JP2002183740A - Detection device for precise three-dimensional position attitude of circule characteristic of component - Google Patents

Detection device for precise three-dimensional position attitude of circule characteristic of component

Info

Publication number
JP2002183740A
JP2002183740A JP2000384788A JP2000384788A JP2002183740A JP 2002183740 A JP2002183740 A JP 2002183740A JP 2000384788 A JP2000384788 A JP 2000384788A JP 2000384788 A JP2000384788 A JP 2000384788A JP 2002183740 A JP2002183740 A JP 2002183740A
Authority
JP
Japan
Prior art keywords
arc
circle
feature
point sequence
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000384788A
Other languages
Japanese (ja)
Other versions
JP4348859B2 (en
Inventor
Kiyohide Abe
清秀 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2000384788A priority Critical patent/JP4348859B2/en
Publication of JP2002183740A publication Critical patent/JP2002183740A/en
Application granted granted Critical
Publication of JP4348859B2 publication Critical patent/JP4348859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect three-dimensional position attitude of a circle characteristic such as 'an end point of a cylindrical part' or 'a hole' of an industrial component. SOLUTION: This detection device for the precise three-dimensional position attitude of the circle characteristic of the component limits a set state that the hole of the target component to be detected is nearly not inclined to an optical axis of a camera, sets only a portion entering a set radial range to an arc characteristic when extracting the arc characteristic, sets an edge segment from which an arc is extracted to a circle candidate point sequence, and calculates the circle characteristic on the basis of the set circle candidate point sequence. The detection device has a rough arc radius-setting means setting the arc radius range such that the detection device can deal with all range wherein the target component is possibly present at an initial state, and a precise arc radius-setting means setting the arc radius range in consideration of a respective small range above and below the rough detection result found by the rough arc radius-setting means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、部品の円特徴の精
密三次元位置姿勢検出装置に関する。いわゆる物体認識
処理に関するものであり、特にモデルベーストマッチン
グ法に用いる特徴を抽出する手段を提供するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precision three-dimensional position / orientation detecting apparatus for a circular feature of a part. The present invention relates to so-called object recognition processing, and particularly provides means for extracting features used in a model-based matching method.

【0002】[0002]

【従来の技術】モデルベーストマッチング法を用いた物
体認識処理では、物体を構成する直線、円弧といった幾
何学的特徴データ(特徴要素)の集合であるモデルと、
画像から抽出した対象物体の特徴要素とを比較して対象
物体の認識を行う。この比較は、対象物体を構成する直
線,円弧,円を特徴要素として抽出し、これら対象物体
の特徴要素のモデルの特徴要素に対する相関(特徴マッ
チング)をとることにより行われる。
2. Description of the Related Art In an object recognition process using a model-based matching method, a model which is a set of geometric feature data (feature elements) such as a straight line and an arc which constitute an object,
The target object is recognized by comparing the feature elements of the target object extracted from the image. This comparison is performed by extracting straight lines, arcs, and circles constituting the target object as characteristic elements, and performing correlation (feature matching) of these characteristic elements of the target object with the characteristic elements of the model.

【0003】特徴要素の抽出としては、画像データに微
分空間フィルタ等の鮮明化処理を施すことによりエッジ
部分を強調した画像データ(エッジ画像データ)を作成
し、これからエッジ画素が連なってなるエッジ線分デー
タ(エッジチェーン)を抽出することにより行われる。
[0003] To extract a characteristic element, image data (edge image data) in which an edge portion is emphasized by applying sharpening processing such as a differential spatial filter to the image data is created, and an edge line composed of a series of edge pixels is created from the image data. This is performed by extracting minute data (edge chain).

【0004】しかし、上記特徴要素のうち、円特徴を抽
出することは、実際には非常に難しい。「円」は正面か
ら見れば円形であっても、対象物が斜めに傾いていた
り、画像中心から離れた位置にある場合等では、見掛け
上「楕円」になるためである。そこで、円特徴を検出す
る際の円特徴の候補として、閉曲線を用いる方法がある
(特願平8−100974号、以降これを“先件提案♯
1“と呼ぶ)。
However, it is actually very difficult to extract a circle feature from the above feature elements. This is because the “circle” is apparently “oval” when the object is obliquely inclined or located at a position away from the center of the image, even if it is circular when viewed from the front. Therefore, there is a method of using a closed curve as a circle feature candidate when detecting a circle feature (Japanese Patent Application No. Hei 8-100974, hereinafter referred to as “Proposal II”).
1 ").

【0005】この方法は、三次元座標をデータとして有
する各点の集合である閉曲線データを構成する点の数に
よって閉曲線を「大きな閉曲線」と「小さな閉曲線」と
に分別し、「大きな閉曲線」の場合はその等価楕円を計
算し、この等価楕円の諸元等を特徴データとして抽出す
るとともに、「小さな閉曲線」の場合はこれを囲む各辺
が軸に平行な長方形を計算し、この長方形の中心位置を
特徴データとして抽出するようにしたものである。
In this method, a closed curve is classified into a "large closed curve" and a "small closed curve" according to the number of points constituting closed curve data which is a set of points having three-dimensional coordinates as data. In this case, the equivalent ellipse is calculated, and the specifications of the equivalent ellipse are extracted as feature data. In the case of a "small closed curve", a rectangle whose sides are parallel to the axis is calculated, and the center of the rectangle is calculated. The position is extracted as feature data.

【0006】ところが、閉曲線は部品表面や背景にある
シミ、影、凸凹等で作られる場合もあり、閉曲線だけで
は「穴」や「円筒の端点」といった部分と区別がつき難
い場合がある。このような場合はマッチング回数が増え
るため処理時間が大きくなったり、本来正しくない閉曲
線とマッチングすることによる誤認識を生じることがあ
る。そこで、部品が傾いても穴や円筒の端点の円特徴の
三次元位置姿勢を検出することができ、部品の様々な設
置状態に対応して、円特徴を検出する方法がある(特願
平9−136452号、以降これを“先件提案♯2“と
呼ぶ)。
However, a closed curve may be made of spots, shadows, irregularities, or the like on the surface or background of a component, and it may be difficult to distinguish a closed curve alone from a portion such as a “hole” or “end point of a cylinder”. In such a case, the number of times of matching increases, so that the processing time increases, or erroneous recognition may occur due to matching with an originally incorrect closed curve. Therefore, there is a method of detecting the three-dimensional position and orientation of the circular feature at the end point of the hole or the cylinder even when the component is tilted, and detecting the circular feature in accordance with various installation states of the component (Japanese Patent Application No. Hei 10-26139). No. 9-136452, hereafter referred to as "Proposal # 2".

【0007】この方法は、工業製品の「穴」や「円筒部
分の端点」を抽出するため、部品が傾くことにより、例
え画像上ではそれらが円とならなくても、「穴」や「円
筒部分の端点」を正面から見れば円となることに注目
し、入力画像から得たエッジ線分のうち円になりそうな
点列部分を抽出し、その点列の三次元位置データを基に
計算される平面上で点列データに関して円近似を行うよ
うにしたものである。尚、円弧近似方法としては、最小
二乗法等の近似手段を用いて円の方程式を近似し、中心
位置と半径を計算して、このエッジ線分を円弧と決定す
る方法を採るのが一般的であるが、画像データ中にある
エッジ線分を円又は円弧に近似するときの処理計算を速
くでき、始点、終点を必ず通る方法がある(特願平6−
113217号又は特願平6−113218号、以降こ
れを“先件提案♯3“と呼ぶ)。
This method extracts "holes" and "ends of a cylindrical portion" of an industrial product. Therefore, if a part is tilted, even if the parts do not become circular on the image, the "holes" or "cylindrical parts" are obtained. Notice that the `` end point of the part '' becomes a circle when viewed from the front, extract the point sequence part that is likely to be a circle from the edge line segments obtained from the input image, and based on the three-dimensional position data of the point sequence A circle approximation is performed on point sequence data on a plane to be calculated. Incidentally, as the arc approximation method, it is general to employ a method of approximating a circle equation using approximation means such as a least square method, calculating a center position and a radius, and determining this edge line segment as an arc. However, there is a method in which the processing for approximating an edge line segment in the image data to a circle or an arc can be performed quickly and always passes through the starting point and the ending point (Japanese Patent Application No. Hei 6 (1994) -197686).
No. 113217 or Japanese Patent Application No. Hei 6-113218, which is hereinafter referred to as “Proposal No. 3”.

【0008】この方法は、画像データ中にあるエッジ線
分を円または円弧に近似する際、対象とするエッジ線分
の2つの端点である始点と終点と、他の1点の合計3点
を通る円又は円弧を仮定するものである。そして、円又
は円弧を仮定した後、エッジ線分の全ての要素の点が円
周上にあると判定されれは、それらのエッジ線分を仮定
した円弧として認識し、また、円周上から一定以上離れ
た点があると判定されれば、それらのエッジ線分を円弧
に近似しない。
According to this method, when an edge line segment in image data is approximated to a circle or a circular arc, a start point and an end point, which are two end points of a target edge line segment, and another one point, that is, a total of three points. It assumes a passing circle or arc. Then, after assuming a circle or an arc, if it is determined that all the element points of the edge line segment are on the circumference, the edge line segment is recognized as an assumed arc, and from the circumference, If it is determined that there are points separated by a certain distance or more, those edge line segments are not approximated to an arc.

【0009】更に、部品の円特徴の三次元位置姿勢検出
装置として、部品上の円特徴部分の表面に油や埃が付着
していて抽出したエッジ線分が小さく切れてしまい、閉
曲線とならない場合にも、円特徴を検出して、部品の様
々な設置状態に対応できる方法がある(特願平11−2
32453号(以降これを“先件提案♯4“と呼ぶ)。
この方法は、検出すべき対象部品の穴がカメラの光軸に
対してほぼ傾かない設置状態に限定し、円弧特徴を抽出
する際、設定した半径範囲に入るもののみを円弧特徴と
し、抽出した円弧の元となったエッジ線分を円候補点列
として設定し、設定された円候補点列に基づいて円特徴
を計算するものである。
Furthermore, as a three-dimensional position / posture detecting device for a circular feature of a component, when an oil or dust adheres to the surface of the circular feature on the component, the extracted edge line segment is cut small and does not become a closed curve. Also, there is a method capable of detecting a circular feature and responding to various installation states of components (Japanese Patent Application No. 11-2).
No. 32453 (hereinafter, this will be referred to as "previous proposal # 4").
This method is limited to the installation state in which the hole of the target component to be detected is not substantially inclined with respect to the optical axis of the camera, and when extracting arc features, only those within a set radius range are taken as arc features and extracted. The edge line segment that is the base of the arc is set as a circle candidate point sequence, and a circle feature is calculated based on the set circle candidate point sequence.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、先件提
案♯4で設定する円弧半径範囲をあまり大きくすると誤
った認識結果となる可能性が高くなり、逆に設定する円
弧半径範囲をあまりに小さくすると全く認識できなくな
り、この円弧半径範囲の設定が難しくなる。
However, if the arc radius range set in the prior art proposal # 4 is too large, the possibility of an erroneous recognition result increases. On the contrary, if the arc radius range set is too small, there is no possibility of complete recognition. Recognition becomes impossible, and setting of this arc radius range becomes difficult.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する本発
明の請求項1に係る部品の円特徴の精密三次元位置姿勢
検出装置は、検出すべき対象部品の穴がカメラの光軸に
対してほぼ傾かない設置状態に限定し、円弧特徴を抽出
する際、設定した半径範囲に入るもののみを円弧特徴と
し、抽出した円弧の元となったエッジ線分を円候補点列
として設定し、設定された円候補点列に基づいて円特徴
を計算する部品の円特徴の精密三次元位置姿勢検出装置
において、初期状態では対象部品の存在する可能性があ
る全ての範囲に対応できるように円弧半径範囲を設定す
るラフ円弧半径設定手段と、ラフ円弧半径設定手段によ
り求められたラフ検出結果を中心にして上下に小範囲分
を考慮した円弧半径範囲を設定する精密円弧半径設定手
段を有することを特徴とする。
According to a first aspect of the present invention, there is provided a precision three-dimensional position / orientation detecting apparatus having a circular feature of a component, wherein a hole of a target component to be detected is positioned with respect to an optical axis of a camera. When extracting arc features, only those that fall within the set radius range are taken as arc features, and the edge line segment that is the source of the extracted arc is set as a circle candidate point sequence, In a precision three-dimensional position and orientation detection device for a circular feature of a component for which a circular feature is calculated based on a set of circle candidate point sequences, an arc is formed so as to be able to correspond to an entire range in which the target component may exist in an initial state. A rough arc radius setting means for setting a radius range, and a precise arc radius setting means for setting an arc radius range in consideration of a small range up and down around a rough detection result obtained by the rough arc radius setting means. To And butterflies.

【0012】上記課題を解決する本発明の請求項2に係
る部品の円特徴の精密三次元位置姿勢検出装置は、検出
すべき対象部品の穴がカメラの光軸に対してほぼ傾かな
い設置状態に限定し、円弧特徴を抽出する際、設定した
半径範囲に入るもののみを円弧特徴とし、抽出した円弧
の元となったエッジ線分を円候補点列として設定し、設
定された円候補点列に基づいて円特徴を計算する部品の
円特徴の精密三次元位置姿勢検出装置において、連続認
識/取出状態では、前回検出結果を中心にして上下に検
査対象1つ分以上の奥行きを考慮した円弧半径範囲を設
定するラフ円弧半径設定手段と、前記ラフ円弧半径設定
手段により求められたラフ検出結果を中心にして上下に
小範囲分を考慮した円弧半径範囲を設定する精密円弧半
径設定手段を有することを特徴とする。
According to a second aspect of the present invention, there is provided a precision three-dimensional position / orientation detecting apparatus having a circular feature of a component, wherein a hole of a target component to be detected is substantially not inclined with respect to an optical axis of a camera. When extracting arc features, only those that fall within the set radius range are taken as arc features, and the edge line segments that are the basis of the extracted arcs are set as a circle candidate point sequence, and the set circle candidate points In the precision three-dimensional position and orientation detection device for a circular feature of a component that calculates a circular feature based on a column, in a continuous recognition / removal state, a depth of at least one inspection object is considered up and down from the previous detection result. Rough arc radius setting means for setting an arc radius range; and precision arc radius setting means for setting an arc radius range in consideration of a small range up and down around a rough detection result obtained by the rough arc radius setting means. Have It is characterized in.

【0013】上記課題を解決する本発明の請求項3に係
る部品の円特徴の精密三次元位置姿勢検出装置は、請求
項1又は2に記載の部品の円特徴の精密三次元位置姿勢
検出装置において、抽出した点列の三次元位置を計測す
る手段と、この点列の位置データを基に平面を計算する
手段と、計算した平面上で点列データに関して円近似を
行い、近似した円の中から設定データに合うものを選択
する手段と、選択された円に関して円特徴の三次元位置
姿勢を検出する手段とを備えることを特徴とする。
According to a third aspect of the present invention, there is provided a precision three-dimensional position and orientation detecting apparatus for circular features of a part according to the present invention. In, means for measuring the three-dimensional position of the extracted point sequence, means for calculating a plane based on the position data of the point sequence, and a circle approximation for the point sequence data on the calculated plane, It is characterized by comprising means for selecting one that matches the setting data from among them, and means for detecting the three-dimensional position and orientation of the circle feature with respect to the selected circle.

【0014】[0014]

【発明の実施の形態】(1)基本的な考え方 本発明の目的は、工業部品の「穴」や「円筒部分の端
点」といった円特徴の三次元位置姿勢を検出することで
ある。本発明では、検出すべき対象部品の穴がカメラの
光軸に対してほぼ傾かない設置状態に限定し、部品上に
付着した油や埃のために抽出したエッジ線分が小さく切
れてしまい閉曲線とならない場合でも、先件提案♯3に
示すように、エッジ線分を円弧近似することで画面上で
円弧を抽出し、先件提案♯2に示すように閉曲線の代わ
りに円弧を元に円候補点列を設定し、最終的に円特徴を
検出する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (1) Basic Concept An object of the present invention is to detect a three-dimensional position and orientation of a circular feature such as a "hole" or "end point of a cylindrical portion" of an industrial part. In the present invention, the installation part is limited to an installation state in which the hole of the target part to be detected is not substantially inclined with respect to the optical axis of the camera, and the edge line segment extracted due to oil or dust attached on the part is cut small and the closed curve is closed. Even if it does not occur, an arc is extracted on the screen by approximating the edge line segment with an arc as shown in Proposal # 3, and a circle is formed based on the arc instead of the closed curve as shown in Proposal # 2. A candidate point sequence is set, and finally a circular feature is detected.

【0015】(2)円弧半径範囲の自動設定 本発明では円弧半径範囲の設定について、先件提案♯4
における定量的な円弧半径範囲の設定方式の代わりに、
対象部品高さ、前回検出結果、ラフ検出結果から自動的
に円弧半径範囲の設定を行う。円弧特徴を抽出する際、
自動的に設定した半径範囲に入るもののみを円弧特徴と
する。
(2) Automatic Setting of Arc Radius Range In the present invention, the prior proposal No. 4
Instead of the quantitative arc radius range setting method in
The arc radius range is automatically set based on the target component height, the previous detection result, and the rough detection result. When extracting arc features,
Only those that fall within the automatically set radius range are considered arc features.

【0016】(2.1)初期状態での円弧半径範囲の設
定 初期状態では、対象部品の存在位置は不定であるため対
象部品の存在する可能性がある全ての範囲に対応できる
ように円弧半径範囲を設定する。ここで検出した位置は
ラフ検出結果となる。
(2.1) Setting of Arc Radius Range in Initial State In the initial state, the position of the target component is indefinite, so that the radius of the arc is adjusted so as to be able to cover all ranges in which the target component may exist. Set the range. The position detected here is a rough detection result.

【0017】(2.2)連続認識/取出状態での円弧半
径範囲の設定 認識結果は検出した円特徴の中心の位置が一番高位にあ
るものを出力するために、次ぎに検出すべき対象部品の
位置は、前回検出結果に対してほぼ等しい高さ位置以下
になるものと推定される。このことから、連続認識/取
出状態での円弧半径範囲の設定は、図1に示すように、
前回検出結果を中心にして上下に検査対象1つ+α分の
奥行きAを考慮した円弧半径範囲(以下、ラフ検出設定
範囲と言う)を設定する。このラフ検出設定範囲は、図
1に示すように、レンズ焦点に対するイメージ平面上に
おける、最大円弧半径と最小円弧半径との間の許容誤差
で示される。ここで検出した位置はラフ検出結果とな
る。
(2.2) Setting of Arc Radius Range in Continuous Recognition / Extraction State In order to output the recognition result having the highest position of the center of the detected circular feature, the target to be detected next is output. It is presumed that the position of the component will be less than or equal to the height position substantially equal to the previous detection result. From this, the setting of the arc radius range in the continuous recognition / removal state is performed as shown in FIG.
An arc radius range (hereinafter, referred to as a rough detection setting range) is set above and below the previous detection result, taking into account the depth A of one inspection object and α. The rough detection setting range is indicated by an allowable error between the maximum arc radius and the minimum arc radius on the image plane with respect to the lens focal point, as shown in FIG. The position detected here is a rough detection result.

【0018】(2.3)ラフ検出結果後の円弧半径範囲
の設定 (2.1)、(2.2)で検出した結果は円弧半径範囲
が大きいために誤差を含んだ検出結果となる。このため
に、図2に示すように、精密な検出結果を得るために、
ラフ検出結果を中心にして上下に小範囲β分の奥行きB
を考慮した円弧半径範囲(以下、精密検出設定範囲とい
う)の設定を行う。この精密検出設定範囲は、図2に示
すように、レンズ焦点に対するイメージ平面における、
最大円弧半径と最小円弧半径との間の許容誤差で示され
る。
(2.3) Setting of Arc Radius Range after Rough Detection Result The results detected in (2.1) and (2.2) are detection results including errors because the arc radius range is large. Therefore, as shown in FIG. 2, in order to obtain a precise detection result,
Depth B of small range β up and down around the rough detection result
Is set in consideration of the above (hereinafter, referred to as a precision detection setting range). This fine detection setting range is, as shown in FIG.
It is indicated by the tolerance between the maximum and minimum arc radii.

【0019】(3)円候補点列の設定 本発明では円候補点列について先件提案♯4における円
弧特徴を用いた円候補点列を設定する。即ち、検出すべ
き対象部品の穴がカメラの光軸に対してほぼ傾かない設
置状態にあることを前提とし、カメラにより撮影された
対象部品の穴の画像は、エッジ線分が小さく切れた場合
でも、円の一部である円弧であるから、閉曲線か否かに
係わらず、円特徴を抽出することができる。従って、円
弧近似としては、画像データ中にある点列を円または円
弧に近似する際、対象とする点列の2つの端点と、他の
1点の合計3点を通る円弧を仮定し、その点列の更に他
の1点が仮定した円弧の円周上にあれば、点列の全ての
要素の点が仮定した円弧の円周上にあると判定し、対象
となる点列を仮定した円弧として認識する。
(3) Setting of a circle candidate point sequence In the present invention, a circle candidate point sequence using the arc feature in the prior proposal # 4 is set for the circle candidate point sequence. That is, assuming that the hole of the target component to be detected is in a state where the hole of the target component to be detected is not substantially inclined with respect to the optical axis of the camera, the image of the hole of the target component captured by the camera has a small edge line segment. However, since the arc is a part of a circle, a circle feature can be extracted regardless of whether the curve is a closed curve or not. Therefore, as the arc approximation, when approximating a point sequence in the image data to a circle or an arc, it is assumed that an arc passes through two endpoints of the target point sequence and a total of three other points. If another point in the point sequence is on the circumference of the assumed arc, it is determined that all element points in the point sequence are on the circumference of the assumed arc, and the target point sequence is assumed. Recognize as an arc.

【0020】(4)円特徴データの計算 点列の三次元位置計測、三次元円計算、円特徴確認等の
円特徴データ計算処理は、先件提案♯2の図17、図2
5又は図26に記載した装置の「点列データ抽出部」以
降の処理を用いる。即ち、抽出した点列の三次元位置を
計測する手段と、この点列の位置データを基に平面を計
算する手段と、計算した平面上で点列データに関して円
近似を行い、近似した円の中から設定データに合うもの
を選択する手段と、選択された円に関して円特徴の三次
元位置姿勢を検出する手段とを備えるものである。
(4) Calculation of circle feature data The three-dimensional position measurement of the point sequence, the three-dimensional circle calculation, the circle feature confirmation, and other circle feature data calculation processes are shown in FIGS.
5 or the processing after the "point sequence data extraction unit" of the apparatus shown in FIG. 26 is used. That is, means for measuring the three-dimensional position of the extracted point sequence, means for calculating a plane based on the position data of this point sequence, and circle approximation for the point sequence data on the calculated plane, It is provided with a means for selecting one that matches the setting data from among them, and a means for detecting the three-dimensional position and orientation of the circle feature with respect to the selected circle.

【0021】一例として図4に示す処理は、入力画像か
ら得たエッジデータのうち円になりそうな点列部分を抽
出した後、抽出した点列部分の三次元位置計測を行い、
最小二乗法等によって三次元点列データの乗る平面(以
降“円平面”と呼ぶ)を計算した後、円平面上へ円候補
となる点列データの全ての点をマップし、円平面上で点
列データに関して円近似を行い、更に、入力画像から抽
出した円が実際の対象部品のとして正しいかどうかの正
当性を確認するため、抽出した円の径が、予め設定して
おいた範囲(以降“円設定値”と呼ぶ)内に入るか否か
を判断し、円設定値内に入れる円特徴を示すデータを設
定するものである。
As an example, in the processing shown in FIG. 4, after extracting a point sequence portion likely to be a circle from the edge data obtained from the input image, three-dimensional position measurement of the extracted point sequence portion is performed.
After calculating the plane on which the three-dimensional point sequence data rides (hereinafter referred to as “circular plane”) by the least square method or the like, map all the points of the point sequence data that is a circle candidate onto the circular plane, and A circle approximation is performed on the point sequence data, and the diameter of the extracted circle is set in a predetermined range (in order to confirm whether the circle extracted from the input image is correct as an actual target part). (Hereinafter referred to as “circle set value”), and sets data indicating a circle feature to be included in the circle set value.

【0022】また、図5に示す処理は、図4に示す処理
に比較し、抽出した点列の三次元位置計測において、計
測しようとする点の前後数点から作られる直線とエピポ
ーララインのなす角度を求め、その角度と設定した値と
を比較することで、その点を三次元位置計測するか否か
を判断する計測点選択処理を追加したものである。更
に、図6に示す処理は、図4に示す処理に比較し、抽出
した点列の三次元位置データを基に計算される平面上で
点列データに関して円近傍を行い、抽出した円と同心円
上の近傍の円弧を抽出し、円と近傍の円弧の点列の三次
元位置データから再度円平面を計算し、その円平面上で
円を構成していた点列データに関して再度円近似を行
い、円特徴の三次元位置姿勢を検出する近傍円弧抽出処
理を追加したものである。
The processing shown in FIG. 5 is different from the processing shown in FIG. 4 in that the epipolar line is formed by a straight line formed from several points before and after the point to be measured in the three-dimensional position measurement of the extracted point sequence. A measurement point selection process for determining an angle and comparing the angle with a set value to determine whether or not to measure the three-dimensional position of the point is added. Further, the processing shown in FIG. 6 is different from the processing shown in FIG. 4 in that the vicinity of a circle is performed on the point sequence data on a plane calculated based on the three-dimensional position data of the extracted point sequence, and the extracted circle is concentric with the extracted circle. Extract the nearby circular arc above, calculate the circular plane again from the three-dimensional position data of the circle and the point sequence of the nearby circular arc, and perform circle approximation again on the point sequence data that constituted the circle on the circular plane , A neighborhood arc extraction process for detecting the three-dimensional position and orientation of a circular feature is added.

【0023】(5)円特徴データの精密計測 円候補点列を先件提案♯4の方法を用いて設定した場
合、円特徴データ計算のデータとなる元のデータ量が少
ないため、検出した検出した円特徴の傾きが実際とは大
きく異なる場合がある。そこで、(2.3)を実施する
ことにより計測ポイントを絞り込んで円特徴の精密な傾
き計測を行う。
(5) Precise measurement of circle feature data When a circle candidate point sequence is set by using the method of the preceding proposal # 4, the amount of original data used for calculating the circle feature data is small. In some cases, the inclination of the circle feature differs greatly from the actual one. Therefore, by performing (2.3), measurement points are narrowed down, and precise tilt measurement of the circular feature is performed.

【0024】(6)本発明の実施例 本発明による円特徴の三次元位置姿勢を精密に検出する
装置の例を図3に示す。この装置は、先件提案♯4の実
施例(6.12)の円特徴の三次元位置姿勢を検出する
装置12において円特徴データ計算部を2段にして、こ
の時の円弧半径範囲計算部もラフ検出用と精密検出用の
2つを用意したことを特徴とする。
(6) Embodiment of the Present Invention FIG. 3 shows an example of an apparatus for precisely detecting the three-dimensional position and orientation of a circular feature according to the present invention. This device is a device for detecting the three-dimensional position and orientation of a circular feature of the embodiment (6.12) of the prior proposal # 4. Also, two types, one for rough detection and one for precision detection, are provided.

【0025】即ち、図3に示すように、ラフ検出用の点
列データ抽出部10及び円特徴データ計算部20と、精
密検出用の点列データ抽出部30及び円特徴データ計算
部40とを設けたものである。ラフ検出用の点列データ
抽出部10は、円弧抽出部11及び抽出円弧仮想円候補
点列設定部12を備える。ラフ検出用の円弧抽出部11
は、円弧特徴を抽出する際、初期状態では、(2.1)
で述べたように、対象部品の存在する可能性がある全て
の範囲に対応できるように円弧半径範囲を設定し、設定
した半径範囲に入るもののみを円弧特徴とする。
That is, as shown in FIG. 3, a point sequence data extraction unit 10 and a circle feature data calculation unit 20 for rough detection, and a point sequence data extraction unit 30 and a circle feature data calculation unit 40 for precision detection are combined. It is provided. The rough detection point sequence data extraction unit 10 includes an arc extraction unit 11 and an extracted arc virtual circle candidate point sequence setting unit 12. Arc extraction unit 11 for rough detection
When extracting arc features, in the initial state, (2.1)
As described above, the arc radius range is set so as to be able to cover all the ranges in which the target component may exist, and only those falling within the set radius range are regarded as arc features.

【0026】また、連続認識/取出状態では、(2.
2)で述べたように、前回検出結果を中心にして上下に
検査対象1つ+α分の奥行きを考慮したラフ検出設定範
囲Aを設定し、設定したラフ検出設定範囲Aに入るもの
のみを円弧特徴とする。ラフ検出設定範囲Aは、図1に
示す位置関係を用いて、ラフ円弧半径範囲計算部50に
より予め設定し、その値をメモリ70に記憶しておく。
ラフ検出用の抽出円弧仮想円候補点列設定部12は、抽
出した円弧の中心と半径と同じデータをもつ仮想的な円
を考え、その仮想円の円周上の点の位置を計算し、仮想
円の円周として求められた点列を円候補点列として設定
する。
In the continuous recognition / removal state, (2.
As described in 2), the rough detection setting range A is set in consideration of the depth of one inspection object + α with respect to the previous detection result as the center of the previous detection result, and only those that fall within the set rough detection setting range A are arcs. Features. The rough detection setting range A is set in advance by the rough arc radius range calculation unit 50 using the positional relationship shown in FIG. 1, and the value is stored in the memory 70.
The extracted arc virtual circle candidate point sequence setting unit 12 for rough detection considers a virtual circle having the same data as the center and radius of the extracted arc, calculates the position of a point on the circumference of the virtual circle, A point sequence obtained as the circumference of the virtual circle is set as a circle candidate point sequence.

【0027】設定された円候補点列に基づいて、円特徴
データ計算部20は、(4)で述べたように、円特徴を
計算する。一方、精密検出用の点列データ抽出部30
は、円弧抽出部31及び抽出円弧仮想円候補点列設定部
32を備える。精密検出用の円弧抽出部31は、円弧特
徴を抽出する際、(2.3)で述べたように、ラフ検出
結果を中心にして上下に小範囲β分の奥行きを考慮した
精密検出設定範囲Bを設定し、設定した精密検出設定範
囲Bに入るもののみを円弧特徴とする。
Based on the set circle candidate point sequence, the circle feature data calculation unit 20 calculates the circle feature as described in (4). On the other hand, the point sequence data extraction unit 30 for precise detection
Includes an arc extraction unit 31 and an extraction arc virtual circle candidate point sequence setting unit 32. When extracting the arc feature, the arc detection unit 31 for precision detection sets the precision detection setting range in consideration of the depth of the small range β up and down around the rough detection result, as described in (2.3). B is set, and only those that fall within the set precision detection set range B are arc features.

【0028】精密検出設定範囲Bは、図2に示す位置関
係を用いて、精密円弧半径範囲計算部60により予め設
定し、その値をメモリ70に記憶しておく。精密検出用
の抽出円弧仮想円候補点列設定部32は、抽出した円弧
の中心と半径と同じデータをもつ仮想的な円を考え、そ
の仮想円の円周上の点の位置を計算し、仮想円の円周と
して求められた点列を円候補点列として設定する。設定
された円候補点列に基づいて、円特徴データ計算部40
は、(4)で述べたように、円特徴を計算する。
The precision detection setting range B is set in advance by the precision arc radius range calculation unit 60 using the positional relationship shown in FIG. 2, and its value is stored in the memory 70. The extracted arc virtual circle candidate point sequence setting unit 32 for precise detection considers a virtual circle having the same data as the center and radius of the extracted arc, calculates the position of a point on the circumference of the virtual circle, A point sequence obtained as the circumference of the virtual circle is set as a circle candidate point sequence. Based on the set circle candidate point sequence, the circle feature data calculation unit 40
Calculates the circular feature as described in (4).

【0029】[0029]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明によれば、以下の効果を奏する。 (1)入力画像において、部品表面に油や埃が付着して
いる場合でも、部品上の「穴」や「円筒の端点」といっ
た円特徴の位置と姿勢を精密に検出することができる。 (2)円特徴を抽出することで、対象部品が三次元的に
どのような位置にあるかを検出することができる。 (3)円弧特徴を抽出するための円弧半径範囲を2段階
に分けて行うため、設定が容易であり、正確な認識結果
を得ることが可能となる。
As described above, according to the present invention, the following effects can be obtained as described in detail with reference to the embodiments. (1) In an input image, even if oil or dust adheres to the surface of a component, the position and orientation of a circular feature such as a “hole” or “end point of a cylinder” on the component can be accurately detected. (2) By extracting the circle feature, it is possible to detect what position the target component is three-dimensionally located. (3) Since the arc radius range for extracting the arc feature is divided into two stages, setting is easy, and an accurate recognition result can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における連続認識/取出状態でのラフ円
弧半径範囲の設定を示す説明図である。
FIG. 1 is an explanatory diagram showing the setting of a rough arc radius range in a continuous recognition / removal state according to the present invention.

【図2】本発明におけるラフ検出結果後の精密円弧半径
範囲の設定を示す説明図である。
FIG. 2 is an explanatory diagram showing a setting of a precise arc radius range after a rough detection result in the present invention.

【図3】本発明の一実施例に係る精密三次元位置姿勢検
出装置を示すブロック図である。
FIG. 3 is a block diagram illustrating a precision three-dimensional position and orientation detection apparatus according to an embodiment of the present invention.

【図4】円特徴の三次元位置姿勢を検出する装置の例を
示すブロック図である。
FIG. 4 is a block diagram illustrating an example of an apparatus for detecting a three-dimensional position and orientation of a circular feature.

【図5】円特徴の三次元位置姿勢を検出する装置の例を
示すブロック図である。
FIG. 5 is a block diagram showing an example of an apparatus for detecting a three-dimensional position and orientation of a circular feature.

【図6】円特徴の三次元位置姿勢を検出する装置の例を
示すブロック図である。
FIG. 6 is a block diagram illustrating an example of an apparatus for detecting a three-dimensional position and orientation of a circular feature.

【符号の説明】[Explanation of symbols]

A,B 奥行き 10,30 点列データ抽出部 11,31 円弧抽出部 12,32 抽出円弧仮想円候補点列設定部 20,40 円特徴データ計算部 50 ラフ円弧半径範囲計算部 60 精密円弧半径範囲計算部 70 メモリ A, B Depth 10, 30 Point sequence data extraction unit 11, 31 Arc extraction unit 12, 32 Extracted arc virtual circle candidate point sequence setting unit 20, 40 Circle feature data calculation unit 50 Rough arc radius range calculation unit 60 Precision arc radius range Calculation unit 70 Memory

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G06T 1/00 315 G06T 7/00 300D 7/00 300 G01B 11/24 K Fターム(参考) 2F065 AA04 AA27 AA37 AA53 BB05 DD00 DD13 FF01 FF04 JJ03 JJ05 JJ09 JJ26 QQ03 QQ25 QQ31 RR02 SS03 TT02 UU04 UU05 5B057 AA01 BA02 CA08 CA13 CA16 CE15 DA06 DC03 DC08 DC09 DC16 5L096 BA03 FA04 FA06 FA68 FA69 JA09 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G06T 1/00 315 G06T 7/00 300D 7/00 300 G01B 11/24 K F term (Reference) 2F065 AA04 AA27 AA37 AA53 BB05 DD00 DD13 FF01 FF04 JJ03 JJ05 JJ09 JJ26 QQ03 QQ25 QQ31 RR02 SS03 TT02 UU04 UU05 5B057 AA01 BA02 CA08 CA13 CA16 CE15 DA06 DC03 DC08 DC09 DC16 5L096 BA03 FA04 FA06 FA68 FA69 JA09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 検出すべき対象部品の穴がカメラの光軸
に対してほぼ傾かない設置状態に限定し、円弧特徴を抽
出する際、設定した半径範囲に入るもののみを円弧特徴
とし、抽出した円弧の元となったエッジ線分を円候補点
列として設定し、設定された円候補点列に基づいて円特
徴を計算する部品の円特徴の精密三次元位置姿勢検出装
置において、初期状態では対象部品の存在する可能性が
ある全ての範囲に対応できるように円弧半径範囲を設定
するラフ円弧半径設定手段と、ラフ円弧半径設定手段に
より求められたラフ検出結果を中心にして上下に小範囲
分を考慮した円弧半径範囲を設定する精密円弧半径設定
手段を有することを特徴とする部品の円特徴の精密三次
元位置姿勢検出装置。
1. Limiting an installation state in which a hole of a target component to be detected is not substantially inclined with respect to an optical axis of a camera, and extracting an arc feature, only those falling within a set radius range are extracted as an arc feature. In the precision three-dimensional position / posture detection device for a circular feature of a component for which the edge line segment that is the base of the circular arc is set as a circle candidate point sequence and a circular feature is calculated based on the set circle candidate point sequence, The rough arc radius setting means for setting the arc radius range so as to be able to cover the entire range where the target part may exist, and a small vertical scale centering on the rough detection result obtained by the rough arc radius setting means A precision three-dimensional position / orientation detecting apparatus for a circular feature of a component, comprising: a precision arc radius setting means for setting an arc radius range in consideration of a range component.
【請求項2】 検出すべき対象部品の穴がカメラの光軸
に対してほぼ傾かない設置状態に限定し、円弧特徴を抽
出する際、設定した半径範囲に入るもののみを円弧特徴
とし、抽出した円弧の元となったエッジ線分を円候補点
列として設定し、設定された円候補点列に基づいて円特
徴を計算する部品の円特徴の精密三次元位置姿勢検出装
置において、連続認識/取出状態では、前回検出結果を
中心にして上下に検査対象1つ分以上の奥行きを考慮し
た円弧半径範囲を設定するラフ円弧半径設定手段と、前
記ラフ円弧半径設定手段により求められたラフ検出結果
を中心にして上下に小範囲分を考慮した円弧半径範囲を
設定する精密円弧半径設定手段を有することを特徴とす
る部品の円特徴の精密三次元位置姿勢検出装置。
2. Limiting an installation state in which a hole of a target component to be detected is not substantially inclined with respect to an optical axis of a camera, and extracting an arc feature, only those falling within a set radius range are extracted as an arc feature. In the precision three-dimensional position and orientation detection device for a circular feature of a component for which the edge line segment that is the base of the circular arc is set as a circle candidate point sequence and a circular feature is calculated based on the set circle candidate point sequence, In the take-out state, rough arc radius setting means for setting an arc radius range in consideration of the depth of one or more inspection objects above and below the previous detection result, and rough detection calculated by the rough arc radius setting means A precision three-dimensional position / orientation detecting apparatus for a circular feature of a component, comprising: a precise arc radius setting means for setting an arc radius range in consideration of a small range up and down with a result as a center.
【請求項3】 請求項1又は2に記載の部品の円特徴の
精密三次元位置姿勢検出装置において、抽出した点列の
三次元位置を計測する手段と、この点列の位置データを
基に平面を計算する手段と、計算した平面上で点列デー
タに関して円近似を行い、近似した円の中から設定デー
タに合うものを選択する手段と、選択された円に関して
円特徴の三次元位置姿勢を検出する手段とを備えること
を特徴とする部品の円特徴の精密三次元位置姿勢検出装
置。
3. A precision three-dimensional position and orientation detecting apparatus for circular features of a part according to claim 1 or 2, wherein a means for measuring a three-dimensional position of the extracted point sequence is provided, based on the position data of the point sequence. Means for calculating a plane, means for performing a circle approximation on point sequence data on the calculated plane, and means for selecting the one that matches the set data from the approximated circle, and three-dimensional position and orientation of a circle feature with respect to the selected circle And a means for detecting the position of the component.
JP2000384788A 2000-12-19 2000-12-19 Precise 3D position and orientation detection device for circular features of parts Expired - Fee Related JP4348859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000384788A JP4348859B2 (en) 2000-12-19 2000-12-19 Precise 3D position and orientation detection device for circular features of parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000384788A JP4348859B2 (en) 2000-12-19 2000-12-19 Precise 3D position and orientation detection device for circular features of parts

Publications (2)

Publication Number Publication Date
JP2002183740A true JP2002183740A (en) 2002-06-28
JP4348859B2 JP4348859B2 (en) 2009-10-21

Family

ID=18852171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000384788A Expired - Fee Related JP4348859B2 (en) 2000-12-19 2000-12-19 Precise 3D position and orientation detection device for circular features of parts

Country Status (1)

Country Link
JP (1) JP4348859B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343310A (en) * 2005-06-07 2006-12-21 Inus Technology Inc Three-dimensional measurement data detection method using allowable error domain
JP2008151706A (en) * 2006-12-19 2008-07-03 Nikon Corp Image processing method and image processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343310A (en) * 2005-06-07 2006-12-21 Inus Technology Inc Three-dimensional measurement data detection method using allowable error domain
JP4611873B2 (en) * 2005-06-07 2011-01-12 株式会社 アイナス技術 Method for detecting three-dimensional measurement data using tolerance region
JP2008151706A (en) * 2006-12-19 2008-07-03 Nikon Corp Image processing method and image processing device

Also Published As

Publication number Publication date
JP4348859B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
CN111156923A (en) Workpiece detection method, workpiece detection device, computer equipment and storage medium
EP3264181B1 (en) Substrate pre-alignment method
US7139421B1 (en) Methods and apparatuses for detecting similar features within an image
JP3849228B2 (en) 3D position / orientation detection device for circular feature of parts, detection method thereof, and recording medium thereof
JPH041869A (en) Image collating method
JP2007305005A (en) Image processing method and image processor characterized by roundness measurement method
JPH0914965A (en) Target for surveying
US6614926B1 (en) Methods and apparatuses for generating from an image a model of an object
JP6863946B2 (en) Image processing device
JP2002140713A (en) Image processing method and image processor
JP2002183740A (en) Detection device for precise three-dimensional position attitude of circule characteristic of component
CN108106610B (en) Object stage perpendicularity detection method and system and control device thereof
JP3675543B2 (en) Image position measurement method
JPH0228503A (en) Method for recognizing circular body and detecting center position
JP3867410B2 (en) Three-dimensional visual positioning method and apparatus
JP4312891B2 (en) 3D position and orientation detection device for circular features
JPH065545B2 (en) Figure recognition device
JP4327653B2 (en) Image processing method, image processing apparatus, image processing program, and recording medium on which image processing program is recorded
CN110769221B (en) Method for detecting corner of projected image in photographed image and projector
CN116091420A (en) Method and device for determining position of scheduled line, processing method, electronic equipment and medium
JP2010061201A (en) Alignment mark image recognition device and alignment mark image recognition method
JP4569595B2 (en) 3D position and orientation detection device for circular features
KR20170094709A (en) Apparatus and method for detecting feature of circle object
JP3067822B2 (en) Pattern identification method
JPH10339609A (en) Device and method for detecting position attitude of object and storage medium for storing position attitude

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4348859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees