JP2002195003A - Moving blade tip cooling structure of gas turbine - Google Patents

Moving blade tip cooling structure of gas turbine

Info

Publication number
JP2002195003A
JP2002195003A JP2000398887A JP2000398887A JP2002195003A JP 2002195003 A JP2002195003 A JP 2002195003A JP 2000398887 A JP2000398887 A JP 2000398887A JP 2000398887 A JP2000398887 A JP 2000398887A JP 2002195003 A JP2002195003 A JP 2002195003A
Authority
JP
Japan
Prior art keywords
blade tip
gas turbine
groove
grooves
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000398887A
Other languages
Japanese (ja)
Other versions
JP3727847B2 (en
Inventor
Junji Hashimura
淳司 橋村
Kenichiro Takeishi
賢一郎 武石
Tatsuo Ishiguro
達男 石黒
Masaaki Matsuura
正昭 松浦
Kunihiro Shimizu
邦弘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000398887A priority Critical patent/JP3727847B2/en
Publication of JP2002195003A publication Critical patent/JP2002195003A/en
Application granted granted Critical
Publication of JP3727847B2 publication Critical patent/JP3727847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a moving blade tip cooling structure of gas turbine, capable of cooling the tip parts of moving blades uniformly to a satisfactory degree. SOLUTION: A recess 91 is formed at the tip of the body part 90 of each moving blade, and a lid 100, having grooves 101, 102, 103 at the flank side face 100a, a rear-side face 100b and undersurface 100c, which are formed separately, is tightly attached to the recess. To the grooves, cooling air is fed from a cooling air lead-in passage 93i, formed at a front edge member 90f provided on the body and is exhausted from a cooling-air exhaust passage 93e formed at a trailing edge member 90r of the body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガスタービン動翼翼
端冷却構造に関する。
The present invention relates to a gas turbine blade tip cooling structure.

【0002】[0002]

【従来の技術】ガスタービンが発電や、その他、色々な
用途のために数多く使用されている。このガスタービン
は圧縮機で高温に圧縮された空気に燃料を噴射して燃焼
筒内で燃焼して燃焼ガスを発生し、この燃焼ガスを静翼
で整流して動翼に導き、タービンを回転せしめて動力を
得るものである。そして、ガスタービンの効率を上げる
ためには動翼へ導く燃焼ガス温度はできるだけ高い方が
よく、動翼にあたる燃焼ガスの温度はますます高くなる
傾向にある。
2. Description of the Related Art Gas turbines are widely used for power generation and various other purposes. This gas turbine injects fuel into air compressed to a high temperature by a compressor, burns it in a combustion cylinder to generate combustion gas, rectifies the combustion gas with stationary vanes, guides it to the moving blades, and rotates the turbine. The power is obtained at least. In order to increase the efficiency of the gas turbine, the temperature of the combustion gas guided to the moving blade should be as high as possible, and the temperature of the combustion gas falling on the moving blade tends to be higher.

【0003】[0003]

【発明が解決しようとする課題】このような、燃焼ガス
の高温化を実現させるためには、動翼の冷却を燃焼ガス
の高温化の耐えられるように向上することが必要であ
る。ここで、動翼の先端は、腹側から背側への燃焼ガス
の周り込み流れを抑制して作動効率を上げるべく、腹側
部材と背側部材を集合して尖らせて1ヶ所で周り込み流
れを防止するのではなくて、腹側部材と背側部材をそれ
ぞれケーシング側に設けられる周囲シュラウドと近接さ
せて二重に周り込み流れを防止する構造とすることが多
く、例えば、特開昭62−223402号公報に記載の
冷却構造がある。
In order to realize such a high temperature of the combustion gas, it is necessary to improve the cooling of the moving blade so as to withstand the high temperature of the combustion gas. Here, the tip of the rotor blade is formed by assembling the belly-side member and the back-side member and sharpening them at one place in order to suppress the flow of the combustion gas from the ventral side to the dorsal side and increase the operating efficiency. Rather than preventing the inflow, the abdominal member and the backside member are each often configured to be close to the surrounding shroud provided on the casing side to prevent the inflow and to prevent the inflow, for example, There is a cooling structure described in JP-A-62-223402.

【0004】図11の(A)、(B)に示すのが上記公
報の冷却構造であって、冷却空気は、翼端に、翼断面形
状に沿うように形成された動翼の本体と蓋部材の間のス
リットを通って流れるようにされているが、このスリッ
トへ向かう冷却空気は軸心側から数カ所の供給穴を通っ
て供給されている、供給穴とスリットの間には、空間が
設けられているものの、供給穴は連続しておらず、必ず
しも、充分均等に翼端部分を冷却できない可能性があ
る。本発明は上記に鑑み、動翼の翼端部を充分均等に冷
却できるガスタービンの動翼翼端冷却構造を提供するこ
とを目的とする。
FIGS. 11A and 11B show a cooling structure disclosed in the above publication, in which cooling air is supplied to a blade tip and a lid of a blade formed along the blade cross-sectional shape. The cooling air flowing toward the slit is supplied through several supply holes from the axial center side.A space is provided between the supply hole and the slit. Although provided, the supply holes are not continuous and may not always be able to cool the wing tip portion sufficiently uniformly. In view of the above, an object of the present invention is to provide a moving blade tip cooling structure for a gas turbine that can sufficiently cool the tip of the moving blade.

【0005】[0005]

【課題を解決するための手段】請求項1の発明によれ
ば、圧縮機から供給された圧縮空気と燃料ノズルから噴
射された燃料を燃焼筒内で燃焼し、その燃焼ガスを動翼
に導き動力を得るガスタービンの、圧縮空気の一部を利
用して動翼の翼端を冷却する動翼翼端冷却構造であっ
て、動翼本体の翼端面から軸心方向に深さを有して形成
された凹部と、動翼本体の前縁部材内部を通り凹部の前
縁側の壁面に出口開口を有する翼端冷却空気導入通路
と、凹部の後縁側の壁面に入口開口を有し、動翼本体の
後縁部材内部を通り、後縁または後縁近傍の翼表面に出
口開口を有する翼端冷却空気排出通路と、動翼本体と別
体に成形され、凹部内壁に密着接合して固定される蓋部
材とを具備し、蓋部材の凹部内壁に密着接合する面に、
翼端冷却空気導入通路の出口開口と翼端冷却空気排出通
路の入口開口を連通する複数の溝が設けられている、ガ
スタービンの動翼冷却構造が提供される。このように構
成されたガスタービンの動翼冷却構造では、蓋部材の凹
部内壁に密着接合する面に設けられた複数の溝を冷却空
気が流れるために、翼端を均等に冷却することができ
る。
According to the first aspect of the present invention, the compressed air supplied from the compressor and the fuel injected from the fuel nozzle are burned in the combustion cylinder, and the combustion gas is guided to the moving blade. A blade tip cooling structure for cooling a blade tip of a moving blade using a part of compressed air of a gas turbine that obtains power, and has a depth in an axial direction from a blade tip surface of a moving blade body. A blade tip cooling air introduction passage passing through the inside of the leading edge member of the blade main body and having an outlet opening on the wall surface on the leading edge side of the concave portion, and an inlet opening on the wall surface on the trailing edge side of the concave portion; A blade tip cooling air discharge passage having an outlet opening at the trailing edge or near the trailing edge, which passes through the inside of the trailing edge member of the main body, is formed separately from the moving blade main body, and is tightly joined and fixed to the inner wall of the recess. With a lid member, which is in close contact with the inner wall of the concave portion of the lid member,
A blade cooling structure for a gas turbine is provided, wherein a plurality of grooves communicating the outlet opening of the blade tip cooling air introduction passage and the inlet opening of the blade tip cooling air discharge passage are provided. In the moving blade cooling structure of the gas turbine configured as described above, the cooling air flows through the plurality of grooves provided on the surface of the lid member that is in close contact with the inner wall of the concave portion, so that the blade tip can be uniformly cooled. .

【0006】請求項2の発明によれば、請求項1の発明
において、凹部が、前縁側壁面、後縁側壁面、腹側壁
面、背側壁面、底面を有し、蓋部材が、凹部の前縁側壁
面、後縁側壁面、腹側壁面、背側壁面、底面にそれぞれ
密着する前面、後面、腹側面、背側面、下面を有し、翼
端冷却空気導入通路が前縁側壁面に出口開口を有し、翼
端冷却空気排出通路が後縁側壁面に入口開口を有し、溝
が、蓋部材の腹側面、背側面、下面の少なくとも一つに
設けられている、ガスタービン動翼翼端冷却構造が提供
される。
According to a second aspect of the present invention, in the first aspect of the present invention, the concave portion has a front edge side wall surface, a rear edge side wall surface, an abdominal side wall surface, a back side wall surface, and a bottom surface, and the lid member is in front of the concave portion. It has front, rear, belly, back, and bottom surfaces that are in close contact with the edge side wall, rear edge side wall, ventral side wall, back side wall, and bottom surface, respectively, and the blade tip cooling air introduction passage has an outlet opening in the front edge side wall surface. The blade tip cooling air discharge passage has an inlet opening on a trailing edge side wall surface, and a groove is provided on at least one of a ventral side surface, a back side surface, and a lower surface of the lid member. Provided.

【0007】請求項3の発明によれば、請求項1の発明
において、溝が蛇行しているガスタービン動翼翼端冷却
構造が提供される。このように構成されたガスタービン
動翼翼端冷却構造では冷却空気は蛇行して流れ、冷却空
気の当たる面積が増える。請求項4の発明によれば、溝
の表面に突起が形成されている、ことを特徴とする請求
項1に記載のガスタービン動翼翼端冷却構造。請求項5
の発明によれば、請求項1の発明において、溝が翼幅方
向にずれた第1部分溝と第2部分溝をこれらに略直角な
連結溝でつないで成るクランク溝を、複数、隣接するク
ランク溝の第1部分溝と第2部分溝を翼幅方向で部分的
にオーバーラップさせて配置して、これらオーバーラッ
プせしめられた隣接するクランク溝の第1部分溝と第2
部分溝を連通路でつないで形成されているガスタービン
動翼翼端冷却構造が提供される。このように構成された
ガスタービンの動翼冷却構造では、さらに連通路を通過
した冷却空気が連通路の出口側の部分溝の壁面をインピ
ンジ冷却する。
According to a third aspect of the present invention, there is provided the gas turbine bucket tip cooling structure according to the first aspect of the present invention, in which the grooves meander. In the gas turbine blade tip cooling structure configured as described above, the cooling air flows in a meandering manner, and the area that the cooling air hits increases. According to the fourth aspect of the present invention, the gas turbine moving blade tip cooling structure according to the first aspect, wherein a projection is formed on a surface of the groove. Claim 5
According to the invention of claim 1, in the invention of claim 1, a plurality of adjacent crank grooves are formed by connecting the first partial groove and the second partial groove whose grooves are displaced in the spanwise direction with a connection groove that is substantially perpendicular thereto. The first partial groove and the second partial groove of the crank groove are arranged so as to partially overlap in the spanwise direction, and the first partial groove and the second partial groove of the overlapped adjacent crank grooves are arranged.
A gas turbine blade tip cooling structure formed by connecting partial grooves with a communication passage is provided. In the blade cooling structure of the gas turbine configured as described above, the cooling air that has passed through the communication passage further impinges and cools the wall surface of the partial groove on the outlet side of the communication passage.

【0008】請求項6の発明によれば、請求項5の発明
において、冷却空気が軸心側から翼端側に向かって流れ
るように、クランク溝と、連通路が配設されている、ガ
スタービン動翼翼端冷却構造が提供される。このように
構成されたガスタービンの動翼冷却構造では、冷却空気
は連通路を翼端側に流れ、翼端に近い部分溝の壁面をイ
ンピンジ冷却することができる。
According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the gas groove and the communication passage are provided so that the cooling air flows from the axial center toward the blade tip. A turbine blade tip cooling structure is provided. In the moving blade cooling structure of the gas turbine configured as described above, the cooling air flows through the communication passage to the blade tip side, and can impinge cool the wall surface of the partial groove near the blade tip.

【0009】請求項7の発明によれば、請求項1の発明
において、溝の断面形状が、四角形、半円形、三角形の
いずれかである、ガスタービン動翼翼端冷却構造が提供
される。
According to a seventh aspect of the present invention, there is provided the gas turbine blade tip cooling structure according to the first aspect of the invention, wherein the cross-sectional shape of the groove is any one of a square, a semicircle, and a triangle.

【0010】請求項8の発明によれば、請求項1の発明
において、翼端冷却空気排出通路が後縁近傍の腹側表面
に出口開口を有する、ガスタービン動翼翼端冷却構造が
提供される。このように構成されたガスタービンの動翼
冷却構造では、翼端冷却空気排出通路を出た冷却空気
は、後縁近傍で腹側から背側にむかうフィルム冷却をお
こなう。請求項9の発明によれば、請求項1の発明にお
いて、蓋部材の外側表面に前縁側から後縁側に延びる溝
が形成されている、ガスタービン動翼翼端冷却構造が提
供される。
According to an eighth aspect of the present invention, there is provided the gas turbine blade tip cooling structure according to the first aspect, wherein the tip cooling air discharge passage has an outlet opening on a ventral surface near the trailing edge. . In the moving blade cooling structure of the gas turbine configured as described above, the cooling air that has exited the blade tip cooling air discharge passage performs film cooling from the abdomen to the back near the trailing edge. According to the ninth aspect of the present invention, there is provided the gas turbine blade tip cooling structure according to the first aspect of the present invention, wherein a groove extending from the leading edge side to the trailing edge side is formed on the outer surface of the lid member.

【0011】[0011]

【発明の実施の形態】以下、添付の図面を参照しなが
ら、本発明の各実施の形態について説明する。先ず、本
発明が適用されるガスタービンの、燃焼器の周辺部分
の、基本的な構造を図10を参照して説明する。ケーシ
ング1で形成される車室2内に燃焼器3が配設されてい
て、また車室2内には圧縮機4(一部のみ図示)で圧縮
された高温の空気が矢印50で示されるように導入され
る。燃焼器3は、燃料と空気を燃焼して燃焼ガスを発生
する燃焼筒6と、燃焼筒6に燃料と空気を燃焼筒6に導
く導入部5から成り、燃焼筒6の後端は静翼シール7を
介して静翼8に結合され、静翼8の後流側には動翼9が
配設されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, a basic structure of a peripheral portion of a combustor of a gas turbine to which the present invention is applied will be described with reference to FIG. A combustor 3 is disposed in a casing 2 formed by a casing 1, and high-temperature air compressed by a compressor 4 (only a part is shown) is indicated by an arrow 50 in the casing 2. To be introduced. The combustor 3 includes a combustion tube 6 that burns fuel and air to generate combustion gas, and an introduction unit 5 that guides the fuel and air to the combustion tube 6 to the combustion tube 6. A stator blade 8 is connected to the stationary blade 8 via a seal 7, and a moving blade 9 is disposed downstream of the stationary blade 8.

【0012】導入部5は内筒10の内部に1つのパイロ
ットノズル11と複数のメインノズル12を配設して構
成されている。圧縮機4から車室2内に導入された高温
の圧縮空気は矢印51で示されるように内筒10の周り
を通って上流側に向かい、内筒10の上流端部に形成さ
れた燃焼空気入口13から矢印52で示されるように内
筒10の内側に導入される。内筒10の内側に導入され
た空気は複数のそれぞれスワラー14を有して成るスワ
ール流路15でスワール空気とされてから、メインノズ
ル12から噴射される燃料が混合されて予混合気となっ
て燃焼筒6に送られる。
The introduction section 5 is configured by arranging one pilot nozzle 11 and a plurality of main nozzles 12 inside the inner cylinder 10. The high-temperature compressed air introduced into the passenger compartment 2 from the compressor 4 passes around the inner cylinder 10 toward the upstream side as indicated by an arrow 51, and the combustion air formed at the upstream end of the inner cylinder 10 It is introduced from the inlet 13 into the inner cylinder 10 as shown by an arrow 52. The air introduced into the inner cylinder 10 is turned into swirl air in a swirl flow path 15 having a plurality of swirlers 14, and then the fuel injected from the main nozzle 12 is mixed to form a premixed air. To the combustion tube 6.

【0013】また、内筒10の内側に導入された空気は
パイロットノズル11の周りの空気通路11aを通り、
パイロットノズル11の下流でパイロットノズル11か
ら噴射された燃料とともに拡散燃焼してパイロット火炎
を生成する。このパイロット火炎が、スワール流路15
から排出された予混合気を着火し、それにより、燃焼ガ
スが生成される。なお、パイロットノズル11の先端部
16はメガホン状に広がるパイロットコーン17内に配
置されている。
The air introduced into the inner cylinder 10 passes through an air passage 11a around the pilot nozzle 11,
Downstream of the pilot nozzle 11, the fuel is diffused and burned together with the fuel injected from the pilot nozzle 11 to generate a pilot flame. This pilot flame is swirl channel 15
And ignites the premixed gas discharged from the combustion chamber. The tip 16 of the pilot nozzle 11 is disposed in a pilot cone 17 that spreads in a megaphone shape.

【0014】以下、上記のようなガスタービンに適用さ
れる本発明のガスタービン動翼冷却構造について、動翼
に適用した場合を例に説明する。図1は本発明のガスタ
ービン動翼冷却構造の第1の実施の形態を示す分解図で
ある。動翼9の本体90の翼端面に凹部91が形成さ
れ、この凹部に蓋部材100を嵌め込み、溶接等で固定
することによって完成される。
Hereinafter, a gas turbine moving blade cooling structure of the present invention applied to the above-described gas turbine will be described by taking as an example a case where the present invention is applied to a moving blade. FIG. 1 is an exploded view showing a first embodiment of a gas turbine blade cooling structure according to the present invention. A concave portion 91 is formed in the blade end surface of the main body 90 of the moving blade 9, and the lid member 100 is fitted into the concave portion and fixed by welding or the like to complete the operation.

【0015】凹部91は翼端面から同じ深さを有する前
縁側壁面91f、後縁側壁面91r、腹側壁面91a、
背側壁面91b、底面91cを有し、前縁側壁面91f
と後縁側壁面91rは、翼幅方向に直角な方向、すなわ
ち、翼厚さ方向に真っ直ぐに延びているが、腹側壁面9
1aと背側壁面91bはそれぞれ腹側表面92aと背側
表面92bに平行にカ−ブしながら翼幅方向に延びてい
る。また、底面91cは翼端側の開口の形状と同じ形を
している。
The concave portion 91 has a leading edge side wall surface 91f, a trailing edge side wall surface 91r, and a ventral side wall surface 91a having the same depth from the blade tip surface.
It has a back side wall surface 91b and a bottom surface 91c, and has a front edge side wall surface 91f.
And the trailing edge side wall surface 91r extends straight in the direction perpendicular to the blade width direction, that is, in the blade thickness direction.
1a and the back side wall surface 91b extend in the spanwise direction while covering in parallel with the abdominal surface 92a and the back side surface 92b, respectively. The bottom surface 91c has the same shape as the shape of the opening on the wing tip side.

【0016】本体90を形成している部材の内の、凹部
91(の前縁側壁面91f)より前側の部分を前縁部材
90f、凹部91(の後縁側壁面91r)よりも後ろ側
の部分を後縁部材90r、凹部91の腹側壁面91aと
腹側表面92aの間の部材を腹側部材90a、凹部91
の背側壁面91bと背側表面92bの間の部材を背側部
材90bとする。また、底面91cが形成されている部
材を凹部底面部材90cとする。なお、前縁部材90
f、後縁部材90r、腹側部材90a、背側部材90b
は凹部91の周りの部分のみでなく、翼端から図示され
ない軸心側端部まで含むものとする。
Of the members forming the main body 90, the portion on the front side of the (rear edge side wall surface 91f) of the concave portion 91 is the front edge member 90f, and the portion on the rear side of the concave portion 91 (rear edge side wall surface 91r). The rear edge member 90r and the member between the abdominal wall surface 91a and the abdominal surface 92a of the concave portion 91 are replaced with the abdominal member 90a and the concave portion 91.
The member between the back wall surface 91b and the back surface 92b is referred to as a back member 90b. The member on which the bottom surface 91c is formed is referred to as a concave bottom surface member 90c. The leading edge member 90
f, trailing edge member 90r, abdominal member 90a, dorsal member 90b
Includes not only the portion around the concave portion 91 but also from the blade tip to the axial center end (not shown).

【0017】前縁部材90f内に翼端冷却空気導入通路
93iが形成され、後縁部材90r内に翼端冷却空気排
出通路93eが形成されている。図2、3から明らかな
ように、翼端冷却空気導入通路93iは軸心側に延びて
いて、図示されない軸心側端部において、図示されない
軸心部材に形成された冷却空気導入通路に接続されてい
る。また、翼端冷却空気排出通路93eは後縁近傍の、
凹部91の中間程度の翼長さ方向位置において、腹側表
面92aに出口開口95eを有し、出口開口95eから
出た冷却空気は腹側表面92aから背側表面92bに向
かって翼端部をフィルム冷却する。
A tip cooling air introduction passage 93i is formed in the leading edge member 90f, and a tip cooling air discharge passage 93e is formed in the trailing edge member 90r. As apparent from FIGS. 2 and 3, the blade tip cooling air introduction passage 93i extends to the axial center side, and is connected to a cooling air introduction passage formed in a shaft member (not shown) at an axial end (not shown). Have been. Further, the blade tip cooling air discharge passage 93e is located near the trailing edge,
At an intermediate position in the blade length direction of the concave portion 91, an outlet opening 95e is provided in the ventral surface 92a, and the cooling air flowing out of the outlet opening 95e has a wing tip portion from the ventral surface 92a toward the back surface 92b. Cool the film.

【0018】また、底面部材90cの軸心側には3個の
中央冷却空気通路93a、93b、93cが形成されて
いて、これらにも図示されない軸心部材に形成された冷
却空気導入通路から冷却空気が導入され、腹側部材90
a、背側部材90bに形成されている図示されない穴か
ら排出され、腹側表面92a、背側表面92bをフィル
ム冷却する。
Further, three central cooling air passages 93a, 93b, 93c are formed on the axial center side of the bottom member 90c, and the cooling air is introduced from a cooling air introducing passage formed in a shaft member (not shown). Air is introduced and the ventral member 90
a, the film is discharged from a hole (not shown) formed in the back member 90b, and the ventral surface 92a and the back surface 92b are film-cooled.

【0019】一方、蓋部材100は、本体90の凹部9
1の前縁側壁面91f、後縁側壁面91r、腹側壁面9
1a、背側壁面91b、底面91cに、それぞれ密着接
合する、前面100f、後面100r、腹側面100
a、背側面100b、下面100c、及び、外側の上面
100dを有する。
On the other hand, the lid member 100 is
1 front edge side wall surface 91f, rear edge side wall surface 91r, abdominal wall surface 9
1a, front side 100f, rear side 100r, and ventral side 100, which are in close contact with the back side wall surface 91b and the bottom surface 91c, respectively.
a, a back surface 100b, a lower surface 100c, and an outer upper surface 100d.

【0020】蓋部材100の前面100f、後面100
rは平面であるが、腹側面100a、背側面100bに
は、それぞれ、断面が四角形の溝101が2本形成され
ている。また、下面100cにも上記溝101と同じ断
面の溝102が形成されているが、前縁側では3本ある
が、後縁側では翼厚さ方向の大きさが小さくなるので集
合されている。一方、上面100dには、大きな溝10
3が1本形成されているのみである。
The front surface 100f and the rear surface 100 of the lid member 100
r is a plane, but two grooves 101 each having a rectangular cross section are formed on the ventral side surface 100a and the back side surface 100b. Also, grooves 102 having the same cross section as the above-mentioned grooves 101 are formed on the lower surface 100c. There are three grooves 102 at the leading edge, but they are gathered at the trailing edge because the size in the blade thickness direction becomes smaller. On the other hand, a large groove 10 is formed on the upper surface 100d.
Only one 3 is formed.

【0021】図4に示されているように、蓋部材100
を取り付けた状態で、溝101、102の前縁側端部が
翼端冷却空気導入通路93iの出口の開口94iの領域
内にあるように翼端冷却空気導入通路93iの開口94
iの形状が定められている。同様に、溝101、102
の後縁側端部が翼端冷却空気排出通路93eの開口94
eの領域内にあるように翼端冷却空気排出通路93eの
入口の開口94eの形状が定められているが、図示しな
い。
As shown in FIG.
The opening 94 of the blade tip cooling air introduction passage 93i is positioned such that the leading edge side ends of the grooves 101 and 102 are within the area of the outlet opening 94i of the blade tip cooling air introduction passage 93i.
The shape of i is determined. Similarly, grooves 101 and 102
The trailing edge side end is the opening 94 of the blade tip cooling air discharge passage 93e.
Although the shape of the opening 94e at the inlet of the blade tip cooling air discharge passage 93e is determined so as to be within the region e, it is not shown.

【0022】第1の実施の形態は、上記のように、構成
されており、翼端冷却空気導入通路93iを通った冷却
空気は、蓋部材の溝101と腹側壁面91a、背側壁面
91bで形成される通路、および、溝102と底面91
cで形成される通路を通り、その後、翼端冷却空気排出
通路93eを通って排出される。したがって、蓋部材1
00は、前縁側から後縁側まで連続的に冷却される。
The first embodiment is configured as described above, and the cooling air passing through the blade tip cooling air introduction passage 93i flows through the groove 101 of the lid member, the abdominal wall surface 91a, and the back wall surface 91b. Passage formed, groove 102 and bottom surface 91
c, and then discharged through a blade tip cooling air discharge passage 93e. Therefore, the lid member 1
00 is continuously cooled from the leading edge side to the trailing edge side.

【0023】なお、溝の断面形状は、適宜、変形するこ
とができ、例えば、図5の(A)に示すような半円形、
(B)に示すような三角形にすることができる。
The cross-sectional shape of the groove can be appropriately changed. For example, a semicircular shape as shown in FIG.
A triangle as shown in FIG.

【0024】次に、第2の実施の形態について説明す
る。この第2の実施の形態は、蓋部材200が第1の実
施の形態の蓋部材100と異なるが、本体90は同じで
あるので、蓋部材200についてのみ説明する。図6が
第2の実施の形態における蓋部材200を腹側から見た
図であって、蓋部材200の腹側面には、翼幅方向にず
れた内側溝210と外側溝220を放射方向溝230で
つないだクランク溝201が形成されている。なお、背
側面にも同様にされている。第2の実施の形態は上記の
ように構成され、図6に矢印で示すように、冷却空気が
蛇行して流れ、蓋部材200を、翼幅方向に連続して冷
却することができるので冷却効率がよい。
Next, a second embodiment will be described. In the second embodiment, the lid member 200 is different from the lid member 100 of the first embodiment, but the main body 90 is the same. Therefore, only the lid member 200 will be described. FIG. 6 is a view of the lid member 200 according to the second embodiment as viewed from the ventral side. On the ventral side of the lid member 200, an inner groove 210 and an outer groove 220 shifted in the wing width direction are radially grooved. A crank groove 201 connected by 230 is formed. The same applies to the back side. The second embodiment is configured as described above, and as shown by arrows in FIG. 6, the cooling air meanders and flows, and the lid member 200 can be continuously cooled in the spanwise direction. Efficient.

【0025】次に、第2の実施の形態の変形例について
図7を参照して説明する。この変形例は第2の実施の形
態の蛇行する溝の表面に突起240を多数設けたもので
ある。このように構成することにより、冷却空気の流れ
の乱流大きくなり冷却性能がさらに、向上する。なお、
このような突起は第1の実施の形態および後述の第3の
実施の形態にも適用することができる。
Next, a modification of the second embodiment will be described with reference to FIG. In this modification, a large number of protrusions 240 are provided on the surface of the meandering groove of the second embodiment. With this configuration, the turbulence of the flow of the cooling air is increased, and the cooling performance is further improved. In addition,
Such a protrusion can be applied to the first embodiment and a third embodiment described later.

【0026】次に、第3の実施の形態について説明す
る。この第3の実施の形態は、蓋部材300が第1の実
施の形態の蓋部材100と異なるが、本体90は同じで
あるので、蓋部材300についてのみ説明する。図8が
第3の実施の形態における蓋部材300を腹側から見た
図であって、蓋部材300の腹側面300aには、翼幅
方向にずれた内側溝310と外側溝320を放射方向溝
330でつないだクランク溝301が複数形成され、隣
接するクランク溝301の内側溝310と外側溝320
が連通穴340で連通されている。図8では、前面30
0fに外側溝320の中間部があるように、また、後面
300rに外側溝320の中間部があるように、されて
いるが、連通穴340の設けられているところが、前面
300f、後面300rにこないようにだけすれば、他
の部分が前面300f、後面300rにあってもよい。
Next, a third embodiment will be described. In the third embodiment, the lid member 300 is different from the lid member 100 of the first embodiment, but the main body 90 is the same. Therefore, only the lid member 300 will be described. FIG. 8 is a view of the lid member 300 according to the third embodiment as viewed from the ventral side. In the ventral side surface 300a of the lid member 300, an inner groove 310 and an outer groove 320 shifted in the wing width direction are provided in a radial direction. A plurality of crank grooves 301 connected by grooves 330 are formed, and inner grooves 310 and outer grooves 320 of adjacent crank grooves 301 are formed.
Are communicated through the communication hole 340. In FIG. 8, the front 30
0f has an intermediate portion of the outer groove 320, and the rear surface 300r has an intermediate portion of the outer groove 320. The communication hole 340 is provided on the front surface 300f and the rear surface 300r. Other parts may be provided on the front surface 300f and the rear surface 300r only if they do not come.

【0027】図9の(A)は、図8のIXA-IXA 線に沿っ
てみたものであり、(B)は図8のIXB-IXB 線に沿って
みたものであり、(C)は図8のIXC-IXC 線に沿ってみ
たものであり、(D)は図8のIXD-IXD 線に沿ってみた
ものである。第3の実施の形態は上記のように構成さ
れ、図8に矢印で示すように、冷却空気が流れ、蓋部材
300を、翼幅方向に連続して冷却することができ、さ
らに、連通穴を通った空気が、溝の上側(外側)の面を
インピンジ冷却しているので冷却効率がよい。
FIG. 9A is a view taken along the line IXA-IXA in FIG. 8, FIG. 9B is a view taken along the line IXB-IXB in FIG. 8, and FIG. 8 is taken along the line IXC-IXC, and (D) is taken along the line IXD-IXD in FIG. The third embodiment is configured as described above, and as shown by the arrow in FIG. 8, the cooling air flows, and the lid member 300 can be continuously cooled in the spanwise direction. Since the air passing through cools the upper (outer) surface of the groove by impingement cooling, the cooling efficiency is high.

【0028】また、図8の各図から明らかなように、背
側面300bも、腹側面300aと同じようにされてい
る。そして、蓋部材300の下面300c、上面300
dは、第1の実施の形態の蓋部材100の下面100
c、上面100dとそれぞれ同じで、溝302、303
が形成されている。
As is apparent from the respective drawings in FIG. 8, the back side surface 300b is formed in the same manner as the ventral side surface 300a. Then, the lower surface 300c and the upper surface 300 of the lid member 300
d is the lower surface 100 of the lid member 100 of the first embodiment.
c, the same as the upper surface 100d, and the grooves 302, 303
Are formed.

【0029】以上、第1の実施の形態、第2の実施の形
態(含む変形例)、第3の実施の形態を説明したが、こ
れらはいずれも、凹部が、前縁側壁面、後縁側壁面、腹
側壁面、背側壁面、底面を有し、蓋部材が、凹部の前縁
側壁面、後縁側壁面、腹側壁面、背側壁面、底面にそれ
ぞれ密着する前面、後面、腹側面、背側面、下面を有す
るものである。しかしながら、このような、はっきりと
分けられる面を有することは、必ずしも必要ではなく、
凹部を連続した曲面で形成されるバスタブ状にし、蓋部
材もこれに密着する曲面としてもよい。また、動翼の翼
端面は、周囲に配設されるケーシングの面に均等な隙間
を介して接するように、翼厚さ方向において、若干中央
部分が盛り上がっている。
As described above, the first embodiment, the second embodiment (including modified examples), and the third embodiment have been described. In all of these, the concave portion has the front edge side wall surface and the rear edge side wall surface. Front surface, rear surface, rear surface, rear surface, rear surface, rear surface, rear surface, rear surface, rear surface, rear surface, rear surface, rear surface, rear surface, rear surface, rear surface, and rear surface. , And a lower surface. However, having such a distinct surface is not necessary,
The concave portion may have a bathtub shape formed of a continuous curved surface, and the lid member may have a curved surface that is in close contact with the bathtub. The blade tip surface of the rotor blade has a slightly raised portion in the center in the blade thickness direction so as to be in contact with the surface of a casing disposed around the blade via a uniform gap.

【0030】[0030]

【発明の効果】各請求項に記載の発明は、圧縮機から供
給された圧縮空気と燃料ノズルから噴射された燃料を燃
焼筒内で燃焼し、その燃焼ガスを動翼に導き動力を得る
ガスタービンの、圧縮空気の一部を利用して動翼の翼端
を冷却する動翼翼端冷却構造であるが、動翼本体の翼端
面から軸心方向に深さを有して形成された凹部と、動翼
本体の前縁部材内部を通り凹部の前縁側の壁面に出口開
口を有する翼端冷却空気導入通路と、凹部の後縁側の壁
面に入口開口を有し、動翼本体の後縁部材内部を通り、
後縁または後縁近傍の翼表面に出口開口を有する翼端冷
却空気排出通路と、動翼本体と別体に成形され、凹部内
壁に密着接合して固定される蓋部材とを具備し、蓋部材
の凹部内壁に密着接合する面に、翼端冷却空気導入通路
の出口開口と翼端冷却空気排出通路の入口開口を連通す
る複数の溝が設けられていて、蓋部材の凹部内壁に密着
接合する面に設けられた複数の溝を冷却空気が流れるた
めに、翼端を均等に冷却することができる。特に、請求
項3のように、溝を蛇行させれば、冷却空気は蛇行して
流れ冷却空気の当たる面積が増え冷却性能が向上する。
特に、請求項4のように、溝の表面に突起を設ければ、
冷却空気の乱れが増大して冷却性能が向上する。特に、
請求項5のように、溝が翼幅方向にずれた第1部分溝と
第2部分溝をこれらに略直角な連結溝でつないで成るク
ランク溝を、複数、隣接するクランク溝の第1部分溝と
第2部分溝を翼幅方向で部分的にオーバーラップさせて
配置して、これらオーバーラップせしめられた隣接する
クランク溝の第1部分溝と第2部分溝を連通路でつない
で形成すれば、連通路を通過した冷却空気が連通路の出
口側の部分溝の壁面をインピンジ冷却することができ冷
却効率が向上する。さらに、請求項6のように、冷却空
気が軸心側から翼端側に向かって流れるように、クラン
ク溝と、連通路が配設すれば、冷却空気は連通路を翼端
側に流れ、翼端に近い部分溝の壁面をインピンジ冷却す
ることができ、翼端側の冷却が向上する。
According to the invention described in each claim, the compressed air supplied from the compressor and the fuel injected from the fuel nozzle are burned in the combustion cylinder, and the combustion gas is guided to the rotor blade to obtain power. A turbine blade tip cooling structure that cools a blade tip of a rotor blade using a part of compressed air of a turbine, but has a recess formed with a depth in an axial direction from a blade tip surface of the rotor blade body. A blade tip cooling air introduction passage passing through the inside of the leading edge member of the rotor blade body and having an outlet opening on the wall surface on the leading edge side of the concave portion; and an inlet opening on the wall surface on the trailing edge side of the concave portion; Through the inside of the member,
A blade tip cooling air discharge passage having an outlet opening at a trailing edge or a blade surface near the trailing edge; and a lid member formed separately from the rotor blade body and tightly joined and fixed to the inner wall of the concave portion. A plurality of grooves communicating with an outlet opening of the blade tip cooling air introduction passage and an inlet opening of the blade tip cooling air discharge passage are provided on a surface of the member that is in close contact with the inner wall of the concave portion, and is closely joined to the inner wall of the concave portion of the lid member. Since the cooling air flows through the plurality of grooves provided on the surface to be cooled, the blade tip can be uniformly cooled. In particular, if the groove is meandered as in claim 3, the cooling air meanders and flows, and the area where the cooling air hits increases, thereby improving the cooling performance.
In particular, if a protrusion is provided on the surface of the groove as in claim 4,
The turbulence of the cooling air increases and the cooling performance improves. In particular,
A plurality of crank grooves formed by connecting a first partial groove and a second partial groove whose grooves are displaced in the spanwise direction with a connection groove substantially perpendicular thereto as in claim 5, wherein a plurality of first grooves of adjacent crank grooves are provided. The groove and the second partial groove are arranged so as to partially overlap each other in the spanwise direction, and the first and second partial grooves of the overlapped adjacent crank grooves are connected by a communication passage. For example, the cooling air that has passed through the communication passage can impinge cool the wall surface of the partial groove on the outlet side of the communication passage, thereby improving the cooling efficiency. Further, if the crank groove and the communication path are provided so that the cooling air flows from the axial center side toward the blade tip side, the cooling air flows through the communication path to the blade tip side, Impingement cooling can be performed on the wall surface of the partial groove near the blade tip, and cooling on the blade tip side is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガスタービン動翼冷却構造を示す分解
図である。
FIG. 1 is an exploded view showing a gas turbine blade cooling structure of the present invention.

【図2】図1の線II-II を通る面で切った断面図であ
る。
FIG. 2 is a cross-sectional view taken along a plane passing through line II-II of FIG.

【図3】蓋部材を装着した状態で、動翼を翼長さ方向か
ら示す図であって、(A)は外側から見た図であり、
(B)は図2のIIIB-IIIB 線に沿って見た断面図であ
り、(C)は図2のIIIC-IIIC 線に沿って見た断面図で
あり、(D)は図2のIIID-IIID 線に沿って見た断面図
である。
FIG. 3 is a view showing a moving blade in a blade length direction in a state where a lid member is mounted, wherein FIG.
2B is a sectional view taken along the line IIIB-IIIB in FIG. 2, FIG. 2C is a sectional view taken along the line IIIC-IIIC in FIG. 2, and FIG. It is sectional drawing seen along the -IIID line.

【図4】図2のIV-IV 線に沿って見た図である。FIG. 4 is a view taken along line IV-IV in FIG. 2;

【図5】蓋部材に形成される溝の変形例を示す図であっ
て、(A)は断面が半円形のもの、(B)は断面が三角
形のものである。
5A and 5B are views showing a modification of a groove formed in a lid member, wherein FIG. 5A shows a semi-circular cross section and FIG. 5B shows a triangular cross section.

【図6】第2の実施の形態の蓋部材の側面図である。FIG. 6 is a side view of a lid member according to a second embodiment.

【図7】第2の実施の形態の変形例の蓋部材の側面図で
ある。
FIG. 7 is a side view of a lid member according to a modification of the second embodiment.

【図8】第3の実施の形態の蓋部材の側面図である。FIG. 8 is a side view of a lid member according to a third embodiment.

【図9】図8の蓋部材の断面図であって、(A)は図8
のIXA-IXA 線に沿ってみたものであり、(B)は図8の
IXB-IXB 線に沿ってみたものであり、(C)は図8のIX
C-IXC 線に沿ってみたものであり、(D)は図8のIXD-
IXD 線に沿ってみたものである。
FIG. 9 is a cross-sectional view of the lid member of FIG.
FIG. 8B is a view taken along the line IXA-IXA of FIG.
FIG. 8C is a view taken along the line IXB-IXB, and FIG.
FIG. 8D is a view taken along the line C-IXC, and FIG.
Seen along the IXD line.

【図10】ガスタービンの燃焼器まわりの構造を示す図
である。
FIG. 10 is a diagram showing a structure around a combustor of the gas turbine.

【図11】従来技術のガスタービンの動翼冷却構造であ
って、(A)は翼端側から見た図であって、(B)は
(A)のXIB-XIB 線に沿って見た図である。
11A and 11B are views showing a blade cooling structure of a conventional gas turbine, wherein FIG. 11A is a view seen from the blade tip side, and FIG. 11B is a view seen along the line XIB-XIB of FIG. FIG.

【符号の説明】[Explanation of symbols]

9…動翼 90…(動翼)本体 90a…腹側部材 90b…背側部材 90f…前縁部材 90r…後縁部材 91…凹部 91a…(凹部の)腹側壁面 91b…(凹部の)背側壁面 91c…(凹部の)底面 91f…(凹部の)前縁側壁面 91r…(凹部の)後縁側壁面 92a…腹側表面 92b…背側表面 93i…冷却空気導入通路 93e…冷却空気排出通路 94i…(冷却空気導入通路の)出口開口 94e…(冷却空気排出通路の)入口開口 95e…(冷却空気排出通路の)出口開口 100…蓋部材 101、102、103…溝 100a…(蓋部材)腹側面 100b…(蓋部材)背側面 100c…(蓋部材)底面 100d…(蓋部材)上面 100f…(蓋部材)前面 100r…(蓋部材)後面 200…蓋部材 201…溝 210…内側溝 220…外側溝 230…放射方向溝 300…蓋部材 201,202,203…溝 300a…(蓋部材)腹側面 300b…(蓋部材)背側面 300c…(蓋部材)底面 300d…(蓋部材)上面 300f…(蓋部材)前面 300r…(蓋部材)後面 310…内側溝 320…外側溝 330…放射方向溝 340…連通穴 9: moving blade 90: (moving blade) main body 90a: abdominal member 90b ... dorsal member 90f: leading edge member 90r ... trailing edge member 91: concave portion 91a: abdominal wall surface (of the concave portion) 91b: (back of the concave portion) Side wall surface 91c ... Bottom surface (of concave portion) 91f ... Front edge side wall surface (of concave portion) 91r ... Rear edge side wall surface (of concave portion) 92a ... Ventral surface 92b ... Back surface 93i ... Cooling air introduction passage 93e ... Cooling air discharge passage 94i .. Outlet opening (of the cooling air introduction passage) 94e. Inlet opening (of the cooling air discharge passage) 95e. Outlet opening (of the cooling air discharge passage). 100. lid member 101, 102, 103 .. groove 100a. Side 100b ... (lid member) Back side 100c ... (lid member) bottom surface 100d ... (lid member) top surface 100f ... (lid member) front surface 100r ... (lid member) rear surface 200 ... lid member 201 ... groove 210 ... inside Groove 220: Outer groove 230: Radial groove 300: Lid member 201, 202, 203: Groove 300a: (Lid member) Ventral surface 300b: (Lid member) Back surface 300c: (Lid member) Bottom surface 300d: (Lid member) Upper surface 300f Front surface (cover member) 300r Rear surface (cover member) 310 Inner groove 320 Outer groove 330 Radial groove 340 Communication hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石黒 達男 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 松浦 正昭 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 清水 邦弘 愛知県小牧市大字東田中1200番地 三菱重 工業株式会社名古屋誘導推進システム製作 所内 Fターム(参考) 3G002 CA05 CA06 CA07 CA08 CB04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tatsuo Ishiguro 2-1-1 Shinama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Masaaki Matsuura 2-1-1, Araimachi Shinama, Takasago-shi, Hyogo Prefecture No. 1 Inside Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Kunihiro Shimizu 1200, Higashi-Tanaka, Komaki, Aichi Prefecture Mitsubishi Heavy Industries, Ltd. Nagoya Guidance Propulsion System Works F-term (reference) 3G002 CA05 CA06 CA07 CA08 CB04

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機から供給された圧縮空気と燃料ノ
ズルから噴射された燃料を燃焼筒内で燃焼し、その燃焼
ガスを動翼に導き動力を得るガスタービンの、圧縮空気
の一部を利用して動翼の翼端を冷却する動翼翼端冷却構
造であって、 動翼本体の翼端面から軸心方向に深さを有して形成され
た凹部と、 動翼本体の前縁部材内部を通り凹部の前縁側の壁面に出
口開口を有する翼端冷却空気導入通路と、 凹部の後縁側の壁面に入口開口を有し、動翼本体の後縁
部材内部を通り、後縁または後縁近傍の翼表面に出口開
口を有する翼端冷却空気排出通路と、 動翼本体と別体に成形され、凹部内壁に密着接合して固
定される蓋部材とを具備し、 蓋部材の凹部内壁に密着接合する面に、翼端冷却空気導
入通路の出口開口と翼端冷却空気排出通路の入口開口を
連通する複数の溝が設けられている、ことを特徴とする
ガスタービン動翼翼端冷却構造。
1. A part of compressed air of a gas turbine which burns compressed air supplied from a compressor and fuel injected from a fuel nozzle in a combustion cylinder and guides the combustion gas to a moving blade to obtain power. A blade tip cooling structure for cooling a blade tip of a rotor blade using the same, comprising a recess formed to have a depth in an axial direction from a blade tip surface of the rotor blade body, and a leading edge member of the rotor blade body. A blade tip cooling air introduction passage passing through the inside and having an outlet opening on the leading edge side wall of the concave portion, and having an inlet opening on the trailing edge side wall surface of the concave portion, passing through the inside of the trailing edge member of the moving blade body, and leading or trailing A blade tip cooling air discharge passage having an outlet opening on the blade surface near the edge; and a lid member formed separately from the rotor blade body and tightly joined and fixed to the inner wall of the concave portion, the inner wall of the concave portion of the lid member The outlet opening of the blade tip cooling air inlet passage and the inlet of the blade tip cooling air discharge passage Gas turbine rotor assembly end cooling structure in which a plurality of grooves for communicating the mouth is provided, that said.
【請求項2】 凹部が、前縁側壁面、後縁側壁面、腹側
壁面、背側壁面、底面を有し、 蓋部材が、凹部の前縁側壁面、後縁側壁面、腹側壁面、
背側壁面、底面にそれぞれ密着する前面、後面、腹側
面、背側面、下面を有し、 翼端冷却空気導入通路が前縁側壁面に出口開口を有し、 翼端冷却空気排出通路が後縁側壁面に入口開口を有し、 溝が、蓋部材の腹側面、背側面、下面の少なくとも一つ
に設けられている、 ことを特徴とする請求項1に記載のガスタービン動翼翼
端冷却構造。
2. The concave portion has a front edge side wall surface, a rear edge side wall surface, a ventral side wall surface, a rear side wall surface, and a bottom surface, and the lid member has a front edge side wall surface, a rear edge side wall surface, a ventral side wall surface of the concave portion,
The front-side, rear-side, belly-side, back-side, and bottom-side surfaces are in close contact with the rear-side wall and the bottom, respectively. 2. The gas turbine blade tip cooling structure according to claim 1, wherein the wall has an inlet opening, and the groove is provided on at least one of an abdominal surface, a back surface, and a lower surface of the lid member. 3.
【請求項3】 溝が蛇行している、ことを特徴とする請
求項1に記載のガスタービン動翼翼端冷却構造。
3. The gas turbine blade tip cooling structure according to claim 1, wherein the groove is meandering.
【請求項4】 溝の表面に突起が形成されている、こと
を特徴とする請求項1に記載のガスタービン動翼翼端冷
却構造。
4. The gas turbine blade tip cooling structure according to claim 1, wherein a projection is formed on a surface of the groove.
【請求項5】 溝が翼幅方向にずれた第1部分溝と第2
部分溝をこれらに略直角な連結溝でつないで成るクラン
ク溝を、複数、隣接するクランク溝の第1部分溝と第2
部分溝を翼幅方向で部分的にオーバーラップさせて配置
して、これらオーバーラップせしめられた隣接するクラ
ンク溝の第1部分溝と第2部分溝を連通路でつないで形
成されている、ことを特徴とする請求項1に記載のガス
タービン動翼翼端冷却構造。
5. A first partial groove in which grooves are shifted in a spanwise direction and a second partial groove.
A plurality of crank grooves, which are formed by connecting the partial grooves with connection grooves that are substantially perpendicular thereto, are formed by a plurality of first and second adjacent groove grooves.
The partial grooves are arranged so as to partially overlap each other in the spanwise direction, and the first and second partial grooves of the overlapped adjacent crank grooves are connected by a communication passage. The gas turbine bucket tip cooling structure according to claim 1, characterized in that:
【請求項6】 冷却空気が軸心側から翼端側に向かって
流れるように、クランク溝と、連通路が配設されてい
る、ことを特徴とする請求項3に記載のガスタービン動
翼翼端冷却構造。
6. The gas turbine rotor blade according to claim 3, wherein the crank groove and the communication passage are arranged so that the cooling air flows from the axial center side toward the blade tip side. Edge cooling structure.
【請求項7】 溝の断面形状が、四角形、半円形、三角
形のいずれかである、ことを特徴とする請求項1に記載
のガスタービン動翼翼端冷却構造。
7. The gas turbine blade tip cooling structure according to claim 1, wherein the cross-sectional shape of the groove is any one of a square, a semicircle, and a triangle.
【請求項8】 翼端冷却空気排出通路が後縁近傍の腹側
表面に出口開口を有する、 ことを特徴とする請求項1
に記載のガスタービン動翼翼端冷却構造。
8. The wing tip cooling air discharge passage has an outlet opening on a ventral surface near a trailing edge.
2. The gas turbine blade tip cooling structure according to item 1.
【請求項9】 蓋部材の外側表面に前縁側から後縁側に
延びる溝が形成されている、ことを特徴とする請求項1
に記載のガスタービン動翼翼端冷却構造。
9. The cover member according to claim 1, wherein a groove extending from a front edge side to a rear edge side is formed on an outer surface of the lid member.
2. The gas turbine blade tip cooling structure according to item 1.
JP2000398887A 2000-12-27 2000-12-27 Gas turbine blade tip cooling structure Expired - Fee Related JP3727847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398887A JP3727847B2 (en) 2000-12-27 2000-12-27 Gas turbine blade tip cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398887A JP3727847B2 (en) 2000-12-27 2000-12-27 Gas turbine blade tip cooling structure

Publications (2)

Publication Number Publication Date
JP2002195003A true JP2002195003A (en) 2002-07-10
JP3727847B2 JP3727847B2 (en) 2005-12-21

Family

ID=18863759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398887A Expired - Fee Related JP3727847B2 (en) 2000-12-27 2000-12-27 Gas turbine blade tip cooling structure

Country Status (1)

Country Link
JP (1) JP3727847B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201079A (en) * 2004-01-13 2005-07-28 Ishikawajima Harima Heavy Ind Co Ltd Turbine blade and its manufacturing method
WO2007094212A1 (en) * 2006-02-14 2007-08-23 Ihi Corporation Cooling structure
US7845908B1 (en) * 2007-11-19 2010-12-07 Florida Turbine Technologies, Inc. Turbine blade with serpentine flow tip rail cooling
JP2011174463A (en) * 2010-02-25 2011-09-08 General Electric Co <Ge> Turbine blade with shielded coolant supply passageway
US8016562B2 (en) 2007-11-20 2011-09-13 Siemens Energy, Inc. Turbine blade tip cooling system
US8616845B1 (en) * 2010-06-23 2013-12-31 Florida Turbine Technologies, Inc. Turbine blade with tip cooling circuit
CN103878374A (en) * 2012-12-19 2014-06-25 通用电气公司 Component with near-surface cooling microchannel and method for providing the same
CN106793673A (en) * 2016-11-11 2017-05-31 宁波安信数控技术有限公司 A kind of cold plate structure of cooling of combined liquid
CN114278387A (en) * 2021-12-22 2022-04-05 西安交通大学 Blade top cooling structure and gas turbine movable blade adopting same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201079A (en) * 2004-01-13 2005-07-28 Ishikawajima Harima Heavy Ind Co Ltd Turbine blade and its manufacturing method
WO2007094212A1 (en) * 2006-02-14 2007-08-23 Ihi Corporation Cooling structure
US8172505B2 (en) 2006-02-14 2012-05-08 Ihi Corporation Cooling structure
US7845908B1 (en) * 2007-11-19 2010-12-07 Florida Turbine Technologies, Inc. Turbine blade with serpentine flow tip rail cooling
US8016562B2 (en) 2007-11-20 2011-09-13 Siemens Energy, Inc. Turbine blade tip cooling system
JP2011174463A (en) * 2010-02-25 2011-09-08 General Electric Co <Ge> Turbine blade with shielded coolant supply passageway
US8616845B1 (en) * 2010-06-23 2013-12-31 Florida Turbine Technologies, Inc. Turbine blade with tip cooling circuit
CN103878374A (en) * 2012-12-19 2014-06-25 通用电气公司 Component with near-surface cooling microchannel and method for providing the same
CN106793673A (en) * 2016-11-11 2017-05-31 宁波安信数控技术有限公司 A kind of cold plate structure of cooling of combined liquid
CN114278387A (en) * 2021-12-22 2022-04-05 西安交通大学 Blade top cooling structure and gas turbine movable blade adopting same

Also Published As

Publication number Publication date
JP3727847B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP5848876B2 (en) Turbine blade cooling system
JP6506514B2 (en) Method and system for cooling a moving wing angel wing
US20090317258A1 (en) Rotor blade
JP5738640B2 (en) Internal cooling flow path
CN107035416B (en) Rotor bucket with tip shroud cooling channels and method of manufacturing same
US7665955B2 (en) Vortex cooled turbine blade outer air seal for a turbine engine
KR20080065551A (en) Airfoil, sleeve, and method for assembling a combustor assembly
JP3586637B2 (en) Gas turbine blade cooling structure
US10641101B2 (en) Blade and gas turbine provided with same
JP2017082771A (en) Turbine blade
JP2017145824A (en) Airfoil having crossover holes
JP2001289003A (en) Structure for cooling gas turbine
US11549377B2 (en) Airfoil with cooling hole
EP3358138B1 (en) Pre-swirler for gas turbine
JP2002195003A (en) Moving blade tip cooling structure of gas turbine
US11143043B2 (en) Turbine vane, ring segment, and gas turbine including the same
US20220170373A1 (en) Airfoil and gas turbine having same
JP2015075103A (en) Gas turbine airfoil with cooling enhancement
KR20200042622A (en) Turbine vane and turbine blade and gas turbine comprising the same
CN111868352A (en) Turbine blade and gas turbine
CN113574247B (en) Turbine blade and gas turbine
KR102153064B1 (en) Turbine blade and gas turbine having the same
JP7224928B2 (en) Turbine rotor blades and gas turbines
CN111094701A (en) Turbine blade and gas turbine
KR102363922B1 (en) Turbine vane and turbine including the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050929

LAPS Cancellation because of no payment of annual fees