JP2002201001A - Stabilization method for metal complex hydride water solution - Google Patents

Stabilization method for metal complex hydride water solution

Info

Publication number
JP2002201001A
JP2002201001A JP2000401798A JP2000401798A JP2002201001A JP 2002201001 A JP2002201001 A JP 2002201001A JP 2000401798 A JP2000401798 A JP 2000401798A JP 2000401798 A JP2000401798 A JP 2000401798A JP 2002201001 A JP2002201001 A JP 2002201001A
Authority
JP
Japan
Prior art keywords
aqueous solution
hydrogen
metal hydride
complex metal
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000401798A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Kojima
由継 小島
Kenichiro Suzuki
賢一郎 鈴木
Yasuaki Kawai
泰明 河合
Hiroaki Hayashi
宏明 林
Shinichi Matsumoto
信一 松本
Harumichi Nakanishi
治通 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000401798A priority Critical patent/JP2002201001A/en
Publication of JP2002201001A publication Critical patent/JP2002201001A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method to stabilize a metal complex hydride water solution and to be able to prevent sufficiently hydrogen generation from the water solution under the state of noncontacting with a catalyst. SOLUTION: The method is to stabilize the metal complex hydride water solution by adding an alkali. Concerning the characteristics of the method, the content of the metal complex hydride in the water solution is 30 wt.% or more and that of the alkali is 2.5 wt.% or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は錯金属水素化物の水
溶液を安定化させる方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for stabilizing an aqueous solution of a complex metal hydride.

【0002】[0002]

【従来の技術】現代社会において、水素は合成化学工業
や石油精製などに多量に利用されている重要な化学原料
である。一方、将来におけるエネルギー問題と環境問題
を解決するために、クリーンなエネルギーとしての水素
利用技術は重要な位置を占めると考えられ、水素を貯蔵
し、それを燃料として稼働する燃料電池の開発が進めら
れている。
2. Description of the Related Art In modern society, hydrogen is an important chemical raw material that is used in large quantities in the synthetic chemical industry, petroleum refining, and the like. On the other hand, in order to solve future energy problems and environmental problems, hydrogen utilization technology as clean energy is considered to be important, and the development of fuel cells that store hydrogen and use it as fuel is underway. Have been.

【0003】かかる燃料電池はガスで作動する電池であ
り、その際、水素と酸素との反応から得られるエネルギ
ーを直接電気エネルギーに変換する。このような燃料電
池は従来の燃焼エンジンに比べてきわめて高い効率を有
するため、燃料電池を有する自動車はZEV(Zero Emissio
n Vehicle)と称されている。
[0003] Such fuel cells are gas operated cells, in which the energy obtained from the reaction of hydrogen and oxygen is directly converted to electrical energy. Because such fuel cells have extremely high efficiency compared to conventional combustion engines, vehicles with fuel cells are not compatible with ZEV (Zero Emissio
n Vehicle).

【0004】一方、水素の貯蔵法としては、圧縮してボ
ンベに貯蔵する方法、冷却して液体水素とする方法、活
性炭に吸着させる方法、水素吸蔵合金を利用する方法が
提案されている。これらの方法の中で燃料電池自動車な
どの移動媒体には水素吸蔵合金が主要な役割を果たすと
考えられている。しかし、水素吸蔵合金に関しても、合
金であるが故の重さ(単位重量当たりの吸蔵量が小さい
こと)、吸蔵放出の繰り返しによる劣化(合金の微粉化
や構造変化)、希少金属を含む場合にはその資源確保
等、克服すべき課題は多い。
[0004] On the other hand, as a method of storing hydrogen, a method of compressing and storing in a cylinder, a method of cooling into liquid hydrogen, a method of adsorbing on activated carbon, and a method of using a hydrogen storage alloy have been proposed. Among these methods, it is considered that a hydrogen storage alloy plays a major role in a moving medium such as a fuel cell vehicle. However, hydrogen-absorbing alloys also include weight due to being an alloy (small occlusion amount per unit weight), deterioration due to repeated occlusion and release (pulverization and structural change of alloy), and rare metals. There are many issues to be overcome, such as securing resources.

【0005】そこで近年注目を集めているのが、パワー
ボール社から提案されている岩塩型アルカリ水素化物
(水素化ナトリウム)を加水分解させて水素を発生させ
る方法である。水素化ナトリウムは水と接触すると激し
く反応して水素を発生するため、水素化ナトリウムを樹
脂皮膜でコートしておき、この皮膜を切断することによ
って水素を発生させている。しかしながら、水素化ナト
リウムから発生できる水素量は最大8.8重量%(水素化
ナトリウム1gあたり)であり、燃料電池自動車の燃料と
するにはエネルギー密度が必ずしも十分ではないという
問題を有していた。また、岩塩型アルカリ水素化物は水
と接触すると激しく反応するために、安全性の面からも
問題となっていた。
In recent years, a method of generating hydrogen by hydrolyzing a rock salt type alkali hydride (sodium hydride) proposed by Powerball has attracted attention. Sodium hydride reacts violently when it comes in contact with water to generate hydrogen, so that sodium hydride is coated with a resin film, and hydrogen is generated by cutting this film. However, the amount of hydrogen that can be generated from sodium hydride is a maximum of 8.8% by weight (per gram of sodium hydride), and there is a problem that the energy density is not always sufficient to be used as fuel for a fuel cell vehicle. In addition, rock salt-type alkali hydride reacts violently when it comes into contact with water, which has been a problem in terms of safety.

【0006】このような背景の下で、新たな水素発生源
として、水溶性の錯金属水素化物である水素化ほう素ナ
トリウムが注目されてきた。水素化ほう素ナトリウムか
らは以下の加水分解反応: NaBH4+2H2O→NaBO2+4H2 等にしたがって水素が発生する。そして、水素化ほう素
ナトリウムから発生できる水素量は最大21.3重量%(水
素化ホウ素ナトリウム1gあたり)であり、上記水素化ナ
トリウムを用いた方法に比べて水素発生量が2倍以上と
なるため、燃料電池自動車に要求されるエネルギー密度
を満足することとなる。このような水素化ほう素ナトリ
ウムの加水分解は触媒の存在下で促進されることが知ら
れており、"An ultrasafe hydrogen generator:aqueou
s, alkaline borohydride solutionsand Ru catalyst",
S.C.Amendola et al., Journal of Power Sources, vo
l.85, p.186-189 (2000)には、20% NaBH4及び10% NaOH
を含有する水素化ほう素ナトリウム水溶液にルテニウム
系触媒を接触させて水素を発生させる方法が記載されて
いる。
Against this background, sodium borohydride, which is a water-soluble complex metal hydride, has attracted attention as a new hydrogen generation source. Hydrogen is generated from sodium borohydride according to the following hydrolysis reaction: NaBH 4 + 2H 2 O → NaBO 2 + 4H 2 . And the amount of hydrogen that can be generated from sodium borohydride is a maximum of 21.3% by weight (per 1 g of sodium borohydride), and the amount of hydrogen generated is twice or more as compared with the method using sodium hydride. The energy density required for a fuel cell vehicle will be satisfied. It is known that such hydrolysis of sodium borohydride is promoted in the presence of a catalyst, "An ultrasafe hydrogen generator: aqueou
s, alkaline borohydride solutions and Ru catalyst ",
SCAmendola et al., Journal of Power Sources, vo
L.85, the p.186-189 (2000), 20% NaBH 4 and 10% NaOH
A method is described in which a ruthenium-based catalyst is brought into contact with an aqueous sodium borohydride solution containing hydrogen to generate hydrogen.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の錯金属水素化物の水溶液を用いる水素の発生
方法においては、かかる水溶液を触媒に接触させていな
い状態においても少量の水素が発生してしまい、触媒と
の接触の有無による水素発生のコントロールが困難であ
るという点において問題があった。
However, in such a conventional method for generating hydrogen using an aqueous solution of a complex metal hydride, a small amount of hydrogen is generated even when the aqueous solution is not in contact with a catalyst. As a result, there is a problem in that it is difficult to control the generation of hydrogen depending on the presence or absence of contact with the catalyst.

【0008】本発明は、上記従来技術の有する課題に鑑
みてなされたものであり、錯金属水素化物の水溶液を安
定化せしめ、触媒と接触していない状態(以下、場合に
より「触媒非接触状態」という)においてはその水溶液
からの水素の発生を十分に防止することが可能な方法を
提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and has been made to stabilize an aqueous solution of a complex metal hydride, and to stabilize an aqueous solution of a complex metal hydride (hereinafter, referred to as a catalyst non-contact state in some cases). ) Is intended to provide a method capable of sufficiently preventing generation of hydrogen from the aqueous solution.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究を重ねた結果、錯金属水素化物の
水溶液中の錯金属水素化物の含有量を30重量%以上と
し、更にそこに2.5重量%以上の含有量となるように
アルカリを添加することによって錯金属水素化物水溶液
を十分に安定化させることが可能となることを見出し、
本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, the content of the complex metal hydride in the aqueous solution of the complex metal hydride was set to 30% by weight or more, Further, they have found that it is possible to sufficiently stabilize an aqueous solution of a complex metal hydride by adding an alkali so as to have a content of 2.5% by weight or more,
The present invention has been completed.

【0010】すなわち、本発明の錯金属水素化物水溶液
の安定化方法は、錯金属水素化物の水溶液にアルカリを
添加して安定化させる方法であって、該水溶液中の錯金
属水素化物の含有量を30重量%以上とし、かつ、アル
カリの含有量を2.5重量%以上とすることを特徴とす
る方法である。
That is, the method of stabilizing an aqueous solution of a complex metal hydride according to the present invention is a method of stabilizing an aqueous solution of a complex metal hydride by adding an alkali, wherein the content of the complex metal hydride in the aqueous solution is Is 30% by weight or more and the alkali content is 2.5% by weight or more.

【0011】本発明の錯金属水素化物水溶液の安定化方
法においては、錯金属水素化物の水溶液が安定化され、
触媒と接触していない状態においてはその水溶液からの
水素の発生が十分に防止される。このように錯金属水素
化物の水溶液が安定化される理由は定かではないが、錯
金属水素化物の水溶液中にアルカリが添加されることに
よってその水溶液中のプロトン(H+)量が減少し、更
に水溶液中の錯金属水素化物の濃度を高くしかつアルカ
リを添加することによって相対的に水の含有量も減少す
ることから、前記加水分解反応において錯金属水素化物
中のH-と反応して水素となり得る水中のプロトン量が
減少して触媒非接触状態における水素の発生が十分に抑
制されると本発明者らは考えている。
In the method for stabilizing an aqueous solution of a complex metal hydride according to the present invention, the aqueous solution of a complex metal hydride is stabilized,
When not in contact with the catalyst, generation of hydrogen from the aqueous solution is sufficiently prevented. The reason why the aqueous solution of the complex metal hydride is stabilized is not clear, but the amount of protons (H + ) in the aqueous solution of the complex metal hydride is reduced by adding an alkali to the aqueous solution of the complex metal hydride, Furthermore, since the concentration of the complex metal hydride in the aqueous solution is increased and the water content is relatively reduced by adding an alkali, it reacts with H in the complex metal hydride in the hydrolysis reaction. The present inventors believe that the amount of protons in water that can become hydrogen is reduced and the generation of hydrogen in a catalyst non-contact state is sufficiently suppressed.

【0012】また、本発明の錯金属水素化物水溶液の安
定化方法においては、前記水溶液中の錯金属水素化物の
含有量に対する水の含有量の比率(水の含有量/錯金属
水素化物の含有量)(重量比)を0.5〜2.22とす
ることが好ましい。この比率が上記下限未満では、かか
る水溶液を触媒に接触させて水素を発生させる際に加水
分解に寄与する水が少なく、十分な水素発生量が達成さ
れない傾向にある。他方、この比率が上記上限を超える
と、かかる水溶液を触媒に接触させていない状態におけ
る水素の発生が十分に防止されない傾向にある。
Further, in the method for stabilizing an aqueous solution of a complex metal hydride according to the present invention, the ratio of the content of water to the content of the complex metal hydride in the aqueous solution (water content / content of complex metal hydride). Amount) (weight ratio) is preferably 0.5 to 2.22. If this ratio is less than the above lower limit, when the aqueous solution is brought into contact with the catalyst to generate hydrogen, the amount of water that contributes to hydrolysis is small, and a sufficient amount of generated hydrogen tends not to be achieved. On the other hand, when this ratio exceeds the above upper limit, generation of hydrogen in a state where the aqueous solution is not brought into contact with the catalyst tends to be not sufficiently prevented.

【0013】更に、本発明の錯金属水素化物水溶液の安
定化方法においては、前記アルカリが水酸化ナトリウム
又は水酸化カリウムであることが好ましい。このような
強アルカリを使用すれば、錯金属水素化物水溶液中のH
-の量がより効率良く減少し、触媒非接触状態における
水素の発生がより確実に抑制される傾向にある。
Further, in the method for stabilizing an aqueous solution of a complex metal hydride according to the present invention, the alkali is preferably sodium hydroxide or potassium hydroxide. If such a strong alkali is used, H in the aqueous solution of the complex metal hydride may be used.
- The amount is more efficiently reduced, and there is a tendency that the generation of hydrogen in the catalytic non-contact state is suppressed more reliably.

【0014】[0014]

【発明の実施の形態】以下、本発明の錯金属水素化物水
溶液の安定化方法の好適な実施形態について詳細に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method for stabilizing an aqueous solution of a complex metal hydride according to the present invention will be described below in detail.

【0015】本発明の錯金属水素化物水溶液の安定化方
法においては、錯金属水素化物の水溶液中の錯金属水素
化物の含有量を30重量%以上とし、更にそこに2.5
重量%以上の含有量となるようにアルカリが添加され
る。それによって錯金属水素化物の水溶液が十分に安定
化され、触媒と接触していない状態においてはその水溶
液からの水素の発生が十分に防止される。
In the method for stabilizing an aqueous solution of a complex metal hydride according to the present invention, the content of the complex metal hydride in the aqueous solution of the complex metal hydride is set to 30% by weight or more,
Alkali is added so as to have a content of at least% by weight. As a result, the aqueous solution of the complex metal hydride is sufficiently stabilized, and the generation of hydrogen from the aqueous solution is sufficiently prevented when the aqueous solution is not in contact with the catalyst.

【0016】このような錯金属水素化物としては、水素
の含有率が高く、触媒と接触させた際に水素が効率良く
生成されることからNaBH4、NaAlH4、LiBH4、LiAlH4、KB
H4、KAlH4、Mg(BH4)2、Ca(BH4)2、Ba(BH4)2、Sr(BH4)2
及びFe(BH4)2が好ましい。かかる錯金属水素化物は単一
種類で用いられてもよく、複数種類を組合せて用いても
よい。なお、NaBH4は低コストでそれ自身の水との反応
性が比較的低く、水素発生の理論容量が21.3wt%と高い
ことから、錯金属水素化物としてはNaBH4がより好まし
い。
Such a complex metal hydride has a high hydrogen content and is efficiently produced when it is brought into contact with a catalyst. Therefore, NaBH 4 , NaAlH 4 , LiBH 4 , LiAlH 4 , KB
H 4, KAlH 4, Mg ( BH 4) 2, Ca (BH 4) 2, Ba (BH 4) 2, Sr (BH 4) 2
And Fe (BH 4 ) 2 are preferred. Such complex metal hydrides may be used alone or in combination of two or more. Since NaBH 4 is inexpensive, has relatively low reactivity with water itself, and has a high theoretical capacity for hydrogen generation of 21.3 wt%, NaBH 4 is more preferable as the complex metal hydride.

【0017】また、本発明にかかるアルカリとしては、
水酸化ナトリウム、水酸化カリウム、水酸化カルシウ
ム、水酸化マグネシウム、メタほう酸ナトリウム、水酸
化アンモニウム、水酸化バリウム等の強アルカリが好適
に使用され、中でも水酸化ナトリウム、水酸化カリウム
がより好ましい。このようなアルカリを使用すれば、錯
金属水素化物水溶液中のH-の量がより効率良く減少
し、触媒非接触状態における水素の発生がより確実に抑
制される傾向にある。なお、このようなアルカリは、単
一種類のみで用いてもよく、複数種類を組合せて用いて
もよい。
Further, the alkali according to the present invention includes:
Strong alkalis such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, sodium metaborate, ammonium hydroxide, and barium hydroxide are preferably used, and among them, sodium hydroxide and potassium hydroxide are more preferable. When such an alkali is used, the amount of H 2 − in the aqueous solution of the complex metal hydride tends to be reduced more efficiently, and the generation of hydrogen in a catalyst non-contact state tends to be more reliably suppressed. In addition, such an alkali may be used alone or in combination of two or more.

【0018】そして、本発明の錯金属水素化物水溶液の
安定化方法においては、錯金属水素化物の水溶液中の錯
金属水素化物の含有量を30重量%以上とする必要があ
り、30〜50重量%とすることがより好ましい。錯金
属水素化物の含有量が30重量%未満ではアルカリを添
加してもその水溶液を触媒に接触させていない状態にお
ける水素の発生が十分に防止されず、他方、50重量%
を超えるとその水溶液を触媒に接触させて水素を発生さ
せる際に加水分解に寄与する水が少なく、十分な水素発
生量が達成されない傾向にある。なお、使用する錯金属
水素化物の水に対する溶解度が上記上限より低い場合
は、錯金属水素化物の含有量はその溶解度より低いこと
が好ましい。
In the method for stabilizing an aqueous solution of a complex metal hydride according to the present invention, the content of the complex metal hydride in the aqueous solution of the complex metal hydride must be 30% by weight or more, and 30 to 50% by weight. % Is more preferable. When the content of the complex metal hydride is less than 30% by weight, the generation of hydrogen in a state where the aqueous solution is not in contact with the catalyst is not sufficiently prevented even if the alkali is added, while 50% by weight
If it exceeds 300, when the aqueous solution is brought into contact with the catalyst to generate hydrogen, the amount of water that contributes to hydrolysis is small, and a sufficient amount of generated hydrogen tends not to be achieved. When the solubility of the complex metal hydride to water used is lower than the above upper limit, the content of the complex metal hydride is preferably lower than the solubility.

【0019】また、本発明においては、錯金属水素化物
の水溶液中のアルカリの含有量を2.5重量%以上とす
る必要があり、2.5〜35重量%とすることがより好
ましい。アルカリの含有量が2.5重量%未満ではその
水溶液を触媒に接触させていない状態における水素の発
生が十分に防止されず、他方、35重量%を超えるとそ
の水溶液を触媒に接触させて水素を発生させる際に加水
分解に寄与する水が少なく、十分な水素発生量が達成さ
れない傾向にある。なお、使用するアルカリの水に対す
る溶解度が上記上限より低い場合は、アルカリの含有量
はその溶解度より低いことが好ましい。
Further, in the present invention, the alkali content in the aqueous solution of the complex metal hydride must be 2.5% by weight or more, and more preferably 2.5 to 35% by weight. If the alkali content is less than 2.5% by weight, the generation of hydrogen in a state where the aqueous solution is not in contact with the catalyst is not sufficiently prevented. The amount of water contributing to the hydrolysis when generating the hydrogen is small, and a sufficient amount of generated hydrogen tends not to be achieved. When the solubility of the alkali used in water is lower than the above upper limit, the alkali content is preferably lower than the solubility.

【0020】更に、本発明においては、錯金属水素化物
の水溶液中の水の含有量を35〜67重量%とすること
がより好ましい。水の含有量が67重量%を超えるとそ
の水溶液を触媒に接触させていない状態における水素の
発生が十分に防止されず、他方、35重量%未満ではそ
の水溶液を触媒に接触させて水素を発生させる際に加水
分解に寄与する水が少なく、十分な水素発生量が達成さ
れない傾向にある。
Further, in the present invention, the content of water in the aqueous solution of the complex metal hydride is more preferably 35 to 67% by weight. If the water content exceeds 67% by weight, generation of hydrogen in a state where the aqueous solution is not in contact with the catalyst is not sufficiently prevented. On the other hand, if the water content is less than 35% by weight, the aqueous solution is brought into contact with the catalyst to generate hydrogen. During the reaction, the amount of water that contributes to the hydrolysis is small, and a sufficient amount of generated hydrogen tends not to be achieved.

【0021】また、本発明においては、錯金属水素化物
水溶液中の錯金属水素化物の含有量に対する水の含有量
の比率(水の含有量/錯金属水素化物の含有量)(重量
比)を0.5〜2.22とすることが好ましい。この比
率が0.5未満ではかかる水溶液を触媒に接触させて水
素を発生させる際に加水分解に寄与する水が少なく、十
分な水素発生量が達成されない傾向にあり、他方、2.
22を超えるとかかる水溶液を触媒に接触させていない
状態における水素の発生が十分に防止されない傾向にあ
る。
In the present invention, the ratio of the content of water to the content of complex metal hydride in the aqueous solution of complex metal hydride (water content / content of complex metal hydride) (weight ratio) It is preferably 0.5 to 2.22. If this ratio is less than 0.5, the amount of water that contributes to hydrolysis when generating hydrogen by contacting such an aqueous solution with a catalyst tends to be insufficient to achieve a sufficient amount of hydrogen generation.
If it exceeds 22, the generation of hydrogen in a state where the aqueous solution is not brought into contact with the catalyst tends to be not sufficiently prevented.

【0022】本発明の錯金属水素化物水溶液の安定化方
法においては、上記含有量となる量の錯金属水素化物を
含有する水溶液に上記含有量となる量のアルカリを添加
することによってその水溶液は安定化され、触媒と接触
していない状態においてはその水溶液からの水素の発生
が十分に防止されるが、その際の水溶液の温度は50℃
以下であることが好ましい。水溶液の温度が50℃以下
であれば、その水溶液からの水素の発生がより確実に防
止される傾向にある。また、錯金属水素化物水溶液を安
定に維持する際には上記の錯金属水素化物水溶液とアル
カリ以外の成分が含有されていてもよく、このような成
分としては反応に不活性なガス(窒素、CO2、Ar等)が
挙げられる。
In the method for stabilizing an aqueous solution of a complex metal hydride according to the present invention, an aqueous solution containing the above amount of complex metal hydride is added with an alkali of the above amount to form an aqueous solution. Stabilized and in a state not in contact with the catalyst, the generation of hydrogen from the aqueous solution is sufficiently prevented, but the temperature of the aqueous solution at that time is 50 ° C.
The following is preferred. When the temperature of the aqueous solution is 50 ° C. or lower, generation of hydrogen from the aqueous solution tends to be more reliably prevented. When the aqueous solution of the complex metal hydride is stably maintained, the aqueous solution of the complex metal hydride and components other than the alkali may be contained. As such a component, a gas inert to the reaction (nitrogen, CO 2 , Ar, etc.).

【0023】なお、上記本発明の安定化方法によれば錯
金属水素化物水溶液を安定に、すなわち水素の発生を十
分に防止した状態に100時間超という長期間にわたっ
て維持することが可能となるが、その錯金属水素化物水
溶液から水素を発生させる方法は特に制限されず、例え
ば上記錯金属水素化物水溶液を触媒に接触させることに
よって錯金属水素化物が加水分解され、十分量の水素を
発生させることができる。
According to the stabilizing method of the present invention, it is possible to maintain the aqueous solution of the complex metal hydride stably, that is, in a state where the generation of hydrogen is sufficiently prevented, for a long period of time exceeding 100 hours. The method for generating hydrogen from the complex metal hydride aqueous solution is not particularly limited. For example, the complex metal hydride is hydrolyzed by contacting the above-mentioned complex metal hydride aqueous solution with a catalyst to generate a sufficient amount of hydrogen. Can be.

【0024】このような触媒としては、(i)金属ハロ
ゲン化物からなる水素発生触媒や(ii)貴金属と金属酸
化物又は炭素質材料とからなる水素発生触媒が好ましく
使用され、(i)の触媒にかかる金属ハロゲン化物とし
ては塩化コバルト、塩化ニッケル、塩化ルテニウム等の
金属塩化物がより好ましい。
As such a catalyst, (i) a hydrogen generating catalyst comprising a metal halide and (ii) a hydrogen generating catalyst comprising a noble metal and a metal oxide or a carbonaceous material are preferably used. Metal chlorides such as cobalt chloride, nickel chloride and ruthenium chloride are more preferred as the metal halide.

【0025】また、(ii)の触媒にかかる金属酸化物と
しては貴金族元素(Pt, Pd, Rh, Ru, Au等)、卑金属元
素(Y, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm,
Yb,Lu, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu,
Ga, Rb, Sr, Zr, Nb, Mo,In, Sn, Cs, Ba, Ta, W
等)、メタロイド元素(Si, Ge, As, Sb等)の単独酸化
物又は複合酸化物が挙げられ、中でも酸化チタン、酸化
ニッケル、酸化セリウム、ゼオライト、アルミナ、ジル
コニア、酸化ケイ素、酸化鉄、酸化マンガン、酸化コバ
ルト、酸化亜鉛、酸化銅が好ましい。更に、このような
金属酸化物としてはリチウムを含有する複合金属酸化物
であることがより好ましく、コバルト酸リチウム(LiCo
O2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチ
ウム(LiMnO2、LiMn2O4)、バナジン酸リチウム(LiV
O2、LiV2O4)、クロム酸リチウム(LiCrO2)等のリチウ
ム含有複合金属酸化物が特に好ましい。また、(ii)の
触媒にかかる炭素質材料としては、活性炭、黒鉛、活性
チャー、コークス、ハードカーボン(難黒鉛化炭素)、
ソフトカーボン(易黒鉛化炭素)が好ましい。更に、
(ii)の触媒にかかる貴金属としてはPt,Pd,Rh,Ru,Ir,O
s,Au,Agが挙げられ、中でも白金族元素(Pt,Pd,Rh,Ru,I
r,Os)が好ましい。このような貴金属を前記金属酸化物
又は炭素質材料と共存させて触媒として使用することに
より、貴金属の触媒作用と前記金属酸化物又は炭素質材
料の触媒作用との相乗効果によって錯金属水素化物の加
水分解がより効率良く進行し、水素発生量がより向上す
る傾向にある。
The metal oxide according to the catalyst (ii) includes noble metal elements (Pt, Pd, Rh, Ru, Au, etc.) and base metal elements (Y, La, Ce, Pr, Nd, Eu, Gd , Tb, Dy, Ho, Er, Tm,
Yb, Lu, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu,
Ga, Rb, Sr, Zr, Nb, Mo, In, Sn, Cs, Ba, Ta, W
Etc.) and single oxides or composite oxides of metalloid elements (Si, Ge, As, Sb, etc.), among which titanium oxide, nickel oxide, cerium oxide, zeolite, alumina, zirconia, silicon oxide, silicon oxide, iron oxide, and oxide Manganese, cobalt oxide, zinc oxide and copper oxide are preferred. Further, as such a metal oxide, a composite metal oxide containing lithium is more preferable, and lithium cobaltate (LiCo
O 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 , LiMn 2 O 4 ), lithium vanadate (LiV
Particularly preferred are lithium-containing composite metal oxides such as O 2 , LiV 2 O 4 ) and lithium chromate (LiCrO 2 ). The carbonaceous materials for the catalyst (ii) include activated carbon, graphite, activated char, coke, hard carbon (hardly graphitized carbon),
Soft carbon (easy graphitizable carbon) is preferred. Furthermore,
Pt, Pd, Rh, Ru, Ir, O
s, Au, Ag, among which platinum group elements (Pt, Pd, Rh, Ru, I,
r, Os) are preferred. By using such a noble metal as a catalyst in the presence of the metal oxide or the carbonaceous material, a complex metal hydride is produced by the synergistic effect of the catalytic action of the noble metal and the catalytic action of the metal oxide or the carbonaceous material. Hydrolysis tends to proceed more efficiently and the amount of generated hydrogen tends to be further improved.

【0026】なお、前記の貴金属と金属酸化物又は炭素
質材料との共存の形態は、金属酸化物又は炭素質材料を
担体としてその担体に貴金属を担持せしめたものでも、
両者が混合したもの等でもよいが、前者の方が触媒活性
がより高くなる傾向にあるため好ましく、中でもリチウ
ム含有複合金属酸化物からなる担体に貴金属を担持せし
めたものが特に好ましい。また、上記の担体が平均粒径
1000μm以下の粒子で貴金属が平均粒径100nm
以下の微粒子であると、触媒活性がより高くなる傾向に
あるため好ましい。更に、上記触媒中の貴金属の含有率
は、触媒の全重量を基準にして0.01〜20重量%で
あることが好ましく、0.5〜5重量%であることがよ
り好ましい。貴金属の含有率が0.01重量%未満では
貴金属による触媒作用が十分に得られない傾向にある。
なお、上記触媒の形状は特に制限はなく、粉末状、ペレ
ット状、モノリス状、板状、繊維状等の形状を使用条件
に応じて選択することができる。
The form of the coexistence of the noble metal and the metal oxide or the carbonaceous material may be such that the noble metal is supported on the carrier using the metal oxide or the carbonaceous material as a carrier,
A mixture of the two may be used, but the former is preferred because the catalytic activity tends to be higher. Among them, a carrier obtained by supporting a noble metal on a carrier comprising a lithium-containing composite metal oxide is particularly preferred. Further, the carrier is particles having an average particle diameter of 1000 μm or less, and the noble metal has an average particle diameter of 100 nm.
The following fine particles are preferable because the catalytic activity tends to be higher. Further, the content of the noble metal in the catalyst is preferably from 0.01 to 20% by weight, more preferably from 0.5 to 5% by weight, based on the total weight of the catalyst. When the content of the noble metal is less than 0.01% by weight, the catalytic action of the noble metal tends to be insufficient.
The shape of the catalyst is not particularly limited, and a shape such as a powder, a pellet, a monolith, a plate, and a fiber can be selected according to the use conditions.

【0027】また、上記金属酸化物又は炭素質材料に貴
金属を共存せしめる方法は特に制限されず、例えば、貴
金属及び/又は貴金属前駆体(貴金属のハロゲン化物、
硝酸塩、炭酸塩、アセチルアセトナート、テトラアンミ
ン塩、アルコキシド等)を用いていわゆる含浸法、沈澱
法、混練法、イオン交換法等の技法によって上記金属酸
化物又は炭素質材料からなる担体に貴金属を担持せしめ
て触媒を得ることが可能であるが、国際公開番号WO9
9/10167号公報に記載の超臨界流体を用いた超臨
界法によって触媒を得ることが好ましい。二酸化炭素等
の超臨界流体を用いることによって貴金属が10nm以
下(特に好ましくは1nm以下)という微細な粒子サイ
ズでかつ貴金属単体として担体に分散担持されるため、
触媒活性がより向上し、それによって水素発生速度及び
水素発生量がより顕著に向上する傾向にある。更に、上
記のようにして貴金属及び/又は貴金属前駆体を担体に
担持せしめた後、必要に応じて窒素もしくは空気中での
焼成処理、及び/又は、水素もしくは一酸化炭素もしく
は炭化水素(メタン、アセトアルデヒド等)含有雰囲気
中での還元処理を施すことが好ましい。このような焼成
処理、還元処理の条件は特に制限されないが、例えば3
50〜1000℃の温度で1〜10時間加熱するといっ
た条件が採用される。
The method of causing the noble metal to coexist with the metal oxide or the carbonaceous material is not particularly limited. For example, a noble metal and / or a noble metal precursor (a noble metal halide,
Noble metal is supported on a carrier made of the above metal oxide or carbonaceous material by a technique such as impregnation method, precipitation method, kneading method or ion exchange method using nitrate, carbonate, acetylacetonate, tetraammine salt, alkoxide, etc. At least it is possible to obtain a catalyst, but international publication number WO9
It is preferable to obtain a catalyst by a supercritical method using a supercritical fluid described in JP-A-9 / 10167. By using a supercritical fluid such as carbon dioxide, the noble metal is dispersed and supported on the carrier as a noble metal simple substance with a fine particle size of 10 nm or less (particularly preferably 1 nm or less).
The catalytic activity tends to be further improved, whereby the hydrogen generation rate and the amount of generated hydrogen tend to be more significantly improved. Further, after the noble metal and / or the noble metal precursor is supported on the carrier as described above, if necessary, a calcination treatment in nitrogen or air, and / or hydrogen or carbon monoxide or a hydrocarbon (methane, It is preferable to perform the reduction treatment in an atmosphere containing acetaldehyde or the like). The conditions of such a calcination treatment and a reduction treatment are not particularly limited.
Conditions such as heating at a temperature of 50 to 1000 ° C. for 1 to 10 hours are employed.

【0028】錯金属水素化物水溶液から水素を発生させ
る反応系には、上記の錯金属水素化物水溶液と触媒以外
の成分が含有されていてもよく、このような成分として
は反応に不活性なガス(窒素、CO2、Ar等)が挙げられ
る。また、水素を発生させる際には酢酸、しゅう酸、炭
酸、乳酸等の有機酸や、塩酸、硫酸、硝酸、亜硫酸、硫
化水素、燐酸等の無機酸を含有させてもよく、その場合
は水溶液中のアルカリより多量の酸を添加することが好
ましい。一方、酸素が存在すると発生した水素が燃焼し
易くなる傾向にあるのでなるべく排除したほうがよい。
The reaction system for generating hydrogen from the aqueous solution of the complex metal hydride may contain components other than the above aqueous solution of the complex metal hydride and the catalyst, and such a component may be a gas inert to the reaction. (Nitrogen, CO 2 , Ar, etc.). When generating hydrogen, organic acids such as acetic acid, oxalic acid, carbonic acid, and lactic acid, and inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, sulfurous acid, hydrogen sulfide, and phosphoric acid may be contained. It is preferable to add a larger amount of acid than the alkali contained therein. On the other hand, if oxygen is present, the generated hydrogen tends to burn easily, so it is better to exclude it as much as possible.

【0029】錯金属水素化物水溶液から水素を発生させ
る際の反応条件は特に制限されないが、温度は0〜20
0℃が好ましく、10〜80℃がより好ましい。反応温
度が0℃より低いと水が凍結して水素発生速度が低下す
る傾向にあり、他方、200℃より高いと加圧条件下で
あっても水が水蒸気になり易く水素の発生速度が低下す
る傾向にある。
The reaction conditions for generating hydrogen from the aqueous solution of the complex metal hydride are not particularly limited.
0 ° C is preferred, and 10 to 80 ° C is more preferred. If the reaction temperature is lower than 0 ° C., water freezes and the hydrogen generation rate tends to decrease, while if it is higher than 200 ° C., even under pressurized conditions, water easily becomes water vapor and the hydrogen generation rate decreases. Tend to.

【0030】[0030]

【実施例】以下、実施例及び比較例に基づいて本発明を
より具体的に説明するが、本発明は以下の実施例に限定
されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.

【0031】実施例1〜7及び比較例1〜5 表1に示す組成の錯金属水素化物水溶液5mlを容量1
00mlの三角フラスコに詰めた後、表1に示す温度で
同じく表1に示す時間保持し、柴田科学製ガス分析装置
(商品コード:6071-4)におけるメスビューレットの水
面変化よりその間の水素発生量を求めた。測定により得
られた水素発生量を表1に示す。
Examples 1 to 7 and Comparative Examples 1 to 5 5 ml of an aqueous solution of a complex metal hydride having the composition shown in Table 1 was added to a volume of 1
After filling in a 00 ml Erlenmeyer flask, it was kept at the temperature shown in Table 1 for the time shown in Table 1 as well, and hydrogen generation during the measurement was performed based on the water level change of the female burette in Shibata Scientific Gas Analyzer (product code: 6071-4). The amount was determined. Table 1 shows the hydrogen generation amount obtained by the measurement.

【0032】[0032]

【表1】 [Table 1]

【0033】表1に示した結果から明らかなように、錯
金属水素化物の含有量を30重量%以上としかつアルカ
リの含有量を2.5重量%以上とする本発明の錯金属水
素化物水溶液の安定化方法によれば、50℃という温度
条件下であっても100時間にわたって水素の発生が確
実に防止されることが確認された。
As is apparent from the results shown in Table 1, the complex metal hydride aqueous solution of the present invention having a complex metal hydride content of 30% by weight or more and an alkali content of 2.5% by weight or more. It has been confirmed that according to the method for stabilization, generation of hydrogen is reliably prevented for 100 hours even under a temperature condition of 50 ° C.

【0034】[0034]

【発明の効果】以上説明したように、本発明の錯金属水
素化物水溶液の安定化方法によれば、錯金属水素化物の
水溶液が触媒と接触していない状態においてその水溶液
からの水素の発生を十分に防止することが可能となる。
従って、本発明の錯金属水素化物水溶液の安定化方法
は、錯金属水素化物を燃料電池の水素供給源として利用
する際に触媒との接触の有無によって水素発生をコント
ロールする上で非常に有用である。
As described above, according to the method for stabilizing an aqueous solution of a complex metal hydride of the present invention, the generation of hydrogen from an aqueous solution of a complex metal hydride is prevented in a state where the aqueous solution of the complex metal hydride is not in contact with a catalyst. It is possible to sufficiently prevent it.
Therefore, the method for stabilizing an aqueous solution of a complex metal hydride of the present invention is very useful in controlling hydrogen generation depending on the presence or absence of contact with a catalyst when using a complex metal hydride as a hydrogen supply source for a fuel cell. is there.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河合 泰明 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 林 宏明 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 松本 信一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 中西 治通 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 5H027 AA02 BA13  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasuaki Kawai 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. 41, Yokomichi, Toyota Central Research Laboratory, Inc. (72) Inventor Shinichi Matsumoto 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Harumichi Nakanishi 1 Toyota Town, Toyota City, Aichi Prefecture Address Toyota Motor Corporation F term (reference) 5H027 AA02 BA13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 錯金属水素化物の水溶液にアルカリを添
加して安定化させる方法であって、該水溶液中の錯金属
水素化物の含有量を30重量%以上とし、かつ、アルカ
リの含有量を2.5重量%以上とすることを特徴とする
錯金属水素化物水溶液の安定化方法。
1. A method for stabilizing an aqueous solution of a complex metal hydride by adding an alkali thereto, wherein the content of the complex metal hydride in the aqueous solution is 30% by weight or more and the content of the alkali is reduced. A method for stabilizing an aqueous solution of a complex metal hydride, comprising at least 2.5% by weight.
【請求項2】 前記水溶液中の錯金属水素化物の含有量
に対する水の含有量の比率(重量比)を0.5〜2.2
2とすることを特徴とする請求項1に記載の錯金属水素
化物水溶液の安定化方法。
2. The ratio (weight ratio) of the water content to the complex metal hydride content in the aqueous solution is 0.5 to 2.2.
2. The method for stabilizing an aqueous solution of a complex metal hydride according to claim 1, wherein the method is 2.
【請求項3】 前記アルカリが水酸化ナトリウム又は水
酸化カリウムであることを特徴とする請求項1又は2に
記載の錯金属水素化物水溶液の安定化方法。
3. The method for stabilizing an aqueous solution of a complex metal hydride according to claim 1, wherein the alkali is sodium hydroxide or potassium hydroxide.
JP2000401798A 2000-12-28 2000-12-28 Stabilization method for metal complex hydride water solution Pending JP2002201001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401798A JP2002201001A (en) 2000-12-28 2000-12-28 Stabilization method for metal complex hydride water solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401798A JP2002201001A (en) 2000-12-28 2000-12-28 Stabilization method for metal complex hydride water solution

Publications (1)

Publication Number Publication Date
JP2002201001A true JP2002201001A (en) 2002-07-16

Family

ID=18866184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401798A Pending JP2002201001A (en) 2000-12-28 2000-12-28 Stabilization method for metal complex hydride water solution

Country Status (1)

Country Link
JP (1) JP2002201001A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307328A (en) * 2003-03-25 2004-11-04 Sanyo Electric Co Ltd Hydrogen producing method, hydrogen producing apparatus and motor equipped with the same
JP2008013431A (en) * 2006-07-05 2008-01-24 Rohm & Haas Co High temperature-stabilized borohydride formulation
JP2008543556A (en) * 2005-06-29 2008-12-04 サムスン エンジニアリング カンパニー リミテッド Cobalt carbonate catalyst for hydrogen production and method for producing the same
WO2015026292A1 (en) * 2013-08-22 2015-02-26 Horizon Fuel Cell Technologies Pte. Ltd. Process and apparatus for generating hydrogen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223825A (en) * 1992-09-30 1994-08-12 American Teleph & Telegr Co <Att> Activation method for metal and manufacture of battery
JPH11131249A (en) * 1997-10-23 1999-05-18 Japan Storage Battery Co Ltd Electroless iridium plating bath and electroless iridium plating
JP2001019401A (en) * 1999-07-05 2001-01-23 Seijiro Suda Hydrogen generating agent and hydrogen generating method utilizing the same
JP2002029702A (en) * 2000-07-05 2002-01-29 Seijiro Suda Method and device for manufacturing hydrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223825A (en) * 1992-09-30 1994-08-12 American Teleph & Telegr Co <Att> Activation method for metal and manufacture of battery
JPH11131249A (en) * 1997-10-23 1999-05-18 Japan Storage Battery Co Ltd Electroless iridium plating bath and electroless iridium plating
JP2001019401A (en) * 1999-07-05 2001-01-23 Seijiro Suda Hydrogen generating agent and hydrogen generating method utilizing the same
JP2002029702A (en) * 2000-07-05 2002-01-29 Seijiro Suda Method and device for manufacturing hydrogen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307328A (en) * 2003-03-25 2004-11-04 Sanyo Electric Co Ltd Hydrogen producing method, hydrogen producing apparatus and motor equipped with the same
JP2008543556A (en) * 2005-06-29 2008-12-04 サムスン エンジニアリング カンパニー リミテッド Cobalt carbonate catalyst for hydrogen production and method for producing the same
JP2008543555A (en) * 2005-06-29 2008-12-04 サムスン エンジニアリング カンパニー リミテッド Metal oxide catalyst for hydrogen production and method for producing the same
JP4818358B2 (en) * 2005-06-29 2011-11-16 サムスン エンジニアリング カンパニー リミテッド Metal oxide catalyst for hydrogen production and method for producing the same
JP4818359B2 (en) * 2005-06-29 2011-11-16 サムスン エンジニアリング カンパニー リミテッド Cobalt oxide catalyst for hydrogen production and method for producing the same
JP2008013431A (en) * 2006-07-05 2008-01-24 Rohm & Haas Co High temperature-stabilized borohydride formulation
WO2015026292A1 (en) * 2013-08-22 2015-02-26 Horizon Fuel Cell Technologies Pte. Ltd. Process and apparatus for generating hydrogen

Similar Documents

Publication Publication Date Title
Guo et al. Novel Ni–Co–B hollow nanospheres promote hydrogen generation from the hydrolysis of sodium borohydride
US20010022960A1 (en) Hydrogen generating method and hydrogen generating apparatus
Ding et al. Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt–Copper–Boride (Co–Cu–B) catalysts
Kojima et al. Hydrogen generation by hydrolysis reaction of magnesium hydride.
Ouyang et al. Recent progress on hydrogen generation from the hydrolysis of light metals and hydrides
Rakap et al. Cobalt–nickel–phosphorus supported on Pd-activated TiO2 (Co–Ni–P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution
Yuan et al. Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution
Akdim et al. Cobalt (II) salts, performing materials for generating hydrogen from sodium borohydride
Luo et al. Improved hydrogen storage of LiBH 4 and NH 3 BH 3 by catalysts
JP7453924B2 (en) Ammonia decomposition catalyst and ammonia decomposition method using the same
Liu et al. Issues and opportunities facing hydrolytic hydrogen production materials
US20070003475A1 (en) Metal oxide catalysts
JP6805456B2 (en) Hydrogen production catalyst and its production method, and hydrogen production method
CN109126844B (en) Molybdenum carbide nanosheet and preparation method and application thereof
JP6725994B2 (en) Steam reforming catalyst, steam reforming method using the same, and steam reforming reaction apparatus
US20070172417A1 (en) Hydrogen generation catalysts and systems for hydrogen generation
CN110155940A (en) A kind of room temperature inhales the magnesium-base hydrogen storage material and preparation method thereof of hydrogen
Salman et al. Catalysis in solid hydrogen storage: Recent advances, challenges, and perspectives
KR100782383B1 (en) Co-B catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same
JP2002193604A (en) Method for manufacturing metal borohydride
CN110270334A (en) A kind of Co based Fischer-Tropsch synthesis catalyst and preparation method thereof
JP2002201001A (en) Stabilization method for metal complex hydride water solution
JP2002080201A (en) Hydrogen generating method
US11795055B1 (en) Systems and methods for processing ammonia
CN115608375B (en) Catalyst for ammonia borane hydrolysis hydrogen evolution and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817