JP2002195806A - Method and device for unwrapping two-dimensional phase data in interferometer - Google Patents

Method and device for unwrapping two-dimensional phase data in interferometer

Info

Publication number
JP2002195806A
JP2002195806A JP2000395086A JP2000395086A JP2002195806A JP 2002195806 A JP2002195806 A JP 2002195806A JP 2000395086 A JP2000395086 A JP 2000395086A JP 2000395086 A JP2000395086 A JP 2000395086A JP 2002195806 A JP2002195806 A JP 2002195806A
Authority
JP
Japan
Prior art keywords
pixel
boundary
unwrapping
region
interferometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000395086A
Other languages
Japanese (ja)
Other versions
JP3483139B2 (en
Inventor
Soichi Kadowaki
聰一 門脇
Tsunetaka Miyakura
常太 宮倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2000395086A priority Critical patent/JP3483139B2/en
Publication of JP2002195806A publication Critical patent/JP2002195806A/en
Application granted granted Critical
Publication of JP3483139B2 publication Critical patent/JP3483139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform a precise unwrapping even in a state having a large noise. SOLUTION: A phase calculation is performed by extracting a pixel (boundary pixel) near a boundary, extracting a pixel (vicinity pixel) in the vicinity of the extracted boundary pixel, performing an integration to each region for pixels except the boundary pixel and the vicinity pixel, and integrating the boundary pixel and the vicinity pixel to each corresponding region.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、干渉計によって得
られる2次元位相データのアンラップを行う方法及び装
置に係り、特に、ノイズの影響を受けることなく、位相
0〜2πの範囲に畳み込まれた位相分布から、もとの連
続な位相分布を求めることが可能な、干渉計における2
次元位相データのアンラップ方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for unwrapping two-dimensional phase data obtained by an interferometer, and more particularly, to a method of convolving a phase of 0 to 2π without being affected by noise. The interferometer is capable of obtaining the original continuous phase distribution from the
The present invention relates to a method and an apparatus for unwrapping dimensional phase data.

【0002】[0002]

【従来の技術】被検体と参照面とを干渉させて干渉縞を
形成させ、この干渉縞の強度データから2次元位相デー
タを求め、参照面と被検体との形状差を算出する干渉計
が知られている。この干渉計は、一般に、(1)干渉縞
強度分布の取得、(2)強度を位相情報に変換、(3)
有効領域の決定、(4)位相のアンラッピング、(5)
位相情報を形状に変換、の手順により形状を算出する。
2. Description of the Related Art An interferometer that causes an interference between an object and a reference surface to form an interference fringe, obtains two-dimensional phase data from intensity data of the interference fringe, and calculates a shape difference between the reference surface and the object is known. Are known. This interferometer generally comprises (1) obtaining an interference fringe intensity distribution, (2) converting the intensity into phase information, and (3)
Determination of effective area, (4) unwrapping of phase, (5)
The shape is calculated by the procedure of converting the phase information into the shape.

【0003】この手順内で、一般に、(2)の手順で強
度を位相情報に変換する際に、アークタンジェントの計
算が含まれ、そのために、位相データは、図1の右側及
び図2の上段に例示する如く、tan-1の値域である−π
からπに対応して0〜2πの範囲に畳み込まれる。
In this procedure, when the intensity is converted into phase information in the procedure (2), the calculation of the arc tangent is generally included. For this reason, the phase data is stored on the right side of FIG. -Π which is the range of tan -1
Are convolved in the range of 0 to 2π corresponding to.

【0004】例えば、5枚の位相シフトした画像から高
さ情報を算出するHariharanアルゴリズムでは、位相シ
フト量をαとすると、それぞれの画像の、ある一点での
輝度は、次式のように表される。
For example, in the Hariharan algorithm for calculating height information from five phase-shifted images, assuming that the amount of phase shift is α, the luminance of each image at a certain point is expressed by the following equation. You.

【0005】[0005]

【数1】 ここで、I1〜I5(x,y)は画像強度、I′(x,
y)は直流成分、I″(x,y)は交流成分、φ(x,
y)は高さ情報(位相情報)である。
(Equation 1) Here, I 1 to I 5 (x, y) are image intensities and I ′ (x, y
y) is a DC component, I ″ (x, y) is an AC component, and φ (x,
y) is height information (phase information).

【0006】この5つの式から、φ(x,y)に関する
次の式を得る。
From the five equations, the following equation for φ (x, y) is obtained.

【0007】[0007]

【数2】 (Equation 2)

【0008】従って、位相情報φ(x,y)は、次式で
算出できる。
Accordingly, the phase information φ (x, y) can be calculated by the following equation.

【0009】[0009]

【数3】 (Equation 3)

【0010】このような位相データ算出の結果求められ
る位相データ領域の所々に、図1の右側及び図2の上段
に示したような、2πに近いジャンプが現れる。このジ
ャンプを無くし、図1の左側及び図2の下段に示すよう
な、連続的に変化する位相データを求めることをアンラ
ッピングと称する。
As shown in the right side of FIG. 1 and the upper part of FIG. 2, jumps close to 2π appear in various parts of the phase data area obtained as a result of such phase data calculation. Eliminating this jump and obtaining continuously changing phase data as shown on the left side of FIG. 1 and the lower part of FIG. 2 is called unwrapping.

【0011】一般的なアンラッピングのアルゴリズム
は、次の手順で行われる。
A general unwrapping algorithm is performed in the following procedure.

【0012】(1)アンラップを始まる点を基準点とし
て、その点と隣り合う点との位相を比較する。 (2)位相のジャンプがある場合は、ジャンプが無くな
るように、隣りの点における位相に整数倍のオフセット
(図2の中段参照)を加える。 (3)(2)の手順が終了したら、隣の点を新たに基準
とする点として、(1)の手順に戻る。
(1) Using a point starting unwrapping as a reference point, the phase of the point and the adjacent point are compared. (2) If there is a jump in phase, an integer multiple offset (see the middle part of FIG. 2) is added to the phase at the adjacent point so that the jump is eliminated. (3) When the procedure of (2) is completed, the procedure returns to the procedure of (1) using the next point as a new reference point.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、この方
法では、図3(1次元で例示)及び図4(A)(2次元
で例示)に示す如く、境界のノイズが大きい場合、正し
くアンラッピングができず、本来は別の領域である領域
1と領域2(図3の場合)が、その境界部分のノイズの
影響によって境界部分の差が2πより小さくなり、図3
及び図4(C)に示す如く、本来別の領域が、図4
(B)に示す如く、一つの領域に統合されてしまうこと
があった。又、局所的にアンラッピングを行うために、
大局的なエラーを起こしやすいという問題点も有してい
た。
However, according to this method, as shown in FIG. 3 (exemplified in one dimension) and FIG. 4A (exemplified in two dimensions), when the noise at the boundary is large, unwrapping is performed correctly. 3 and the difference between the boundary portions becomes smaller than 2π due to the influence of noise at the boundary portions between the region 1 and the region 2 (in the case of FIG. 3).
As shown in FIG. 4C and FIG.
As shown in (B), there is a case where they are integrated into one area. Also, in order to perform unwrapping locally,
There is also a problem that a global error is likely to occur.

【0014】本発明は、前記従来の問題点を解消するべ
くなされたもので、ノイズの影響を受けることなく、正
確なアンラッピングを可能とすることを課題とする。
The present invention has been made to solve the above-mentioned conventional problems, and has as its object to enable accurate unwrapping without being affected by noise.

【0015】[0015]

【課題を解決するための手段】本発明は、干渉計によっ
て得られる2次元位相データのアンラップを行う方法で
おいて、位相算出後、境界付近の画素(境界画素)を抽
出し、更に、抽出された境界画素の近傍の画素(近傍画
素)を抽出し、前記境界画素と、その近傍画素を共に除
いた画素について、各領域への統合を行った後、前記境
界画素と、その近傍画素を、対応する領域に統合させる
ようにして、前記課題を解決したものである。
The present invention is a method for unwrapping two-dimensional phase data obtained by an interferometer. After calculating a phase, a pixel near a boundary (boundary pixel) is extracted. A pixel (neighboring pixel) in the vicinity of the boundary pixel thus extracted is extracted, and after integrating the boundary pixel and the pixel excluding the neighboring pixel into each region, the boundary pixel and the neighboring pixel are extracted. The above-mentioned problem is solved by integrating the above-mentioned areas.

【0016】又、前記各領域への統合に際して、各領域
で領域の要素数がしきい値以下の小領域は、ノイズとみ
なして無効領域とすることにより、小領域による誤差を
排除したものである。
In the integration into each of the above-mentioned regions, a small region in which the number of elements of the region is equal to or less than the threshold value is regarded as noise and is regarded as an invalid region, thereby eliminating errors due to the small region. is there.

【0017】更に、前記無効領域の画素については、領
域統合後、データを補間することにより、無効領域につ
いても有効なデータが得られるようにしたものである。
Further, for the pixels in the invalid area, the data is interpolated after the area integration, so that effective data can be obtained also for the invalid area.

【0018】又、前記各領域に対して、全ての領域間の
位相ジャンプ量の和を最小化する最小化問題を解くこと
により、各領域の移動量を算出するようにして、正確な
移動量が求められるようにしたものである。
Further, by solving the minimization problem for minimizing the sum of the phase jump amounts between all the regions for each of the regions, the movement amount of each region is calculated, so that the accurate movement amount is obtained. Is required.

【0019】本発明は、又、干渉計によって得られる2
次元位相データのアンラップを行う装置において、位相
算出後、境界付近の画素(境界画素)を抽出する境界画
素抽出手段と、更に、抽出された境界画素の近傍の画素
(近傍画素)を抽出する近傍画素抽出手段と、前記境界
画素と、その近傍画素を共に除いた画素について、各領
域への統合を行った後、前記境界画素と、その近傍画素
を、対応する領域に統合させる領域統合手段と、全ての
領域間の位相ジャンプ量の和を最小化する最適化問題を
解くことにより、各領域の移動量を算出する算出手段
と、を備えることにより、前記課題を解決したものであ
る。
The present invention also relates to the two-phase detector provided by the interferometer.
In an apparatus for unwrapping dimensional phase data, a boundary pixel extracting means for extracting a pixel near a boundary (boundary pixel) after calculating a phase, and a neighborhood for extracting a pixel (neighboring pixel) near the extracted boundary pixel Pixel extraction means, and, after performing integration on each area for the pixels excluding both the boundary pixels and the neighboring pixels, the boundary pixels and the area integration means for integrating the neighboring pixels into the corresponding area. Solving the optimization problem for minimizing the sum of the phase jump amounts between all the regions, and calculating means for calculating the movement amount of each region, thereby solving the above problem.

【0020】[0020]

【発明の実施の形態】以下、図面を参照して、本発明の
実施形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0021】図5は、本発明の一実施形態に係るアンラ
ップ装置を含む部品評価システムの構成を示す説明図で
ある。
FIG. 5 is an explanatory diagram showing the configuration of a component evaluation system including an unwrapping device according to one embodiment of the present invention.

【0022】この評価システムは、干渉計10と、該干
渉計10に接続された信号処理回路30と、該信号処理
回路30に接続されたコンピュータ32と、該コンピュ
ータ32に接続されたモニタ34とを備えている。
The evaluation system includes an interferometer 10, a signal processing circuit 30 connected to the interferometer 10, a computer 32 connected to the signal processing circuit 30, and a monitor 34 connected to the computer 32. It has.

【0023】前記干渉計10は、平行光束のレーザ光を
出射する光源12と、該光源12からのレーザ光が入射
され、入射光の一部を反射し、残りの一部を透過するビ
ームスプリッタ14と、前記光源12から出射されビー
ムスプリッタ14を透過した光を反射して、参照面を生
成する基準ミラー16と、該基準ミラー16を光軸方向
に移動するための駆動部18と、前記基準ミラー16で
反射され、更にビームスプリッタ14で反射された光の
光路上に配設された結像レンズ20と、該結像レンズ2
0によって結像される像を撮像するためのカメラ22と
を備えている。
The interferometer 10 includes a light source 12 that emits a parallel beam of laser light, and a beam splitter that receives the laser light from the light source 12, reflects a part of the incident light, and transmits the remaining part. 14, a reference mirror 16 that reflects light emitted from the light source 12 and transmitted through the beam splitter 14 to generate a reference surface, and a driving unit 18 for moving the reference mirror 16 in the optical axis direction. An imaging lens 20 disposed on the optical path of the light reflected by the reference mirror 16 and further reflected by the beam splitter 14;
A camera 22 for picking up an image formed by the zero.

【0024】前記光源12から出射され、ビームスプリ
ッタ14で反射された光の光路上には、被検体の被測定
面8が配置され、この被測定面8からの戻り光がビーム
スプリッタ14上に入射するようになっている。
On the optical path of the light emitted from the light source 12 and reflected by the beam splitter 14, a measured surface 8 of the subject is arranged, and the return light from the measured surface 8 is reflected on the beam splitter 14. It is designed to be incident.

【0025】この干渉計10では、光源12から出射さ
れた平行光束のレーザ光は、ビームスプリッタ14に入
射して一部が反射され、残りの一部が透過する。ビーム
スプリッタ14で反射された光は、被測定面8に入射
し、被測定面8からの戻り光が再度ビームスプリッタ1
4に入射し、一部が透過して、結像レンズ20を介して
カメラ22に入射する。一方、光源12から出射され、
ビームスプリッタ14を透過した光は、基準ミラー16
で反射され、再度ビームスプリッタ14に入射して、一
部が反射され、結像レンズ20を介してカメラ22に入
射する。この結果、カメラ22上では、被測定面8から
の光による被検面と基準ミラー16からの光による参照
面との干渉による干渉縞が形成され、この干渉縞がカメ
ラ22によって撮像される。
In this interferometer 10, a laser beam of a parallel light beam emitted from the light source 12 is incident on the beam splitter 14, part of which is reflected, and part of which is transmitted. The light reflected by the beam splitter 14 is incident on the surface 8 to be measured, and the light returned from the surface 8 to be measured is again reflected by the beam splitter 1.
4, a part of the light is transmitted, and enters the camera 22 via the imaging lens 20. On the other hand, emitted from the light source 12,
The light transmitted through the beam splitter 14 is transmitted to a reference mirror 16.
The light is again incident on the beam splitter 14, is partially reflected, and is incident on the camera 22 via the imaging lens 20. As a result, interference fringes are formed on the camera 22 due to interference between the surface to be measured by the light from the surface 8 to be measured and the reference surface by the light from the reference mirror 16, and the interference fringes are imaged by the camera 22.

【0026】カメラ22の出力は、信号処理回路30に
入力され、ここで、増幅、アナログ−デジタル変換など
の信号処理が行われ、2次元の各位置(画素)毎の干渉
縞強度データが生成され、この干渉縞強度データが、本
発明のアンラップ装置に対応するコンピュータ32に入
力される。縞走査動作時、コンピュータ32には、駆動
部18を制御して、基準ミラー16を例えばλ/4(但
しλは光の波長)ずつ光軸方向に4段階に移動させ、各
位置毎に、信号処理回路30からの干渉縞強度データを
取り込み、縞走査法に基づいて、干渉縞強度データから
位相データを生成する。コンピュータ32は、位相のア
ンラップ等の演算処理を行うと共に、必要に応じて、モ
ニタ34にデータや特性図等を表示する。
The output of the camera 22 is input to a signal processing circuit 30, where signal processing such as amplification and analog-to-digital conversion is performed to generate interference fringe intensity data for each two-dimensional position (pixel). Then, the interference fringe intensity data is input to the computer 32 corresponding to the unwrapping device of the present invention. At the time of the fringe scanning operation, the computer 32 controls the driving unit 18 to move the reference mirror 16 in four steps in the optical axis direction by, for example, λ / 4 (where λ is the wavelength of light). It takes in the interference fringe intensity data from the signal processing circuit 30 and generates phase data from the interference fringe intensity data based on the fringe scanning method. The computer 32 performs arithmetic processing such as phase unwrapping, and displays data, a characteristic diagram, and the like on the monitor 34 as necessary.

【0027】図6は、前記コンピュータ32で行われる
本実施形態の処理手順を示したものであり、まずステッ
プ100で、各画素における位相を算出する。
FIG. 6 shows the processing procedure of this embodiment performed by the computer 32. First, in step 100, the phase of each pixel is calculated.

【0028】次いでステップ104に進み、各画素の近
傍で位相情報は連続であるという仮定を用いて、ノイズ
除去を行う。但し、位相情報は0〜2πの範囲に畳み込
まれるため、図1の右側及び図2の上段に示したような
エッジが生ずる。
Then, the process proceeds to a step 104, wherein noise removal is performed using the assumption that the phase information is continuous in the vicinity of each pixel. However, since the phase information is convolved in the range of 0 to 2π, an edge as shown in the right side of FIG. 1 and the upper part of FIG. 2 is generated.

【0029】次いでステップ106に進み、位相情報に
対して、近傍の位相差が少ない画素同士を統合して、領
域統合を行う。この際、ノイズが多い場合には、図3及
び図4を用いて説明したように、本来2πの差がある領
域を、同一領域とみなして統合してしまうことがある。
そこで、本発明では、図7に示すような手順に従って、
領域統合を行う。なお、実際の処理は2次元であるが、
説明のため、1次元の図を参照して説明する。
Next, the routine proceeds to step 106, where pixels having a small phase difference in the vicinity are integrated with respect to the phase information to perform area integration. At this time, if there is a lot of noise, as described with reference to FIGS. 3 and 4, a region having a difference of 2π may be regarded as the same region and integrated.
Therefore, in the present invention, according to a procedure as shown in FIG.
Perform area integration. Although the actual processing is two-dimensional,
For the purpose of explanation, a description will be given with reference to a one-dimensional figure.

【0030】即ち、位相領域算出後、ステップ302
で、その画素の位相が、一方の境界に対応する0に近く
(しきい値により判断)、且つ、近傍に、別の領域に属
すべき、位相が2πに近い画素が存在するか、あるい
は、その画素の位相が、他方の境界に対応する2πに近
く(しきい値により判断)、且つ、近傍に、他方の別の
領域に属すべき、位相が0に近い画素が存在するという
条件を満たす画素(境界画素と称する)を抽出する。こ
の処理により抽出された境界画素を図6に示す。このス
テップ302で抽出された境界画素は、平面的には図9
に示す如くであり、境界が全て抽出されているわけでは
ない。
That is, after calculating the phase area, step 302
Then, the phase of the pixel is close to 0 (determined by the threshold value) corresponding to one of the boundaries, and there is a pixel in the vicinity that belongs to another region and has a phase close to 2π, or It satisfies the condition that the phase of the pixel is close to 2π corresponding to the other boundary (determined by the threshold value), and there is a pixel having a phase close to 0 that belongs to another area in the vicinity. Pixels (referred to as boundary pixels) are extracted. FIG. 6 shows the boundary pixels extracted by this processing. The boundary pixels extracted in step 302 are shown in FIG.
, And not all the boundaries have been extracted.

【0031】次いでステップ304に進み、ステップ3
02で抽出された境界画素の近傍(例えば8近傍)の画
素(近傍画素と称する)を抽出する。このステップ30
4により抽出された近傍画素の例を図10に示す。この
ステップ304で抽出された近傍画素を、ステップ30
2で抽出された境界画素に加えた場合には、平面的には
図11に示す如くなり、境界全てが抽出される。
Next, proceeding to step 304, step 3
Pixels in the vicinity (for example, 8 neighborhoods) of the boundary pixel extracted in 02 are extracted (neighboring pixels). This step 30
FIG. 10 shows an example of the neighboring pixels extracted by No. 4. The neighboring pixels extracted in this step 304 are
When added to the boundary pixels extracted in 2, the plane is as shown in FIG. 11, and all the boundaries are extracted.

【0032】次いでステップ306に進み、図12に示
す如く、ステップ302及び304で抽出された境界画
素及び近傍画素を除いた画素について領域統合を行う。
この境界画素及び近傍画素を除いた画素を平面的に示し
たのが図13であり、白い領域のみで領域統合処理を行
う。
Next, the process proceeds to step 306, and as shown in FIG. 12, region integration is performed on pixels excluding the boundary pixels and neighboring pixels extracted in steps 302 and 304.
FIG. 13 shows the pixels excluding the boundary pixels and the neighboring pixels in a plan view, and performs the area integration processing only on the white areas.

【0033】領域統合終了後、ステップ308に進み、
各領域で領域の要素数がしきい値、例えば4〜16画素
以下の場合は、これをノイズとみなして無効領域とし、
残りの領域を有効領域として残す。これにより、ノイズ
によって生じる小領域を誤って有効領域としてしまうこ
とがない。
After the area integration, the process proceeds to step 308,
When the number of elements in each area is equal to or less than a threshold value, for example, 4 to 16 pixels, this is regarded as noise and is regarded as an invalid area.
The remaining area is left as an effective area. This prevents a small area caused by noise from being mistakenly set as an effective area.

【0034】次いでステップ310に進み、ステップ3
02で抽出した境界画素及びステップ304で抽出した
近傍画素を、図14に示す如く、対応する各領域へ統合
させることによって、図4(C)に示した如く、それぞ
れ別の領域に正しく統合させることができる。
Next, the routine proceeds to step 310, where step 3
By integrating the boundary pixels extracted in step 02 and the neighboring pixels extracted in step 304 into corresponding areas as shown in FIG. 14, they are correctly integrated into different areas as shown in FIG. 4C. be able to.

【0035】領域統合終了後、図6のステップ108に
進み、各領域で領域の要素数がしきい値、例えば4〜1
6画素以下の場合は、これをノイズとみなして無効領域
とし、残りの領域を有効領域として残す。これにより、
ノイズによって生じる小領域を誤って有効領域としてし
まうことがない。なお、このステップ108におけるし
きい値は、図7のステップ308におけるしきい値と異
なる値に設定することができる。
After the area integration is completed, the process proceeds to step 108 in FIG.
If the number of pixels is six or less, this is regarded as noise and is set as an invalid area, and the remaining area is left as an effective area. This allows
A small area caused by noise is not mistakenly set as an effective area. The threshold value in step 108 can be set to a value different from the threshold value in step 308 in FIG.

【0036】次いでステップ110に進み、各領域に対
して、それぞれの領域間の位相ジャンプ量の和を最小化
する最適化問題を解くベストフィットを行う。いま、図
15に示すような複数の領域の同時ベストフィットを考
え、図16に示すように、領域SとS′の境界対応点を
i (S)、ri (S')とする。
Next, the routine proceeds to step 110, where a best fit is performed for each region to solve an optimization problem that minimizes the sum of the phase jump amounts between the respective regions. Now, consider the simultaneous best fit of a plurality of areas as shown in FIG. 15, as shown in FIG. 16, 'a boundary corresponding points r i (S), r i (S' region S and S and).

【0037】この時、ベストフィット後の面SとS′の
回転と平行移動を、それぞれR(S)、R(S')及びT(S)
(S')とすると、この時の対応点間の距離fi (s、s')は、
次式で表される。
At this time, the rotation and parallel movement of the surfaces S and S 'after the best fit are represented by R (S) , R (S') and T (S) , respectively.
Assuming that T (S ′) , the distance f i (s, s ′) between the corresponding points at this time is
It is expressed by the following equation.

【0038】[0038]

【数4】 (Equation 4)

【0039】この際、fi (s、s')を、2πの整数倍で丸め
ることで、誤差を少なくする効果を得ることも考えられ
る。
At this time, by rounding f i (s, s ′) by an integral multiple of 2π, an effect of reducing an error may be obtained.

【0040】次に、次の制約条件を考慮する。Next, the following constraints are considered.

【0041】[0041]

【数5】 ここで、tx、ty、tzはx、y、z方向の平行移動
成分、φ、ψ、θは、ロール、ヨー、ピッチを表してい
る。
(Equation 5) Here, tx, ty, and tz represent translation components in the x, y, and z directions, and φ, ψ, and θ represent roll, yaw, and pitch.

【0042】ここでは、上下方向の平行移動が殆どなの
で、tx(sys)、ty(sys)、φ(sys )、ψ(sys)、θ
(sys)の制約条件は、0に非常に近い値とする。
Here, since the vertical movement is almost the same, tx (sys) , ty (sys) , φ (sys ) , ψ (sys) , θ
The constraint condition of (sys) is a value very close to 0.

【0043】なお、φ、ψ、θで回転Rを表現すると、
次式になる。
When the rotation R is expressed by φ, ψ, θ,
It becomes the following formula.

【0044】[0044]

【数6】 (Equation 6)

【0045】ペナルティ法により、この制約条件を考慮
することにすると、面sのペナルティ関数pは、次のよ
うに定義される。
If this constraint is considered by the penalty method, the penalty function p of the surface s is defined as follows.

【0046】[0046]

【数7】 ここで、γtx、γty、γtz、γφ、γθ、γψは、各ペ
ナルティの重みであり、制約条件の許容値の逆数とし
て、予め与えられている正の定数とする。
(Equation 7) Here, γ tx , γ ty , γ tz , γ φ, γ θ, and γ で are weights of each penalty, and are positive constants given in advance as reciprocals of allowable values of the constraint conditions.

【0047】以上から、制約条件をペナルティ関数とし
て組み込んだ評価関数ベクトルFは、次式となる。
From the above, the evaluation function vector F in which the constraints are incorporated as a penalty function is as follows.

【0048】[0048]

【数8】 但し、値が0となるペテルティ項は除く。(Equation 8) However, the peterty term whose value is 0 is excluded.

【0049】よって、境界間のずれ距離に対応する評価
量Φは、次式で与えられる。
Therefore, the evaluation amount Φ corresponding to the shift distance between the boundaries is given by the following equation.

【0050】[0050]

【数9】 (Equation 9)

【0051】この評価量Φを最小にする未知パラメータ
Xを、例えば非線形最小二乗法の繰返し計算により求め
る。ここで、Nsは、同時ベストフィットの対象となる
面の数、N(s,s′)は、面sとs′の間の対応点の
数であり、未知パラメータXは、次式で与えられる。
The unknown parameter X that minimizes the evaluation amount Φ is obtained by, for example, iterative calculation of the nonlinear least squares method. Here, Ns is the number of faces to be subjected to simultaneous best fitting, N (s, s ') is the number of corresponding points between the faces s and s', and the unknown parameter X is given by the following equation. Can be

【0052】[0052]

【数10】 (Equation 10)

【0053】上記のようにして求められたベストフィッ
トによる解を基に、図6のステップ112で、各領域の
相互の画素について位相計算を行い、図2の中段に示し
たような、領域毎に異なる位相を加算することによっ
て、図2の下段に示したように全体を統合して、図1の
左側に示したような全体図形を得る。
Based on the best fit solution obtained as described above, in step 112 of FIG. 6, the phase calculation is performed for the mutual pixels in each region, and the phase calculation is performed for each region as shown in the middle part of FIG. By adding different phases to each other, the whole is integrated as shown in the lower part of FIG. 2 to obtain the whole figure as shown on the left side of FIG.

【0054】次いでステップ114に進み、ステップ1
08で排除した小さな無効領域について、補間が可能で
あれば、補間を行って、データを補充する。なお、近傍
画素が少ないなどの理由で補間ができない場合には、そ
のままとすることができる。
Then, the process proceeds to a step 114, wherein a step 1
If interpolation is possible for the small invalid area excluded in step 08, interpolation is performed to supplement the data. If the interpolation cannot be performed because there are few neighboring pixels, it can be left as it is.

【0055】このようにして、図7に示した領域統合処
理と、最適化問題を解くベストフィットの手法を組み合
わせることにより、特に優れた効果を得ることができ
る。なお、各領域の移動量を求める方法は、ベストフィ
ットの手法に限定されず、例えば、特開平10−901
12で提案されたような、方程式を使う方法を用いても
よい。
In this way, a particularly excellent effect can be obtained by combining the area integration processing shown in FIG. 7 and the best-fit method for solving the optimization problem. Note that the method of obtaining the movement amount of each region is not limited to the best-fit method, and is described in, for example, Japanese Patent Application Laid-Open No. 10-901.
A method using an equation, such as that proposed in No. 12, may be used.

【0056】[0056]

【発明の効果】本発明によれば、ノイズが大きい状況で
も、正しいアンラップが可能となる。
According to the present invention, correct unwrapping can be performed even in a situation where noise is large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アンラッピングを説明するための斜視図FIG. 1 is a perspective view for explaining unwrapping.

【図2】同じく1次元の図FIG. 2 is also a one-dimensional diagram.

【図3】従来のアンラッピングにおける問題点を説明す
るための1次元の図
FIG. 3 is a one-dimensional diagram for explaining a problem in the conventional unwrapping.

【図4】同じく平面図FIG. 4 is a plan view of the same.

【図5】本発明の一実施形態に係るアンラップ装置を含
む部品評価システムの構成を示す説明図
FIG. 5 is an explanatory diagram showing a configuration of a component evaluation system including an unwrap device according to an embodiment of the present invention.

【図6】前記実施形態におけるアンラップの処理手順を
示す流れ図
FIG. 6 is a flowchart showing an unwrap processing procedure in the embodiment.

【図7】同じく領域統合処理手順を示す流れ図FIG. 7 is a flowchart showing an area integration processing procedure.

【図8】前記領域統合処理手順により抽出された境界画
素の例を示す1次元の図
FIG. 8 is a one-dimensional diagram showing an example of boundary pixels extracted by the area integration processing procedure.

【図9】同じく平面図FIG. 9 is a plan view of the same.

【図10】前記領域統合処理手順により抽出された近傍
画素の例を示す1次元の図
FIG. 10 is a one-dimensional diagram showing an example of neighboring pixels extracted by the area integration processing procedure.

【図11】前記領域統合処理手順により抽出された境界
画素と近傍画素を示す平面図
FIG. 11 is a plan view showing boundary pixels and neighboring pixels extracted by the area integration processing procedure;

【図12】前記境界画素及び近傍画素を除いた画素で領
域統合を行う様子を示す1次元の図
FIG. 12 is a one-dimensional diagram showing a state in which region integration is performed on pixels excluding the boundary pixels and neighboring pixels.

【図13】同じく平面図FIG. 13 is a plan view of the same.

【図14】前記境界画素及び近傍画素を各領域に統合す
る様子を示す1次元の図
FIG. 14 is a one-dimensional view showing how the boundary pixels and neighboring pixels are integrated into each region.

【図15】ベストフィットの対象の例を示す斜視図FIG. 15 is a perspective view showing an example of a best fit target.

【図16】ベストフィットで用いた符号の説明図FIG. 16 is an explanatory diagram of symbols used in the best fit.

【符号の説明】[Explanation of symbols]

8…被測定面 10…干渉計 12…光源 14…ビームスプリッタ 16…基準ミラー 18…駆動部 20…結像レンズ 22…カメラ 30…信号処理装置 32…コンピュータ(アンラップ装置) 34…モニタ 8 Surface to be measured 10 Interferometer 12 Light source 14 Beam splitter 16 Reference mirror 18 Drive unit 20 Imaging lens 22 Camera 30 Signal processing device 32 Computer (unwrapping device) 34 Monitor

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F064 AA09 CC01 FF01 GG12 GG22 GG52 HH03 HH08 JJ01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F064 AA09 CC01 FF01 GG12 GG22 GG52 HH03 HH08 JJ01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】干渉計によって得られる2次元位相データ
のアンラップを行う方法において、 位相算出後、境界付近の画素(境界画素)を抽出し、 更に、抽出された境界画素の近傍の画素(近傍画素)を
抽出し、 前記境界画素と、その近傍画素を共に除いた画素につい
て、各領域への統合を行った後、 前記境界画素と、その近傍画素を、対応する領域に統合
させることを特徴とする干渉計における2次元位相デー
タのアンラップ方法。
In a method for unwrapping two-dimensional phase data obtained by an interferometer, a pixel near a boundary (boundary pixel) is extracted after calculating a phase, and a pixel (neighboring pixel) near the extracted boundary pixel is extracted. (Pixel), and after integrating the boundary pixel and its neighboring pixels together with each region, the boundary pixel and its neighboring pixels are integrated into the corresponding region. Unwrapping method of two-dimensional phase data in the interferometer.
【請求項2】前記各領域への統合に際して、各領域で領
域の要素数がしきい値以下の小領域は、ノイズとみなし
て無効領域とすることを特徴とする請求項1に記載の干
渉計における2次元位相データのアンラップ方法。
2. The interference according to claim 1, wherein, at the time of integration into each area, a small area in which the number of elements of each area is equal to or smaller than a threshold value is regarded as noise and regarded as an invalid area. Unwrapping method of two-dimensional phase data in the meter.
【請求項3】前記無効領域の画素について、領域統合
後、データを補間することを特徴とする請求項2に記載
の干渉計における2次元位相データのアンラップ方法。
3. The method of unwrapping two-dimensional phase data in an interferometer according to claim 2, wherein data is interpolated after pixel integration of the invalid area.
【請求項4】前記各領域に対して、全ての領域間の位相
ジャンプ量の和を最小化する最適化問題を解くことによ
り、各領域の移動量を算出することを特徴とする請求項
1乃至3のいずれかに記載の干渉計における2次元位相
データのアンラップ方法。
4. The moving amount of each region is calculated by solving an optimization problem for minimizing the sum of the amount of phase jump between all the regions for each region. 4. The method of unwrapping two-dimensional phase data in the interferometer according to any one of claims 1 to 3.
【請求項5】干渉計によって得られる2次元位相データ
のアンラップを行う装置において、 位相算出後、境界付近の画素(境界画素)を抽出する境
界画素抽出手段と、 更に、抽出された境界画素の近傍の画素(近傍画素)を
抽出する近傍画素抽出手段と、 前記境界画素と、その近傍画素を共に除いた画素につい
て、各領域への統合を行った後、前記境界画素と、その
近傍画素を、対応する領域に統合させる領域統合手段
と、 全ての領域間の位相ジャンプ量の和を最小化する最適化
問題を解くことにより、各領域の移動量を算出する算出
手段と、 を備えたことを特徴とする干渉計における2次元位相デ
ータのアンラップ装置。
5. An apparatus for unwrapping two-dimensional phase data obtained by an interferometer, comprising: a boundary pixel extracting means for extracting a pixel (boundary pixel) near a boundary after calculating a phase; A neighboring pixel extracting means for extracting neighboring pixels (neighboring pixels); integrating the boundary pixels and the pixels excluding the neighboring pixels into each region; , A region integrating means for integrating into a corresponding region, and a calculating means for calculating a moving amount of each region by solving an optimization problem that minimizes a sum of phase jump amounts between all the regions. A device for unwrapping two-dimensional phase data in an interferometer, characterized in that:
JP2000395086A 2000-12-26 2000-12-26 Method and apparatus for unwrapping two-dimensional phase data in an interferometer Expired - Fee Related JP3483139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000395086A JP3483139B2 (en) 2000-12-26 2000-12-26 Method and apparatus for unwrapping two-dimensional phase data in an interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000395086A JP3483139B2 (en) 2000-12-26 2000-12-26 Method and apparatus for unwrapping two-dimensional phase data in an interferometer

Publications (2)

Publication Number Publication Date
JP2002195806A true JP2002195806A (en) 2002-07-10
JP3483139B2 JP3483139B2 (en) 2004-01-06

Family

ID=18860606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000395086A Expired - Fee Related JP3483139B2 (en) 2000-12-26 2000-12-26 Method and apparatus for unwrapping two-dimensional phase data in an interferometer

Country Status (1)

Country Link
JP (1) JP3483139B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281493A (en) * 2007-05-11 2008-11-20 Nippon Steel Corp Surface defect inspection system, method, and program
US7593596B2 (en) 2005-11-17 2009-09-22 Fujitsu Limited Phase unwrapping method, program, and interference measurement apparatus
JP2009250875A (en) * 2008-04-09 2009-10-29 Canon Inc Wavefront measuring method and wavefront measuring apparatus using the wavefront measuring method
JP2010223627A (en) * 2009-03-19 2010-10-07 Olympus Corp Unwrap method and apparatus for two-dimensional phase data by interferometer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155051A (en) * 1998-11-18 2000-06-06 Fuji Photo Optical Co Ltd Phase state analyzing method for equiphase stripes
JP2001153797A (en) * 1999-11-24 2001-06-08 Science & Tech Agency Method for unwrapping phase data
JP2001241930A (en) * 2000-03-02 2001-09-07 Fuji Photo Optical Co Ltd Method of analyzing fringe image
JP2002131027A (en) * 2000-10-23 2002-05-09 Mitsutoyo Corp Measuring apparatus for interference of phase shift, method therefor and record medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155051A (en) * 1998-11-18 2000-06-06 Fuji Photo Optical Co Ltd Phase state analyzing method for equiphase stripes
JP2001153797A (en) * 1999-11-24 2001-06-08 Science & Tech Agency Method for unwrapping phase data
JP2001241930A (en) * 2000-03-02 2001-09-07 Fuji Photo Optical Co Ltd Method of analyzing fringe image
JP2002131027A (en) * 2000-10-23 2002-05-09 Mitsutoyo Corp Measuring apparatus for interference of phase shift, method therefor and record medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7593596B2 (en) 2005-11-17 2009-09-22 Fujitsu Limited Phase unwrapping method, program, and interference measurement apparatus
JP2008281493A (en) * 2007-05-11 2008-11-20 Nippon Steel Corp Surface defect inspection system, method, and program
JP2009250875A (en) * 2008-04-09 2009-10-29 Canon Inc Wavefront measuring method and wavefront measuring apparatus using the wavefront measuring method
JP2010223627A (en) * 2009-03-19 2010-10-07 Olympus Corp Unwrap method and apparatus for two-dimensional phase data by interferometer

Also Published As

Publication number Publication date
JP3483139B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
EP1643210B1 (en) Method and apparatus for measuring shape of an object
US8199335B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
KR101257188B1 (en) Three-dimensional shape measuring device, three-dimensional shape measuring method, and computer readable recording medium for three-dimessional shape measuring program
JP5541653B2 (en) Imaging apparatus and control method thereof
US20100309292A1 (en) Method and apparatus for generating multi-viewpoint depth map, method for generating disparity of multi-viewpoint image
US20080117438A1 (en) System and method for object inspection using relief determination
JP4043931B2 (en) 3D information acquisition system
CN110595388B (en) High-dynamic real-time three-dimensional measurement method based on binocular vision
JP3483139B2 (en) Method and apparatus for unwrapping two-dimensional phase data in an interferometer
JP2006250853A (en) Object surface shape measuring method and its system
JP2014130086A (en) Range image sensor, processor and program
US7324215B2 (en) Non-destructive optical imaging system for enhanced lateral resolution
KR101465996B1 (en) Method for measurement of high speed 3d shape using selective long period
JP3912666B2 (en) Optical shape measuring device
US20230259070A1 (en) Systems and Methods for Reconstruction of Digital Holograms
JP3148020B2 (en) Wavefront phase joining method by fringe scanning interferometry
JP7438555B2 (en) 3D measurement method and 3D measurement device
US20230306623A1 (en) Apparatus, method, and storage medium
KR20220122529A (en) Three-dimensional measurement device and three-dimensional measurement method
JP2000161908A (en) Phase connecting method for wave fronts by fringe scanning interference measuring method
US20210400217A1 (en) Time-of-flight down-up sampling using a compressed guide
JPH05340843A (en) Method for connecting phase of wave front by fringe scanning interference measurement system
KR101765257B1 (en) Method for acquiring three dimensional image information, and computing device implementing the samemethod
JP2000149024A (en) Phase connecting method and device and recording medium
JPH03218431A (en) Phase connecting method for wave surface for fringe scanning interference measuring system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3483139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151017

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees