JP2002182059A - Device for optical connection - Google Patents

Device for optical connection

Info

Publication number
JP2002182059A
JP2002182059A JP2000384206A JP2000384206A JP2002182059A JP 2002182059 A JP2002182059 A JP 2002182059A JP 2000384206 A JP2000384206 A JP 2000384206A JP 2000384206 A JP2000384206 A JP 2000384206A JP 2002182059 A JP2002182059 A JP 2002182059A
Authority
JP
Japan
Prior art keywords
light
optical fiber
optical
light guide
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000384206A
Other languages
Japanese (ja)
Inventor
Shigeru Koshibe
茂 越部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000384206A priority Critical patent/JP2002182059A/en
Publication of JP2002182059A publication Critical patent/JP2002182059A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce transmission loss generated when optically connecting an optical fiber with a large emission area and an optical fiber or a light- receiving semiconductor with a small incidence area. SOLUTION: An optical fiber and an optical fiber or an optical fiber and a light-receiving semiconductor are optically connected by interposing a light transmission body having a multitube- or multilayer-shaped light transmission body whose diameter is tapered from a central part toward an outer peripheral part. The light transmission body and an optical transmission body have a shape tapering off from a large optical fiber toward a small optical fiber or the light-receiving semiconductor. The refractive index of the optical transmission body is preferably nearly equivalent to the refractive index of the optical fiber. A flexible light transmission body is preferably mounted on one side or both sides of the connection end surface of the optical transmission body. About the characteristics of the light transmission body, its refractive index is preferably nearly equivalent to that of the optical fiber, and its hardness is preferably 50 deg. or less in JIS (A type).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバを光フ
ァイバ又は受光半導体に光学接続する装置に係わる。特
に、大きな出射領域を持つ光ファイバから小さな入射領
域の光ファイバ又は受光半導体に信号光を光学接続する
構造であり、接続時の光伝送損失を低減する実用的な装
置に関するものである。
The present invention relates to an apparatus for optically connecting an optical fiber to an optical fiber or a light receiving semiconductor. In particular, the present invention relates to a practical device for optically connecting signal light from an optical fiber having a large emission area to an optical fiber or a light receiving semiconductor in a small incidence area, and a practical apparatus for reducing optical transmission loss at the time of connection.

【0002】[0002]

【従来の技術】光ファイバを用いた光伝送路の伝送効率
は、光伝送路における光ファイバ同士や光ファイバと他
の光学部品との光学的な接続部における接続損失に大き
く影響される。特に、光学接続面が狭まっていく場合に
は大きな損失を発生し問題となる。出射径の大きな光フ
ァイバから入射径の小さな受光半導体に接続する場合が
これに該当する。単純に両部品を直結すると当然ながら
入射径と出射径の面積比しか有効に伝送されない。
2. Description of the Related Art The transmission efficiency of an optical transmission line using an optical fiber is greatly affected by a connection loss at an optical connection between optical fibers in the optical transmission line or between an optical fiber and another optical component. In particular, when the optical connection surface is narrowed, a large loss occurs and becomes a problem. This corresponds to the case where an optical fiber having a large exit diameter is connected to a light receiving semiconductor having a small incident diameter. If the two parts are simply connected directly, naturally only the area ratio between the incident diameter and the exit diameter is effectively transmitted.

【0003】そこで、特開平10−221773のよう
に反射面で囲まれた先細り形状の導光体で光学接続する
構造が提案されている。しかしながら、この構造は極め
て長い経路を持つ導光体が可能な場合にのみ有効とな
る。光ファイバからのランダムな出射光を短い距離で集
光させることは理論的に難しく、特に大きな出射角を持
つ信号光は導光路内部で数多くの反射を経て減衰し受光
半導体に到達したり逆に光ファイバに信号光が戻ったり
する可能性がある。
[0003] In view of this, there has been proposed a structure for optically connecting a tapered light guide surrounded by a reflection surface as disclosed in Japanese Patent Application Laid-Open No. 10-221773. However, this structure is only effective if a light guide with a very long path is possible. It is theoretically difficult to collect random outgoing light from an optical fiber at a short distance.In particular, signal light with a large outgoing angle is attenuated through many reflections inside the light guide path and reaches the light receiving semiconductor or conversely. The signal light may return to the optical fiber.

【0004】従来のレンズを介在させる方法でもかなり
の接続損失を招く。ロッドレンズを使用する場合には特
開平10−221773と同様の問題を抱えており、凸
レンズを用いる場合には反射等の現象を生じ数dBの大
きな接続損失を招くことが知られている。ボールレンズ
は平行光もしくは点光源光を集光する機能を有するがラ
ンダム光を有効に集光することは難しい。
[0004] Even the conventional method of interposing a lens causes considerable connection loss. When a rod lens is used, there is a problem similar to that of JP-A-10-221773. When a convex lens is used, it is known that a phenomenon such as reflection occurs and a large connection loss of several dB is caused. The ball lens has a function of collecting parallel light or point light, but it is difficult to effectively collect random light.

【0005】今までは、光ファイバ即ちコア径の小さな
石英ファイバであり、受光半導体の受光部は石英ファイ
バのコア径より大きいため上記のような問題は発生しな
かった。むしろ、微細径の石英ファイバと光学接続する
ための精密加工技術が問題となっていた。
Heretofore, the above-mentioned problem has not occurred since the optical fiber is a quartz fiber having a small core diameter and the light receiving portion of the light receiving semiconductor is larger than the core diameter of the quartz fiber. Rather, precision processing technology for optically connecting to a fine-diameter quartz fiber has been a problem.

【0006】最近、プラスチック光ファイバ(POFと
称する)が利用できるようになってきた。例えば、ポリ
メチルメタクリレート製POF(三菱レイヨン、東レ
等)やフッ素樹脂製POF(旭硝子)が市販されてい
る。これにより、光伝送通路が狭まる光学接続が現実問
題となり、該接続損失を低減する技術の実用化が強く要
求されるようになってきた。
[0006] Recently, plastic optical fibers (referred to as POF) have become available. For example, polymethyl methacrylate POF (Mitsubishi Rayon, Toray, etc.) and fluororesin POF (Asahi Glass) are commercially available. As a result, optical connection in which the optical transmission path is narrowed has become a real problem, and practical use of a technique for reducing the connection loss has been strongly demanded.

【0007】又、光学接続時の位置決めや密着性に依存
する光伝送損失も無視できず低減することが要求されて
いる。例えば、軸ずれ、傾斜、隙間などに起因する接続
損失を低くすることが重要となる。
[0007] Further, it is required to reduce, not negligible, optical transmission loss depending on positioning and adhesion at the time of optical connection. For example, it is important to reduce connection loss due to misalignment, inclination, gap, and the like.

【0008】本発明者は、上記問題を鋭意検討し光ファ
イバからのランダムな出射光を効率的に伝送する構造を
考案するものである。特に、大口径の光ファイバから小
口径の光ファイバ又は受光半導体への光伝送時における
接続損失の極めて少さい接続装置を提案するものであ
る。
The inventor of the present invention has devotedly studied the above problem and devised a structure for efficiently transmitting random outgoing light from an optical fiber. In particular, the present invention proposes a connection device with extremely small connection loss during optical transmission from a large-diameter optical fiber to a small-diameter optical fiber or a light-receiving semiconductor.

【0009】[0009]

【発明が解決しようとする課題】本発明は、光ファイバ
と光ファイバ、光ファイバと受光半導体の光学接続時に
おける伝送損失の低減化技術に関するものである。
The present invention relates to a technique for reducing transmission loss at the time of optically connecting an optical fiber to an optical fiber and an optical fiber to a light receiving semiconductor.

【0010】[0010]

【課題を解決するための手段】本発明は、光ファイバか
ら出射するランダムな信号光を中心部から外周部に向け
て細く又は薄くなる多管状又は多層状の光伝送体を経由
することにより光ファイバ又は受光半導体に有効に伝送
する光学接続用装置を提供するものである。
SUMMARY OF THE INVENTION According to the present invention, an optical signal is transmitted by passing a random signal light emitted from an optical fiber through a multi-tubular or multi-layered optical transmission body which becomes thinner or thinner from the center to the outer periphery. It is an object of the present invention to provide an optical connection device for effectively transmitting data to a fiber or a light receiving semiconductor.

【0011】請求項1は、光ファイバと光ファイバ、光
ファイバと受光半導体を光学的に結合する接続構造にお
いて、中心部から外周部に向けて径が細くなるように円
柱状光伝送体を束ねた多管状の導光体、中心部から外周
部に向けて厚みが薄くなるように管状光伝送体又はフィ
ルム状光伝送体を重ねた多層状の導光体、を介在させる
ことを特徴とする光学接続用装置である。
According to a first aspect of the present invention, in a connection structure for optically coupling an optical fiber to an optical fiber and an optical fiber to a light receiving semiconductor, a columnar optical transmission body is bundled so that the diameter decreases from the center to the outer periphery. A multi-tubular light guide, a multilayer light guide in which a tubular light transmitter or a film-like light transmitter is stacked so that the thickness decreases from the center to the outer periphery. This is an optical connection device.

【0012】請求項2は、大きな光ファイバから小さな
光ファイバ又は受光半導体への光学伝送時において導光
体が光伝送方向に向けて先細りとなる形状を特徴とする
光学接続装置である。
A second aspect of the present invention is an optical connection device characterized in that a light guide is tapered in a light transmission direction during optical transmission from a large optical fiber to a small optical fiber or a light receiving semiconductor.

【0013】請求項3は、光伝送体の屈折率が光ファイ
バの屈折率とほぼ同等であることを特徴とする光学接続
装置である。
A third aspect of the present invention is an optical connection device, wherein the refractive index of the optical transmission body is substantially equal to the refractive index of the optical fiber.

【0014】請求項4は、導光体の接続端面の片側もし
くは両側に柔軟な光透過体が装着されていることを特徴
とする光学接続装置である。
According to a fourth aspect of the present invention, there is provided an optical connection device wherein a flexible light transmitting body is mounted on one or both sides of a connection end face of the light guide.

【0015】請求項5及び請求項6は、光透過体に関す
るものであり、その屈折率は光ファイバの屈折率と同
等、硬度はJIS(A型)50度以下、のシリコーン系
樹脂、アクリル系樹脂、エポキシ系樹脂、エラストマー
系樹脂、及びこれら樹脂の誘導体から選ばれた少なくと
も1種である。
[0015] Claims 5 and 6 relate to a light transmitting body, the refractive index of which is equal to the refractive index of an optical fiber and the hardness of which is JIS (A type) 50 degrees or less. It is at least one selected from resins, epoxy resins, elastomer resins, and derivatives of these resins.

【0016】本発明の接続装置では、光ファイバと光フ
ァイバ、光ファイバと受光半導体を中心部から外周部に
向けて細く又は薄くなる多管状又は多層状の光透過体を
有する導光体を介在させ接続させることが必要である。
円柱状、管状、フィルム状の光伝送体の外周部は接続端
面以外は反射面で囲まれている。
In the connecting device according to the present invention, the optical fiber and the optical fiber, and the optical fiber and the light receiving semiconductor are interposed with a light guide having a multi-tubular or multi-layered light transmitting body which becomes thinner or thinner from the center to the outer periphery. It is necessary to connect them.
The outer peripheral portion of the cylindrical, tubular, or film-shaped optical transmission body is surrounded by a reflection surface except for the connection end surface.

【0017】導光体は自作することもできるし市販品を
転用することもできる。例えば、多管状のポリメチルメ
タクリレート樹脂導光体は、該樹脂のペレット購入、溶
融糸引加工、表面反射加工、集束加工、そして切断円滑
加工により制作できる。又、コア径の異なるPOFを購
入し集束切断円滑加工することにより導光体として利用
することもできる。表面反射加工としては、屈折率の低
いフッ素樹脂等又は高反射性の物質で被覆する方法があ
る。一般的にはメッキ、蒸着、塗布等の方法が良く用い
られている。
The light guide can be made by itself or a commercial product can be diverted. For example, a multi-tubular polymethyl methacrylate resin light guide can be produced by purchasing a pellet of the resin, melt drawing, surface reflection, convergence, and cutting smoothing. Also, POFs having different core diameters can be purchased and used as a light guide by subjecting them to focusing cutting and smooth processing. As the surface reflection processing, there is a method of coating with a fluororesin having a low refractive index or a highly reflective substance. Generally, methods such as plating, vapor deposition, and coating are often used.

【0018】大口径の光ファイバから小口径の光ファイ
バ又は受光半導体への光学伝送時においては、導光路及
び導光体は光伝送方向に向けて先細りとなる形状を有す
ることが必要である。具体的形状は光ファイバからの出
射光の特性を考慮し円錐、放物体、回転楕円体等より選
択する。又、導光体の断面寸法は接続する光ファイバ又
は受光半導体の入出射口と同等であることが好ましい。
In optical transmission from a large-diameter optical fiber to a small-diameter optical fiber or a light-receiving semiconductor, it is necessary that the light guide path and the light guide have a tapered shape in the light transmission direction. The specific shape is selected from a cone, a paraboloid, a spheroid, and the like in consideration of the characteristics of the light emitted from the optical fiber. Further, it is preferable that the cross-sectional dimension of the light guide is equal to the input / output port of the optical fiber or light receiving semiconductor to be connected.

【0019】導光体の接続端面の片側もしくは両側には
柔軟な光透過体が装着されていることが好ましい。接続
界面に隙間が生じると屈折や反射等の現象により光伝送
損失を招く。
It is preferable that a flexible light transmitting body is mounted on one or both sides of the connection end face of the light guide. When a gap is formed at the connection interface, optical transmission loss is caused by phenomena such as refraction and reflection.

【0020】光伝送体及び光透過体の屈折率は光ファイ
バとほぼ同等(光ファイバの屈折率±0.05以内)で
あることが好ましい。光ファイバと光伝送体又は光透過
体の屈折率の差が大きすぎると反射等による光伝送損失
を招く。又、光ファイバの屈折率は1.35から1.6
0であり光伝送体及び光透過体の屈折率もこの範囲とな
る。
It is preferable that the refractive index of the light transmitting body and the light transmitting body is substantially equal to that of the optical fiber (within ± 0.05 of the refractive index of the optical fiber). If the difference in the refractive index between the optical fiber and the light transmitting body or the light transmitting body is too large, light transmission loss due to reflection or the like is caused. The refractive index of the optical fiber is 1.35 to 1.6.
0, and the refractive indexes of the light transmitting body and the light transmitting body are also in this range.

【0021】光伝送体として必要とされる他の特性は光
ファイバと同じで、光透過性、耐候性、耐熱性等であ
る。これら条件を満足する樹脂なら何を使用しても良
く、旭化成、三井化学、JSR等より各種の適用可能な
透明樹脂が市販されている。
Other characteristics required for the optical transmission body are the same as those of the optical fiber, such as light transmittance, weather resistance, heat resistance, and the like. Any resin that satisfies these conditions may be used, and various applicable transparent resins are commercially available from Asahi Kasei, Mitsui Chemicals, JSR and the like.

【0022】光透過体は、柔軟であることが必要でその
硬度はJIS(A型)で50度以下が好ましい。硬すぎ
ると接続時の密着が不十分となり間隙を生じ、結果的に
光伝送時に損失をもたらす。これに適する樹脂類は、シ
リコーン系、アクリル系、エポキシ系、エラストマー
系、及びこれらの誘導体を挙げることができる。市販品
は信越化学工業、東芝シリコーン、東亞合成、日本化
薬、旭化成等の製品より選択することができる。
The light transmitting body is required to be flexible, and its hardness is preferably 50 degrees or less in JIS (A type). If it is too hard, the adhesion at the time of connection will be insufficient and a gap will be created, resulting in loss during optical transmission. Suitable resins include silicones, acrylics, epoxies, elastomers, and derivatives thereof. Commercial products can be selected from products such as Shin-Etsu Chemical Co., Toshiba Silicone, Toagosei, Nippon Kayaku, and Asahi Kasei.

【0023】図1は、本発明による光学接続装置の模式
図を示したものである。(1)は接続方向の横から見た
断面図である。(2)は接続方向から見た図である。
(a)は円柱状の光伝送体を中心部より外周部に向けて
径の細くなるよう束ねた形状、(b)は円柱状光伝送体
に管状光伝送体を重ねた形状、(c)は円柱状光伝送体
にフィルム状の光伝送体を巻いた形状の導光体である。
FIG. 1 is a schematic view of an optical connection device according to the present invention. (1) is a cross-sectional view as viewed from the side in the connection direction. (2) is a diagram viewed from the connection direction.
(A) is a shape in which a columnar optical transmission body is bundled so as to decrease in diameter from the center to the outer periphery, (b) is a shape in which a cylindrical optical transmission body is superimposed on a tubular optical transmission body, (c) Is a light guide having a shape in which a film-shaped light transmitter is wound around a cylindrical light transmitter.

【0024】図2は、本発明による光学接続装置のいく
つかの例を示したものである(接続方向横から見た断面
図である。1)は導光体のみ内蔵した装置、2)は片側
に光透過体を装着した装置、3)は両側に光透過体を装
着した装置である。21は導光体、22は支持体、23
は光透過体である。
FIGS. 2A and 2B show some examples of the optical connection device according to the present invention (a cross-sectional view as viewed from the side in the connection direction. 1) A device incorporating only a light guide, 2) An apparatus having a light transmitting body mounted on one side, and 3) is an apparatus having a light transmitting body mounted on both sides. 21 is a light guide, 22 is a support, 23
Is a light transmitting body.

【0025】図3は、本発明の光学接続装置を用いてコ
ア径の大きな光ファイバと受光径の小さな受光半導体を
接続した例を示す図である(接続方向の断面図)。30
はPOF、31は導光体、32は支持体、33は光透過
体、35は受光半導体(素子36、受光面37)、39
は信号光である。
FIG. 3 is a view showing an example in which an optical fiber having a large core diameter and a light receiving semiconductor having a small light receiving diameter are connected using the optical connecting device of the present invention (cross-sectional view in the connection direction). 30
Is a POF, 31 is a light guide, 32 is a support, 33 is a light transmitting body, 35 is a light receiving semiconductor (element 36, light receiving surface 37), 39
Is a signal light.

【0026】図4は、特開平10−221773の光学
接続装置を用いて図3同様に光ファイバと受光半導体を
接続した例を示す図である(接続方向の断面図)。40
はPOF、42は支持体、44は導光体、45は受光半
導体(素子46、受光面47)、49は信号光である。
FIG. 4 is a view showing an example in which an optical fiber and a light receiving semiconductor are connected in the same manner as in FIG. 3 using the optical connection device of JP-A-10-221773 (cross-sectional view in the connection direction). 40
Is a POF, 42 is a support, 44 is a light guide, 45 is a light receiving semiconductor (element 46, light receiving surface 47), and 49 is a signal light.

【0027】図5は、凸レンズを用いて図3同様に光フ
ァイバと受光半導体を接続した例を示す図である(接続
方向の断面図)。50はPOF、52は支持体、54は
凸レンズ、55は受光半導体(素子56、受光面5
7)、59は信号光である。
FIG. 5 is a view showing an example in which an optical fiber and a light-receiving semiconductor are connected using a convex lens as in FIG. 3 (cross-sectional view in the connection direction). 50 is a POF, 52 is a support, 54 is a convex lens, 55 is a light receiving semiconductor (element 56, light receiving surface 5).
7) and 59 are signal lights.

【0028】[0028]

【実施形態】本発明の実施形態を実施例及び比較例にて
具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described with reference to Examples and Comparative Examples.

【0029】[0029]

【実施例】本発明の光学接続装置(31、32)を用い
てポリメチルメタクリレート樹脂製POF(東レ、コア
径0.5mm、屈折率1.50)30と受光半導体35
を図3のように接続した。受光半導体は受光素子36
(フォトダイオード、浜松ホトニクス、受光径0.2m
m)をフレキシブル回路基板にフリップ実装し試作した
ものである。又、POFと導光体31との接触界面には
柔軟な光透過体33を装着した。本実施例の接続損失は
0.3dBと極めて少なかった。POFからの出射角の
大きな信号光39は導光路内を反射して受光半導体の受
光面37に確実に伝送されたと判断できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A POF (Toray, core diameter 0.5 mm, refractive index 1.50) 30 made of polymethyl methacrylate resin and a light receiving semiconductor 35 are manufactured by using the optical connection device (31, 32) of the present invention.
Was connected as shown in FIG. The light receiving semiconductor is the light receiving element 36
(Photodiode, Hamamatsu Photonics, light receiving diameter 0.2m
m) was flip-mounted on a flexible circuit board and prototyped. Further, a flexible light transmitting body 33 was mounted on the contact interface between the POF and the light guiding body 31. The connection loss of this embodiment was as small as 0.3 dB. It can be determined that the signal light 39 having a large emission angle from the POF is reflected within the light guide path and transmitted to the light receiving surface 37 of the light receiving semiconductor without fail.

【0030】導光体は実施例のPOFを延伸しコア径を
0.2mmとし、これにポリメチルメタクリレート樹脂
製の光伝送体シートを巻き付け0.5mm径とし、次に
円錐台状に引張加工し、そして切断後さらに接続断面を
研磨加工したものである。該光伝送体は樹脂ペレットを
厚み0.02mmにシート化し表面をクロムメッキ処理
し試作した。
The light guide was formed by stretching the POF of the embodiment to a core diameter of 0.2 mm, wrapping an optical transmission sheet made of polymethyl methacrylate resin around the core to a diameter of 0.5 mm, and then performing a tension processing into a truncated cone. After the cutting, the connection cross section was further polished. The optical transmission body was made into a sheet by forming a resin pellet into a sheet having a thickness of 0.02 mm and performing chrome plating on the surface.

【0031】光透過体は、硬さがJIS(A)15度の
付加反応型ジフェニルシリコーン原料(信越化学工業)
を加熱硬化させたものであり、屈折率は1.50であっ
た。
The light transmitting material is an addition-reaction type diphenyl silicone raw material having a hardness of JIS (A) 15 degrees (Shin-Etsu Chemical Co., Ltd.)
Was cured by heating, and the refractive index was 1.50.

【0032】[0032]

【比較例1】特開平10−221773の考案に基づく
接続装置(42、44)を用いて実施例同様にPOFと
受光半導体を図4のように接続した。導光体の外形は実
施例と同じであるが、本比較例の接続損失は3.7dB
であった。信号光が有効に受光半導体に伝送されておら
ず、例えば、出射角の大きな信号光49が導光体で反射
し光ファイバに戻り損失を招いた等の原因が考えられ
る。尚、本比較例では光透過体は装着しなかった。
Comparative Example 1 A POF and a light-receiving semiconductor were connected as shown in FIG. 4 in the same manner as in the example by using a connection device (42, 44) based on the invention of Japanese Patent Application Laid-Open No. 10-221773. The outer shape of the light guide is the same as that of the example, but the connection loss of this comparative example is 3.7 dB.
Met. The signal light is not effectively transmitted to the light receiving semiconductor, and for example, the cause may be that the signal light 49 having a large emission angle is reflected by the light guide and returns to the optical fiber to cause a loss. In this comparative example, no light transmitting body was attached.

【0033】[0033]

【比較例2】従来の凸レンズを用いた接続装置(52、
54)を用いて実施例同様にPOFと受光半導体を図5
のように接続した。本比較例での接続損失は5.1dB
と最大であった。出射角の大きな信号光59がレンズ表
面で反射し受光半導体に伝送されなかったことが主な原
因であると思われる。
Comparative Example 2 A connecting device using a conventional convex lens (52,
54), the POF and the light receiving semiconductor are changed in the same manner as in the embodiment.
Connected like. The connection loss in this comparative example is 5.1 dB.
And was the largest. It is considered that the main cause is that the signal light 59 having a large emission angle is reflected on the lens surface and is not transmitted to the light receiving semiconductor.

【0034】[0034]

【発明の効果】本発明により、出射径の大きな光ファイ
バと入射径の小さな光ファイバ又は受光半導体を光学結
合する場合の接続損失を大幅に低減することができる。
特に、民生用に使用が予定されている大口径POFを用
いた光通信の普及に大きな役割を果たすことが期待され
る。本発明により低価格で簡便な汎用の光ファイバ用の
光学接続装置が実用化され、オフィスや家庭への光通信
システムの普及が格段と促進されると思われる。
According to the present invention, the connection loss in the case of optically coupling an optical fiber having a large exit diameter with an optical fiber having a small incident diameter or a light receiving semiconductor can be greatly reduced.
In particular, it is expected to play a large role in the spread of optical communication using large-diameter POF, which is scheduled to be used for consumer use. According to the present invention, an inexpensive and easy-to-use general-purpose optical fiber optical connection device will be put to practical use, and the spread of an optical communication system to offices and homes will be remarkably promoted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の導光体の例を示す図である。FIG. 1 is a diagram showing an example of a light guide of the present invention.

【図2】 本発明の光学接続装置の例を示す図である。FIG. 2 is a diagram showing an example of the optical connection device of the present invention.

【図3】 本発明の光学接続装置を用いた接続例を示す
図である。
FIG. 3 is a diagram showing a connection example using the optical connection device of the present invention.

【図4】 先行技術による光学接続例を示す図である。FIG. 4 is a diagram showing an example of an optical connection according to the prior art.

【図5】 凸レンズを用いた光学接続例を示す図であ
る。
FIG. 5 is a diagram illustrating an optical connection example using a convex lens.

【符号の説明】[Explanation of symbols]

30、40、50 POF 21、31 導光体 22、32、42、52 支持体 23、33 光透過体 35、45、55 受光半導体 36、46、56 受光素子 37、47、57 受光部 39、49、59 信号光 44 先行技術による導光体 54 凸レンズ 30, 40, 50 POF 21, 31 Light guide 22, 32, 42, 52 Support 23, 33 Light transmitting body 35, 45, 55 Light receiving semiconductor 36, 46, 56 Light receiving element 37, 47, 57 Light receiving section 39, 49, 59 signal light 44 prior art light guide 54 convex lens

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光ファイバと光ファイバ、光ファイバと受
光半導体を光学的に結合する接続構造において、中心部
から外周部に向けて径が細くなるように円柱状光伝送体
を束ねた多管状の導光体、中心部から外周部に向けて厚
みが薄くなるように管状光伝体又はフィルム上光伝送体
を重ねた多層状の導光体、を介在させ接続することを特
徴とする光学接続用装置。
In a connection structure for optically coupling an optical fiber to an optical fiber and an optical fiber to a light-receiving semiconductor, a multi-tubular form in which cylindrical optical transmission bodies are bundled so that the diameter decreases from the center to the outer periphery. A light guide, a tubular light guide or a multi-layered light guide in which light guides on a film are stacked so as to decrease in thickness from a central portion toward an outer peripheral portion, and are connected by interposing and connecting. Device for connection.
【請求項2】請求項1において、信号光が光ファイバか
ら該ファイバの出射部に比べてより小さな入射部を持つ
光ファイバ又は受光半導体へ伝送される場合であり、光
伝送体及び導光体が光伝送方向に向けて先細りとなる形
状を有することを特徴とする光学接続用装置。
2. An optical transmitter and a light guide according to claim 1, wherein the signal light is transmitted from the optical fiber to an optical fiber or a light receiving semiconductor having an incident portion smaller than an emitting portion of the fiber. Has a shape that tapers in the light transmission direction.
【請求項3】光伝送体の屈折率が光ファイバの屈折率±
0.05以内であることを特徴とする請求項1または請
求項2に記載の光学接続用装置。
3. The refractive index of an optical transmission medium is ±±
3. The optical connection device according to claim 1, wherein the value is within 0.05.
【請求項4】導光体の接続端面の片側もしくは両側に柔
軟な光透過体が装着されていることを特徴とする請求項
1から請求項3のいずれか1項に記載の光学接続用装
置。
4. The optical connection device according to claim 1, wherein a flexible light transmitting body is mounted on one or both sides of the connection end face of the light guide. .
【請求項5】光透過体の屈折率が光ファイバの屈折率±
0.05以内であることを特徴とする請求項1から請求
項4のいずれか1項に記載の光学接続用装置。
5. The method according to claim 1, wherein the refractive index of the light transmitting member is equal to the refractive index of the optical fiber.
The optical connection device according to any one of claims 1 to 4, wherein the value is within 0.05.
【請求項6】光透過体が、硬度がJIS(A型)50度
以下のシリコーン系樹脂、アクリル系樹脂、エポキシ系
樹脂、エラストマー系樹脂、及びこれら樹脂の誘導体か
ら選ばれた少なくとも1種であることを特徴とする請求
項1から請求項5のいずれか1項に記載の光学接続用装
置。
6. The light transmitting body is at least one selected from a silicone resin, an acrylic resin, an epoxy resin, an elastomer resin and a derivative of these resins having a JIS (A type) hardness of 50 degrees or less. The optical connection device according to any one of claims 1 to 5, wherein:
JP2000384206A 2000-12-18 2000-12-18 Device for optical connection Pending JP2002182059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000384206A JP2002182059A (en) 2000-12-18 2000-12-18 Device for optical connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000384206A JP2002182059A (en) 2000-12-18 2000-12-18 Device for optical connection

Publications (1)

Publication Number Publication Date
JP2002182059A true JP2002182059A (en) 2002-06-26

Family

ID=18851723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000384206A Pending JP2002182059A (en) 2000-12-18 2000-12-18 Device for optical connection

Country Status (1)

Country Link
JP (1) JP2002182059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123017A1 (en) * 2008-03-31 2009-10-08 京セラ株式会社 Optical receptacle and optical module using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123017A1 (en) * 2008-03-31 2009-10-08 京セラ株式会社 Optical receptacle and optical module using the same

Similar Documents

Publication Publication Date Title
EP0862073B1 (en) Ferrule with a tapered optical fibre
CN105659133B (en) Photoelectron subassembly
US8477298B2 (en) Angle-cleaved optical fibers and methods of making and using same
US7526156B2 (en) Optical fiber for out-coupling optical signal and apparatus for detecting optical signal using the same optical fiber
US5923806A (en) Fiber optics device
US20070196057A1 (en) Optical power monitor
CA2467400C (en) Focusing fiber optic
JP2006238097A (en) Optical communication system
US20160231518A1 (en) Optical coupling and assembly
US7206140B2 (en) Lens, lens array and optical receiver
WO2011086415A2 (en) Active line detection device
JP2002182059A (en) Device for optical connection
JP2002182077A (en) Light receiving apparatus for optical communication
JP2008203546A (en) Lens assembly and optical module using the same
JP2002182058A (en) Optical connecting parts
JP2000321470A (en) Optical fiber and laser machining apparatus
JP2007225796A (en) Optical coupling device and its manufacturing method
JP2001188148A (en) Bi-directional optical communicator and bi-directional optical communication device
CN113267845A (en) Plastic optical fiber, plastic optical fiber cable with connector, optical communication system, and plastic optical fiber sensor
EP2096474B1 (en) Coupling lens for fiber optics
CN216526374U (en) Optical fiber end capable of vertically changing light emergent or incident direction
JP2001194560A (en) Bi-directional optical communication device and bi- directional optical communication equipment
JP3333583B2 (en) Focusing lens and focusing lens array
JP2003014986A (en) Method for connecting plastic optical fiber to light source
JP2002318327A (en) Method for connecting resin optical fiber with light accepting semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040423

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616