JP2002184352A - Polycrystalline ceramics light-emitting tube for high luminance discharge lamp and its manufacturing method - Google Patents
Polycrystalline ceramics light-emitting tube for high luminance discharge lamp and its manufacturing methodInfo
- Publication number
- JP2002184352A JP2002184352A JP2001156061A JP2001156061A JP2002184352A JP 2002184352 A JP2002184352 A JP 2002184352A JP 2001156061 A JP2001156061 A JP 2001156061A JP 2001156061 A JP2001156061 A JP 2001156061A JP 2002184352 A JP2002184352 A JP 2002184352A
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- arc tube
- capillary
- discharge lamp
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/24—Manufacture or joining of vessels, leading-in conductors or bases
- H01J9/245—Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps
- H01J9/247—Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps specially adapted for gas-discharge lamps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/302—Vessels; Containers characterised by the material of the vessel
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高圧ナトリウムラ
ンプやメタルハライドランプ等の高輝度放電灯に使用す
る多結晶セラミックス発光管に関し、特に発光部の両端
にキャピラリ部を設けて電極をその内部に形成した高輝
度放電灯用多結晶セラミックス発光管及びその製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polycrystalline ceramic arc tube used for a high-intensity discharge lamp such as a high-pressure sodium lamp or a metal halide lamp, and in particular, to provide a capillary portion at both ends of a light emitting portion and form electrodes inside the tube. The invention relates to a polycrystalline ceramic arc tube for a high-intensity discharge lamp and a method for manufacturing the same.
【0002】[0002]
【従来の技術】高輝度放電灯用多結晶セラミックス発光
管は、放電空間を形成する胴部及び電極を挿入するキャ
ピラリ部が一体に形成された一体型のものと、胴部とキ
ャピラリ部とが別個の部材として形成され、これらを組
み合わせて形成した組立型のものとがある。何れも、ア
ルミナ或いはアルミナを主成分とする多結晶セラミック
で形成されたキャピラリ部に、タングステン等で形成し
た放電電極を先端に有した棒状の電極部材を挿入し、ガ
ラスフリット等の封止剤により気密封止した構造となっ
ている。2. Description of the Related Art A polycrystalline ceramic arc tube for a high-intensity discharge lamp has an integral type in which a body forming a discharge space and a capillary for inserting an electrode are integrally formed, and a body and a capillary are formed. There is an assembly type formed as a separate member and formed by combining them. In any case, a rod-shaped electrode member having a discharge electrode formed of tungsten or the like at its tip is inserted into a capillary portion formed of alumina or a polycrystalline ceramic containing alumina as a main component, and sealed with a sealing agent such as glass frit. It has a hermetically sealed structure.
【0003】そして、上記一体型或いは組立型のどちら
の発光管も、従来は胴部及びキャピラリ部を同時焼成、
即ち同一の温度で焼成され、双方の結晶粒径は、ほぼ同
一に形成されていた。厳密にはキャピラリ部の体積の方
が小さいために、焼成セット状態で粒径制御添加剤(例
えば酸化マグネシウム)が気化し易く、単位体積あたり
の充填率が低下し、キャピラリ部の粒径の方が僅かに大
きくなる傾向にあった。[0003] Conventionally, both the integral type and the assembly type arc tube are fired simultaneously with the body and the capillary.
That is, they were fired at the same temperature, and both crystal grain sizes were formed almost identically. Strictly speaking, since the volume of the capillary portion is smaller, the particle size control additive (eg, magnesium oxide) is likely to evaporate in the sintering set state, the packing ratio per unit volume is reduced, and the particle size of the capillary portion is smaller. Tended to be slightly larger.
【0004】[0004]
【発明が解決しようとする課題】しかし、キャピラリ部
と胴部とでは要求される特性が異なり、キャピラリ部の
特に封止部は封止時のストレスによるクラックが発生し
易いため、強度が要求される。それに対して、胴部はラ
ンプの発光効率の点から高い光透過率が要求されるし、
充填した発光物質による腐蝕が生じ難い耐蝕性も要求さ
れている。このような要求に対し、キャピラリの強度を
上げる方法として、肉厚を厚くする方法やセラミック結
晶粒径を小さくする方法があるが、肉厚を厚くする方法
は発光管端部の熱容量が増すことになり、ランプ点灯時
に発光管の温度が低下し、ランプ効率が低下してしまう
し、小型化しようとした際に障害なる。However, the required characteristics are different between the capillary portion and the body portion, and cracks due to stress at the time of sealing tend to occur in the sealing portion of the capillary portion, in particular, so that the strength is required. You. On the other hand, the body needs to have a high light transmittance in terms of the luminous efficiency of the lamp,
Corrosion resistance that does not easily cause corrosion by the filled luminescent material is also required. In response to such demands, there are methods to increase the strength of the capillary, such as increasing the wall thickness and reducing the ceramic crystal grain size.However, increasing the wall thickness increases the heat capacity of the arc tube end. When the lamp is turned on, the temperature of the arc tube decreases, the lamp efficiency decreases, and it becomes an obstacle when miniaturization is attempted.
【0005】また、結晶粒径を小さくする方法は一体型
のものは発光管全体の粒径を小さくすることになり、光
透過率が低下してランプ特性が低下してしまうし、結晶
粒径を小さくすることで粒界面積が大きくなるため、発
光空間に封入される発光物質による粒界腐蝕が進行し易
く、耐蝕性が低下してしまう。また、キャピラリ部を独
立して作成するものは、キャピラリ部全体に粒径制御添
加剤を添加して、粒径を胴部の粒径より小さくする方法
が考えられるが、これは量産性には優れているものの、
発光物質に触れるキャピラリ部の付け根、更には連結部
の胴部まで粒径が小さくなってしまうため、発光物質に
触れる付け根部分の粒界腐蝕が進みやすくなってしま
い、やはり耐蝕性が低下するのは避けられなかった。[0005] Further, in the method of reducing the crystal grain size, when the integrated type is used, the particle size of the entire arc tube is reduced, so that the light transmittance is reduced and the lamp characteristics are reduced. Since the grain boundary area is increased by reducing the particle size, the grain boundary corrosion due to the luminescent material sealed in the light emitting space easily progresses, and the corrosion resistance is reduced. In addition, in the case where the capillary portion is formed independently, a method of adding a particle size control additive to the entire capillary portion to make the particle size smaller than that of the body portion can be considered, but this is not suitable for mass production. Although excellent,
Since the particle size is reduced to the root of the capillary part that contacts the luminescent material and further to the trunk of the connection part, the grain boundary corrosion of the root part that contacts the luminescent material is likely to progress, and the corrosion resistance is also reduced. Was inevitable.
【0006】このような問題点から、発光部の光透過率
及び耐蝕性を劣化させずにキャピラリ部の強度を向上さ
せるセラミックス発光管の製造方法として特開2001
−52647号公報の技術がある。これは、キャピラリ
部の所望する部位のみを粒径成長抑制剤(粒径制御添加
剤)を含む溶液に浸漬して粒成長を抑制して小粒径部を
作成するようにしている。しかし、上記公報の技術はフ
リットシール時の瞬間的な熱衝撃には耐え得るが、長期
点灯使用状況下でのオン/オフ熱履歴に対しては強度が
必ずしも十分ではなく、熱応力クラックが発生する問題
点を相変わらず有していた。また、発光胴部の粒径が1
5μmでは光透過率が十分ではなく、具体的には研磨無
しでは光線透過率95%以上を確保することはできなか
った。また、一般的に発光管にメタルハライド等の発光
物質を封入した高輝度放電灯においては、その内部空間
にて微量ではあっても水分が混入することは避けられな
い状況にあり、その水分が放電空間内で不純物として働
いたり、また電極が酸化される等の悪さをし、発光特性
を低下させる要因となっていた。[0006] From such problems, Japanese Patent Laid-Open No. 2001-2001 discloses a method for manufacturing a ceramic arc tube in which the strength of the capillary portion is improved without deteriorating the light transmittance and corrosion resistance of the light emitting portion.
There is a technique disclosed in Japanese Patent No. In this method, only a desired portion of the capillary portion is immersed in a solution containing a particle size growth inhibitor (particle size control additive) to suppress the particle growth and form a small particle size portion. However, although the technique of the above publication can withstand instantaneous thermal shock during frit sealing, the strength is not necessarily sufficient for the on / off heat history under long-term lighting use conditions, and thermal stress cracks occur. Problems as before. In addition, the particle diameter of the light emitting body is 1
At 5 μm, the light transmittance was not sufficient, and specifically, without polishing, a light transmittance of 95% or more could not be secured. In general, in a high-intensity discharge lamp in which a light-emitting substance such as a metal halide is sealed in an arc tube, it is inevitable that even a small amount of water is mixed in the internal space, and the water is discharged. It works as an impurity in the space, or oxidizes the electrode, etc., thereby deteriorating the light emission characteristics.
【0007】そこで、本発明は上記問題点に鑑み、胴部
の特性を劣化させることなくキャピラリ部に必要な特性
を付与すると共に、微量な水分の存在下においても、ま
た長期使用に対しても、信頼性を向上させた高輝度放電
灯用多結晶セラミックス発光管及びその製造方法を提供
することを課題とする。[0007] In view of the above problems, the present invention provides the capillary section with necessary properties without deteriorating the properties of the body section, and can be used in the presence of a small amount of moisture and for long-term use. Another object of the present invention is to provide a polycrystalline ceramic arc tube for a high-intensity discharge lamp with improved reliability and a method for manufacturing the same.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するた
め、請求項1の発明は、放電空間を形成する胴部と、該
胴部両端に電極を固定して前記放電空間を封止するため
のキャピラリ部とから成る高輝度放電灯用多結晶セラミ
ックス発光管であって、前記キャピラリ部の一部に平均
粒径が胴部の平均粒径より小さい小粒径部を設け、該小
粒径部と胴部の平均粒径比(キャピラリ小粒径部/胴
部)が0.2〜0.9であり、且つ該小粒径部が100
0〜10000ppmのマグネシアを有することを特徴
とする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a first aspect of the present invention is to seal a discharge space by fixing a body forming a discharge space and electrodes at both ends of the body. A high-intensity discharge lamp polycrystalline ceramic arc tube comprising a capillary portion, wherein a small particle size portion having an average particle size smaller than the average particle size of the body portion is provided in a part of the capillary portion; The average particle size ratio (capillary small particle size portion / body portion) of the part and the body part is 0.2 to 0.9, and the small particle size part is 100
It is characterized by having 0 to 10000 ppm of magnesia.
【0009】また、請求項2の発明は、請求項1の発明
において、胴部の平均粒径が25〜40μmであること
を特徴とする。更に、請求項3の発明は、請求項1又は
2の発明において、小粒径部が電極を固定して封止する
ためのフリット付着部位であることを特徴とする。A second aspect of the present invention is characterized in that, in the first aspect of the present invention, the average particle size of the body is 25 to 40 μm. Furthermore, the invention of claim 3 is characterized in that, in the invention of claim 1 or 2, the small particle size portion is a frit attachment portion for fixing and sealing the electrode.
【0010】請求項4の発明は、放電空間を形成する胴
部と、該胴部両端に電極を固定して前記放電空間を封止
するためのキャピラリ部とから成る高輝度放電灯用多結
晶セラミックス発光管の製造方法であって、本焼成前
に、前記キャピラリ部の一部をマグネシウム,ジルコニ
ウムの何れかの塩溶液又はそれら塩溶液の混合液に浸す
浸漬工程を設け、その後、本焼成することで前記塩溶液
に浸漬した部位の平均粒径を他の部位の平均粒径より小
さくすることを特徴とする。A fourth aspect of the present invention is a polycrystal for a high-intensity discharge lamp, comprising a body forming a discharge space, and a capillary for fixing electrodes at both ends of the body to seal the discharge space. A method for manufacturing a ceramic arc tube, comprising: before main firing, an immersion step of immersing a part of the capillary portion in a salt solution of any of magnesium and zirconium or a mixed solution of these salt solutions, and thereafter, main firing is performed. Thus, the average particle size of the part immersed in the salt solution is smaller than the average particle diameter of the other parts.
【0011】また、請求項5の発明は、請求項4の発明
において、浸漬工程の前にキャピラリ部の吸水率を調整
する仮焼工程を設けたことを特徴とする。更に、請求項
6の発明は、請求項5の発明において、仮焼工程により
吸水率を15〜30重量%に調整することを特徴とす
る。The invention of claim 5 is characterized in that, in the invention of claim 4, a calcination step of adjusting the water absorption of the capillary portion is provided before the immersion step. Further, the invention of claim 6 is characterized in that, in the invention of claim 5, the water absorption is adjusted to 15 to 30% by weight by a calcination step.
【0012】[0012]
【発明の実施の形態】以下、本発明を具体化した実施の
形態を、図面に基づいて詳細に説明する。図1は本発明
に係る高輝度放電灯用多結晶セラミックス発光管の一例
を示す説明図であり、(a)は発光管のみの断面図、
(b)は電極を装着したキャピラリ部の拡大図を示して
いる。図示するように、発光管1は中央に放電発光空間
を形成する樽状の胴部2を有し、その左右の対向する位
置にキャピラリ部3が形成され、胴部2とキャピラリ部
3とはアルミナを主成分とする多結晶セラミックスによ
り一体形成されている。尚、多結晶セラミックスとして
はその耐蝕性等の観点からアルミナが好適であるが、こ
れに限定されるものではない。Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an explanatory view showing an example of a polycrystalline ceramic arc tube for a high-intensity discharge lamp according to the present invention, wherein (a) is a cross-sectional view of only the arc tube,
(B) is an enlarged view of a capillary portion on which electrodes are mounted. As shown in the figure, the arc tube 1 has a barrel-shaped body 2 forming a discharge light emitting space in the center, and a capillary section 3 is formed at opposing positions on the left and right sides. It is integrally formed of polycrystalline ceramic mainly composed of alumina. Alumina is preferred as the polycrystalline ceramic from the viewpoint of its corrosion resistance and the like, but is not limited thereto.
【0013】電極4はニオブやモリブデン等で形成され
た電流導体5の先端にタングステン等で形成された放電
電極6を設けて形成され、キャピラリ部3に挿入した状
態でガラスフリット7により固定すると共に放電空間を
気密封止した構造となっている。そして、ガラスフリッ
ト7が密着するキャピラリ部3の先端部Aは、平均粒径
が他の部位と異なった大きさ、例えば15μmで形成さ
れた小粒径部となっており、他のキャピラリ部3及び胴
部2の平均粒径は27μmで形成されている。この小粒
径部の作製は、キャピラリ部3の先端Aにマグネシアを
9000ppm含有させて形成している。このように発
光管のガラスフリット封止部の結晶粒径のみを小さくす
ることで、光透過特性及び耐食性を劣化させること無
く、フリット封止部の強度が増すので、発光管としての
胴部の特性を良好に維持したままキャピラリ部の強度を
上げることができ長寿命化、即ち長期使用に対しても信
頼性を向上できる。The electrode 4 is formed by providing a discharge electrode 6 made of tungsten or the like at the tip of a current conductor 5 made of niobium, molybdenum, or the like, and fixed by a glass frit 7 while being inserted into the capillary portion 3. The discharge space is hermetically sealed. The distal end portion A of the capillary portion 3 to which the glass frit 7 is in close contact is a small particle size portion having an average particle size different from other portions, for example, 15 μm. The body 2 has an average particle size of 27 μm. The small particle size portion is formed by including 9000 ppm of magnesia at the tip A of the capillary portion 3. As described above, by reducing only the crystal grain size of the glass frit sealing portion of the arc tube, the strength of the frit sealing portion increases without deteriorating the light transmission characteristics and corrosion resistance. The strength of the capillary portion can be increased while maintaining good characteristics, and the life can be extended, that is, the reliability can be improved even for long-term use.
【0014】この発光管の製造方法を図2のフローチャ
ートに基づいて説明する。まず、ステップ1(S1)で
アルミナ粉末(Al2O3粉末)を調合する。アルミナ粉
末は平均粒径0.5μmで純度99.99%以上のもの
が良い。そして、S2でバインダ、水等を添加して、S
3で混練する。混練した坏土をS4で押出成型し、S5
で成型品を仮焼(第1の仮焼)する。この第1の仮焼工
程は大気雰囲気中で800℃〜1200℃で行い、この
仮焼工程において成型品の吸水率(吸収水重量/乾燥重
量)が15wt%〜30wt%になるように調整する。
吸水率は、更に好ましくは、20wt%〜30wt%に
なるように調整するのが良い。A method for manufacturing this arc tube will be described with reference to the flowchart of FIG. First, in step 1 (S1), an alumina powder (Al 2 O 3 powder) is prepared. The alumina powder preferably has an average particle size of 0.5 μm and a purity of 99.99% or more. Then, a binder, water, etc. are added in S2,
Knead with 3. The kneaded clay is extruded in S4 and S5
The molded article is calcined (first calcining). This first calcination step is performed at 800 ° C. to 1200 ° C. in an air atmosphere, and in this calcination step, the water absorption of the molded product (weight of absorbed water / dry weight) is adjusted to be 15 wt% to 30 wt%. .
The water absorption is more preferably adjusted to be 20 wt% to 30 wt%.
【0015】これは、吸水率が15wt%未満である場
合では、浸漬し難くなるばかりでなく、その浸漬が不均
一になり粒径制御作用が不均一となり、結果として好適
な発光管を得難くなるし、一方30wt%を超える場合
は、空隙が多く強度不足となり、浸漬工程のハンドリン
グが難しくなるばかりでなく、塩溶液の濃度によっては
本来粒界に存在すべき粒径制御添加剤がアルミナ粒子と
同等に振舞ってしまう場合があり、更に、特に粒界制御
添加剤としてマグネシウムを用いた場合には、アルミナ
粒子と同等に振舞うことに起因した耐蝕性の低下を招く
場合があり好ましくないからである。このように、本発
明の要点の一つは粒径制御剤の浸漬において、吸水率が
重要であることを見出した点にある。[0015] When the water absorption is less than 15 wt%, not only is it difficult to immerse, but also the immersion becomes non-uniform and the particle size control action becomes non-uniform. As a result, it is difficult to obtain a suitable arc tube. On the other hand, when the content exceeds 30 wt%, the pores are large and the strength is insufficient, so that not only the handling of the immersion process becomes difficult, but also the particle size control additive which should originally be present at the grain boundary depending on the concentration of the salt solution is alumina particles. In some cases, magnesium may be used as a grain boundary control additive, which may lead to a decrease in corrosion resistance due to behavior equivalent to that of alumina particles. is there. Thus, one of the main points of the present invention is that it has been found that the water absorption is important in immersing the particle size controlling agent.
【0016】仮焼後、S6で浸漬工程に入る。この工程
で、硝酸マグネシウム水溶液(約0.06mol/l〜
0.9mol/l)に仮焼体の所定部位を浸漬する。硝
酸マグネシウムは粒成長を遅らせる粒径制御添加剤であ
り、粒径を小さくしたい部位即ち封止用ガラスフリット
の付着部位となるキャピラリ先端部Aに付着含浸させ
る。その後、S7で大気雰囲気中で1100℃〜135
0℃で第2の仮焼を行い、最後にS8で水素雰囲気中で
1750℃〜1900℃で本焼成する。After calcination, the immersion step is started in S6. In this step, an aqueous solution of magnesium nitrate (about 0.06 mol / l
0.9 mol / l) is immersed in a predetermined portion of the calcined body. Magnesium nitrate is a particle size control additive that delays grain growth, and is deposited and impregnated on a capillary tip A, which is a portion where the particle size is to be reduced, that is, a portion where a sealing glass frit is attached. Thereafter, in S7, the temperature is set to 1100 ° C. to 135 in the air atmosphere.
The second calcination is performed at 0 ° C., and finally the main calcination is performed at 1750 ° C. to 1900 ° C. in a hydrogen atmosphere in S8.
【0017】この工程により、例えば浸漬部平均粒径
(小粒径部平均粒径)が18μm、発光部平均粒径が2
7μmとなり、平均粒径比M=小粒径部平均粒径/発光
部平均粒径を、M=0.67とし、且つ浸漬部のマグネ
シア量が8000ppmである発光管を得る。この粒径
比Mは、0.2〜0.9の間が有効である。これは、
0.2未満であると胴部と小粒径部の粒径変化が大きす
ぎるため、熱衝撃に対して逆効果であり、また0.9を
超える場合には小粒径部と胴部の粒径比の差が小さすぎ
るため、本発明の目的とする効果が得られない。また、
粒径比Mは特に0.7〜0.9が好ましく、0.7未満
ではキャピラリ部と胴部の付け根付近での粒径差が大き
くなることがあり、その場合フリットシール時の瞬間的
な熱衝撃には耐え得るが、長期点灯使用状況下のオン/
オフ熱履歴に対しては熱応力によるクラック発生を招く
虞があるからである。従って、0.7〜0.9の範囲で
あれば、特に長期使用状況下のオン/オフ熱履歴に対す
る耐性が強く、ランプの長寿命化を図ることができる。According to this step, for example, the average particle diameter of the immersion part (average particle diameter of the small particle part) is 18 μm and the average particle diameter of the light emitting part is 2 μm.
An arc tube having an average particle size ratio of M = small particle size portion average particle size / light emitting portion average particle size of M = 0.67 and a magnesia amount of immersed portion of 8000 ppm is obtained. This particle size ratio M is effective between 0.2 and 0.9. this is,
If it is less than 0.2, the change in particle size between the trunk and the small particle size portion is too large, which is counterproductive to thermal shock. Since the difference between the particle diameter ratios is too small, the desired effect of the present invention cannot be obtained. Also,
The particle size ratio M is particularly preferably from 0.7 to 0.9, and if it is less than 0.7, the particle size difference near the base of the capillary portion and the trunk may be large. Although it can withstand thermal shocks,
This is because there is a possibility that cracks due to thermal stress may be caused with respect to the off-heat history. Therefore, in the range of 0.7 to 0.9, resistance to the on / off heat history under a long-term use condition is particularly strong, and the life of the lamp can be extended.
【0018】そして、小粒径部のマグネシア含有量は、
1000〜10000ppmとするのが良く、更に好ま
しくは1000〜9000ppmであると効果が顕著で
ある。この点即ち、小粒径部にマグネシアを含有させた
点がまた本発明の重要な点の一つである。粒径制御添加
剤としてマグネシアを用いることで、粒成長抑制による
機械的強度の抑制を図れるのみでなく、発光管内の水分
を除去する作用があり、発光管内のOH基を温度の低い
キャピラリ部の付け根、胴部端部付近において捕捉する
ことで、光束維持率低下要因であるH(水素)や、例え
ばタングステン電極の酸化による黒化を招くO(酸素)
の発生を防ぐことができる。但し、1000ppm未満
であると、十分な捕捉作用を発揮することができないた
め好ましくなく、10000ppmを超えるとマグネシ
ウムの量が多くなり過ぎるため、全体としての耐蝕性が
低下することになり好ましくない。また、10000p
pm以下であっても、9000ppmを超えると、マグ
ネシアとアルミナの反応により、粒界にスピネルが生成
し,従って結晶構造的に異なる異種材料が混在すること
となることがあるため、特に長期使用という観点では熱
衝撃や機械的強度の面から好ましくない場合がある。The magnesia content of the small particle size part is
The content is preferably from 1,000 to 10,000 ppm, more preferably from 1,000 to 9000 ppm. This point, that is, the fact that magnesia is contained in the small particle size portion is another important point of the present invention. By using magnesia as a particle size control additive, not only can mechanical strength be suppressed by suppressing grain growth, it also has the effect of removing water in the arc tube, and the OH groups in the arc tube are used to reduce the temperature of the capillary portion at low temperatures. H (hydrogen), which is a factor for lowering the luminous flux maintenance factor, and O (oxygen), which causes blackening due to oxidation of a tungsten electrode, for example, by trapping near the base and the end of the trunk.
Can be prevented. However, if it is less than 1000 ppm, it is not preferable because a sufficient capturing effect cannot be exerted. If it exceeds 10,000 ppm, the amount of magnesium becomes too large, and the corrosion resistance as a whole decreases, which is not preferable. Also, 10,000p
Even if it is less than pm, if it exceeds 9000 ppm, spinel is generated at the grain boundary due to the reaction between magnesia and alumina, and thus different materials having different crystal structures may be mixed, so that it is particularly long-term use. From a viewpoint, it may not be preferable in terms of thermal shock and mechanical strength.
【0019】吸水率と浸漬部位の硝酸マグネシウム含有
量の関係の実験結果を示すと表1に示すようになってい
る。Table 1 shows the experimental results of the relationship between the water absorption and the content of magnesium nitrate at the immersion site.
【0020】[0020]
【表1】 [Table 1]
【0021】表1に示すように、例えば吸水率18.9
wt%ではMgO含有量が5016ppm、吸水率2
9.5wt%では9500wt%と、吸水率を変えるこ
とで、硝酸マグネシウム含有量を変えることができる。
即ち吸水率を15wt%〜30wt%の間で変えること
によっても、光束維持率の低下や電極の黒化等の不具合
を起こすことなく発光管胴部とキャピラリ部の粒径を独
立して制御でき、発光管胴部の特性を良好に維持したま
ま、キャピラリ封止部等の所望する部位の強度をコント
ロールできる。尚、硝酸マグネシウム水溶液の濃度は約
0.9mol/lである。但し、吸水率39.5wt%
では発光部付近まで硝酸マグネシウムが拡散してしま
い、発光物質により腐蝕し易くなる。また、7wt%で
は粒径制御による強度アップの効果が発揮できない。As shown in Table 1, for example, a water absorption of 18.9
In wt%, the MgO content was 5016 ppm and the water absorption was 2
By changing the water absorption rate to 9.5 wt%, that is, 9500 wt%, the magnesium nitrate content can be changed.
That is, by changing the water absorption rate between 15 wt% and 30 wt%, the particle diameters of the arc tube body and the capillary can be controlled independently without causing problems such as a decrease in the luminous flux maintenance ratio and blackening of the electrodes. In addition, the strength of a desired portion such as a capillary sealing portion can be controlled while maintaining the characteristics of the arc tube body in good condition. The concentration of the aqueous solution of magnesium nitrate is about 0.9 mol / l. However, the water absorption rate is 39.5 wt%
In this case, the magnesium nitrate diffuses to the vicinity of the light emitting portion, and is easily corroded by the light emitting substance. If the content is 7 wt%, the effect of increasing the strength by controlling the particle size cannot be exhibited.
【0022】図3は製造方法の他の例を示している。こ
の例では、上述した押出し成形に代わる成形方法として
鋳込み成形とゲルキャスト成形を採用している。鋳込み
成形では、アルミナ粉末の調合(S1)後S21でスラ
リー調整し、S22で鋳込み成形する。そしてS23で
低温仮焼し、S24でキレート処理し、S27で第1の
仮焼工程に入る。ゲルキャスト成形の場合、粉末調合後
S25でスラリー調整した後、S26でゲルキャスト成
形し、S27の第1の仮焼工程に入る。そして、第1の
仮焼工程以降も、上記図2とは条件を変えて行ってい
る。この実施形態では大気雰囲気中で1200℃で焼成
することで、吸水率を15〜25%に調整した後、S2
8で硝酸マグネシウム水溶液に粒径調整部位を浸漬し、
第2の仮焼(S29)を大気雰囲気中で1200℃で行
い、S30で本焼成を水素雰囲気中にて1850℃で行
っている。この製造方法で、浸漬条件を変えて作成した
発光管の評価結果を表2に示している。FIG. 3 shows another example of the manufacturing method. In this example, a casting method and a gel cast molding are employed as molding methods instead of the above-mentioned extrusion molding. In the casting, after the preparation of the alumina powder (S1), the slurry is adjusted in S21, and the casting is performed in S22. Then, low-temperature calcination is performed in S23, chelation treatment is performed in S24, and a first calcination process is started in S27. In the case of gel cast molding, after preparing the slurry in S25 after preparing the powder, gel cast molding is performed in S26, and the process proceeds to the first calcining step of S27. Then, after the first calcining step, the conditions are changed from those in FIG. In this embodiment, after baking at 1200 ° C. in the air atmosphere to adjust the water absorption to 15 to 25%,
8. Dip the particle size adjustment part in magnesium nitrate aqueous solution in 8,
The second calcination (S29) is performed at 1200 ° C. in the air atmosphere, and the main calcination is performed at 1850 ° C. in the hydrogen atmosphere in S30. Table 2 shows the evaluation results of the arc tubes prepared by changing the immersion conditions in this manufacturing method.
【0023】[0023]
【表2】 [Table 2]
【0024】表2は第1仮焼後の発光管の吸水率を20
%として、浸漬する硝酸マグネシウム水溶液の濃度を
0.057〜2.200(mol/l)と変えて評価し
た結果を示し、クラック判定の○はクラックの発生がな
い、△は2%程度の割合でクラックが発生し、×はクラ
ックが5%程度の割合或いはそれ以上で発生する状態を
示している。尚、9000hr点灯中クラック発生判定
は、オン/オフ点灯ライフ試験により、9000hr中
におけるクラックの発生判定であり、光束維持率判定
は、6000hr点灯後の発光効率N2(lm/W)と
点灯100hr後の発光効率N1(lm/W)の比(N
2/N1)を評価したもので、○は80%以上、△は7
0%以上で80%未満、×は60%以上で70%未満の
場合を示している。Table 2 shows that the water absorption of the arc tube after the first calcination was 20%.
%, The results were evaluated by changing the concentration of the aqueous solution of magnesium nitrate to be immersed in the range of 0.057 to 2.200 (mol / l). Indicates that cracks occur, and X indicates that cracks occur at a rate of about 5% or more. The determination of crack occurrence during 9000 hr lighting is a determination of crack occurrence during 9000 hr by an on / off lighting life test. Luminous efficiency N1 (lm / W) ratio (N
2 / N1), where ○ is 80% or more and Δ is 7
0% or more and less than 80%, and x shows the case of 60% or more and less than 70%.
【0025】この表から、仮焼後の吸水率を20%とし
た場合、硝酸マグネシウム濃度が0.191〜0.53
1(mol/l)において、クラック判定、9000時
間点灯後のクラック判定、光束維持率において良好な結
果を示していることがわかる。このように、硝酸マグネ
シウムの濃度を調整することによっても、電極封止時の
クラックの発生を防止し、長期使用に対しても信頼性を
向上させることができる。From this table, when the water absorption after calcination is 20%, the magnesium nitrate concentration is 0.191 to 0.53.
It can be seen that at 1 (mol / l), good results were obtained in crack judgment, crack judgment after lighting for 9000 hours, and luminous flux maintenance factor. As described above, by adjusting the concentration of magnesium nitrate, it is possible to prevent the occurrence of cracks at the time of sealing the electrodes and to improve the reliability even for long-term use.
【0026】ところで、研磨をしていない本願発明によ
る発光管における平均粒径と全光線透過率の関係は実験
結果から図4のような関係があり、25μm以上とする
と全光線透過率95%以上が得られる。従って、胴部の
平均粒径は25μm以上が好ましいし、強度の点から4
0μm以下とするのが良く、これより研磨を行うことな
く良好な全光線透過率を得ることができる。尚、粒径が
30μm〜40μmであると効果がより顕著である。The relationship between the average particle size and the total light transmittance in the unpolished arc tube according to the present invention has the relationship shown in FIG. 4 from the experimental results. When the light transmittance is 25 μm or more, the total light transmittance is 95% or more. Is obtained. Therefore, the average particle size of the body is preferably 25 μm or more, and 4
The thickness is preferably 0 μm or less, from which a good total light transmittance can be obtained without polishing. The effect is more remarkable when the particle size is 30 μm to 40 μm.
【0027】図5は本発明の他の例を示すキャピラリ部
の断面説明図であり、8はキャピラリ管、9は胴部であ
り、キャピラリ部と胴部を別体で形成した場合を示して
いる。このように、キャピラリ部と胴部を別体で形成し
た場合でも、フリット封止部となるキャピラリ管8の一
端のみを浸漬することで、封止部位の粒径を小さくして
強度を上げることができるし、胴部挿入部位の粒径は小
さくならないので、ランプ特性及び耐蝕性が低下するこ
とがない。FIG. 5 is a cross-sectional explanatory view of a capillary portion showing another example of the present invention, in which 8 is a capillary tube, 9 is a body portion, and shows a case where the capillary portion and the body portion are formed separately. I have. As described above, even when the capillary portion and the body portion are formed separately, by immersing only one end of the capillary tube 8 serving as the frit sealing portion, the particle size of the sealing portion can be reduced and the strength can be increased. In addition, since the diameter of the body insertion portion does not become small, the lamp characteristics and corrosion resistance do not decrease.
【0028】この図5の発光管の製造方法を図6のフロ
ーチャートを基に説明する。まず、ステップ11(S1
1)でアルミナ粉末を調合する。アルミナ粉末は平均粒
径が0.5μmで純度99.99%以上のものが良い。
そして、S12でバインダ、水等を添加して、S13で
混練し、混練した坏土をS14で胴部9を押し出し成形
すると共に、S15でキャピラリ管8を押し出し成形す
る。A method of manufacturing the arc tube of FIG. 5 will be described with reference to the flowchart of FIG. First, step 11 (S1
Alumina powder is prepared in 1). The alumina powder preferably has an average particle size of 0.5 μm and a purity of 99.99% or more.
Then, a binder, water and the like are added in S12, kneaded in S13, and the kneaded kneaded material is extruded to form the body 9 in S14, and the capillary tube 8 is extruded and formed in S15.
【0029】成形したキャピラリ管8をS16で仮焼
(第1の仮焼)する。この第1の仮焼工程は大気中で、
800℃〜1000℃で行い、この仮焼工程において成
型品の吸収率(吸収水重量/乾燥重量)を15wt%〜
30wt%に、好ましくは20wt%〜30wt%に調
整する。仮焼後S17で浸漬工程に入る。この工程で、
キャピラリ管の封止用フリットを付着させる一方の端部
Bを硝酸マグネシウム水溶液(0.06mol/l〜
0.9mol/l)に浸漬する。そして、S18で成形
した胴部の開口部に浸漬処理したキャピラリ管の他端を
挿入して組み立て、S19で第2の仮焼工程に入り、大
気中で1100℃〜1350℃で仮焼する。最後に、S
20で水素雰囲気中で1750℃〜1900℃で本焼成
する。以上の工程により、上記第1の実施の形態と同様
に、浸漬部の平均粒径が18μm、胴部平均粒径が27
μmとなり、発光部の光透過性を維持したままキャピラ
リ封止部の強度を上げることができる。The formed capillary tube 8 is calcined (first calcined) in S16. This first calcination step is performed in the atmosphere,
In the calcination step, the absorption rate of the molded product (absorbed water weight / dry weight) is 15 wt% or more.
It is adjusted to 30 wt%, preferably 20 wt% to 30 wt%. After calcination, the dipping process is started in S17. In this process,
The other end B of the capillary tube to which the sealing frit is attached is attached to an aqueous solution of magnesium nitrate (0.06 mol / l to
0.9 mol / l). Then, the other end of the immersed capillary tube is inserted into the opening of the body formed in S18 to assemble the assembly. In S19, a second calcination process is performed, and calcination is performed at 1100 ° C. to 1350 ° C. in the atmosphere. Finally, S
The main firing is performed at 1750 ° C. to 1900 ° C. in a hydrogen atmosphere at 20. According to the above steps, as in the first embodiment, the average particle size of the immersed portion is 18 μm and the average particle size of the body portion is 27 μm.
μm, and the strength of the capillary sealing portion can be increased while maintaining the light transmittance of the light emitting portion.
【0030】尚、キャピラリ管の一部のみを浸漬処理す
るのは工程が複雑になるため、全体を浸漬処理しても良
いが、上述するように耐蝕性の問題が残る。その他の観
点も含めて端部のみの浸漬と全体の浸漬とを対比すると
表3のようになる。The immersion treatment of only a part of the capillary tube complicates the process. Therefore, the entire immersion treatment may be performed, but the corrosion resistance problem remains as described above. Table 3 shows a comparison between the immersion of only the end portion and the entire immersion including other viewpoints.
【0031】[0031]
【表3】 [Table 3]
【0032】表3に示すように、封止用フリットによる
クラックの発生防止には共に有効であるが、量産性にお
いては全域浸漬が優れ、ランプ寿命の点からは端部のみ
浸漬が優れている。このように、端部のみ浸漬処理する
ことで、ランプ寿命を延ばすことができる。また、上記
何れの実施の形態も、浸漬溶液を硝酸マグネシウム水溶
液としているが、粒径制御添加剤はイットリウム、ジル
コニウム、スカンジウム、ランタンの何れかの塩溶液を
使用することができるし、それらの塩溶液の混合液であ
っても良い。但し、それらの中でもジルコニウム塩は硝
酸マグネシウムと同程度の効果を有し好適である。ま
た、発光管形状を樽状としたが、他の形状例えば円筒形
状であっても同様に製造することができる。As shown in Table 3, although both are effective in preventing the occurrence of cracks due to the sealing frit, immersion over the entire area is excellent in mass productivity, and immersion only at the end is excellent in terms of lamp life. . By immersing only the ends, the lamp life can be extended. In each of the above embodiments, the immersion solution is an aqueous solution of magnesium nitrate. However, the particle size control additive may be any of a salt solution of yttrium, zirconium, scandium, and lanthanum. It may be a mixture of solutions. However, among them, zirconium salts are preferable because they have the same effect as magnesium nitrate. In addition, although the arc tube shape is a barrel shape, other shapes such as a cylindrical shape can be similarly manufactured.
【0033】[0033]
【発明の効果】以上詳述したように、請求項1の発明に
係る高輝度放電灯用多結晶セラミックス発光管によれ
ば、胴部の光透過特性及び耐蝕性を良好に維持したまま
キャピラリ部の強度を向上でき且つ発光管内の水分を除
去することができ、長期使用に対して信頼性をより向上
できる。As described above in detail, according to the polycrystalline ceramic arc tube for a high-intensity discharge lamp according to the first aspect of the present invention, the capillary portion is maintained while maintaining the light transmission characteristics and corrosion resistance of the body portion. And the moisture in the arc tube can be removed, and the reliability for long-term use can be further improved.
【0034】また、請求項2の発明によれば、請求項1
の効果に加えて、研磨工程を経ることなく、良好な光線
透過率を確保できる。さらに、請求項3の発明によれ
ば、請求項1又は2の効果に加えて、必要な部分、即ち
フリット封止部位の強度を上げることができる。[0034] According to the invention of claim 2, according to claim 1 of the present invention.
In addition to the effect described above, a good light transmittance can be ensured without going through a polishing step. Further, according to the invention of claim 3, in addition to the effect of claim 1 or 2, it is possible to increase the strength of a necessary portion, that is, a frit sealing portion.
【0035】請求項4の発明に係る高輝度放電灯用多結
晶セラミックス発光管の製造方法によれば、簡易な製造
工程により、請求項1乃至3の何れかの効果を有する高
輝度放電灯用多結晶セラミックス発光管を製造すること
ができる。According to the method of manufacturing a polycrystalline ceramic arc tube for a high-intensity discharge lamp according to the fourth aspect of the present invention, the high-intensity discharge lamp for a high-intensity discharge lamp having the effects of any one of claims 1 to 3 can be obtained by a simple manufacturing process. A polycrystalline ceramic arc tube can be manufactured.
【0036】請求項5,6の発明によれば、請求項4の
効果に加えて、発光管キャピラリ部の吸水率を変えるこ
とで、胴部とキャピラリ部の粒径を独立して制御するこ
とができ、発光管胴部の特性を良好に維持したまま、キ
ャピラリ封止部の強度をコントロールできる。According to the fifth and sixth aspects of the invention, in addition to the effect of the fourth aspect, by changing the water absorption of the arc tube capillary part, the particle diameter of the body part and the capillary part can be controlled independently. This makes it possible to control the strength of the capillary sealing portion while maintaining good characteristics of the arc tube body.
【図1】本発明に係る高輝度放電灯用多結晶セラミック
ス発光管の実施形態の一例を示す説明図で、(a)は発
光管全体の断面図、(b)は電極を装着した状態のキャ
ピラリ部の拡大図である。FIG. 1 is an explanatory view showing an example of an embodiment of a polycrystalline ceramic arc tube for a high-intensity discharge lamp according to the present invention, wherein (a) is a cross-sectional view of the entire arc tube, and (b) is a state in which electrodes are mounted. It is an enlarged view of a capillary part.
【図2】図1の高輝度放電灯用多結晶セラミックス発光
管の製造方法を示すフローチャートである。FIG. 2 is a flowchart showing a method of manufacturing the polycrystalline ceramic arc tube for a high-intensity discharge lamp of FIG.
【図3】高輝度放電灯用多結晶セラミックス発光管の製
造方法の他の例を示すフローチャートである。FIG. 3 is a flowchart showing another example of a method for manufacturing a polycrystalline ceramic arc tube for a high-intensity discharge lamp.
【図4】平均粒径と全光線透過率の関係を示す図であ
る。FIG. 4 is a diagram showing the relationship between the average particle size and the total light transmittance.
【図5】本発明の他の形態を示す高輝度放電灯用多結晶
セラミックス発光管のキャピラリ部断面説明図である。FIG. 5 is an explanatory sectional view of a capillary portion of a polycrystalline ceramic arc tube for a high-intensity discharge lamp showing another embodiment of the present invention.
【図6】図5の高輝度放電灯用多結晶セラミックス発光
管の製造方法を示すフローチャートである。FIG. 6 is a flowchart showing a method of manufacturing the polycrystalline ceramic arc tube for a high-intensity discharge lamp of FIG.
1・・発光管、2・・胴部、3・・キャピラリ部、4・
・電極、5・・電流導体、6・・放電電極、7・・ガラ
スフリット。1. Arc tube, 2. Trunk, 3. Capillary, 4.
-Electrode, 5-Current conductor, 6-Discharge electrode, 7-Glass frit.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G030 AA07 AA17 AA36 BA15 CA01 CA04 CA07 GA08 GA11 GA19 GA21 GA23 GA26 5C012 AA08 BB01 5C043 AA07 CC01 CC11 CD01 DD03 DD15 EB16 EC03 EC06 EC12 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G030 AA07 AA17 AA36 BA15 CA01 CA04 CA07 GA08 GA11 GA19 GA21 GA23 GA26 5C012 AA08 BB01 5C043 AA07 CC01 CC11 CD01 DD03 DD15 EB16 EC03 EC06 EC12
Claims (6)
に電極を固定して前記放電空間を封止するためのキャピ
ラリ部とから成る高輝度放電灯用多結晶セラミックス発
光管であって、前記キャピラリ部の一部に平均粒径が胴
部の平均粒径より小さい小粒径部を設け、該小粒径部と
胴部の平均粒径比(キャピラリ小粒径部/胴部)が0.
2〜0.9であり、且つ該小粒径部が1000〜100
00ppmのマグネシアを有することを特徴とする高輝
度放電灯用多結晶セラミックス発光管。1. A polycrystalline ceramic arc tube for a high-intensity discharge lamp, comprising: a body forming a discharge space; and a capillary for fixing electrodes at both ends of the body to seal the discharge space. A small particle size portion having an average particle size smaller than the average particle size of the body portion is provided in a part of the capillary portion, and an average particle size ratio of the small particle size portion and the body portion (capillary small particle size portion / body portion). ) Is 0.
2 to 0.9, and the small particle size part is 1000 to 100.
A polycrystalline ceramic arc tube for a high-intensity discharge lamp, characterized by having 00 ppm of magnesia.
請求項1記載の高輝度放電灯用多結晶セラミック発光
管。2. A polycrystalline ceramic arc tube for a high-intensity discharge lamp according to claim 1, wherein the body has an average particle diameter of 25 to 40 μm.
のフリット付着部位である請求項1又は2記載の高輝度
放電灯用多結晶セラミックス発光管。3. The polycrystalline ceramic arc tube for a high-intensity discharge lamp according to claim 1, wherein the small particle size portion is a frit attachment portion for fixing and sealing the electrode.
に電極を固定して前記放電空間を封止するためのキャピ
ラリ部とから成る高輝度放電灯用多結晶セラミックス発
光管の製造方法であって、本焼成前に、前記キャピラリ
部の一部をマグネシウム,ジルコニウムの何れかの塩溶
液又はそれら塩溶液の混合液に浸す浸漬工程を設け、そ
の後、本焼成することで前記塩溶液に浸漬した部位の平
均粒径を他の部位の平均粒径より小さくすることを特徴
とする高輝度放電灯用多結晶セラミックス発光管の製造
方法。4. Manufacture of a polycrystalline ceramic arc tube for a high-intensity discharge lamp, comprising: a body forming a discharge space; and capillaries for fixing electrodes at both ends of the body to seal the discharge space. A method of immersing a part of the capillary portion in a salt solution of any of magnesium and zirconium or a mixed solution of the salt solutions before the main firing, and thereafter, performing the main firing to provide the salt solution. A method for producing a polycrystalline ceramic arc tube for a high-intensity discharge lamp, characterized in that the average particle diameter of a part immersed in a glass is smaller than the average particle diameter of other parts.
調整する仮焼工程を設けた請求項4記載の高輝度放電灯
用多結晶セラミックス発光管の製造方法。5. The method for producing a polycrystalline ceramic arc tube for a high-intensity discharge lamp according to claim 4, wherein a calcining step for adjusting the water absorption of the capillary portion is provided before the immersion step.
%に調整する請求項5記載の高輝度放電灯用多結晶セラ
ミック発光管の製造方法。6. The method for producing a polycrystalline ceramic arc tube for a high-intensity discharge lamp according to claim 5, wherein the water absorption is adjusted to 15 to 30% by weight by a calcination step.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001156061A JP2002184352A (en) | 2000-07-19 | 2001-05-24 | Polycrystalline ceramics light-emitting tube for high luminance discharge lamp and its manufacturing method |
PCT/JP2001/005675 WO2002007186A1 (en) | 2000-07-19 | 2001-06-29 | Polycrystalline ceramic arc tube for high brightness discharge lamp and method for manufacturing the same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000219523 | 2000-07-19 | ||
JP2000-219523 | 2000-07-19 | ||
JP2000-306649 | 2000-10-05 | ||
JP2000306649 | 2000-10-05 | ||
JP2001156061A JP2002184352A (en) | 2000-07-19 | 2001-05-24 | Polycrystalline ceramics light-emitting tube for high luminance discharge lamp and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002184352A true JP2002184352A (en) | 2002-06-28 |
Family
ID=27344118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001156061A Pending JP2002184352A (en) | 2000-07-19 | 2001-05-24 | Polycrystalline ceramics light-emitting tube for high luminance discharge lamp and its manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2002184352A (en) |
WO (1) | WO2002007186A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008262728A (en) * | 2007-04-10 | 2008-10-30 | Iwasaki Electric Co Ltd | High pressure discharge lamp |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4898684A (en) * | 1972-03-27 | 1973-12-14 | ||
JPS51107683A (en) * | 1975-03-18 | 1976-09-24 | Ngk Insulators Ltd | Taketsushotomeiaruminahatsukokan |
JPS5294672A (en) * | 1976-02-05 | 1977-08-09 | Ngk Insulators Ltd | High pressure vapor discharge lamp |
JPH08298099A (en) * | 1995-02-28 | 1996-11-12 | Kyocera Corp | Arc tube for metal vapor discharge lamp |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3575344B2 (en) * | 1999-08-06 | 2004-10-13 | 東陶機器株式会社 | Translucent ceramic arc tube and method of manufacturing the same |
-
2001
- 2001-05-24 JP JP2001156061A patent/JP2002184352A/en active Pending
- 2001-06-29 WO PCT/JP2001/005675 patent/WO2002007186A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4898684A (en) * | 1972-03-27 | 1973-12-14 | ||
JPS51107683A (en) * | 1975-03-18 | 1976-09-24 | Ngk Insulators Ltd | Taketsushotomeiaruminahatsukokan |
JPS5294672A (en) * | 1976-02-05 | 1977-08-09 | Ngk Insulators Ltd | High pressure vapor discharge lamp |
JPH08298099A (en) * | 1995-02-28 | 1996-11-12 | Kyocera Corp | Arc tube for metal vapor discharge lamp |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008262728A (en) * | 2007-04-10 | 2008-10-30 | Iwasaki Electric Co Ltd | High pressure discharge lamp |
Also Published As
Publication number | Publication date |
---|---|
WO2002007186A1 (en) | 2002-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2780941B2 (en) | High pressure discharge lamp with ceramic discharge tube, sintered body suitable for the discharge tube, and method for producing the sintered body | |
WO2008144118A2 (en) | Translucent polycrystalline alumina ceramic | |
JP2002164019A (en) | Light emitting vessel for high pressure discharge lamp | |
JP2003123690A (en) | Discharge tube for high pressure discharge lamp and high pressure discharge lamp | |
JP4131240B2 (en) | Luminescent vessel for high pressure discharge lamp and method for producing polycrystalline transparent alumina sintered body | |
EP1463691B1 (en) | Sintered body and electric lamp | |
JP2002184352A (en) | Polycrystalline ceramics light-emitting tube for high luminance discharge lamp and its manufacturing method | |
US8274224B2 (en) | Metal halide lamp including ceramic sealing material | |
US7678725B2 (en) | Translucent polycrystalline alumina ceramic | |
WO2002007187A1 (en) | Polycrystalline ceramic arc tube for high brightness discharge lamp and method for manufacturing the same | |
JP2002184353A (en) | Polycrystalline ceramics light-emitting tube for high luminance discharge lamp and its manufacturing method | |
JP4613408B2 (en) | Manufacturing method of arc tube for high pressure discharge lamp | |
JP3340024B2 (en) | Method for manufacturing light-transmitting tube used for arc tube for discharge lamp | |
US8310157B2 (en) | Lamp having metal conductor bonded to ceramic leg member | |
JP3685092B2 (en) | Electric introduction body for lamp and lamp | |
JP2002326878A (en) | Joint body and high-pressure discharge lamp | |
JP3575344B2 (en) | Translucent ceramic arc tube and method of manufacturing the same | |
WO2012170337A1 (en) | Polycrystalline translucent alumina doped with magnesium oxide/zirconium for high intensity discharge lamps | |
JP2010538439A (en) | Ceramic discharge vessel having opaque zone and method for manufacturing the same | |
JP2009163973A (en) | Metal halide lamp and lighting device using the same | |
JP4951842B2 (en) | High pressure sodium lamp | |
JPH04371802A (en) | Manufacture of light emitting tube for high-brightness discharge lamp | |
CN1723533A (en) | metal halide lamp | |
JP2000100385A (en) | High-pressure discharge lamp | |
JPH10162776A (en) | Arc tube for metal vapor discharge lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100126 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100525 |