジアルキルエステ
ルの原料を製造する際に、ジカルボン酸のエステル交換
反応の工程を必要とするために原料製造コストが高くな
り、また、副生テトラヒドロフラン(以下THFと記
す)の分離回収が困難で有効利用しにくいことから、
1,4−ブタンジオール系ポリエステルの製造コスト面
で前者の直接重合法より不利であるといわれている。
[0003] The production method of this polyester has been
Dicarboxylic acid and diol are first subjected to an esterification reaction,
Next, it is roughly divided into two groups: direct polymerization method by polycondensation, transesterification reaction of dialkyl dicarboxylate and diol first, and then transesterification polymerization method by polycondensation.The latter manufactures raw materials of dialkyl dicarboxylate. In this case, a raw material production cost is increased due to the need for a step of transesterification of a dicarboxylic acid, and separation and recovery of by-product tetrahydrofuran (hereinafter, referred to as THF) is difficult, so that it is difficult to use it effectively.
It is said that the production cost of 1,4-butanediol-based polyester is disadvantageous compared to the former direct polymerization method.

【0004】一方、直接重合法のジカルボン酸原料は、
ジオール成分に易溶解性のジカルボン酸ジアルキルエス
テルに比べて、ジオール成分に難溶解性であり、さら
に、エステル化反応の生成水で有機チタン化合物が失活
し易いという特性がある。この特性の理由から、ジオー
ル成分との反応面で両者を比較した場合、ジカルボン酸
の固−液(スラリー)状態のエステル化反応は、ジカル
ボン酸ジアルキルエステルの液−液状態のエステル交換
反応に比べて、主反応の反応性が劣り、かつ、副反応を
抑制しにくいという問題があり、この改善が重要となっ
ている。従来知られている対策方法としては、ジカルボ
ン酸成分に対するジオール成分のモル比および触媒処
方、さらに温度,圧力等の反応条件面を特定した公知例
が多く、例えば、ポリブチレンテレフタレートを製造す
る際のテレフタル酸と1,4−ブタンジールのエステル
化反応に関しては、特開昭48−47594号公報,特
開昭49−57092号公報,特開昭51−37187
号公報が知られている。
On the other hand, the dicarboxylic acid raw material of the direct polymerization method is as follows:
Compared to dialkyl dicarboxylates, which are easily soluble in diol components, they are hardly soluble in diol components, and furthermore, have the property that the organic titanium compound is easily deactivated by water produced by the esterification reaction. Due to this characteristic, when the two are compared in terms of reaction with the diol component, the esterification reaction of the dicarboxylic acid in the solid-liquid (slurry) state is compared with the transesterification reaction of the dialkyl dicarboxylic acid in the liquid-liquid state. Therefore, there is a problem that the reactivity of the main reaction is inferior and it is difficult to suppress the side reaction, and this improvement is important. As a conventionally known countermeasure method, there are many known examples in which a molar ratio of a diol component to a dicarboxylic acid component and a catalyst formulation, and further, reaction conditions such as temperature and pressure are specified, for example, when producing polybutylene terephthalate. Regarding the esterification reaction of terephthalic acid with 1,4-butanedil, JP-A-48-47594, JP-A-49-57092, and JP-A-51-37187.
A gazette is known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、直接重
合法におけるエステル化反応性をさらに向上させるため
には、反応条件面の特定のみでは限度があり、従来の対
策方法では不十分であった。また、ポリエーテルエステ
ルブロック共重合体の製造においてはエラストマー性能
を高める上でより高重合度ポリマーとする必要があるこ
とから、エステル化反応性についても更に高めることが
求められていた。
However, in order to further improve the esterification reactivity in the direct polymerization method, there is a limit only in specifying the reaction conditions, and the conventional countermeasures have been insufficient. Further, in the production of the polyetherester block copolymer, it is necessary to use a polymer having a higher degree of polymerization in order to enhance the performance of the elastomer. Therefore, it is required to further increase the esterification reactivity.

【0006】そこで、本発明は、直接重合法のジカルボ
ン酸とジオールのエステル化反応性を良好に向上させる
ことで、高重合度で高品質のポリエステルまたはその共
重体が得られる製造方法を提供することを目的とする。
Accordingly, the present invention provides a process for producing a high-quality polyester or copolymer thereof having a high degree of polymerization by improving the esterification reactivity of a dicarboxylic acid and a diol by a direct polymerization method. The purpose is to:

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題を
達成するために、直接重合法のポリエステル製造におけ
るエステル化反応の反応条件面とは別に、反応装置面に
おいて、特にエステル化反応槽内の反応液の循環流方向
に関係する液面状態と反応性に注目して鋭意検討した結
果、反応槽内における攪拌翼の周速と反応液面状態を特
定条件下に設定することで、エステル化反応の反応性が
顕著に向上するとともに、その後の重縮合反応性も向上
することを見出し本発明に到達した。
Means for Solving the Problems In order to achieve the above object, the present inventors, in addition to the reaction conditions of the esterification reaction in the production of polyester by the direct polymerization method, have a reaction apparatus, particularly an esterification reaction tank. Focusing on the liquid surface state and reactivity related to the circulating flow direction of the reaction liquid in the reactor, as a result of careful investigation, by setting the peripheral speed of the stirring blade and the reaction liquid surface state in the reaction tank under specific conditions, The inventors have found that the reactivity of the esterification reaction is remarkably improved, and the reactivity of the subsequent polycondensation is also improved.

【0008】すなわち前記した本発明の目的は、芳香族
ジカルボン酸を主成分とするジカルボン酸と1,4−ブ
タンジオールを主成分とするジオールおよび全ポリマに
対し、0〜90重量%の数平均分子量600〜4000
のポリアルキレンエーテルグリコールとから有機チタン
化合物の存在下でエステル化反応し、次いで重縮合反応
してポリエステルまたはその共重合体を製造するに際
し、該エステル化反応を槽内攪拌翼の周速が0.5m/
sec以上、かつ、槽内反応液面の高低差が槽内直径の
1/4以下となる条件で実施することを特徴とするポリ
エステルまたはその共重合体の製造法、によって達成で
きる。
That is, the object of the present invention is to provide a dicarboxylic acid containing an aromatic dicarboxylic acid as a main component, a diol containing a 1,4-butanediol as a main component, and 0 to 90% by weight of the total polymer. Molecular weight 600-4000
When an esterification reaction is carried out from the polyalkylene ether glycol in the presence of an organic titanium compound and then a polycondensation reaction is carried out to produce a polyester or a copolymer thereof, the esterification reaction is carried out at a peripheral speed of a stirring blade in a tank of 0. .5m /
and a method for producing a polyester or a copolymer thereof, which is carried out under the condition that the height difference of the reaction liquid surface in the tank is not more than 1/4 of the inner diameter of the tank.

【0009】また、槽内中心部に槽外から回転ができる
撹拌軸を設置し、該軸に、下端部にボトムパドルを有す
る格子翼、または、上下に位置し面方向が互いに交差す
る複数の平板翼を有する撹拌翼を装着し、かつ、槽内側
壁面に下部から上部まで回転軸方向に沿う複数本の邪魔
板を間隔を置いて固定してなる攪拌反応槽を用いてエス
テル化反応を実施すること、エステル化反応を有機チタ
ン化合物と有機スズ化合物の存在下で、かつ、ジカルボ
ン酸に対するジオールのモル比範囲を1.2〜2.2で
行うこと、は本発明の好ましい態様である。
In addition, a stirring shaft that can be rotated from outside the tank is installed at the center of the tank, and the shaft has a lattice blade having a bottom paddle at the lower end, or a plurality of blades that are vertically positioned and whose plane directions intersect each other. Esterification reaction is carried out using a stirring reaction tank equipped with stirring blades having flat blades and fixed on the inner wall surface of the tank from the bottom to the top with multiple baffles along the rotation axis at intervals. It is a preferred embodiment of the present invention that the esterification reaction is performed in the presence of the organic titanium compound and the organic tin compound and the molar ratio of the diol to the dicarboxylic acid ranges from 1.2 to 2.2.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0011】まず、本発明のエステル反応に用いられる
攪拌反応槽について述べる。一般的に槽内の反応液面の
状態は、反応液の種類および仕込量によって異なるが、
槽内側壁面の形状および攪拌翼の形状,攪拌速度等の攪
拌条件によっても大きく影響される。攪拌による循環流
の方向が攪拌軸および側壁面に対し垂直方向(以下、横
方向と記す)に近い場合の槽内反応液面は、通常、攪拌
軸まわりの中心部が最も低く、側壁面まわりの外周部が
最も高くなり、V字状となる。この現象は、低速回転攪
拌よりも高速回転攪拌の方が顕著な傾向となり、高速回
転攪拌になるほど中心部と外周部の高低差が大きくな
る。一方、攪拌による循環流の方向が攪拌軸および側壁
面と同一方向(以下、縦方向と記す)に近い場合の槽内
反応液面は、攪拌軸まわりの中心部と側壁面まわりの外
周部の高低差が小さくなり、しかも、低速回転攪拌と高
速回転攪拌による影響を受けにくくなる。この攪拌の循
環流方向による反応液面状態とジカルボン酸とジオール
のエステル化反応性の関係を検討した結果、循環流横方
向の高低差の大きい反応液面に比べて、循環流縦方向の
高低差の小さい反応液面の方が、反応時間の短縮および
副反応の抑制に優れており、エステル化反応性を向上で
きることがわかった。この理由としては、高低差の小さ
い反応液面の場合は、高低差の大きい反応液面に比べ
て、(1)反応液面中心部に気相部(空間部)が無いの
で反応液相部全体の伝熱が良好になること、(2)槽内
底部と上部の循環が良好なので、均一な固−液スラリー
の反応系になること、(3)槽外へ速やかに留去するべ
き反応生成水が底部から上部に押し上げられて滞留しな
いこと等が考えられる。
First, the stirring reaction tank used in the ester reaction of the present invention will be described. In general, the state of the reaction liquid surface in the tank varies depending on the type of the reaction liquid and the amount charged,
It is also greatly affected by the stirring conditions such as the shape of the inner wall surface of the tank, the shape of the stirring blade, and the stirring speed. When the direction of the circulating flow by stirring is close to the direction perpendicular to the stirring shaft and the side wall surface (hereinafter referred to as the lateral direction), the reaction liquid level in the tank is usually the lowest at the center around the stirring axis and around the side wall surface. Has the highest height and is V-shaped. This phenomenon tends to be more pronounced in high-speed rotation stirring than in low-speed rotation stirring, and the higher the rotation speed, the greater the difference in height between the central portion and the outer peripheral portion. On the other hand, when the direction of the circulating flow due to the stirring is close to the same direction as the stirring shaft and the side wall surface (hereinafter referred to as the vertical direction), the reaction liquid surface in the tank has a central portion around the stirring axis and an outer peripheral portion around the side wall surface. The difference in height is reduced, and furthermore, it is hardly affected by the low-speed rotation stirring and the high-speed rotation stirring. As a result of examining the relationship between the surface state of the reaction liquid and the esterification reactivity of dicarboxylic acid and diol with the direction of the circulation flow of this stirring, the height of the circulation flow in the vertical direction was higher than that of the reaction liquid surface with a large difference in the horizontal direction. It was found that the reaction liquid surface with a smaller difference was excellent in shortening the reaction time and suppressing side reactions, and could improve the esterification reactivity. The reason for this is that, in the case of a reaction liquid surface having a small height difference, there is no (1) gas phase part (space part) in the center of the reaction liquid surface, so that the reaction liquid phase part (2) a uniform solid-liquid slurry reaction system due to good circulation between the bottom and top of the tank; (3) a reaction to be quickly distilled out of the tank It is conceivable that the generated water is pushed up from the bottom to the top and does not stay.

【0012】この攪拌による循環流を縦方向にし、高低
差の小さい反応液面を作り出す攪拌反応槽の構成として
は、槽内中心部に槽外から回転ができる撹拌軸を設置
し、該軸に、槽底部に下端部を近接させて配置されるボ
トムパドルを有し、該ボトムパドル部より上位部分にア
ーム部分と該アーム部分から直角方向に延びるストリッ
プからなる格子翼、または、上下に位置し面方向が互い
に交差する複数からなる平板翼を有する撹拌翼を装着
し、かつ、槽内側壁面に下部から上部まで回転軸方向に
沿う複数本の邪魔板(バッフル)を間隔を置いて固定し
てなる攪拌反応槽であることを特徴として挙げられる。
[0012] As a configuration of a stirring reaction tank for producing a reaction liquid surface with a small difference in elevation by making the circulating flow by stirring a vertical direction, a stirring shaft that can be rotated from outside the tank is installed in the center of the tank, and the shaft is attached to the shaft. A bottom paddle having a lower end disposed close to the bottom of the tank, a lattice wing comprising an arm portion and a strip extending perpendicularly from the arm portion above the bottom paddle portion, or located vertically. Attaching a stirring blade having a plurality of flat plate blades whose plane directions cross each other, and fixing a plurality of baffles (baffles) along the rotation axis direction from the lower part to the upper part on the inner wall surface of the tank at intervals This is characterized by being a stirred reaction tank.

【0013】本発明で使用する具体的な攪拌反応槽とし
て、撹拌軸にボトムパドルを有する格子翼を装着したも
のは、特開昭61−200842号公報に記載されてい
る住友重機械工業(株)社製の“マックスブレンド”が
好ましく、また、撹拌軸に上下に位置し面方向が互いに
交差する複数の平板翼を装着したものは、神鋼パンテツ
ク(株)社製の“フルゾーン”が好ましい。
As a specific stirring reaction tank used in the present invention, a stirring tank equipped with a lattice blade having a bottom paddle on a stirring shaft is described in Japanese Patent Application Laid-Open No. 61-200842, Sumitomo Heavy Industries, Ltd. The "Max Blend" manufactured by Shinko Pantec Co., Ltd. is preferable for the one equipped with a plurality of flat blades located vertically on the stirring shaft and intersecting the plane directions with each other.

【0014】図1は本発明に適用することができる上
記"マックスブレンド"に相当する攪拌反応槽の例であ
り、図1(a)は側断面説明図、(b)はA−A断面説
明図である。この攪拌反応槽1には外部から回転可能な
攪拌軸2を中心に有し、その攪拌軸2には、下端部にボ
トムパドル3aと格子翼3bを有する攪拌翼3が設けら
れ、槽内側壁面には、下部から上部まで回転軸方向に沿
う4本の邪魔板4が間隔を置いて固定されている。
FIG. 1 shows an example of a stirring reaction tank corresponding to the above-mentioned "Max Blend" applicable to the present invention. FIG. 1 (a) is a side sectional view, and FIG. 1 (b) is an AA sectional view. FIG. The stirring reaction tank 1 has a stirring shaft 2 rotatable from the outside as a center, and the stirring shaft 2 is provided with a stirring blade 3 having a bottom paddle 3a and a lattice blade 3b at a lower end portion. , Four baffle plates 4 along the rotation axis direction from the lower part to the upper part are fixed at intervals.

【0015】図2は本発明に適用することができる上
記"フルゾーン"に相当する攪拌反応槽の例であり、図2
(a)は側断面説明図、(b)はA−A断面説明図であ
る。この攪拌反応槽1には外部から回転可能な攪拌軸2
を中心に有し、その攪拌軸2には、上下に位置し面方向
が互いに交差する2枚の平板翼を有する撹拌翼3が装着
され、槽内側壁面には、下部から上部まで回転軸方向に
沿う4本の邪魔板4が間隔を置いて固定されている。
FIG. 2 shows an example of a stirred reaction tank corresponding to the above “full zone” applicable to the present invention.
(A) is a side sectional explanatory view, and (b) is an AA sectional explanatory view. This stirring reaction tank 1 has a stirring shaft 2 rotatable from outside.
The agitating shaft 2 is provided with a stirring blade 3 having two flat plate blades which are located vertically and intersect with each other in a plane direction. Are fixed at intervals.

【0016】また、図3および図4は本発明には不適な
従来の反応攪拌槽の例であり、図3はタービン型の攪拌
槽、図4はヘリカルリボン型の攪拌槽に相当するもので
ある。
FIGS. 3 and 4 show examples of conventional reaction stirring tanks which are not suitable for the present invention. FIG. 3 corresponds to a turbine type stirring tank, and FIG. 4 corresponds to a helical ribbon type stirring tank. is there.

【0017】次に、本発明のエステル化反応は、反応中
の槽内において、攪拌翼の周速が0.5m/sec以
上、好ましくは0.7m/sec以上で撹拌した際に、
槽内反応液面の高低差が槽内直径の1/4以下、好まし
くは1/5以下となる条件で実施する。これにより、反
応条件面のみの方法では成し得なかったポリエステルお
よびその共重合体製造におけるエステル化反応の反応性
を向上させることが可能となる。
Next, in the esterification reaction of the present invention, when stirring is performed at a peripheral speed of the stirring blade of 0.5 m / sec or more, preferably 0.7 m / sec or more in the tank during the reaction,
The reaction is performed under the condition that the height difference of the reaction liquid surface in the tank is 1/4 or less, preferably 1/5 or less of the diameter in the tank. This makes it possible to improve the reactivity of the esterification reaction in the production of polyesters and their copolymers, which could not be achieved by the method using only reaction conditions.

【0018】上記に示した攪拌翼の周速(m/sec)
は、攪拌翼外周(攪拌翼の外周直径×π(m))×攪拌
回転数(rpm))÷60の関係式から求めた値であ
る。攪拌翼の周速が0.5m/sec以下になると攪拌
効果が不十分になり、反応系内温度および固−液のスラ
リー性が不均一になるために反応性が低下する。攪拌翼
の周速の上限は、反応槽の容積および形状に関係する攪
拌翼の外周直径、および回転数によって決まるが、目安
として、攪拌翼にかかる抵抗負荷が大きくなって攪拌翼
そのものが変形したり、攪拌軸およびその周辺機器類に
異常発生等の問題が起きずに、安定した攪拌反応槽の運
転が維持できるレベルが最適である。また、上記に示し
た反応液面の高低差を求めるには、液面計あるいは槽内
側壁面と攪拌軸に予め付けた目盛りで確認する等の通常
の方法を用いる。反応液面の高低差が槽内反応液面の高
低差が槽内直径の1/4以上になるとエステル化反応性
が不安定で不良となり、本発明の目的を達成することが
できない。更に反応槽内の液面が高くなり過ぎたり、ま
た、槽内上部の内壁気相部に液飛散物の付着が多くな
り、それが熱劣化した着色異物が生じる。
The peripheral speed (m / sec) of the stirring blade described above
Is a value obtained from a relational expression of the outer circumference of the stirring blade (the outer diameter of the stirring blade × π (m)) × the rotation speed of the stirring blade (rpm) ÷ 60. If the peripheral speed of the stirring blade is 0.5 m / sec or less, the stirring effect becomes insufficient, and the temperature in the reaction system and the slurry property of solid-liquid become non-uniform, so that the reactivity decreases. The upper limit of the peripheral speed of the stirring blade is determined by the outer diameter of the stirring blade and the number of rotations, which are related to the volume and shape of the reaction tank, but as a guide, the resistance load applied to the stirring blade increases and the stirring blade itself deforms. The optimal level is such that stable operation of the stirring reaction tank can be maintained without causing problems such as occurrence of abnormalities in the stirring shaft and its peripheral devices. In order to determine the height difference between the reaction liquid surfaces described above, an ordinary method such as checking with a liquid level meter or a scale previously attached to the inner wall surface of the tank and the stirring shaft is used. If the height difference of the reaction liquid surface in the tank is 1/4 or more of the inner diameter of the tank, the esterification reactivity becomes unstable and poor, and the object of the present invention cannot be achieved. Further, the liquid level in the reaction tank becomes too high, and the adhered liquid splatters increase in the gas phase on the inner wall in the upper part of the tank, which results in the generation of colored foreign matters thermally degraded.

【0019】本発明の芳香族ジカルボン酸とは、テレフ
タル酸、イソフタル酸、フタル酸、ナフタレン−2,6
−ジカルボン酸、ナフタレン−2,7−ジカルボン酸、
ジフェニル−4,4’−ジカルボン酸、ジフェノキシエ
タンジカルボン酸、5−スルホイソフタル酸などが挙げ
られる。これらのうち、特にテレフタル酸、イソフタル
酸が好ましく使われ、テレフタル酸単一で、またはテレ
フタル酸とイソフタル酸を混合して、あるいはテレフタ
ル酸と他の芳香族ジカルボン酸1種または2種以上を混
合して用いられる。
The aromatic dicarboxylic acid of the present invention includes terephthalic acid, isophthalic acid, phthalic acid, naphthalene-2,6
-Dicarboxylic acid, naphthalene-2,7-dicarboxylic acid,
Diphenyl-4,4'-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5-sulfoisophthalic acid and the like. Of these, terephthalic acid and isophthalic acid are particularly preferably used. Terephthalic acid alone, terephthalic acid and isophthalic acid are mixed, or terephthalic acid and one or more aromatic dicarboxylic acids are mixed. Used as

【0020】また、他のジカルボン酸成分として脂肪族
ジカルボン酸を芳香族ジカルボン酸と併用することもで
きる。脂肪族ジカルボン酸とは、C2〜C36の脂肪族
ジカルボン酸であり、例えばシュウ酸、マロン酸、コハ
ク酸、グルタル酸、アジピン酸、アゼライン酸、セバシ
ン酸、ドデカンジカルボン酸、マレイン酸、フマル酸、
ダイマー酸、1,4−シクロヘキサンジカルボン酸等が
挙げられ、特にドデカンジカルボン酸、ダイマー酸が好
ましく使われる。れらは単一で、または他の脂肪族ジカ
ルボン酸1種以上を混合し、芳香族ジカルボン酸と併用
して使われる。この際、脂肪族ジカルボン酸の添加量
は、全酸分に対して上限40モル%まで添加できるが、
40モル%以上の添加量になるとポリマ融点の低下幅が
大きくなり、成形性とか耐熱性等の実用性能面が劣るの
で好ましくない。
As another dicarboxylic acid component, an aliphatic dicarboxylic acid can be used in combination with an aromatic dicarboxylic acid. Aliphatic dicarboxylic acids are C2-C36 aliphatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, maleic acid, fumaric acid,
Examples thereof include dimer acid and 1,4-cyclohexanedicarboxylic acid, and in particular, dodecanedicarboxylic acid and dimer acid are preferably used. These are used singly or as a mixture of one or more other aliphatic dicarboxylic acids and used in combination with an aromatic dicarboxylic acid. At this time, the amount of the aliphatic dicarboxylic acid added can be up to 40 mol% based on the total acid content.
An addition amount of 40 mol% or more is not preferred because the range of decrease in polymer melting point becomes large and practical performances such as moldability and heat resistance deteriorate.

【0021】また、ジオール成分は1,4−ブタンジオ
ールを主に使用するが、他のジオールとしては、例え
ば、エチレングリコール、プロピレングリコール、ペン
タメチレングリコール、1,6−ヘキサンジオール、ネ
オペンチルグリコールなどの脂肪族ジオール、1,4−
シクロヘキサンジメタノール、トリシクロデカンジメチ
ロールなどの脂環式ジオール等が挙げられ、特にプロピ
レングリコール、1,4−シクロヘキサンジメタノール
が好ましく使われる。これらは1,4−ブタンジオール
と1種以上を混合し、全ジオール成分の30モル%以下
で用いることもできる。
As the diol component, 1,4-butanediol is mainly used, and other diols include, for example, ethylene glycol, propylene glycol, pentamethylene glycol, 1,6-hexanediol, neopentyl glycol and the like. Aliphatic diols, 1,4-
Alicyclic diols such as cyclohexane dimethanol and tricyclodecane dimethylol are exemplified, and propylene glycol and 1,4-cyclohexane dimethanol are particularly preferably used. These can be used in a mixture of 1,4-butanediol and one or more kinds, and can be used in an amount of 30 mol% or less of all diol components.

【0022】また、ポリエーテルエステルブロック共重
合体を製造するに際しては、数平均分子量600〜40
00のポリアルキレンエーテルグリコールを用いる。ポ
リアルキレンエーテルグリコールとは、脂肪族ポリエー
テルであり、例えば、ポリ(エチレンオキシド)グリコ
ール、ポリ(プロピレンオキシド)グリコール、ポリ
(テトラメチレンオキシド)グリコール、ポリ(ヘキサ
メチレンオキシド)グリコール、エチレンオキシドとプ
ロピレンオキシドの共重合体、ポリ(プロピレンオキシ
ド)グリコールのエチレンオキシド付加重合体、エチレ
ンオキシドとテトラヒドロフランの共重合体などが挙げ
られ、特にポリエステルエーテルブロック共重合体の弾
性特性からポリ(テトラメチレンオキシド)グリコー
ル、ポリ(プロピレンオキシド)グリコールのエチレン
オキシド付加物が好ましい。これらは単一で、または他
の脂肪族ポリエーテル1種以上を混合して用いることが
可能である。これらの分子量は、600〜4000の範
囲であり、好ましくは800〜3000の範囲である。
600以下だと弾性特性等のエラストマとしての特性が
不十分になり、また、4000以上になるとポリマの相
溶性が悪化して高性能のエラストマが得られない。これ
らのポリアルキレンエーテルグリコールの添加量は、全
ポリマに対して上限90重量%であり、好ましくは、樹
脂としての物性および成形性等のバランスの点から、上
限85重量%である。90重量%を越えると、エラスト
マ樹脂としての耐久性および耐熱性等の物性が低下し、
成形性も劣るようになる。
In producing the polyetherester block copolymer, the number average molecular weight is from 600 to 40.
A polyalkylene ether glycol of 00 is used. The polyalkylene ether glycol is an aliphatic polyether, for example, poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, ethylene oxide and propylene oxide. Copolymers, ethylene oxide addition polymers of poly (propylene oxide) glycol, copolymers of ethylene oxide and tetrahydrofuran, and the like. In particular, poly (tetramethylene oxide) glycol, poly (propylene) Ethylene oxide adducts of (oxide) glycols are preferred. These can be used alone or as a mixture of one or more other aliphatic polyethers. Their molecular weight ranges from 600 to 4000, preferably from 800 to 3000.
If it is less than 600, the properties of the elastomer such as elasticity will be insufficient, and if it is more than 4000, the compatibility of the polymer will deteriorate and a high-performance elastomer cannot be obtained. The addition amount of these polyalkylene ether glycols is an upper limit of 90% by weight based on the whole polymer, and is preferably an upper limit of 85% by weight from the viewpoint of the balance between physical properties as a resin and moldability. If it exceeds 90% by weight, physical properties such as durability and heat resistance as an elastomer resin are reduced,
Moldability also becomes poor.

【0023】このポリアルキレンエーテルグリコールは
その全量または一部をエステル化反応開始前または途中
に添加してもよく、また全量もしくはエステル化反応で
添加した以外の残部をエステル化反応が実質的に終了し
た後に添加してもよい。
The polyalkylene ether glycol may be added in whole or in part before or during the start of the esterification reaction, and the whole or the remainder other than the one added in the esterification reaction is substantially terminated. You may add after doing.

【0024】本発明のエステル化反応時に存在させる有
機チタン化合物の例としては、 (R1O)nTi(OR2)4-n (ただし、R1,R2は炭素数1〜10の脂肪族、脂環族
または芳香族の炭化水素基、nは0〜4の数字(小数を
含む)である)で表されるチタン酸エステルおよび縮合
物である。
Examples of the organotitanium compound to be present at the time of the esterification reaction of the present invention include (R 1 O) nTi (OR 2 ) 4-n (where R 1 and R 2 are an aliphatic group having 1 to 10 carbon atoms). , An alicyclic or aromatic hydrocarbon group, and n is a titanate ester and a condensate represented by a number from 0 to 4 (including a decimal number).

【0025】具体的には、チタン酸のメチルエステル、
テトラ−n−プロピルエステル、テトラ−n−ブチルエス
テル、テトライソプロピルエステル、テトライソブチル
エステル、テトラ-tert−ブチルエステル、シクロヘキ
シルエステル、フェニルエステル、ベンジルエステル、
トリルエステル、あるいはこれらの混合エステルなどが
ある。これらのうちでもテトラ−n−プロピルエステ
ル、テトラ−n−ブチルエステル、テトライソプロピル
エステルが好ましく、特にテトラ−n−ブチルエステル
が好ましく用いられる。これらの有機チタン化合物は、
一種でもよく、二種以上を併用することもできる。
Specifically, methyl ester of titanic acid,
Tetra-n-propyl ester, tetra-n-butyl ester, tetraisopropyl ester, tetraisobutyl ester, tetra-tert-butyl ester, cyclohexyl ester, phenyl ester, benzyl ester,
There are a tolyl ester and a mixed ester thereof. Among these, tetra-n-propyl ester, tetra-n-butyl ester and tetraisopropyl ester are preferred, and tetra-n-butyl ester is particularly preferred. These organic titanium compounds are
One type may be used, or two or more types may be used in combination.

【0026】この有機チタン化合物の添加量は、通常、
生成ポリマ量に対して0.005〜0.3重量%程度で
ある。
The amount of the organic titanium compound added is usually
It is about 0.005 to 0.3% by weight based on the amount of the produced polymer.

【0027】有機チタン化合物の添加時期としては、エ
ステル化反応前に一括または分割添加してもよく、必要
に応じ重縮合反応触媒として、エステル化反応終了以
降、重縮合反応前に分割添加することもできる。
The organic titanium compound may be added at once or in portions before the esterification reaction. If necessary, a catalyst for the polycondensation reaction may be added after the end of the esterification reaction and before the polycondensation reaction. Can also.

【0028】なお、本発明において、エステル化反応性
を更に高め、かつTHFの副生を一層抑制するために、
モノアルキルスズ化合物,モノアリールスズ化合物,ジ
アルキルスズ化合物,ジアリールスズ化合物,トリアル
キルスズ化合物,トリアリールスズ化合物,テトラアル
キルスズ化合物などの有機スズ化合物を前記有機チタン
化合物と併用添加することもできる。これらのうちで特
にモノアルキルスズ化合物が好ましい。これら有機スズ
化合物の添加量は、通常、生成ポリマ量に対して0.0
05〜0.1重量%程度である。
In the present invention, in order to further increase the esterification reactivity and further suppress the by-product of THF,
Organotin compounds such as monoalkyltin compounds, monoaryltin compounds, dialkyltin compounds, diaryltin compounds, trialkyltin compounds, triaryltin compounds, and tetraalkyltin compounds can also be added in combination with the organic titanium compounds. Of these, monoalkyltin compounds are particularly preferred. The addition amount of these organotin compounds is usually 0.0
It is about 0.5 to 0.1% by weight.

【0029】本発明におけるエステル化反応および重縮
合反応は、回分式あるいは連続式のいずれで行ってもよ
い。連続式の場合は、エステル化反応が実質的に完了す
るまでの各段階の一部または全部に本発明の反応槽を適
用する。
The esterification reaction and the polycondensation reaction in the present invention may be performed in either a batch system or a continuous system. In the case of a continuous system, the reaction vessel of the present invention is applied to part or all of the steps until the esterification reaction is substantially completed.

【0030】またエステル化反応において1,4−ブタ
ンジオールを主成分とするジオールは、全ジカルボン酸
より過剰に添加するが、エステル化反応を良好に進める
ために、全ジカルボン酸に対するモル比範囲で1.2〜
2.2が好ましく、またポリエーテルエステルブロック
共重合体の製造においては1.4〜2.2が好ましい。
特に1.6〜1.9が好ましい。この1,4−ブタンジ
オールを主成分とするグリコールはエステル化反応の開
始時、あるいは連続法においてはエステル化第1槽に一
括して前述のモル比で添加することもでき、また一部の
グリコールを反応開始時あるいはエステル化第1槽に添
加し残部をエステル化反応の途中で(連続法においては
エステル化第2槽以降の反応槽に)添加することもでき
る。
In the esterification reaction, a diol containing 1,4-butanediol as a main component is added in excess of all dicarboxylic acids. 1.2 ~
2.2 is preferable, and in the production of the polyetherester block copolymer, 1.4 to 2.2 is preferable.
In particular, 1.6 to 1.9 is preferable. The glycol containing 1,4-butanediol as a main component can be added at the start of the esterification reaction or in the esterification first tank at a time in the continuous method at the above-mentioned molar ratio. Glycol can be added at the start of the reaction or in the first esterification tank, and the remainder can be added during the esterification reaction (in the continuous method, to the reaction tanks after the second esterification tank).

【0031】さらに、エステル化反応温度は190〜2
40℃が好ましく、より好ましくは195〜235℃で
ある。反応圧力は常圧または減圧で行うが、減圧度レベ
ルとして、940×102〜400×102Pa、好まし
くは870×102〜470×102Paの条件が適用さ
れる。
Further, the esterification reaction temperature is 190-2.
40 ° C is preferable, and more preferably 195 to 235 ° C. The reaction is carried out at normal pressure or reduced pressure, and a pressure reduction level of 940 × 10 2 to 400 × 10 2 Pa, preferably 870 × 10 2 to 470 × 10 2 Pa is applied.

【0032】[0032]

【実施例】以下に実施例によって本発明を具体的に説明
する。
The present invention will be specifically described below with reference to examples.

【0033】なお本例中、部とは重量部を意味し、また
エステル化反応生成物の反応率および溶液ヘイズ、副生
テトラヒドロフラン(THF)量、さらに重縮合反応で得
られた最終ポリマの溶融粘度(MFR)、溶液ヘイズ、カ
ルボキシル末端基量および融点は次の方法にて求めた。 [エステル化反応生成物の反応率] 反応率(%)=[(ケン化価−酸価)/ケン化価]×1
00 ケン化価:生成物をアルカリ加水分解し、酸で逆滴定し
て得た値。
In this example, parts means parts by weight, the conversion of the esterification reaction product, the solution haze, the amount of by-product tetrahydrofuran (THF), and the melting of the final polymer obtained by the polycondensation reaction. The viscosity (MFR), solution haze, carboxyl end group content and melting point were determined by the following methods. [Reaction rate of esterification reaction product] Reaction rate (%) = [(saponification value−acid value) / saponification value] × 1
00 Saponification value: value obtained by subjecting the product to alkaline hydrolysis and back titrating with an acid.

【0034】酸価 :生成物をO−クレゾール/クロ
ロホルム溶媒に溶解し、エタノール性水酸化カリウムで
滴定して得た値。 [エステル化反応の副生THF量]エステル化反応留出
液のガスクロマトグラフ定量分析値。 [溶液ヘイズ]試料5.4gをフェノール/四塩化エタ
ン(60/40wt%)の混合溶媒40mlに加熱溶解
し、この溶液を20mmセルに入れて直読ヘイズコンピ
ューター(スガ試験機HGM-30DP)で測定した値。 [ポリマの溶融粘度(MFR)]ASTM D1238に
従い、荷重2160gで所定温度にて測定した。 [ポリマのカルボキシル末端基量]サンプル1.5gを
O−クレゾール・クロロホルム混合溶媒50mlに加熱
溶解し、N/25エタノール性水酸化ナトリウム溶液で
滴定した。 [ポリマの融点]差動走査熱量計(Du Pont社製
DSC−910型)を使い、窒素ガス雰囲気下、10℃
/分の昇温速度で加熱したときの融解ピークの頂上温度
を測定した。 <実施例1>テレフタル酸149部、1,4−ブタンジ
オール145部(テレフタル酸に対し1.8モル比)お
よび数平均分子量約1400のポリテトラメチレンオキ
シドグリコール110部を、テトラブチルチタネート
0.12部、ブチルヒドロキシスズオキサイド0.09
部とともに、表1に記載した住友重機械工業社製の”マ
ックスブレンド”撹拌翼の反応槽に仕込み、160から
230℃まで徐々に昇温しながら反応生成留出液を精留
塔を通じて系外に留去させてエステル化反応を行なっ
た。エステル化反応を開始してから反応が終了するまで
に要した時間、エステル化反応生成物の反応率および溶
液ヘイズ、さらに、留出液中の副生THF量は表1の通
りであった。
Acid value: The value obtained by dissolving the product in an O-cresol / chloroform solvent and titrating with ethanolic potassium hydroxide. [Amount of THF by-produced in the esterification reaction] Gas chromatograph quantitative analysis value of the distillate of the esterification reaction. [Solution haze] 5.4 g of a sample was dissolved by heating in 40 ml of a mixed solvent of phenol / ethane tetrachloride (60/40 wt%), and this solution was placed in a 20 mm cell and measured directly by a haze computer (Suga Test Machine HGM-30DP). Value. [Polymer Melt Viscosity (MFR)] Measured at a predetermined temperature under a load of 2160 g in accordance with ASTM D1238. [Amount of carboxyl terminal group of polymer] A sample (1.5 g) was dissolved by heating in a mixed solvent of O-cresol / chloroform (50 ml) and titrated with an N / 25 ethanolic sodium hydroxide solution. [Polymer Melting Point] Using a differential scanning calorimeter (DSC-910, manufactured by Du Pont) under a nitrogen gas atmosphere at 10 ° C.
The top temperature of the melting peak when heated at a heating rate of / min was measured. <Example 1> 149 parts of terephthalic acid, 145 parts of 1,4-butanediol (1.8 mole ratio to terephthalic acid) and 110 parts of polytetramethylene oxide glycol having a number average molecular weight of about 1400 were added to 0.1 parts of tetrabutyl titanate. 12 parts, butylhydroxytin oxide 0.09
Along with the parts, the mixture was charged into a reaction tank of a “Max Blend” stirring blade manufactured by Sumitomo Heavy Industries, Ltd. described in Table 1, and while the temperature was gradually raised from 160 to 230 ° C., the reaction product distillate was passed through a rectification column to outside the system. To carry out an esterification reaction. Table 1 shows the time required from the start of the esterification reaction to the end of the reaction, the conversion of the esterification reaction product, the solution haze, and the amount of by-product THF in the distillate.

【0035】次に、エステル化反応生成物を重縮合反応
槽に移行し、テトラブチルチタネート0.66部およ
び”イルガノックス”1098(チバガイギー社製ヒン
ダ−ドフェノ−ル系酸化防止剤)0.36部を添加した
後、245℃まで昇温しながら、60分かけて徐々に系
内の圧力を常圧から66.5Pa以下の減圧とした。昇
温および減圧を開始してから4時間重縮合反応を行った
後、得られた溶融ポリマをストランド状で水冷吐出し、
カッターにてカッティング後、ペレットとした。得られ
たポリマペレットの品質評価結果を表1に示した。 <実施例2>エステル化反応を表1に記載した神鋼パン
テック社製の”フルゾーン”撹拌翼の反応槽で行った以
外は実施例1と同条件にて重縮合反応まで実施し、表1
に示した結果を得た。 <比較例1、2>エステル化反応を表1に記載したヘリ
カルリボン型あるいはタービン型の撹拌翼を備えた反応
槽で行った以外は実施例1と同条件にて重縮合反応まで
実施し、表1に示した結果を得た。 <比較例3>実施例1において、住友重機械工業社製
の”マックスブレンド”撹拌翼の反応槽の撹拌速度を5
8rpmに下げて撹拌周速を0.3m/secの条件で
エステル化反応(液面高低差:約1cm)を行った以外
は実施例1と同条件で実施し、表1の結果を得た。 <実施例3>テレフタル酸90部、1,4−ブタンジオ
ール93部(テレフタル酸に対し1.9モル比)をテト
ラブチルチタネート0.06部とともに均一に調整した
スラリー状液を補充しながら、表2記載の住友重機械工
業社製の”マックスブレンド”撹拌翼を備えた第1エス
テル化反応槽(槽内温度210℃,槽内減圧度800×
102Paに保持)へ連続的に供給し、反応生成留出液
を精留塔を通じて系外に留去させて反応を進めた。次
に、第1エステル化反応槽の生成物を抜き出し、第1エ
ステル化反応槽と同一条件の”マックスブレンド”撹拌
翼を備えた第2エステル化反応槽(槽内温度225℃,
槽内減圧度600×102Paに保持)へ連続的に供給
し、反応生成留出液を精留塔を通じて系外に留去させて
反応を進めた。第1エステル化反応槽および第2エステ
ル化反応槽の槽内液量を2.5L、槽内液滞留を2時間
30分になるように、上記スラリー原料の供給速度およ
びエステル化生成物の抜き出し速度を調節しつつ、上記
のスラリー原料を供給開始してから18時間後に連続エ
ステル化反応工程が定常状態になった。第2エステル化
反応槽の生成物を連続的に抜き出して次の予備重縮合反
応槽へ供給するとともに、一部をサンプリングして冷却
固化後に細粒状に砕き、連続エステル化反応終了の生成
物サンプルとした。このサンプルの反応率および溶液ヘ
イズの測定結果、および留出液中の副生THF量を表2
に示す。
Next, the esterification reaction product was transferred to a polycondensation reaction tank, and 0.66 parts of tetrabutyl titanate and 0.36 of "Irganox" 1098 (a hindered antioxidant manufactured by Ciba Geigy) were added. After the addition, the pressure in the system was gradually reduced from normal pressure to 66.5 Pa or less over 60 minutes while increasing the temperature to 245 ° C. After performing the polycondensation reaction for 4 hours after starting the temperature rise and pressure reduction, the resulting molten polymer is discharged in a strand form with water cooling,
After cutting with a cutter, pellets were obtained. Table 1 shows the quality evaluation results of the obtained polymer pellets. <Example 2> The polycondensation reaction was carried out under the same conditions as in Example 1 except that the esterification reaction was carried out in a reaction tank having a "full zone" stirring blade manufactured by Shinko Pantech described in Table 1.
Were obtained. <Comparative Examples 1 and 2> A polycondensation reaction was carried out under the same conditions as in Example 1 except that the esterification reaction was carried out in a reactor equipped with a helical ribbon type or turbine type stirring blade described in Table 1. The results shown in Table 1 were obtained. <Comparative Example 3> In Example 1, the stirring speed of the reaction tank of the “Max Blend” stirring blade manufactured by Sumitomo Heavy Industries, Ltd. was set to 5
Except that the esterification reaction (difference in liquid level: about 1 cm) was carried out under the condition that the stirring peripheral speed was reduced to 8 rpm and the stirring peripheral speed was 0.3 m / sec, the reaction was carried out under the same conditions as in Example 1, and the results shown in Table 1 were obtained. . Example 3 90 parts of terephthalic acid and 93 parts of 1,4-butanediol (1.9 mol ratio to terephthalic acid) were added together with 0.06 part of tetrabutyl titanate while replenishing a slurry-like liquid, A first esterification reaction tank equipped with a “Max Blend” stirring blade manufactured by Sumitomo Heavy Industries, Ltd. described in Table 2 (tank temperature 210 ° C., tank depressurization 800 ×
(Maintained at 10 2 Pa), and the reaction product distillate was distilled out of the system through a rectification column to proceed the reaction. Next, the product of the first esterification reaction tank was withdrawn, and a second esterification reaction tank equipped with a “Max Blend” stirring blade under the same conditions as the first esterification reaction tank (tank temperature: 225 ° C.,
The pressure in the tank was maintained at 600 × 10 2 Pa), and the reaction distillate was distilled out of the system through a rectification column to proceed the reaction. The supply rate of the slurry raw material and the extraction of the esterification product so that the liquid volume in the first esterification reaction tank and the second esterification reaction tank is 2.5 L and the liquid retention in the tank is 2 hours 30 minutes. The continuous esterification reaction step was in a steady state 18 hours after the supply of the slurry raw material was started while controlling the speed. The product in the second esterification reaction tank is continuously extracted and supplied to the next preliminary polycondensation reaction tank, and a part is sampled, cooled and solidified, and then crushed into fine particles. And Table 2 shows the measurement results of the reaction rate and solution haze of this sample, and the amount of by-produced THF in the distillate.
Shown in

【0036】次に、数平均分子量約2000のポリテト
ラメチレンオキシドグリコール189部、テトラブチル
チタネート0.9部および”イルガノックス”1098
(チバガイギー社製ヒンダ−ドフェノ−ル系酸化防止
剤)0.45部の混合液を補充しながら、第2エステル
化反応槽から抜き出した生成物とともに、槽内温度24
0℃,槽内減圧度20×102Paに保持した予備重縮
合反応槽へ連続的に供給して反応を進めた。さらに、予
備重縮合反応槽から抜き出したプレポリマを槽内温度2
50℃,槽内減圧度2×102Pa以下に保持した最終
重縮合反応槽へ連続的に供給して反応を進めた後、最終
重縮合反応槽からストランド状で連続的に抜き出した溶
融ポリマを水冷固化し、カッターにてカッティング後、
ペレットとした。予備重縮合反応槽および最終重縮合反
応槽の槽内液量を5L、槽内液滞留を2時間になるよう
に、エステル化反応生成物とポリテトラメチレンオキシ
ドグリコール原料の供給速度および溶融ポリマの抜き出
し速度を調節しつつ、第2エステル化反応槽の生成物を
予備重縮合反応槽に供給開始してから16時間後に連続
重縮合反応の全工程が定常状態に達し、表2に示した品
質の最終ポリマを得た。 <比較例4>エステル化反応を表2に記載したヘリカル
リボン型の撹拌翼を備えた第1および第2反応槽で行っ
た以外は実施例3と同条件にて、エステル化反応から最
終重縮合反応までの連続反応全行程が定常状態になるま
で実施し、表2に示した結果を得た。 <実施例4>テレフタル酸148部、1,4−ブタンジ
オール136部(テレフタル酸に対し1.7モル比)
を、テトラブチルチタネート0.1部、ブチルヒドロキ
シスズオキサイド0.08部とともに均一に調製したス
ラリー状液、および数平均分子量約1000のポリテト
ラメチレンオキシドグリコール60部の混合液を補充調
製しながら、表2記載の住友重機械工業社製の”マック
スブレンド”撹拌翼を備えた第1エステル化反応槽(槽
内温度210℃,槽内減圧度800×102Paに保
持)へ連続的に供給し、反応生成留出液を精留塔を通じ
て系外に留去させて反応を進めた。次に、第1エステル
化反応槽の生成物を抜き出し、第1エステル化反応槽と
同一条件の”マックスブレンド”撹拌翼を備えた第2エ
ステル化反応槽(槽内温度225℃,槽内減圧度600
×102Paに保持)へ連続的に供給し、反応生成留出
液を精留塔を通じて系外に留去させて反応を進めた。第
1エステル化反応槽および第2エステル化反応槽の槽内
液量を4L、槽内液滞留を2時間になるように、上記ス
ラリー原料の供給速度およびエステル化生成物の抜き出
し速度を調節しつつ、上記のスラリー原料を供給開始し
てから18時間後に連続エステル化反応工程が定常状態
になった。第2エステル化反応槽の生成物を連続的に抜
き出して次の予備重縮合反応槽に供給するとともに、一
部をサンプリングして冷却固化後に細粒状に砕き、連続
エステル化反応終了の生成物サンプルとした。このサン
プルの反応率および溶液ヘイズの測定結果、および留出
液中の副生THF量を表2に示す。
Next, 189 parts of polytetramethylene oxide glycol having a number average molecular weight of about 2,000, 0.9 parts of tetrabutyl titanate and "Irganox" 1098
(Hindered phenol-based antioxidant manufactured by Ciba Geigy) While replenishing 0.45 parts of the mixed solution, together with the product extracted from the second esterification reaction tank, the inside temperature of the tank was set to 24.
The reaction was proceeded by continuously supplying to a preliminary polycondensation reaction tank maintained at 0 ° C. and a pressure reduction degree of 20 × 10 2 Pa in the tank. Further, the prepolymer withdrawn from the pre-polycondensation reaction tank was cooled to a temperature in the tank of 2%.
The molten polymer was continuously supplied to a final polycondensation reaction tank maintained at 50 ° C. and a degree of pressure reduction of 2 × 10 2 Pa or less in the tank to advance the reaction, and then continuously withdrawn in a strand form from the final polycondensation reaction tank. After cooling with water and cutting with a cutter,
Pellets were used. The supply rates of the esterification reaction product and the polytetramethylene oxide glycol raw material and the molten polymer were adjusted so that the liquid volume in the pre-polycondensation reaction tank and the final polycondensation reaction tank was 5 L, and the liquid retention in the tank was 2 hours. 16 hours after the start of the supply of the product of the second esterification reaction tank to the preliminary polycondensation reaction tank while controlling the extraction speed, all the steps of the continuous polycondensation reaction reached a steady state, and the quality shown in Table 2 was obtained. The final polymer was obtained. <Comparative Example 4> The esterification reaction to the final weight were performed under the same conditions as in Example 3 except that the esterification reaction was performed in the first and second reaction tanks provided with the helical ribbon type stirring blades described in Table 2. The procedure was continued until all the steps of the continuous reaction up to the condensation reaction reached a steady state, and the results shown in Table 2 were obtained. <Example 4> 148 parts of terephthalic acid, 136 parts of 1,4-butanediol (1.7 mole ratio to terephthalic acid)
While replenishing a mixture of a slurry liquid uniformly prepared with 0.1 part of tetrabutyl titanate and 0.08 part of butylhydroxytin oxide, and 60 parts of polytetramethylene oxide glycol having a number average molecular weight of about 1000, Continuous supply to the first esterification reaction tank equipped with a “Max Blend” stirring blade manufactured by Sumitomo Heavy Industries, Ltd. (holding at a tank temperature of 210 ° C. and a decompression degree of 800 × 10 2 Pa in the tank) shown in Table 2. Then, the reaction product distillate was distilled out of the system through a rectification column to proceed the reaction. Next, the product of the first esterification reaction tank was extracted, and a second esterification reaction tank equipped with a “Max Blend” stirring blade under the same conditions as the first esterification reaction tank (tank temperature: 225 ° C., depressurization in the tank) Degree 600
(Maintained at × 10 2 Pa), and the reaction product distillate was distilled out of the system through a rectification column to proceed the reaction. The supply rate of the slurry raw material and the extraction rate of the esterification product were adjusted so that the amount of the liquid in the first esterification reaction tank and the second esterification reaction tank was 4 L, and the liquid stayed in the tank was 2 hours. Meanwhile, the continuous esterification reaction step was in a steady state 18 hours after the supply of the slurry raw material was started. The product in the second esterification reaction tank is continuously withdrawn and supplied to the next pre-polycondensation reaction tank, and a part of the sample is sampled, cooled and solidified, and crushed into fine particles. And Table 2 shows the measurement results of the reaction rate and solution haze of this sample, and the amount of by-product THF in the distillate.

【0037】次に、テトラブチルチタネート0.43
部、”イルガノックス”1098(チバガイギー社製ヒ
ンダ−ドフェノ−ル系酸化防止剤)0.3部および1,
4−ブタンジオール8部の混合液を補充しながら、第2
エステル化反応槽から抜き出した生成物とともに、槽内
温度240℃,槽内減圧度20×102Paに保持した
予備重縮合反応槽へ連続的に供給して反応を進めた。さ
らに、予備重縮合反応槽から抜き出したプレポリマを、
槽内温度250℃,槽内減圧度2×102Pa以下に保
持した最終重縮合反応槽へ連続的に供給して反応を進め
た後、最終重縮合反応槽からストランド状で連続的に抜
き出した溶融ポリマを水冷固化し、カッターにてカッテ
ィング後、ペレットとした。予備重縮合反応槽および最
終重縮合反応槽の槽内液量を4L、槽内液滞留を2時間
になるように、エステル化反応生成物の供給速度および
溶融ポリマの抜き出し速度を調節しつつ、第2エステル
化反応槽の生成物を予備重縮合反応槽に供給開始してか
ら16時間後に連続重縮合反応の全工程が定常状態に達
し、表2に示した品質のポリマを得た。 <実施例5>エステル化反応を表2に記載した神鋼パン
テック社製の”フルゾーン”撹拌翼を備えた第1反応槽
および第2反応槽で行った以外は実施例4の条件に準じ
て、エステル化反応から最終重縮合反応までの連続反応
全工程が定常状態になるまで実施し、表2に示した結果
を得た。 <比較例5>実施例5において、神鋼パンテック社製
の”フルゾーン”撹拌翼を備えた第1エステル化反応槽
および第2エステル化反応槽の撹拌速度を75rpmに
下げて撹拌周速を0.4m/sec(液面高低差:約
1.5cm)の条件で反応を行った以外は実施例5と同
条件で、エステル化反応から最終重縮合反応までの連続
反応全工程が定常状態になるまで実施し、表2に示した
結果を得た。 <比較例6>エステル化反応を表2に記載したタービン
型の撹拌翼を備えた第1反応槽および第2反応槽で行っ
た以外は実施例4と同条件にて、エステル化反応から最
終重縮合反応までの連続反応全工程が定常状態になるま
で実施し、表2に示した結果を得た。
Next, tetrabutyl titanate 0.43
Parts, "Irganox" 1098 (Hindered phenol-based antioxidant manufactured by Ciba Geigy) 0.3 part and 1,
While replenishing a mixture of 8 parts of 4-butanediol,
Along with the product extracted from the esterification reaction tank, the reaction was continuously fed to a pre-polycondensation reaction tank maintained at a tank temperature of 240 ° C. and a reduced pressure of 20 × 10 2 Pa in the tank. Furthermore, the prepolymer extracted from the preliminary polycondensation reaction tank is
The reaction is advanced by continuously supplying to the final polycondensation reaction tank maintained at a temperature in the tank of 250 ° C. and a degree of vacuum of 2 × 10 2 Pa or less, and then continuously withdrawn in a strand form from the final polycondensation reaction tank. The melted polymer was solidified by water cooling, cut with a cutter, and then pelletized. While adjusting the supply rate of the esterification reaction product and the withdrawal rate of the molten polymer such that the volume of the liquid in the pre-polycondensation reaction tank and the final polycondensation reaction tank is 4 L and the liquid retention in the tank is 2 hours, Sixteen hours after the start of the supply of the product of the second esterification reaction tank to the preliminary polycondensation reaction tank, all the steps of the continuous polycondensation reaction reached a steady state, and a polymer having the quality shown in Table 2 was obtained. <Example 5> According to the conditions of Example 4, except that the esterification reaction was performed in a first reaction tank and a second reaction tank equipped with a "full zone" stirring blade manufactured by Shinko Pantech listed in Table 2. The reaction was performed until all the continuous reaction steps from the esterification reaction to the final polycondensation reaction reached a steady state, and the results shown in Table 2 were obtained. <Comparative Example 5> In Example 5, the stirring speed of the first esterification reaction tank and the second esterification reaction tank equipped with a “full zone” stirring blade manufactured by Shinko Pantech Co., Ltd. was reduced to 75 rpm, and the stirring peripheral speed was set to 0. All the continuous reaction steps from the esterification reaction to the final polycondensation reaction were in a steady state under the same conditions as in Example 5 except that the reaction was performed under the condition of 0.4 m / sec (difference in liquid level: about 1.5 cm). The operation was performed until the results were obtained, and the results shown in Table 2 were obtained. <Comparative Example 6> The esterification reaction was carried out under the same conditions as in Example 4 except that the esterification reaction was carried out in the first reaction tank and the second reaction tank equipped with the turbine type stirring blades described in Table 2. The procedure was continued until all the steps of the continuous reaction up to the polycondensation reaction reached a steady state, and the results shown in Table 2 were obtained.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【発明の効果】以上説明したように、本発明の製造法は
ポリエステル直接重合法のエステル化反応を高反応性に
できることから、次いで行う重縮合反応の反応性を向上
でき、結果として高品質のポリエステルまたはその共重
合体を有利に得ることができる。本発明の反応性向上効
果はポリエーテルエステルブロック共重合体においてと
りわけ大きく、該共重合体の製造に特に有利である。
As described above, the production method of the present invention can increase the reactivity of the subsequent polycondensation reaction because the esterification reaction of the polyester direct polymerization method can be made highly reactive, and as a result, high quality A polyester or a copolymer thereof can be advantageously obtained. The reactivity improving effect of the present invention is particularly large in a polyetherester block copolymer, and is particularly advantageous for producing the copolymer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における攪拌反応槽の側断面説明図
(a)およびそのA−A断面説明図(b)である。
FIG. 1 is a side sectional view (a) of a stirring reaction tank according to the present invention and an AA section view (b) thereof.

【図2】本発明における他の攪拌反応槽の側断面説明図
(a)およびそのA−A断面説明図(b)である。
FIG. 2 is a side sectional view (a) of another stirring reaction tank according to the present invention and an AA section view (b) thereof.

【図3】従来の攪拌反応槽の側断面説明図(a)および
そのA−A断面説明図(b)である。
FIG. 3A is a side sectional view of a conventional stirring reaction tank, and FIG.

【図4】従来の他の攪拌反応槽の側断面説明図(a)お
よびそのA−A断面説明図(b)である。
FIG. 4 is a side sectional view (a) of another conventional stirring reaction tank and an AA section view (b) thereof.

【符号の説明】[Explanation of symbols]

1 反応槽 2 攪拌軸 3 攪拌翼 4 邪魔板 Reference Signs List 1 reaction tank 2 stirring shaft 3 stirring blade 4 baffle plate

フロントページの続き (72)発明者 堀内 衛 愛知県名古屋市港区本星崎町字北3804番地 の19 東レ・デュポン株式会社名古屋事業 場内 Fターム(参考) 4J029 AA03 AB04 AB07 AC01 AC02 BA05 BF25 CB04A CB05A CB05B CB06A CB10A CC05A CC06A CF15 CH02 HA01 HB01 JB131 JC751 JF321 JF371 KB02 KB05 KE03 KJ05 KJ06 KJ08 LA04 LA05Continuation of the front page (72) Inventor Mamoru Horiuchi 194-1, Kita-ku, Hoshi-Hoshizaki-cho, Minato-ku, Nagoya-shi, Aichi F-term (reference) 4J029 AA03 AB04 AB07 AC01 AC02 BA05 BF25 CB04A CB05A CB05B CB06A CB10A CC05A CC06A CF15 CH02 HA01 HB01 JB131 JC751 JF321 JF371 KB02 KB05 KE03 KJ05 KJ06 KJ08 LA04 LA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】芳香族ジカルボン酸を主成分とするジカル
ボン酸と1,4−ブタンジオールを主成分とするジオー
ル、および全ポリマに対し0〜90重量%の数平均分子
量600〜4000のポリアルキレンエーテルグリコー
ルとから有機チタン化合物の存在下でエステル化反応
し、次いで重縮合反応してポリエステルまたはその共重
合体を製造するに際し、該エステル化反応を槽内攪拌翼
の周速が0.5m/sec以上、かつ、槽内反応液面の
高低差が槽内直径の1/4以下となる条件で実施するこ
とを特徴とするポリエステルまたはその共重合体の製造
法。
1. A dicarboxylic acid having an aromatic dicarboxylic acid as a main component and a diol having a 1,4-butanediol as a main component, and a polyalkylene having a number average molecular weight of 600 to 4000 by 0 to 90% by weight based on the whole polymer. When an esterification reaction is carried out with ether glycol in the presence of an organic titanium compound and then a polycondensation reaction is carried out to produce a polyester or a copolymer thereof, the esterification reaction is carried out at a peripheral speed of 0.5 m / A method for producing a polyester or a copolymer thereof, wherein the method is carried out under conditions where the difference in height of the reaction liquid in the tank is not more than 1/4 of the diameter in the tank.
【請求項2】槽内中心部に槽外から回転ができる撹拌軸
を設置し、該軸に、下端部にボトムパドルを有する格子
翼、または、上下に位置し面方向が互いに交差する複数
の平板翼を有する撹拌翼を装着し、かつ、槽内側壁面に
下部から上部まで回転軸方向に沿う複数本の邪魔板を間
隔を置いて固定してなる攪拌反応槽を用いてエステル化
反応を実施することを特徴とする請求項1記載のポリエ
ステルまたはその共重合体の製造法。
2. A stirrer shaft rotatable from outside the tank is installed at the center of the tank, and a plurality of lattice wings having a bottom paddle at the lower end or a plurality of vertically arranged crosswise planes intersecting each other are provided on the shaft. Esterification reaction is carried out using a stirring reaction tank equipped with stirring blades having flat blades and fixed on the inner wall surface of the tank from the bottom to the top with multiple baffles along the rotation axis at intervals. The method for producing a polyester or a copolymer thereof according to claim 1, wherein
【請求項3】エステル化反応を有機チタン化合物と有機
スズ化合物の存在下で、かつ、ジカルボン酸に対するジ
オールのモル比範囲を1.2〜2.2で行うことを特徴
とする請求項1または2記載のポリエステルまたはその
共重合体の製造法。
3. The method according to claim 1, wherein the esterification reaction is carried out in the presence of an organic titanium compound and an organic tin compound, and the molar ratio of the diol to the dicarboxylic acid is in the range of 1.2 to 2.2. 3. The method for producing the polyester or the copolymer thereof according to item 2.
JP2001315473A 2000-10-26 2001-10-12 Method for producing polyester or copolymer thereof Expired - Fee Related JP3780897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315473A JP3780897B2 (en) 2000-10-26 2001-10-12 Method for producing polyester or copolymer thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000326494 2000-10-26
JP2000-326494 2000-10-26
JP2001315473A JP3780897B2 (en) 2000-10-26 2001-10-12 Method for producing polyester or copolymer thereof

Publications (2)

Publication Number Publication Date
JP2002201261A true JP2002201261A (en) 2002-07-19
JP3780897B2 JP3780897B2 (en) 2006-05-31

Family

ID=26602799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315473A Expired - Fee Related JP3780897B2 (en) 2000-10-26 2001-10-12 Method for producing polyester or copolymer thereof

Country Status (1)

Country Link
JP (1) JP3780897B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100655195B1 (en) 2005-11-02 2006-12-08 삼성정밀화학 주식회사 Manufacturing method of aromatic polyester
WO2007052955A1 (en) * 2005-11-02 2007-05-10 Samsung Fine Chemicals Co., Ltd. Method of preparing wholly aromatic polyester
JP2008086779A (en) * 2006-10-04 2008-04-17 Riri Group Sa Fluid-tight slide fastener
JP2017095620A (en) * 2015-11-26 2017-06-01 東レ株式会社 Cleaning method of polyester manufacturing device and manufacturing method of polyester

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100655195B1 (en) 2005-11-02 2006-12-08 삼성정밀화학 주식회사 Manufacturing method of aromatic polyester
WO2007052955A1 (en) * 2005-11-02 2007-05-10 Samsung Fine Chemicals Co., Ltd. Method of preparing wholly aromatic polyester
JP2009515004A (en) * 2005-11-02 2009-04-09 サムスン ファイン ケミカルズ カンパニー リミテッド Method for producing wholly aromatic polyester
EP1943288A4 (en) * 2005-11-02 2014-05-14 Samsung Fine Chemicals Co Ltd Method of preparing wholly aromatic polyester
JP2008086779A (en) * 2006-10-04 2008-04-17 Riri Group Sa Fluid-tight slide fastener
JP2017095620A (en) * 2015-11-26 2017-06-01 東レ株式会社 Cleaning method of polyester manufacturing device and manufacturing method of polyester

Also Published As

Publication number Publication date
JP3780897B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
JP6643343B2 (en) Continuous process for producing polybutylene terephthalate using purified terephthalic acid and 1,4-butanediol
EP2256145B1 (en) Process for production of aliphatic polyester
TW201410735A (en) Method of continuously preparing biodegradable aliphatic/aromatic polyester copolymer
JPH04108760A (en) Method of increasing rate of reaction for directly esterifying diacid with glycol
JP2004068001A (en) Method for production of polyester resin and polyester resin
JP2002201261A (en) Process for producing polyester or its copolymer
KR20140076356A (en) Method for continuous production of biodegradable aliphatic/aromatic polyester copolymer
WO2007026650A1 (en) Polybutylene terephthalate and process for production thereof
US10377854B2 (en) Continuous process for making polybutylene terephthalate
JP4766461B2 (en) Method for producing polyester or copolymer thereof
JP2002322251A (en) Method for continuously producing polyester or polyester copolymer
JP4848806B2 (en) Method for producing copolyester
JP3385735B2 (en) Polyester production method
EP3562857B1 (en) Process for the production of thermoplastic polyester
JP2002088144A (en) Method of manufacturing polyether-ester block copolymer
JP4725029B2 (en) Polybutylene terephthalate
JP7297492B2 (en) Method for producing polybutylene terephthalate copolymer
US10233282B2 (en) Process for making polybutylene terephthalate oligomers
JP6264975B2 (en) Method for producing polyalkylene glycol copolymer polyester pellets
EP3310841A1 (en) Process for making polybutylene terephthalate with high molecular weight and high carboxylic end group concentration
JPH05262861A (en) Production of polybutylene terephthalate copolymer
JP4544127B2 (en) Polybutylene terephthalate and method for producing the same
JP2002293906A (en) Method for producing polyester resin
JP4188145B2 (en) Method for producing polybutylene terephthalate resin
JP2005325202A (en) Catalyst for producing polyester and polyester using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees