JP2002196522A - Electrophotographic photoreceptor, image forming device and process cartridge - Google Patents

Electrophotographic photoreceptor, image forming device and process cartridge

Info

Publication number
JP2002196522A
JP2002196522A JP2000394650A JP2000394650A JP2002196522A JP 2002196522 A JP2002196522 A JP 2002196522A JP 2000394650 A JP2000394650 A JP 2000394650A JP 2000394650 A JP2000394650 A JP 2000394650A JP 2002196522 A JP2002196522 A JP 2002196522A
Authority
JP
Japan
Prior art keywords
electrophotographic photoreceptor
layer
electrophotographic
titanium oxide
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000394650A
Other languages
Japanese (ja)
Inventor
Shingo Fujimoto
信吾 藤本
Hirofumi Hayata
裕文 早田
Shinichi Hamaguchi
進一 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2000394650A priority Critical patent/JP2002196522A/en
Publication of JP2002196522A publication Critical patent/JP2002196522A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor having high resolution and not causing image defects such as black spots, an image forming device using the photoreceptor and a process cartridge. SOLUTION: In the electrophotographic photoreceptor having a middle layer and a photosensitive layer on an electrically conductive substrate, the middle layer contains at least titanium oxide particles and a binder resin and the thickness of the photosensitive layer is 7-20 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複写機やプリンタ
ーの分野において用いられる電子写真感光体(以下、単
に感光体とも云う)、及び該電子写真感光体を用いた画
像形成装置、プロセスカートリッジに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member (hereinafter, also simply referred to as "photosensitive member") used in the field of copying machines and printers, and an image forming apparatus and a process cartridge using the electrophotographic photosensitive member. Things.

【0002】[0002]

【従来の技術】電子写真用の感光体はSe、ヒ素、ヒ素
/Se合金、CdS、ZnO等の無機感光体から、公害
や製造の容易性等の利点に優れる有機感光体に主体が移
り、様々な材料を用いた有機感光体が開発されている。
近年では電荷発生と電荷輸送の機能を異なる材料に担当
させた機能分離型の感光体が主流となっており、その多
くは導電性支持体上に中間層を設け、その上に電荷発生
層、電荷輸送層を積層した積層型の感光体が広く用いら
れている。
2. Description of the Related Art The photoreceptor for electrophotography has shifted from inorganic photoreceptors such as Se, arsenic, arsenic / Se alloy, CdS and ZnO to organic photoreceptors having excellent advantages such as pollution and ease of production. Organic photoreceptors using various materials have been developed.
In recent years, function-separated type photoreceptors in which charge generation and charge transport functions are assigned to different materials have become mainstream, and most of them have an intermediate layer provided on a conductive support, and a charge generation layer, Laminated photoconductors having a charge transport layer laminated thereon are widely used.

【0003】また電子写真プロセスに目を向けると潜像
画像形成方式は、ハロゲンランプを光源とするアナログ
画像形成とLEDやレーザーを光源とするデジタル方式
の画像形成に大別される。最近はパソコンのハードコピ
ー用のプリンターとして、また通常の複写機においても
画像処理の容易さや複合機への展開の容易さからデジタ
ル方式の潜像画像形成方式が急激に主流となりつつあ
り、それに伴ってより高画質な出力画像が求められるよ
うになってきた。
Turning to the electrophotographic process, the latent image forming method is roughly classified into analog image forming using a halogen lamp as a light source and digital image forming using an LED or a laser as a light source. Recently, digital latent image forming systems are rapidly becoming mainstream as hard copy printers for personal computers, and even in ordinary copiers, because of the ease of image processing and ease of application to multifunction devices. Therefore, higher quality output images have been required.

【0004】デジタル方式の画像形成では、デジタル電
気信号に変換された画像情報を感光体上に静電潜像とし
て書き込む際の光源としてレーザー、特に半導体レーザ
ーやLEDが用いられている。
In digital image formation, a laser, particularly a semiconductor laser or an LED, is used as a light source when writing image information converted into a digital electric signal as an electrostatic latent image on a photosensitive member.

【0005】このような半導体レーザーあるいはLED
アレイを記録光源とする方式では、画像は画素と呼ばれ
る微小ドットの集合及び配列で表現され、光学系の高分
解能化による微小スポットの形成技術の発展により、光
学系側では1200dpi(dpi:2.54cm当た
りのドット数)以上の記録密度が可能となってきてい
る。
[0005] Such a semiconductor laser or LED
In the method using an array as a recording light source, an image is represented by a set and arrangement of minute dots called pixels, and 1200 dpi (dpi: 2. A recording density of more than (number of dots per 54 cm) has become possible.

【0006】また、高画質化設計のためには、光学系の
みではなく、トナーの小粒径化、現像あるいは転写時ト
ナー飛散の最小限化、小粒径トナーのクリーニング技術
等の現像プロセス技術が重要となる。しかし、1200
dpi以上の高画質デジタル画像記録とする場合には、
単にトナーを小粒径化しただけでは、感光体上に形成さ
れた静電潜像の忠実な再生は困難であることが分かって
来ており、且つ、使用される感光体も記録密度の劣化を
起こさず、忠実に高解像度画像を可視化できる設計が必
要となってきている。
Further, in order to design a high image quality, not only the optical system but also development process technologies such as reduction of toner particle size, minimization of toner scattering at the time of development or transfer, and cleaning technology of small particle size toner. Is important. However, 1200
When recording high-quality digital images of dpi or more,
It has been found that it is difficult to faithfully reproduce the electrostatic latent image formed on the photoreceptor simply by reducing the particle size of the toner, and the photoreceptor used also has a reduced recording density. Therefore, a design that can faithfully visualize a high-resolution image without causing a problem has been required.

【0007】しかしながら、感光体そのものの解像度に
関する検討は希薄であり、従来、感光体自体の解像度は
問題とはされていなかった。これは、400dpiから
600dpiの記録密度では、実用化されている膜厚の
感光体で十分な解像度を有していること、膜厚に依存し
たキャリア拡散に基づく解像度劣化が課題とならなかっ
たからである。
However, studies on the resolution of the photoreceptor itself are sparse, and the resolution of the photoreceptor itself has not been considered a problem in the past. This is because, at a recording density of 400 dpi to 600 dpi, a photoconductor having a film thickness practically used has a sufficient resolution, and resolution degradation due to carrier diffusion depending on the film thickness has not been a problem. is there.

【0008】現状の600dpi以下の記録密度では実
用化されている感光体の膜厚は20〜35μmとなって
いる。この膜厚は感光体に要求される感度、耐刷性(寿
命)等の要因から設定されており、感光体上に形成され
る潜像は記録密度の再現性で問題とはならない。しかし
ながら、1500dpi以上の高密度の潜像の場合に
は、20μm以上の膜厚の感光体では、感光体のキャリ
ア走行距離に依存したキャリア拡散を生じて、解像度劣
化を起こすことになるので、忠実な画像再現が困難とな
る問題が発明者らの検討によって明らかとなってきた。
At the current recording density of 600 dpi or less, the thickness of a photoreceptor practically used is 20 to 35 μm. The film thickness is set based on factors such as sensitivity and printing durability (life) required for the photoconductor, and the latent image formed on the photoconductor does not cause a problem in reproducibility of recording density. However, in the case of a high-density latent image of 1500 dpi or more, in the case of a photosensitive member having a film thickness of 20 μm or more, carrier diffusion depending on the carrier traveling distance of the photosensitive member occurs to cause deterioration in resolution. A problem that makes it difficult to reproduce an accurate image has been clarified by the inventors' studies.

【0009】高解像度が要求される感光体での潜像形成
時の解像度を劣化を防止するためには、表面電荷密度を
高くすること、感光層の膜厚を小さくすることが必要と
なる。しかし、膜厚が小さくなると感光層にかかる電界
強度が高まることになり、反転現像による黒ポチ画像欠
陥の発生を起こしやすくなってしまう。特に近年注目さ
れる接触帯電方式による帯電を行う感光体では、より感
光体の劣化(ピンホール欠陥による絶縁破壊)が起きや
すい点が問題である。
In order to prevent the resolution from deteriorating when a latent image is formed on a photosensitive member requiring high resolution, it is necessary to increase the surface charge density and reduce the thickness of the photosensitive layer. However, when the film thickness is small, the electric field intensity applied to the photosensitive layer is increased, and the occurrence of black spot image defects due to reversal development is likely to occur. Particularly, in the case of a photoreceptor that performs charging by a contact charging method, which has attracted attention in recent years, there is a problem in that deterioration of the photoreceptor (dielectric breakdown due to a pinhole defect) is more likely to occur.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記従来の
技術の問題点に鑑み、高解像度、且つ黒ポチ等の画像欠
陥を発生しない電子写真感光体及び該電子写真感光体を
用いた画像形成装置、プロセスカートリッジを提供する
ことにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention provides an electrophotographic photosensitive member having high resolution and free from image defects such as black spots, and an image using the electrophotographic photosensitive member. An object of the present invention is to provide a forming apparatus and a process cartridge.

【0011】[0011]

【課題を解決するための手段】本発明の目的は、下記構
成により達成される。
The object of the present invention is achieved by the following constitution.

【0012】1.導電性支持体上に中間層、感光層を有
する電子写真感光体において、該中間層が少なくとも酸
化チタン粒子及びバインダー樹脂を含有しており、該感
光層の膜厚が7〜20μmであることを特徴とする電子
写真感光体。
1. In an electrophotographic photoreceptor having an intermediate layer and a photosensitive layer on a conductive support, the intermediate layer contains at least titanium oxide particles and a binder resin, and the thickness of the photosensitive layer is 7 to 20 μm. An electrophotographic photosensitive member characterized by the following.

【0013】2.前記感光層の膜厚が10〜15μmで
あることを特徴とする前記1に記載の電子写真感光体。
2. 2. The electrophotographic photoconductor according to the above item 1, wherein the photosensitive layer has a thickness of 10 to 15 μm.

【0014】3.前記感光層が電荷発生層及び電荷輸送
層から構成されていることを特徴とする前記1又は2に
記載の電子写真感光体。
3. 3. The electrophotographic photoreceptor according to the above 1 or 2, wherein the photosensitive layer comprises a charge generation layer and a charge transport layer.

【0015】4.前記酸化チタン粒子が表面処理を施さ
れていることを特徴とする前記1〜3の何れか1項に記
載の電子写真感光体。
4. The electrophotographic photoreceptor according to any one of the above items 1 to 3, wherein the titanium oxide particles have been subjected to a surface treatment.

【0016】5.前記表面処理が複数の表面処理であ
り、最初の表面処理が無機系化合物による表面処理であ
り、最後の表面処理が反応性有機ケイ素化合物による表
面処理であることを特徴とする前記4に記載の電子写真
感光体。
5. 5. The method according to 4, wherein the surface treatment is a plurality of surface treatments, the first surface treatment is a surface treatment with an inorganic compound, and the last surface treatment is a surface treatment with a reactive organosilicon compound. Electrophotographic photoreceptor.

【0017】6.前記無機系化合物がシリカ及びアルミ
ナの少なくとも一方であり、反応性有機ケイ素化合物が
メチルハイドロジェンポリシロキサンであることを特徴
とする前記5に記載の電子写真感光体。
6. 6. The electrophotographic photoreceptor according to the above item 5, wherein the inorganic compound is at least one of silica and alumina, and the reactive organic silicon compound is methyl hydrogen polysiloxane.

【0018】7.前記無機系化合物がシリカ及びアルミ
ナの少なくとも一方であり、反応性有機ケイ素化合物が
前記一般式(1)で示される有機ケイ素化合物であるこ
とを特徴とする前記5に記載の電子写真感光体。
[7] 6. The electrophotographic photoreceptor according to the above item 5, wherein the inorganic compound is at least one of silica and alumina, and the reactive organic silicon compound is an organic silicon compound represented by the general formula (1).

【0019】8.前記酸化チタン粒子とバインダー樹脂
の質量比がバインダー樹脂100部に対し、酸化チタン
粒子100〜500部であることを特徴とする前記1〜
7の何れか1項に記載の電子写真感光体。
8. Wherein the mass ratio of the titanium oxide particles to the binder resin is 100 to 500 parts of the titanium oxide particles with respect to 100 parts of the binder resin.
8. The electrophotographic photoreceptor according to any one of 7.

【0020】9.前記中間層のバインダー樹脂がポリア
ミド樹脂であることを特徴とする前記1〜8の何れか1
項に記載の電子写真感光体。
9. Any one of the above 1 to 8, wherein the binder resin of the intermediate layer is a polyamide resin.
13. The electrophotographic photoreceptor according to item 6.

【0021】10.前記酸化チタン粒子の平均粒径が1
0nm以上200nm以下であることを特徴とする前記
1〜9の何れか1項に記載の電子写真感光体。
10. The average particle size of the titanium oxide particles is 1
The electrophotographic photoreceptor according to any one of the above items 1 to 9, wherein the electrophotographic photoreceptor has a thickness of 0 nm or more and 200 nm or less.

【0022】11.電子写真感光体と、少なくとも帯電
手段、像露光手段、現像手段、転写手段、クリーニング
手段を有し、繰り返し画像形成を行う画像形成装置にお
いて、該電子写真感光体が前記1〜10の何れか1項に
記載の電子写真感光体であることを特徴とする画像形成
装置。
11. In an image forming apparatus having an electrophotographic photoreceptor and at least a charging unit, an image exposing unit, a developing unit, a transfer unit, and a cleaning unit, and performing image formation repeatedly, the electrophotographic photoreceptor may be any one of the above 1 to 10 An image forming apparatus comprising the electrophotographic photoreceptor described in the above item.

【0023】12.該帯電手段が電子写真感光体に帯電
部材を接触させて帯電する接触帯電方式であることを特
徴とする前記11に記載の画像形成装置。
12. 12. The image forming apparatus according to the above item 11, wherein the charging unit is a contact charging system in which a charging member is brought into contact with an electrophotographic photoreceptor to perform charging.

【0024】13.前記11又は12に記載の画像形成
装置に用いられるプロセスカートリッジにおいて、前記
1〜10の何れか1項に記載の電子写真感光体と帯電手
段、像露光手段、現像手段、転写手段、クリーニング手
段の少なくとも1つを一体として有しており、該画像形
成装置に出し入れ可能に構成されたことを特徴とするプ
ロセスカートリッジ。
13. 13. The process cartridge used in the image forming apparatus according to 11 or 12, wherein the electrophotographic photosensitive member according to any one of 1 to 10 and a charging unit, an image exposing unit, a developing unit, a transfer unit, and a cleaning unit. A process cartridge having at least one unit integrally and configured to be able to be taken in and out of the image forming apparatus.

【0025】以下、本発明について詳細に説明する。本
発明の電子写真感光体は導電性支持体上に中間層、感光
層を有する電子写真感光体において、該中間層が少なく
とも酸化チタン粒子及びバインダー樹脂を含有してお
り、該感光層の膜厚が7〜20μmであることを特徴と
している。
Hereinafter, the present invention will be described in detail. The electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor having an intermediate layer and a photosensitive layer on a conductive support, wherein the intermediate layer contains at least titanium oxide particles and a binder resin, and the thickness of the photosensitive layer is Is 7 to 20 μm.

【0026】本発明の酸化チタン粒子は表面処理を施さ
れているものが好ましい。ここで表面処理とは、酸化チ
タン粒子表面をシリカ、金属、金属酸化物のような無機
系化合物や、反応性有機ケイ素化合物、有機金属化合物
等によって被覆することを意味する。
The titanium oxide particles of the present invention preferably have been subjected to a surface treatment. Here, the surface treatment means that the surface of the titanium oxide particles is coated with an inorganic compound such as silica, a metal or a metal oxide, a reactive organosilicon compound, an organometallic compound, or the like.

【0027】本発明の20μm以下の比較的薄い感光層
を有する感光体を用いて、黒ポチ等の画像欠陥を抑制
し、良好な高解像度の画像を得るには、酸化チタン粒子
が複数種の表面処理を施されているものが好ましく、具
体的には最初に無機系化合物による表面処理を施され、
且つ最後に反応性有機ケイ素化合物による表面処理を施
されたものがより好ましい。
In order to suppress image defects such as black spots and obtain a good high-resolution image using the photoreceptor having a relatively thin photosensitive layer of 20 μm or less according to the present invention, a plurality of types of titanium oxide particles are required. Those that have been subjected to a surface treatment are preferred, and specifically, are first subjected to a surface treatment with an inorganic compound,
Further, those which have been finally subjected to a surface treatment with a reactive organosilicon compound are more preferable.

【0028】これら表面処理化合物の具体例としては、
無機系化合物ではアルミナ、シリカ、ジルコニア、酸化
鉄、酸化亜鉛等が挙げられる。それらの中でも特にアル
ミナ、シリカによる処理が好ましく、より好ましくは最
初にアルミナによる処理、次いでシリカによる処理と2
段階に分けて行う無機処理が最適である。
Specific examples of these surface treatment compounds include:
Examples of the inorganic compound include alumina, silica, zirconia, iron oxide, and zinc oxide. Among them, the treatment with alumina and silica is particularly preferred, and the treatment with alumina and then the treatment with silica are more preferable.
An inorganic treatment performed in stages is optimal.

【0029】また反応性有機ケイ素化合物の表面処理で
は前記一般式(1)で表される化合物を用いることが好
ましい。
In the surface treatment of the reactive organosilicon compound, it is preferable to use the compound represented by the general formula (1).

【0030】一般式(1)で表される有機ケイ素化合物
において、Rで示されるケイ素に炭素が直接結合した形
の有機基としては、メチル、エチル、プロピル、ブチ
ル、ペンチル、ヘキシル、オクチル、ドデシル等のアル
キル基、フェニル、トリル、ナフチル、ビフェニル等の
アリール基、γ−グリシドキシプロピル、β−(3,4
−エポキシシクロヘキシル)エチル等の含エポキシ基、
γ−アクリロキシプロピル、γ−メタアクリロキシプロ
ピルの含(メタ)アクリロイル基、γ−ヒドロキシプロ
ピル、2,3−ジヒドロキシプロピルオキシプロピル等
の含水酸基、ビニル、プロペニル等の含ビニル基、γ−
メルカプトプロピル等の含メルカプト基、γ−アミノプ
ロピル、N−β(アミノエチル)−γ−アミノプロピル
等の含アミノ基、γ−クロロプロピル、1,1,1−ト
リフルオロプロピル、ノナフルオロヘキシル、パーフル
オロオクチルエチル等の含ハロゲン基、その他ニトロ、
シアノ置換アルキル基を挙げられる。又Xの加水分解性
基としてはメトキシ、エトキシ等のアルコキシ基、ハロ
ゲン基、アシルオキシ基が挙げられる。
In the organosilicon compound represented by the general formula (1), the organic group in which carbon represented by R is directly bonded to silicon is methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, dodecyl Alkyl groups such as phenyl, tolyl, naphthyl, biphenyl and the like, γ-glycidoxypropyl, β- (3,4
An epoxy-containing group such as -epoxycyclohexyl) ethyl,
(meth) acryloyl groups including γ-acryloxypropyl and γ-methacryloxypropyl, hydrous groups such as γ-hydroxypropyl and 2,3-dihydroxypropyloxypropyl, vinyl groups including vinyl and propenyl, and γ-
A mercapto-containing group such as mercaptopropyl, an amino-containing group such as γ-aminopropyl, N-β (aminoethyl) -γ-aminopropyl, γ-chloropropyl, 1,1,1-trifluoropropyl, nonafluorohexyl, Halogen-containing groups such as perfluorooctylethyl, other nitro,
And cyano-substituted alkyl groups. Examples of the hydrolyzable group for X include an alkoxy group such as methoxy and ethoxy, a halogen group, and an acyloxy group.

【0031】また一般式(1)で表される有機ケイ素化
合物は、単独でも良いし、2種以上組み合わせて使用し
ても良い。また一般式(1)で表される有機ケイ素化合
物の具体的化合物で、nが2以上の場合、複数のRは同
一でも異なっていても良い。同様に、nが2以下の場
合、複数のXは同一でも異なっていても良い。また一般
式(1)で表される有機ケイ素化合物を2種以上を用い
るとき、R及びXはそれぞれの化合物間で同一でも良
く、異なっていても良い。
The organosilicon compound represented by the general formula (1) may be used alone or in combination of two or more. When n is 2 or more in a specific compound of the organosilicon compound represented by the general formula (1), a plurality of Rs may be the same or different. Similarly, when n is 2 or less, a plurality of Xs may be the same or different. When two or more organosilicon compounds represented by the general formula (1) are used, R and X may be the same or different between the respective compounds.

【0032】n=0の化合物例としては下記の化合物が
挙げられる。テトラクロロシラン、ジエトキシジクロロ
シラン、テトラメトキシシラン、フェノキシトリクロロ
シラン、テトラアセトキシシラン、テトラエトキシシラ
ン、テトラアリロキシシラン、テトラプロポキシシラ
ン、テトライソプロポキシシラン、テトラキス(2−メ
トキシエトキシ)シラン、テトラブトキシシラン、テト
ラフェノキシシラン、テトラキス(2−エチルブトキ
シ)シラン、テトラキス(2−エチルヘキシロキシ)シ
ラン等が挙げられる。
Examples of the compound where n = 0 include the following compounds. Tetrachlorosilane, diethoxydichlorosilane, tetramethoxysilane, phenoxytrichlorosilane, tetraacetoxysilane, tetraethoxysilane, tetraallyloxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrakis (2-methoxyethoxy) silane, tetrabutoxysilane , Tetraphenoxysilane, tetrakis (2-ethylbutoxy) silane, tetrakis (2-ethylhexyloxy) silane and the like.

【0033】n=1の化合物例としては下記の化合物が
挙げられる。即ち、メチルトリクロロシラン、ビニルト
リクロロシラン、エチルトリクロロシラン、アリルトリ
クロロシラン、プロピルトリクロロシラン、ブチルトリ
クロロシラン、クロロメチルトリエトキシシラン、メチ
ルトリメトキシシラン、メルカプトメチルトリメトキシ
シラン、トリメトキシビニルシラン、エチルトリメトキ
シシラン、3,3,4,4,5,5,6,6,6−ノナ
フルオロヘキシルトリクロロシラン、フェニルトリクロ
ロシラン、3、3、3−トリフルオロプロピルトリメト
キシシラン、3−クロロプロピルトリメトキシシラン、
ブチルトリエトキシシラン、3−メルカプトプロピルト
リメトキシシラン、3−アミノプロピルトリメトキシシ
ラン、2−アミノエチルアミノメチルトリメトキシシラ
ン、ベンジルトリクロロシラン、メチルトリアセトキシ
シラン、クロロメチルトリエトキシシラン、エチルトリ
アセトキシシラン、フェニルトリメトキシシラン、3−
アリルチオプロピルトリメトキシシラン、3−グリシド
キシプロピルトリメトキシシラン、3−ブロモプロピル
トリエトキシシラン、3−アリルアミノプロピルトリメ
トキシシラン、プロピルトリエトキシシラン、ヘキシル
トリメトキシシラン、3−アミノプロピルトリエトキシ
シラン、3−メタクリロキシプロピルトリメトキシシラ
ン、ビス(エチルメチルケトオキシム)メトキシメチル
シラン、ペンチルトリエトキシシラン、オクチルトリエ
トキシシラン、ドデシルトリエトキシシラン等が挙げら
れる。
Examples of the compound where n = 1 include the following compounds. That is, methyltrichlorosilane, vinyltrichlorosilane, ethyltrichlorosilane, allyltrichlorosilane, propyltrichlorosilane, butyltrichlorosilane, chloromethyltriethoxysilane, methyltrimethoxysilane, mercaptomethyltrimethoxysilane, trimethoxyvinylsilane, ethyltrimethoxy Silane, 3,3,4,4,5,5,6,6,6-nonafluorohexyltrichlorosilane, phenyltrichlorosilane, 3,3,3-trifluoropropyltrimethoxysilane, 3-chloropropyltrimethoxysilane ,
Butyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, benzyltrichlorosilane, methyltriacetoxysilane, chloromethyltriethoxysilane, ethyltriacetoxysilane , Phenyltrimethoxysilane, 3-
Allylthiopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-bromopropyltriethoxysilane, 3-allylaminopropyltrimethoxysilane, propyltriethoxysilane, hexyltrimethoxysilane, 3-aminopropyltriethoxy Examples thereof include silane, 3-methacryloxypropyltrimethoxysilane, bis (ethylmethylketoxime) methoxymethylsilane, pentyltriethoxysilane, octyltriethoxysilane, and dodecyltriethoxysilane.

【0034】n=2の化合物例としては下記の化合物が
挙げられる。ジメチルジクロロシラン、ジメトキシメチ
ルシラン、ジメトキシジメチルシラン、メチル−3,
3,3−トリフルオロプロピルジクロロシラン、ジエト
キシシラン、ジエトキシメチルシラン、ジメトキシメチ
ル−3,3,3−トリフルオロプロピルシラン、3−ク
ロロプロピルジメトキシメチルシラン、クロロメチルジ
エトキシシラン、ジエトキシジメチルシラン、ジメトキ
シ−3−メルカプトプロピルメチルシラン、3,3,
4,4,5,5,6,6,6−ノナフルオロヘキシルメ
チルジクロロシラン、メチルフェニルジクロロシラン、
ジアセトキシメチルビニルシラン、ジエトキシメチルビ
ニルシラン、3−メタクリロキシプロピルメチルジクロ
ロシラン、3−アミノプロピルジエトキシメチルシラ
ン、3−(2−アミノエチルアミノプロピル)ジメトキ
シメチルシラン、t−ブチルフェニルジクロロシラン、
3−メタクリロキシプロピルジメトキシメチルシラン、
3−(3−シアノプロピルチオプロピル)ジメトキシメ
チルシラン、3−(2−アセトキシエチルチオプロピ
ル)ジメトキシメチルシラン、ジメトキシメチル−2−
ピペリジノエチルシラン、ジブトキシジメチルシラン、
3−ジメチルアミノプロピルジエトキシメチルシラン、
ジエトキシメチルフェニルシラン、ジエトキシ−3−グ
リシドキシプロピルメチルシラン、3−(3−アセトキ
シプロピルチオ)プロピルジメトキシメチルシラン、ジ
メトキシメチル−3−ピペリジノプロピルシラン、ジエ
トキシメチルオクタデシルシラン等が挙げられる。
Examples of the compound where n = 2 include the following compounds. Dimethyldichlorosilane, dimethoxymethylsilane, dimethoxydimethylsilane, methyl-3,
3,3-trifluoropropyldichlorosilane, diethoxysilane, diethoxymethylsilane, dimethoxymethyl-3,3,3-trifluoropropylsilane, 3-chloropropyldimethoxymethylsilane, chloromethyldiethoxysilane, diethoxydimethyl Silane, dimethoxy-3-mercaptopropylmethylsilane, 3,3
4,4,5,5,6,6,6-nonafluorohexylmethyldichlorosilane, methylphenyldichlorosilane,
Diacetoxymethylvinylsilane, diethoxymethylvinylsilane, 3-methacryloxypropylmethyldichlorosilane, 3-aminopropyldiethoxymethylsilane, 3- (2-aminoethylaminopropyl) dimethoxymethylsilane, t-butylphenyldichlorosilane,
3-methacryloxypropyldimethoxymethylsilane,
3- (3-cyanopropylthiopropyl) dimethoxymethylsilane, 3- (2-acetoxyethylthiopropyl) dimethoxymethylsilane, dimethoxymethyl-2-
Piperidinoethylsilane, dibutoxydimethylsilane,
3-dimethylaminopropyldiethoxymethylsilane,
Diethoxymethylphenylsilane, diethoxy-3-glycidoxypropylmethylsilane, 3- (3-acetoxypropylthio) propyldimethoxymethylsilane, dimethoxymethyl-3-piperidinopropylsilane, diethoxymethyloctadecylsilane, and the like. Can be

【0035】n=3の化合物例としては下記の化合物が
挙げられる。トリメチルクロロシラン、メトキシトリメ
チルシラン、エトキシトリメチルシラン、メトキシジメ
チル−3,3,3−トリフルオロプロピルシラン、3−
クロロプロピルメトキシジメチルシラン、メトキシ−3
−メルカプトプロピルメチルメチルシラン等が挙げられ
る。
Examples of the compound where n = 3 include the following compounds. Trimethylchlorosilane, methoxytrimethylsilane, ethoxytrimethylsilane, methoxydimethyl-3,3,3-trifluoropropylsilane, 3-
Chloropropylmethoxydimethylsilane, methoxy-3
-Mercaptopropylmethylmethylsilane.

【0036】特にはn=1であり、Rが炭素数4から8
までのアルキル基であり、Xがメトキシ、エトキシ等の
アルコキシ基である下記一般式(2)の化合物が好まし
い。
In particular, n = 1, and R is 4 to 8 carbon atoms.
And X is an alkoxy group such as methoxy, ethoxy and the like, and a compound of the following general formula (2) is preferred.

【0037】一般式(2) R−Si−(X)3 (Rは炭素数4から8までのアルキル基を表し、Xはア
ルコキシ基を表す) 上記一般式(2)の好ましい化合物例としては以下の化
合物、トリメトキシ−n−ブチルシラン、トリエトキシ
−n−ブチルシラン、トリメトキシ−i−ブチルシラ
ン、トリメトキシ−s−ブチルシラン、トリメトキシヘ
キシルシラン、トリメトキシオクチルシラントリメトキ
シ−2−エチルヘキシルシランが挙げられる。
Formula (2) R—Si— (X) 3 (R represents an alkyl group having 4 to 8 carbon atoms and X represents an alkoxy group) Examples of preferred compounds of the above formula (2) include The following compounds, trimethoxy-n-butylsilane, triethoxy-n-butylsilane, trimethoxy-i-butylsilane, trimethoxy-s-butylsilane, trimethoxyhexylsilane, trimethoxyoctylsilane trimethoxy-2-ethylhexylsilane are exemplified.

【0038】また上記以外では特にメチルハイドロジェ
ンポリシロキサンが好ましい。前記酸化チタンの無機系
化合物による表面処理は湿式法で行うことができる。例
えば、シリカ、又はアルミナの表面処理は以下のように
作製することができる。
Other than the above, methyl hydrogen polysiloxane is particularly preferable. The surface treatment of the titanium oxide with the inorganic compound can be performed by a wet method. For example, the surface treatment of silica or alumina can be prepared as follows.

【0039】酸化チタン粒子(数平均一次粒子径:50
nm)を50〜350g/Lの濃度で水中に分散させて
水性スラリーとし、これに水溶性のケイ酸塩又は水溶性
のアルミニウム化合物を添加する。その後アルカリ、又
は酸を添加して中和し、酸化チタン粒子の表面にシリ
カ、又はアルミナを析出させる。続いて濾過、洗浄、乾
燥を行い目的の表面処理酸化チタンを得る。前記水溶性
のケイ酸塩としてケイ酸ナトリウムを使用した場合に
は、硫酸、硝酸、塩酸等の酸で中和する事ができる。一
方水溶性のアルミニウム化合物として硫酸アルミニウム
を用いたときは水酸化ナトリウムや水酸化カリウム等の
アルカリで中和する事ができる。
Titanium oxide particles (number average primary particle diameter: 50
nm) at a concentration of 50 to 350 g / L in water to form an aqueous slurry, to which a water-soluble silicate or a water-soluble aluminum compound is added. Thereafter, an alkali or an acid is added to neutralize the resultant, and silica or alumina is precipitated on the surface of the titanium oxide particles. Subsequently, filtration, washing and drying are performed to obtain a target surface-treated titanium oxide. When sodium silicate is used as the water-soluble silicate, it can be neutralized with an acid such as sulfuric acid, nitric acid and hydrochloric acid. On the other hand, when aluminum sulfate is used as the water-soluble aluminum compound, it can be neutralized with an alkali such as sodium hydroxide or potassium hydroxide.

【0040】次に行われる反応性有機ケイ素化合物によ
る表面処理は以下のような湿式法で行うことができる。
即ち、有機溶剤や水に対して前記反応性有機ケイ素化合
物を溶解または懸濁させ、前記無機系化合物で処理され
た酸化チタンを添加し、このような溶液を数分から1時
間程度撹拌して混合し、場合によっては加熱処理を施し
た後に、濾過などの工程を経て乾燥し、酸化チタン表面
をケイ素化合物基で被覆する。なお、有機溶剤や水に対
して酸化チタンを分散した懸濁液に前記反応性有機ケイ
素化合物を添加しても構わない。
The subsequent surface treatment with the reactive organosilicon compound can be performed by the following wet method.
That is, the reactive organosilicon compound is dissolved or suspended in an organic solvent or water, titanium oxide treated with the inorganic compound is added, and such a solution is mixed by stirring for several minutes to about 1 hour. In some cases, after a heat treatment, drying is performed through a step such as filtration to coat the titanium oxide surface with a silicon compound group. The reactive organic silicon compound may be added to a suspension in which titanium oxide is dispersed in an organic solvent or water.

【0041】又、メチルハイドロジェンポリシロキサン
による表面処理も反応性有機ケイ素化合物と同様の湿式
法で行うことができる。
The surface treatment with methylhydrogenpolysiloxane can be performed by the same wet method as that for the reactive organosilicon compound.

【0042】表面処理量については、前記表面処理時の
仕込み量にて未処理酸化チタン100質量部に対し、表
面処理化合物を0.1〜50質量部、さらに好ましくは
1〜10質量部が好ましい。表面処理量が上記範囲より
少ないと表面処理効果が充分に付与されず、分散性等が
悪くなる、感光体の帯電性が悪くなる等の弊害が生じ
る。また上記範囲より多いと同じく感光体の静電特性が
悪化し、残留電位上昇や帯電電位低下を引き起こす。
With respect to the amount of surface treatment, the amount of the surface treatment compound is preferably 0.1 to 50 parts by mass, more preferably 1 to 10 parts by mass, per 100 parts by mass of the untreated titanium oxide in the amount charged at the time of the surface treatment. . If the surface treatment amount is less than the above range, the surface treatment effect is not sufficiently imparted, resulting in adverse effects such as poor dispersibility and poor chargeability of the photoreceptor. If the amount is larger than the above range, the electrostatic characteristics of the photoconductor are similarly deteriorated, causing an increase in the residual potential and a decrease in the charged potential.

【0043】次に本発明に用いられる酸化チタン粒子の
平均粒径は10nm以上200nm以下の範囲が好まし
い。数平均一次粒径が前記範囲の酸化チタン粒子を用い
た中間層塗布液は分散安定性が良好で、且つこのような
塗布液から形成された中間層は十分な電位安定性、及び
黒ポチ発生防止機能を有する。
Next, the average particle size of the titanium oxide particles used in the present invention is preferably in the range of 10 nm to 200 nm. The coating solution for the intermediate layer using titanium oxide particles having the number average primary particle size in the above range has good dispersion stability, and the intermediate layer formed from such a coating solution has sufficient potential stability and black spots. Has a prevention function.

【0044】前記酸化チタン粒子の粒径は透過型電子顕
微鏡観察によって10000倍に拡大し、ランダムに1
00個の粒子を一次粒子として観察し、画像解析によっ
てフェレ方向平均径としての測定値である。
The particle size of the titanium oxide particles was magnified 10,000 times by transmission electron microscopy,
It is a measured value as an average diameter in the Feret direction by observing 00 particles as primary particles and performing image analysis.

【0045】本発明に用いられる酸化チタン粒子の形状
は、樹枝状、針状および粒状等の形状があり、このよう
な形状の酸化チタンは、結晶型としては、アナターゼ
型、ルチル型およびアモルファス型などがあるが、特に
はルチル型酸化チタンが好ましい。
The shape of the titanium oxide particles used in the present invention includes dendrites, needles, granules, and the like. The titanium oxide having such a shape has an anatase type, a rutile type, and an amorphous type. And the like, but particularly preferred is rutile-type titanium oxide.

【0046】次に本発明の中間層のバインダー樹脂とし
ては、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹
脂並びに、これらの樹脂の繰り返し単位のうちの2つ以
上を含む共重合体樹脂が挙げられる。これらバインダー
樹脂の中ではポリアミド樹脂が好ましく、特には共重
合、メトキシメチロール化等のアルコール可溶性ポリア
ミドが好ましい。
Next, examples of the binder resin for the intermediate layer of the present invention include polyamide resins, vinyl chloride resins, vinyl acetate resins, and copolymer resins containing two or more of the repeating units of these resins. Among these binder resins, polyamide resins are preferable, and alcohol-soluble polyamides such as copolymerization and methoxymethylol are particularly preferable.

【0047】前記バインダー樹脂中に分散される本発明
の表面処理酸化チタンの量は該バインダー樹脂100質
量部に対し、50〜1000質量部、好ましくは100
〜500質量部である。該表面処理酸化チタンをこの範
囲で用いることにより、該酸化チタンの分散性を良好に
保つことができ、黒ポチの発生しない、良好な中間層を
形成できる。
The amount of the surface-treated titanium oxide of the present invention dispersed in the binder resin is 50 to 1,000 parts by mass, preferably 100 to 100 parts by mass of the binder resin.
500500 parts by mass. By using the surface-treated titanium oxide in this range, the dispersibility of the titanium oxide can be kept good, and a good intermediate layer free of black spots can be formed.

【0048】本発明の中間層の膜厚は0.5〜15μm
が好ましく、より好ましくは1〜7μmが好ましい。膜
厚を前記範囲で用いることにより、黒ポチの発生しな
い、電子写真特性の良好な中間層を形成できる。
The thickness of the intermediate layer of the present invention is 0.5 to 15 μm.
And more preferably 1 to 7 μm. By using the film thickness in the above-mentioned range, an intermediate layer having good electrophotographic characteristics without black spots can be formed.

【0049】次に本発明の電子写真感光体の感光層につ
いて記載する。本発明の感光体の感光層構成は前記中間
層上に電荷発生機能と電荷輸送機能を1つの層に持たせ
た単層構造の感光層構成でも良いが、より好ましくは感
光層の機能を電荷発生層と電荷輸送層に分離した構成を
とるのがよい。機能を分離した構成を取ることにより繰
り返し使用に伴う残留電位増加を小さく制御でき、その
他の電子写真特性を目的に合わせて制御しやすい。負帯
電用の感光体では中間層の上に電荷発生層、その上に電
荷輸送層の構成を取ることが好ましい。正帯電用の感光
体では前記層構成の順が負帯電用感光体の場合の逆とな
る。本発明の最も好ましい感光層構成は前記機能分離構
造を有する負帯電感光体構成である。
Next, the photosensitive layer of the electrophotographic photosensitive member of the present invention will be described. The photosensitive layer of the photoreceptor of the present invention may have a single-layer structure in which a charge generation function and a charge transport function are provided on the intermediate layer in one layer. It is preferable to adopt a configuration in which a generation layer and a charge transport layer are separated. By adopting a configuration in which functions are separated, an increase in residual potential due to repeated use can be controlled to be small, and other electrophotographic characteristics can be easily controlled according to the purpose. It is preferable that the photoreceptor for negative charging has a configuration in which a charge generation layer is provided on the intermediate layer and a charge transport layer is provided thereon. In the case of a positively charged photoreceptor, the order of the layer configuration is opposite to that of the negatively charged photoreceptor. The most preferred photosensitive layer structure of the present invention is a negatively charged photosensitive member having the function-separated structure.

【0050】以下に機能分離負帯電感光体の感光層構成
について説明する。 電荷発生層 電荷発生層:電荷発生層には電荷発生物質を一種又は複
数種含有する。その他の物質としては必要によりバイン
ダー樹脂、その他添加剤を含有しても良い。
The structure of the photosensitive layer of the functionally-separated negatively charged photosensitive member will be described below. Charge generation layer Charge generation layer: The charge generation layer contains one or more charge generation substances. As other substances, a binder resin and other additives may be contained as necessary.

【0051】電荷発生物質としては公知の電荷発生物質
を用いることができる。例えばフタロシアニン顔料、ア
ゾ顔料、ペリレン顔料、アズレニウム顔料などを用いる
ことができる。これらの中でも特定の結晶構造を有する
フタロシアニン顔料、例えばCu−Kα線に対するブラ
ッグ角2θが27.2°に最大ピークを有するチタニル
フタロシアニン、ペリレン顔料、例えば同2θが12.
4に最大ピークを有するビスベンズイミダゾールペリレ
ンが好ましい。
As the charge generating substance, a known charge generating substance can be used. For example, phthalocyanine pigments, azo pigments, perylene pigments, azurenium pigments, and the like can be used. Among them, a phthalocyanine pigment having a specific crystal structure, for example, a titanyl phthalocyanine having a maximum peak at a Bragg angle 2θ of 27.2 ° with respect to Cu-Kα ray, a perylene pigment, for example, having a 2θ of 12.
Bisbenzimidazole perylene having a maximum peak at 4 is preferred.

【0052】電荷発生層のバインダー樹脂としては公知
の樹脂を用いることができるが、好ましい樹脂としては
ホルマール樹脂、ブチラール樹脂、シリコン樹脂、シリ
コン変性ブチラール樹脂、フェノキシ樹脂等が挙げられ
る。バインダー樹脂と電荷発生物質との割合は、バイン
ダー樹脂100質量部に対し20〜600質量部が好ま
しい。電荷発生層の膜厚は0.01μm〜2μmが好ま
しい。
As the binder resin for the charge generation layer, known resins can be used, and preferred resins include formal resin, butyral resin, silicon resin, silicon-modified butyral resin, phenoxy resin and the like. The ratio between the binder resin and the charge generating substance is preferably from 20 to 600 parts by mass per 100 parts by mass of the binder resin. The thickness of the charge generation layer is preferably from 0.01 μm to 2 μm.

【0053】電荷輸送層 電荷輸送層:電荷輸送層には電荷輸送物質及びを電荷輸
送物質分散し製膜するバインダー樹脂を含有する。その
他の物質としては必要により酸化防止剤等の添加剤を含
有しても良い。
Charge transport layer Charge transport layer: The charge transport layer contains a charge transport material and a binder resin for dispersing the charge transport material and forming a film. As other substances, additives such as antioxidants may be contained as necessary.

【0054】電荷輸送物質としては公知の電荷輸送物質
を用いることができる。例えばトリフェニルアミン誘導
体、ヒドラゾン化合物、スチリル化合物、ベンジジン化
合物、ブタジエン化合物などを用いることができる。こ
れらの中でも特定の構造を有する下記一般式(3)で表
されるトリフェニルアミンスチリル化合物が好ましい。
As the charge transport material, known charge transport materials can be used. For example, triphenylamine derivatives, hydrazone compounds, styryl compounds, benzidine compounds, butadiene compounds and the like can be used. Among these, a triphenylamine styryl compound having a specific structure and represented by the following general formula (3) is preferable.

【0055】[0055]

【化1】 Embedded image

【0056】一般式(3)中、R1〜R3は水素原子、ハ
ロゲン原子又は炭素数1〜5のアルキル基、アルコキシ
基を表す。l,m.nは0〜3の整数を表す。またAr
は水素原子又は前記R1〜R3で示す置換基を有しても良
いアリール基を表す。アリール基の中では特にフェニル
基が好ましい。
In the general formula (3), R 1 to R 3 represent a hydrogen atom, a halogen atom or an alkyl or alkoxy group having 1 to 5 carbon atoms. l, m. n represents the integer of 0-3. Ar
Represents a hydrogen atom or an aryl group which may have a substituent represented by R 1 to R 3 . Among the aryl groups, a phenyl group is particularly preferred.

【0057】一般式(3)で表されるトリフェニルアミ
ンスチリル化合物の具体例としては例えば下記化合物が
挙げられる。
Specific examples of the triphenylamine styryl compound represented by the general formula (3) include the following compounds.

【0058】[0058]

【化2】 Embedded image

【0059】[0059]

【化3】 Embedded image

【0060】[0060]

【化4】 Embedded image

【0061】[0061]

【化5】 Embedded image

【0062】電荷輸送層に用いられる樹脂としては、例
えばポリスチレン、アクリル樹脂、メタクリル樹脂、塩
化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール
樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹
脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネ
ート樹脂、シリコン樹脂、メラミン樹脂並びに、これら
の樹脂の繰り返し単位のうちの2つ以上を含む共重合体
樹脂。又これらの絶縁性樹脂の他、ポリ−N−ビニルカ
ルバゾール等の高分子有機半導体が挙げられるが、好ま
しいものはポリカーボネート樹脂である。バインダー樹
脂と電荷輸送物質との割合は、バインダー樹脂100質
量部に対し10〜200質量部が好ましい。また電荷輸
送層の膜厚は5〜20μmが好ましいが、前記電荷発生
層との総和である感光層の膜厚としては7〜20μmで
ある。またより好ましくは感光層の膜厚として10〜1
5μmが好ましい。このように感光層の膜厚を薄層にす
る事により、感光層内に発生したキャリアの拡散を防止
でき、更に、この薄層感光層の下層に前記中間層を設け
ることにより、薄層感光層で発生しやすい黒ポチを効果
的に防止できる。
Examples of the resin used for the charge transport layer include polystyrene, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, polyvinyl butyral resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, alkyd resin, and polycarbonate. Resins, silicone resins, melamine resins, and copolymer resins containing two or more of the repeating units of these resins. In addition to these insulating resins, high-molecular organic semiconductors such as poly-N-vinyl carbazole may be mentioned, and polycarbonate resins are preferred. The ratio of the binder resin to the charge transporting material is preferably from 10 to 200 parts by mass per 100 parts by mass of the binder resin. The thickness of the charge transport layer is preferably 5 to 20 μm, and the total thickness of the photosensitive layer, which is the sum of the thickness of the charge generation layer and the charge generation layer, is 7 to 20 μm. More preferably, the thickness of the photosensitive layer is 10 to 1
5 μm is preferred. By making the thickness of the photosensitive layer thin as described above, diffusion of carriers generated in the photosensitive layer can be prevented. Further, by providing the intermediate layer below the thin layer photosensitive layer, a thin layer photosensitive layer can be formed. Black spots that easily occur in the layer can be effectively prevented.

【0063】上記では本発明の最も好ましい感光体の層
構成を例示したが、本発明では上記以外の感光体層構成
でも良い。
Although the most preferred layer configuration of the photoreceptor of the present invention has been described above, other layer configurations of the photoreceptor may be used in the present invention.

【0064】本発明の中間層、感光層は上記各層の素材
を適切な溶媒又は分散媒に熔解又は分散して塗布するこ
とにより形成される。用いられる溶媒又は分散媒として
は、n−ブチルアミン、ジエチルアミン、エチレンジア
ミン、イソプロパノールアミン、トリエタノールアミ
ン、トリエチレンジアミン、N,N−ジメチルホルムア
ミド、アセトン、メチルエチルケトン、メチルイソプロ
ピルケトン、シクロヘキサノン、ベンゼン、トルエン、
キシレン、クロロホルム、ジクロロメタン、1,2−ジ
クロロエタン、1,2−ジクロロプロパン、1,1,2
−トリクロロエタン、1,1,1−トリクロロエタン、
トリクロロエチレン、テトラクロロエタン、テトラヒド
ロフラン、ジオキソラン、ジオキサン、メタノール、エ
タノール、ブタノール、1−プロパノール、イソプロパ
ノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシ
ド、メチルセロソルブ等が挙げられる。
The intermediate layer and the photosensitive layer of the present invention are formed by dissolving or dispersing the materials of the above-mentioned respective layers in an appropriate solvent or dispersion medium and coating. As the solvent or dispersion medium used, n-butylamine, diethylamine, ethylenediamine, isopropanolamine, triethanolamine, triethylenediamine, N, N-dimethylformamide, acetone, methylethylketone, methylisopropylketone, cyclohexanone, benzene, toluene,
Xylene, chloroform, dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2
-Trichloroethane, 1,1,1-trichloroethane,
Examples include trichloroethylene, tetrachloroethane, tetrahydrofuran, dioxolan, dioxane, methanol, ethanol, butanol, 1-propanol, isopropanol, ethyl acetate, butyl acetate, dimethyl sulfoxide, methyl cellosolve and the like.

【0065】本発明の電子写真感光体を製造するための
塗布加工方法としては、浸漬塗布、スプレー塗布、円形
量規制型塗布等の塗布加工法が用いられるが、感光層の
上層側の塗布加工は下層の膜を極力溶解させないため、
又、均一塗布加工を達成するためスプレー塗布又は円形
量規制型(円形スライドホッパ型がその代表例)塗布等
の塗布加工方法を用いるのが好ましい。なお前記スプレ
ー塗布については例えば特開平3−90250号及び特
開平3−269238号公報に詳細に記載され、前記円
形量規制型塗布については例えば特開昭58−1890
61号公報に詳細に記載されている。
As a coating method for producing the electrophotographic photoreceptor of the present invention, coating methods such as dip coating, spray coating and circular amount control type coating are used. Does not dissolve the underlying film as much as possible,
In order to achieve uniform coating, it is preferable to use a coating method such as spray coating or coating with a circular amount control type (a typical example is a circular slide hopper type). The spray coating is described in detail in, for example, JP-A-3-90250 and JP-A-3-269238, and the circular amount control type coating is described in, for example, JP-A-58-1890.
No. 61 discloses this in detail.

【0066】図1は本発明の1例としての画像形成装置
の断面図である。図1に於いて50は像担持体である感
光体ドラム(感光体)で、接地されて時計方向に駆動回
転する。52は帯電ローラを用いた帯電器(帯電手段)
で、感光体ドラム50周面に対し一様な帯電を感光体ド
ラム50周面に帯電ローラを接触させて帯電する接触帯
電方式を用いている。帯電ローラには電源(図示せず)
からDC及びAC成分から成るバイアス電圧が印加さ
れ、オゾン発生量が極めて少い状態で感光体ドラム50
への帯電が行なわれる。前記バイアス電圧は通常±50
0〜1000VのDCバイアスとこれに重畳して100
Hz〜10KHz、200〜3500V(p−p)のA
Cバイアスとからなる。
FIG. 1 is a sectional view of an image forming apparatus as an example of the present invention. In FIG. 1, reference numeral 50 denotes a photoconductor drum (photoconductor) serving as an image carrier, which is grounded and driven to rotate clockwise. 52 is a charger using a charging roller (charging means)
In this case, a contact charging method is used in which a uniform charge is applied to the peripheral surface of the photoconductor drum 50 and the charging roller is brought into contact with the peripheral surface of the photoconductor drum 50 to perform charging. Power supply (not shown) for charging roller
A bias voltage composed of DC and AC components is applied to the photosensitive drum 50 in a state where the amount of generated ozone is extremely small.
Is charged. The bias voltage is usually ± 50
0 to 1000V DC bias and 100
Hz to 10 KHz, 200 to 3500 V (pp) A
C bias.

【0067】帯電ローラは感光体ドラム50への圧接下
に従動又は強制回転される。感光体ドラム50への圧接
は10〜100g/cm、帯電ローラの回転は感光体ド
ラム50の周速の1〜8倍が好ましい。
The charging roller is driven or forcedly rotated while being pressed against the photosensitive drum 50. The pressure contact with the photoconductor drum 50 is preferably 10 to 100 g / cm, and the rotation of the charging roller is preferably 1 to 8 times the peripheral speed of the photoconductor drum 50.

【0068】又、帯電ローラは芯金とその外周に設けら
れた導電性弾性部材であるクロルプレンゴム、ウレタン
ゴム、シリコーンゴム等のゴム層又はそれらのスポンジ
層等から構成され、好ましくは最外層に0.01〜1μ
m厚の離型性弗素系樹脂又はシリコーン樹脂層から成る
保護層を設けて構成される。
The charging roller is composed of a cored bar and a rubber layer of chloroprene rubber, urethane rubber, silicone rubber, or the like, which is a conductive elastic member provided on the outer periphery thereof, or a sponge layer thereof, preferably an outermost layer. 0.01 ~ 1μ
The protective layer is formed of a m-thick release fluorine-based resin or silicone resin layer.

【0069】この帯電器52による帯電に先だって、前
画像形成での感光体の履歴をなくすために発光ダイオー
ド等を用いた帯電前露光部51による露光を行って感光
体周面の除電をしてもよい。
Prior to charging by the charger 52, exposure is performed by a pre-charging exposure unit 51 using a light emitting diode or the like to eliminate the history of the photoconductor in the previous image formation, and the peripheral surface of the photoconductor is discharged. Is also good.

【0070】感光体への一様帯電ののち像露光手段とし
ての像露光器53により画像信号に基づいた像露光が行
われる。この図の像露光器53は図示しないレーザーダ
イオードを露光光源とする。回転するポリゴンミラー5
31、fθレンズ等を経て反射ミラー532により光路
を曲げられた光により感光体ドラム上の走査がなされ、
静電潜像が形成される。
After the photosensitive member is uniformly charged, image exposure based on the image signal is performed by an image exposure device 53 as an image exposure means. The image exposure device 53 in this figure uses a laser diode (not shown) as an exposure light source. Rotating polygon mirror 5
31, the light on the photosensitive drum is scanned by the light whose optical path is bent by the reflection mirror 532 through the fθ lens and the like,
An electrostatic latent image is formed.

【0071】その静電潜像は次いで現像手段としての現
像器54で現像される。感光体ドラム50周縁にはトナ
ーとキャリアとから成る現像剤を内蔵した現像器54が
設けられていて、マグネットを内蔵し現像剤を保持して
回転する現像スリーブ541によって現像が行われる。
現像器54内部は現像剤攪拌部材、現像剤搬送部材、搬
送量規制部材542等から構成されており、現像剤は攪
拌、搬送されて現像スリーブに供給されるが、その供給
量は該搬送量規制部材542により制御される。該現像
剤の搬送量は適用される有機電子写真感光体の線速、現
像剤比重によっても異なるが、一般的には20〜200
mg/cm2の範囲である。
Next, the electrostatic latent image is developed by a developing device 54 as a developing means. A developing device 54 containing a developer including a toner and a carrier is provided on the periphery of the photoreceptor drum 50, and development is performed by a developing sleeve 541 that contains a magnet and rotates while holding the developer.
The inside of the developing device 54 is composed of a developer stirring member, a developer conveying member, a conveying amount regulating member 542, and the like. The developer is stirred and conveyed and supplied to the developing sleeve. It is controlled by the regulating member 542. The transport amount of the developer varies depending on the linear speed of the organic electrophotographic photosensitive member to be applied and the specific gravity of the developer, but is generally 20 to 200.
mg / cm 2 .

【0072】現像剤は、例えば前述のフェライトをコア
としてそのまわりに絶縁性樹脂をコーティングしたキャ
リアと、前述のスチレンアクリル系樹脂を主材料として
カーボンブラック等の着色剤と荷電制御剤と本発明の低
分子量ポリオレフィンからなる着色粒子に、シリカ、酸
化チタン等を外添したトナーとからなるもので、現像剤
は搬送量規制部材によって現像スリーブ541上に10
0〜600μmの層厚に規制されて現像域へと搬送さ
れ、現像が行われる。この時通常は感光体ドラム50と
現像スリーブ541の間に直流バイアス、必要に応じて
交流バイアス電圧をかけて現像が行われる。また、現像
剤は感光体に対して接触あるいは非接触の状態で現像さ
れる。
The developer is, for example, a carrier having the above-described ferrite as a core and an insulating resin coated around the core, a coloring agent such as carbon black using the above-mentioned styrene acrylic resin as a main material, a charge control agent, and the present invention. The toner is composed of colored particles made of a low molecular weight polyolefin and a toner in which silica, titanium oxide or the like is externally added.
The layer is regulated to a layer thickness of 0 to 600 μm and transported to a development area, where development is performed. At this time, development is usually performed by applying a DC bias voltage between the photosensitive drum 50 and the developing sleeve 541 and, if necessary, an AC bias voltage. The developer is developed in a state of contact or non-contact with the photoconductor.

【0073】記録紙Pは画像形成後、転写のタイミング
の整った時点で給紙ローラ57の回転作動により転写域
へと給紙される。
After the image is formed, the recording paper P is fed to the transfer area by the rotation of the paper feed roller 57 when the timing of the transfer is adjusted.

【0074】転写域においては転写のタイミングに同期
して感光体ドラム50の周面に転写手段としての転写ロ
ーラ(転写器)58が圧接され、給紙された記録紙Pを
挟着して転写される。
In the transfer area, a transfer roller (transfer device) 58 as transfer means is pressed against the peripheral surface of the photosensitive drum 50 in synchronization with the transfer timing, and the fed recording paper P is sandwiched and transferred. Is done.

【0075】次いで記録紙Pは転写ローラとほぼ同時に
圧接状態とされた分離ブラシ(分離器)59によって除
電がなされ、感光体ドラム50の周面により分離して定
着装置60に搬送され、熱ローラ601と圧着ローラ6
02の加熱、加圧によってトナーを溶着したのち排紙ロ
ーラ61を介して装置外部に排出される。なお前記の転
写ローラ58及び分離ブラシ59は記録紙Pの通過後感
光体ドラム50の周面より退避離間して次なるトナー像
の形成に備える。
Next, the recording paper P is neutralized by a separation brush (separator) 59 which is brought into pressure contact with the transfer roller almost simultaneously, is separated by the peripheral surface of the photosensitive drum 50, is conveyed to the fixing device 60, and is heated by the heat roller. 601 and pressure roller 6
After the toner is fused by heating and pressurizing 02, the toner is discharged to the outside of the apparatus via a paper discharge roller 61. The transfer roller 58 and the separation brush 59 are retracted and separated from the peripheral surface of the photosensitive drum 50 after the recording paper P has passed to prepare for the formation of the next toner image.

【0076】一方記録紙Pを分離した後の感光体ドラム
50は、クリーニング器(クリーニング手段)62のブ
レード621の圧接により残留トナーを除去・清掃し、
再び帯電前露光部51による除電と帯電器52による帯
電を受けて次なる画像形成のプロセスに入る。
On the other hand, the photosensitive drum 50 from which the recording paper P has been separated removes and cleans the residual toner by pressing the blade 621 of the cleaning device (cleaning means) 62.
Upon receiving the charge elimination by the pre-charge exposure unit 51 and the charging by the charger 52 again, the image forming process starts.

【0077】尚、70は感光体、帯電器、転写器、分離
器及びクリーニング器が一体化されている着脱可能なプ
ロセスカートリッジである。
Reference numeral 70 denotes a detachable process cartridge in which a photosensitive member, a charger, a transfer device, a separator, and a cleaning device are integrated.

【0078】画像形成装置としては、上述の感光体と、
現像器、クリーニング器等の構成要素をプロセスカート
リッジとして一体に結合して構成し、このユニットを装
置本体に対して着脱自在に構成しても良い。又、帯電
器、像露光器、現像器、転写又は分離器、及びクリーニ
ング器の少なくとも1つを感光体とともに一体に支持し
てプロセスカートリッジを形成し、装置本体に着脱自在
の単一ユニットとし、装置本体のレールなどの案内手段
を用いて着脱自在の構成としても良い。
As the image forming apparatus, the above-mentioned photosensitive member,
The components such as the developing device and the cleaning device may be integrally combined as a process cartridge, and this unit may be configured to be detachable from the apparatus main body. Also, a process cartridge is formed by integrally supporting at least one of a charger, an image exposing unit, a developing unit, a transfer or separating unit, and a cleaning unit together with a photoreceptor. It may be configured to be detachable using a guide means such as a rail of the apparatus body.

【0079】プロセスカートリッジには、一般には以下
に示す一体型カートリッジ及び分離型カートリッジがあ
る。一体型カートリッジとは、帯電器、像露光器、現像
器、転写又は分離器、及びクリーニング器の少なくとも
1つを感光体とともに一体に構成し、装置本体に着脱可
能な構成であり、分離型カートリッジとは感光体とは別
体に構成されている帯電器、像露光器、現像器、転写又
は分離器、及びクリーニング器であるが、装置本体に着
脱可能な構成であり、装置本体に組み込まれた時には感
光体と一体化される。本発明におけるプロセスカートリ
ッジは上記双方のタイプのカートリッジを含む。
The process cartridge generally includes an integral type cartridge and a separate type cartridge described below. The integral type cartridge is configured such that at least one of a charger, an image exposing unit, a developing unit, a transfer or separating unit, and a cleaning unit is integrally formed with a photoconductor, and is detachable from an apparatus main body. Are a charging device, an image exposure device, a developing device, a transfer or separation device, and a cleaning device which are configured separately from the photoreceptor, but have a configuration detachable from the apparatus main body and are incorporated in the apparatus main body. When integrated, it is integrated with the photoconductor. The process cartridge in the present invention includes both types of cartridges.

【0080】本発明の有機電子写真感光体は電子写真複
写機、レーザープリンター、LEDプリンター及び液晶
シャッター式プリンター等の電子写真装置一般に適応す
るが、更に、電子写真技術を応用したディスプレー、記
録、軽印刷、製版及びファクシミリ等の装置にも幅広く
適用することができる。
The organic electrophotographic photoreceptor of the present invention is applicable to general electrophotographic apparatuses such as electrophotographic copying machines, laser printers, LED printers, and liquid crystal shutter printers. It can be widely applied to devices such as printing, plate making, and facsimile.

【0081】[0081]

【実施例】以下、実施例をあげて本発明を詳細に説明す
るが、本発明の様態はこれに限定されない。なお、文中
「部」とは「質量部」を表す。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but embodiments of the present invention are not limited thereto. In the description, “parts” means “parts by mass”.

【0082】実施例1 下記のようにして感光体1を作製した。Example 1 A photoreceptor 1 was produced as follows.

【0083】直径80mmの円筒形アルミニウム製導電
性基体上に、下記の中間層塗布液を浸漬塗布して、乾燥
膜厚4.0μmの中間層を形成した。
The following intermediate layer coating solution was dip-coated on a cylindrical aluminum conductive substrate having a diameter of 80 mm to form an intermediate layer having a dry film thickness of 4.0 μm.

【0084】 〈中間層塗布液〉 ポリアミド樹脂「CM8000」(東レ社製) 10部 酸化チタン「SMT500SAS」(1回目:シリカ・アルミナ処理−2回目 :メチルハイドロジェンポリシロキサン処理:ルチル型:テイカ社製) 30部 メタノール 100部 上記を超音波ホモジナイザーを用いて分散し、中間層塗
布液を作製した。
<Intermediate Layer Coating Solution> Polyamide resin “CM8000” (manufactured by Toray Industries, Inc.) 10 parts Titanium oxide “SMT500SAS” (first time: silica / alumina treatment second time: methyl hydrogen polysiloxane treatment: rutile type: Teica) 30 parts methanol 100 parts The above was dispersed using an ultrasonic homogenizer to prepare an intermediate layer coating solution.

【0085】次に、下記の電荷発生層塗布液を、円形ス
ライドホッパーにて塗布して、乾燥膜厚0.3μmの電
荷発生層を形成した。
Next, the following charge generation layer coating solution was applied by a circular slide hopper to form a charge generation layer having a dry film thickness of 0.3 μm.

【0086】 〈電荷発生層塗布液〉 電荷発生物質(X線回折のブラッグ角2θが9.5度、24.1度、27.2 度に顕著なピークを有するY型チタニルフタロシアニン顔料) 12部 ポリビニルブチラール樹脂「エスレックBL−1」(積水化学社製) 24部 酢酸t−ブチル 300部 上記を混合しサンドグラインダーにて分散し、電荷発生
層塗布液を作製した。
<Coating Solution for Charge Generating Layer> 12 parts of a charge generating material (Y-type titanyl phthalocyanine pigment having remarkable peaks at X-ray diffraction Bragg angles 2θ of 9.5 °, 24.1 ° and 27.2 °) 24 parts of polyvinyl butyral resin "S-LEC BL-1" (manufactured by Sekisui Chemical Co., Ltd.) 24 parts t-butyl acetate 300 parts The above were mixed and dispersed with a sand grinder to prepare a charge generating layer coating liquid.

【0087】前記電荷発生層の上に下記の電荷輸送層塗
布液を、円形スライドホッパーにて塗布して、110
℃;60分加熱硬化し、乾燥膜厚14.5μmの電荷輸
送層を形成し、感光体1を作製した。
The following charge transport layer coating solution was applied on the charge generation layer using a circular slide hopper,
C .; heat-cured for 60 minutes to form a charge transport layer having a dry film thickness of 14.5 μm.

【0088】 〈電荷輸送層塗布液〉 電荷輸送物質(CT−6) 200部 ポリカーボネート「ユーピロンZ300」(三菱瓦斯化学社製) 300部 2,6−ジ−t−ブチル−4−フェニルフェノール 5部 1,2−ジクロロエタン 2000部 上記を混合溶解し、電荷発生層塗布液を作製した。<Coating solution for charge transport layer> Charge transport material (CT-6) 200 parts Polycarbonate "Iupilon Z300" (manufactured by Mitsubishi Gas Chemical Company) 300 parts 2,6-di-t-butyl-4-phenylphenol 5 parts 2,000 parts of 1,2-dichloroethane The above were mixed and dissolved to prepare a charge generating layer coating solution.

【0089】実施例2〜5 実施例1で用いた酸化チタンの代わりに表1に示す酸化
チタンを使用し、表1に示した電荷輸送層膜厚及び中間
層膜厚とした他は実施例1と同様にして感光体2〜5を
作製した。
Examples 2 to 5 The same procedures as in Example 1 were carried out except that the titanium oxide shown in Table 1 was used instead of the titanium oxide used in Example 1, and the thickness of the charge transport layer and the thickness of the intermediate layer shown in Table 1 were used. In the same manner as in Example 1, Photoconductors 2 to 5 were produced.

【0090】実施例6〜10 実施例1で用いた電荷輸送層の電荷輸送物質(CT−
6)を(CT−14)に代えて、酸化チタンの代わりに
表1に示す酸化チタンを使用し、表1に示した電荷輸送
層膜厚及び中間層膜厚とした他は実施例1と同様にして
感光体6〜10を作製した。
Examples 6 to 10 The charge transport material (CT-) of the charge transport layer used in Example 1 was used.
Example 6 was the same as Example 1 except that 6) was replaced with (CT-14) and titanium oxide shown in Table 1 was used instead of titanium oxide, and the thickness of the charge transport layer and the thickness of the intermediate layer shown in Table 1 were used. Photoconductors 6 to 10 were produced in the same manner.

【0091】比較例1 実施例1の電荷輸送層膜厚を24.5μmとした他は実
施例1と同様にして感光体11を作製した。
Comparative Example 1 A photoreceptor 11 was produced in the same manner as in Example 1 except that the thickness of the charge transport layer was changed to 24.5 μm.

【0092】比較例2 実施例1の中間層より酸化チタンを除き、乾燥膜厚を
1.0μmとした他は実施例1と同様にして感光体12
を作製した。
Comparative Example 2 Photoconductor 12 was prepared in the same manner as in Example 1 except that titanium oxide was removed from the intermediate layer of Example 1 and the dry film thickness was changed to 1.0 μm.
Was prepared.

【0093】比較例3 実施例6の電荷輸送層膜厚を20.5μmとした他は実
施例1と同様にして感光体13を作製した。
Comparative Example 3 A photoconductor 13 was prepared in the same manner as in Example 1, except that the thickness of the charge transport layer in Example 6 was changed to 20.5 μm.

【0094】比較例4 実施例6の中間層より酸化チタンを除き、乾燥膜厚を
1.0μmとした他は実施例6と同様にして感光体14
を作製した。
Comparative Example 4 Photoconductor 14 was prepared in the same manner as in Example 6 except that titanium oxide was removed from the intermediate layer of Example 6 and the dry film thickness was changed to 1.0 μm.
Was prepared.

【0095】[0095]

【表1】 [Table 1]

【0096】*膜厚測定法 上表中の感光層の膜厚は塗布液固形分の付き量より換算
した。又、渦電流方式の膜厚測定器EDDY560C
(HELMUT FISCHER GMBTECO社
製)を用い、中間層を含めた全層の膜厚と感光層を剥離
した中間層の膜厚を測定し、その差から感光層の膜厚を
測定することもできる。この測定法では均一膜厚部分を
ランダムに10ケ所測定し、その平均値を感光層の膜厚
とする。
* Measurement Method of Film Thickness The film thickness of the photosensitive layer in the above table was calculated from the amount of the solid content of the coating solution. Also, an eddy current type film thickness measuring device EDDY560C
Using HELMUT FISCHER GMBTECO, the thickness of the entire layer including the intermediate layer and the thickness of the intermediate layer from which the photosensitive layer has been peeled are measured, and the thickness of the photosensitive layer can be measured from the difference. In this measuring method, the uniform film thickness portion is measured at random at 10 points, and the average value is defined as the film thickness of the photosensitive layer.

【0097】(評価)各感光体をKonica7050
改造機(ローラ接触帯電方式、レーザー露光1200d
pi記録、平均粒径6.5μm重合トナー)を用いて常
温常湿(20℃、50%RH)において帯電、露光、除
電の連続繰り返しサイクルを6000回行い、スタート
時、及び終了直後に現像位置に設定した電位センサによ
り、未露光部電位VHと露光部電位VLを測定した。ま
た高温高湿(30℃、83%RH)、低温低湿(7℃、
21%RH)において、それぞれA4紙10,000枚
の連続画像複写を行い、黒ポチその他の画像欠陥の有無
を確認した。解像度の評価は常温常湿(20℃、50%
RH)で線画像の解像度チャートを複写し評価した。表
2に結果を示す。
(Evaluation) Each of the photoconductors was subjected to Konica 7050
Remodeling machine (roller contact charging system, laser exposure 1200d
Using a pi recording, a polymerized toner having an average particle diameter of 6.5 μm), a continuous repetition cycle of charging, exposure, and static elimination was performed 6000 times at normal temperature and normal humidity (20 ° C., 50% RH). , The unexposed portion potential VH and the exposed portion potential VL were measured. High temperature and high humidity (30 ° C, 83% RH), low temperature and low humidity (7 ° C,
(21% RH), continuous image copying of 10,000 sheets of A4 paper was performed to confirm the presence of black spots and other image defects. Evaluation of the resolution is normal temperature and normal humidity (20 ° C, 50%
(RH), the resolution chart of the line image was copied and evaluated. Table 2 shows the results.

【0098】[0098]

【表2】 [Table 2]

【0099】[0099]

【発明の効果】表2に示したとおり、本発明の電子写真
感光体は高解像度特性を有し、静電特性を損なうことな
く接触帯電プロセスにおける黒ポチ発生を顕著に改善し
ている。一方、本発明外の中間層を有する電子写真感光
体や感光層が20μmを超える電子写真感光体では、解
像度低下、或いは黒ポチ画像欠陥の発生が見られる。
As shown in Table 2, the electrophotographic photoreceptor of the present invention has a high resolution characteristic and remarkably improves the occurrence of black spots in the contact charging process without deteriorating the electrostatic characteristics. On the other hand, in the electrophotographic photoreceptor having an intermediate layer and the electrophotographic photoreceptor having a photosensitive layer having a thickness of more than 20 μm, a decrease in resolution or occurrence of black spot image defects is observed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1例としての画像形成装置の断面図で
ある。
FIG. 1 is a cross-sectional view of an image forming apparatus as one example of the present invention.

【符号の説明】[Explanation of symbols]

50 感光体ドラム(又は感光体) 51 帯電前露光部 52 帯電器 53 像露光器 54 現像器 541 現像スリーブ 542 搬送量規制部材 57 給紙ローラ 58 転写ローラ(転写器) 59 分離ブラシ(分離器) 60 定着装置 61 排紙ローラ 62 クリーニング器 70 プロセスカートリッジ Reference Signs List 50 photoreceptor drum (or photoreceptor) 51 pre-charging exposure unit 52 charger 53 image exposure unit 54 developing unit 541 developing sleeve 542 transport amount regulating member 57 paper feed roller 58 transfer roller (transfer unit) 59 separation brush (separator) Reference Signs List 60 fixing device 61 paper discharge roller 62 cleaning device 70 process cartridge

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 導電性支持体上に中間層、感光層を有す
る電子写真感光体において、該中間層が少なくとも酸化
チタン粒子及びバインダー樹脂を含有しており、該感光
層の膜厚が7〜20μmであることを特徴とする電子写
真感光体。
1. An electrophotographic photoreceptor having an intermediate layer and a photosensitive layer on a conductive support, wherein the intermediate layer contains at least titanium oxide particles and a binder resin, and the photosensitive layer has a thickness of 7 to An electrophotographic photosensitive member having a thickness of 20 μm.
【請求項2】 前記感光層の膜厚が10〜15μmであ
ることを特徴とする請求項1に記載の電子写真感光体。
2. The electrophotographic photosensitive member according to claim 1, wherein the thickness of the photosensitive layer is 10 to 15 μm.
【請求項3】 前記感光層が電荷発生層及び電荷輸送層
から構成されていることを特徴とする請求項1又は2に
記載の電子写真感光体。
3. The electrophotographic photosensitive member according to claim 1, wherein the photosensitive layer comprises a charge generation layer and a charge transport layer.
【請求項4】 前記酸化チタン粒子が表面処理を施され
ていることを特徴とする請求項1〜3の何れか1項に記
載の電子写真感光体。
4. The electrophotographic photoreceptor according to claim 1, wherein the titanium oxide particles have been subjected to a surface treatment.
【請求項5】 前記表面処理が複数の表面処理であり、
最初の表面処理が無機系化合物による表面処理であり、
最後の表面処理が反応性有機ケイ素化合物による表面処
理であることを特徴とする請求項4に記載の電子写真感
光体。
5. The surface treatment is a plurality of surface treatments,
The first surface treatment is a surface treatment with an inorganic compound,
The electrophotographic photoreceptor according to claim 4, wherein the last surface treatment is a surface treatment with a reactive organosilicon compound.
【請求項6】 前記無機系化合物がシリカ及びアルミナ
の少なくとも一方であり、反応性有機ケイ素化合物がメ
チルハイドロジェンポリシロキサンであることを特徴と
する請求項5に記載の電子写真感光体。
6. The electrophotographic photoreceptor according to claim 5, wherein the inorganic compound is at least one of silica and alumina, and the reactive organic silicon compound is methyl hydrogen polysiloxane.
【請求項7】 前記無機系化合物がシリカ及びアルミナ
の少なくとも一方であり、反応性有機ケイ素化合物が下
記一般式(1)で示される有機ケイ素化合物であること
を特徴とする請求項5に記載の電子写真感光体。 一般式(1) (R)n−Si−(X)4-n (式中、Siはケイ素原子、Rは該ケイ素原子に炭素が
直接結合した形の有機基を表し、Xは加水分解性基を表
し、nは0〜3の整数を表す。)
7. The method according to claim 5, wherein the inorganic compound is at least one of silica and alumina, and the reactive organic silicon compound is an organic silicon compound represented by the following general formula (1). Electrophotographic photoreceptor. Formula (1) (R) n -Si- (X) 4-n (wherein, Si is a silicon atom, R is an organic group in which carbon is directly bonded to the silicon atom, and X is hydrolyzable. Represents a group, and n represents an integer of 0 to 3.)
【請求項8】 前記酸化チタン粒子とバインダー樹脂の
質量比がバインダー樹脂100部に対し、酸化チタン粒
子100〜500部であることを特徴とする請求項1〜
7の何れか1項に記載の電子写真感光体。
8. The mass ratio of the titanium oxide particles to the binder resin is 100 to 500 parts of the titanium oxide particles to 100 parts of the binder resin.
8. The electrophotographic photoreceptor according to any one of 7.
【請求項9】 前記中間層のバインダー樹脂がポリアミ
ド樹脂であることを特徴とする請求項1〜8の何れか1
項に記載の電子写真感光体。
9. The method according to claim 1, wherein the binder resin of the intermediate layer is a polyamide resin.
13. The electrophotographic photoreceptor according to item 6.
【請求項10】 前記酸化チタン粒子の平均粒径が10
nm以上200nm以下であることを特徴とする請求項
1〜9の何れか1項に記載の電子写真感光体。
10. The titanium oxide particles having an average particle size of 10
The electrophotographic photoreceptor according to any one of claims 1 to 9, wherein the electrophotographic photoreceptor has a thickness of not less than 200 nm and not more than 200 nm.
【請求項11】 電子写真感光体と、少なくとも帯電手
段、像露光手段、現像手段、転写手段、クリーニング手
段を有し、繰り返し画像形成を行う画像形成装置におい
て、該電子写真感光体が請求項1〜10の何れか1項に
記載の電子写真感光体であることを特徴とする画像形成
装置。
11. An image forming apparatus having an electrophotographic photoreceptor and at least a charging unit, an image exposing unit, a developing unit, a transfer unit, and a cleaning unit, wherein the electrophotographic photoreceptor is repeatedly formed. An image forming apparatus comprising the electrophotographic photosensitive member according to any one of claims 10 to 10.
【請求項12】 該帯電手段が電子写真感光体に帯電部
材を接触させて帯電する接触帯電方式であることを特徴
とする請求項11に記載の画像形成装置。
12. An image forming apparatus according to claim 11, wherein said charging means is of a contact charging type in which a charging member is brought into contact with an electrophotographic photosensitive member to perform charging.
【請求項13】 請求項11又は12に記載の画像形成
装置に用いられるプロセスカートリッジにおいて、請求
項1〜10の何れか1項に記載の電子写真感光体と帯電
手段、像露光手段、現像手段、転写手段、クリーニング
手段の少なくとも1つを一体として有しており、該画像
形成装置に出し入れ可能に構成されたことを特徴とする
プロセスカートリッジ。
13. A process cartridge used in the image forming apparatus according to claim 11 or 12, wherein the electrophotographic photosensitive member according to claim 1 and a charging unit, an image exposure unit, and a development unit. A process unit having at least one of a transfer unit and a cleaning unit, and configured to be able to be taken in and out of the image forming apparatus.
JP2000394650A 2000-12-26 2000-12-26 Electrophotographic photoreceptor, image forming device and process cartridge Pending JP2002196522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000394650A JP2002196522A (en) 2000-12-26 2000-12-26 Electrophotographic photoreceptor, image forming device and process cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000394650A JP2002196522A (en) 2000-12-26 2000-12-26 Electrophotographic photoreceptor, image forming device and process cartridge

Publications (1)

Publication Number Publication Date
JP2002196522A true JP2002196522A (en) 2002-07-12

Family

ID=18860249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000394650A Pending JP2002196522A (en) 2000-12-26 2000-12-26 Electrophotographic photoreceptor, image forming device and process cartridge

Country Status (1)

Country Link
JP (1) JP2002196522A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017579A (en) * 2003-06-25 2005-01-20 Konica Minolta Business Technologies Inc Organic photoreceptor, process cartridge, image forming apparatus and image forming method
US7135262B2 (en) 2002-09-27 2006-11-14 Konica Corporation Image forming method
JP2007148357A (en) * 2005-10-31 2007-06-14 Kyocera Mita Corp Multilayer electrophotographic photoreceptor, method for manufacturing the same, and coating liquid for basecoat layer
US8808954B2 (en) 2011-05-10 2014-08-19 Konica Minolta Business Technologies, Inc. Electrophotographic photoconductor, process cartridge including the same, and image forming apparatus including the same
US8932787B2 (en) 2011-12-20 2015-01-13 Ricoh Company, Ltd. Electrophotographic photoconductor, electrophotographic apparatus and process cartridge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135262B2 (en) 2002-09-27 2006-11-14 Konica Corporation Image forming method
JP2005017579A (en) * 2003-06-25 2005-01-20 Konica Minolta Business Technologies Inc Organic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2007148357A (en) * 2005-10-31 2007-06-14 Kyocera Mita Corp Multilayer electrophotographic photoreceptor, method for manufacturing the same, and coating liquid for basecoat layer
US8808954B2 (en) 2011-05-10 2014-08-19 Konica Minolta Business Technologies, Inc. Electrophotographic photoconductor, process cartridge including the same, and image forming apparatus including the same
US8932787B2 (en) 2011-12-20 2015-01-13 Ricoh Company, Ltd. Electrophotographic photoconductor, electrophotographic apparatus and process cartridge

Similar Documents

Publication Publication Date Title
JP2008299020A (en) Electrophotographic photoreceptor and image forming apparatus equipped with the same
JP4288949B2 (en) Electrophotographic photoreceptor, image forming apparatus, image forming method, and process cartridge
US6472113B2 (en) Electrophotoreceptor, image forming apparatus and processing cartridge
JP2003122067A (en) Reversal development method, image forming method and image forming device
JP3829626B2 (en) Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP2002236381A (en) Electrophotographic photoreceptor, image forming device and process cartridge
JP2002287396A (en) Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP3876667B2 (en) Organic photoconductor, image forming apparatus, image forming method, and process cartridge
JP2003029440A (en) Electrophotographic photoreceptor, image forming method, image forming apparatus and process cartridge
JP2003140373A (en) Electrophotographic photoreceptor, image forming device and process cartridge
JP2005017579A (en) Organic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2002196522A (en) Electrophotographic photoreceptor, image forming device and process cartridge
JP4075587B2 (en) Organic photoconductor, image forming method, image forming apparatus, and process cartridge
JP4155055B2 (en) Organic photoreceptor, image forming apparatus, image forming method, and process cartridge
JP2003345045A (en) Electrophotographic photoreceptor, apparatus and method for image forming and process cartridge
JP2003177561A (en) Electrophotographic photoreceptor, image forming method, image forming device, and process cartridge
JP2004133018A (en) Organic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2004077974A (en) Reversal development method, image forming method and image forming apparatus
JP2003215825A (en) Electrophotographic photoreceptor, image forming method, image forming device and process cartridge
JP2017151365A (en) Electrophotographic photoreceptor and image forming apparatus
JP2003122039A (en) Image forming device and image forming method
JP2002023399A (en) Electrophotographic photoreceptor, method for image formation, device for image formation and process cartridge
JP2004101800A (en) Electrophotographic photoreceptor, image forming apparatus, image forming method and process cartridge
JP2004077975A (en) Organic photoreceptor, image forming method, and image forming apparatus
JPH0968846A (en) Image forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A977 Report on retrieval

Effective date: 20060412

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060425

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Effective date: 20070323

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211