JP2002180450A - Ground freezing construction method - Google Patents

Ground freezing construction method

Info

Publication number
JP2002180450A
JP2002180450A JP2000404074A JP2000404074A JP2002180450A JP 2002180450 A JP2002180450 A JP 2002180450A JP 2000404074 A JP2000404074 A JP 2000404074A JP 2000404074 A JP2000404074 A JP 2000404074A JP 2002180450 A JP2002180450 A JP 2002180450A
Authority
JP
Japan
Prior art keywords
ground
hole
low
air
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000404074A
Other languages
Japanese (ja)
Inventor
Shigeto Matsuo
栄人 松尾
Masatomo Matsuo
雅智 松尾
Akiko Matsuo
亜希子 松尾
Takuya Matsuo
拓也 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000404074A priority Critical patent/JP2002180450A/en
Publication of JP2002180450A publication Critical patent/JP2002180450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems in a conventional ground freezing method, wherein liquid nitrogen, calcium chloride, ammonia, hydrocarbon and fleon refrigerants are used as a refrigerant and a cooling pipe for circulating the refrigerant is additionally provided and these refrigerants influence human beings and environment in some way with the possibility of having large influence on workers and inhabitants in the surroundings by the damage or the like of the cooling pipe, an equipment cost for the additional installation and removal of the cooling pipe is high and freezing cannot be attained simultaneously with excavation in the case a large quantity of moisture does not exist around the cooling pipe since heat resistance becomes high due to the formation of cavities between the cooling pipe and the ground. SOLUTION: At least two communicating excavated holes are provided, and low- temperature air is blown in to either one of the excavated holes. In the case of a single hole, low-temperature air is fed through an air feed pipe inserted in the excavated hole, and the low-temperature air is exhausted through a clearance between the excavated hole and the air feed pipe. The wall surface of the excavated hole is frozen simultaneously with excavation by feeding the low-temperature air into a space formed between an excavating drill and the excavated hole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

【0002】[0002]

【従来の技術】[Prior art]

【0003】従来の地盤凍結工法は、地盤に設けられた
掘削穴に壁面に密着させるように冷媒管を挿入して、冷
媒管に冷却した冷媒を送り込んで掘削穴の壁面を冷却し
ている。冷媒管には、冷媒送り流路と冷媒戻り流路が設
けられている。この地盤凍結工法を以下では第1工法と
呼ぶ。
[0003] In the conventional ground freezing method, a refrigerant pipe is inserted into an excavation hole provided in the ground so as to be in close contact with the wall surface, and the cooled refrigerant is fed into the refrigerant pipe to cool the wall surface of the excavation hole. The refrigerant pipe is provided with a refrigerant sending channel and a refrigerant returning channel. This ground freezing method is hereinafter referred to as a first method.

【0004】液化された冷媒や窒素ガスなどを直接坑道
等の掘削壁面に吹き付ける工法も提案されている。この
地盤凍結工法を以下では第2工法と呼ぶ。
A method has also been proposed in which a liquefied refrigerant, nitrogen gas, or the like is directly blown onto a wall of an excavation such as a tunnel. This ground freezing method is hereinafter referred to as a second method.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0005】第1工法では、地盤に挿入する冷媒管に
冷媒送り流路と冷媒戻り流路を設ける必要があり、冷媒
管が複雑で高価である、冷媒管と地盤を密着させるこ
とは困難であり、冷媒管と地盤の間に空間ができやすく
地盤と冷媒管の熱抵抗が大きくなる、地盤に含まれる
水を凍結させた後では、冷媒管と地盤は水が凍結して地
盤と冷媒管が固着した状態にあり抜き取りが困難であ
る、凍結した地盤を冷媒管に熱水や高温の冷媒を送り
込んで解凍されているが、熱水や冷媒が冷媒管路で蒸発
し管路を閉塞することがあり、高温化には限界がある、
冷媒管が破損した場合は冷媒が漏れ出し、人体や環境
への危険が生じる、等の欠点がある。
In the first method, it is necessary to provide a refrigerant sending flow path and a refrigerant returning flow path in a refrigerant pipe inserted into the ground, and the refrigerant pipe is complicated and expensive. Yes, a space is easily created between the refrigerant pipe and the ground, and the thermal resistance between the ground and the refrigerant pipe increases.After the water contained in the ground is frozen, the water in the refrigerant pipe and the ground freezes and the ground and the refrigerant pipe The frozen ground is thawed by feeding hot water or high-temperature refrigerant to the refrigerant pipe, which is difficult to withdraw because it is in a fixed state, but the hot water or refrigerant evaporates in the refrigerant pipe and blocks the pipe. There is a limit to high temperature,
If the refrigerant pipe is broken, there is a drawback that the refrigerant leaks out, causing danger to the human body and the environment.

【0006】第2工法では、低温の冷媒や液化ガスを坑
道内で直接壁面に吹き付けると冷媒や液化ガスがガス
化して坑道内に充満するために人体や環境に危険を及ぼ
す、危険を回避するためには、坑道内の換気装置が必
要となる、その廃棄処理も必要である、環境への影
響も大きい、等の欠点を有する。
In the second method, when a low-temperature refrigerant or liquefied gas is directly blown on a wall surface in a gallery, the refrigerant or liquefied gas is gasified and filled in the gallery, thereby avoiding danger to the human body and the environment. For this purpose, there are drawbacks such as the necessity of a ventilation device in the tunnel, the necessity of disposal thereof, and the great effect on the environment.

【課題を解決するための手段】[Means for Solving the Problems]

【0007】人体にも環境にも無害な空気を冷媒として
使用する。
[0007] Air which is harmless to the human body and the environment is used as a refrigerant.

【0008】掘削穴を冷媒通路と冷却管として使用す
る。
[0008] The borehole is used as a refrigerant passage and a cooling pipe.

【0009】地盤中の水量を制御するために水ポンプを
使用する。
A water pump is used to control the amount of water in the ground.

【0010】掘削穴を少なくとも2本連通して冷却空気
流路を形成する。
[0010] At least two drill holes communicate with each other to form a cooling air passage.

【0011】掘削ドリルで形成される外周空間を冷却通
路とし、掘削ドリル内部の水抜き通路を排気通路と兼用
する。
The outer peripheral space formed by the drill is used as a cooling passage, and the drain passage inside the drill is also used as an exhaust passage.

【0012】必要に応じて水抜きあるいは供給するため
の管を掘削穴に挿入して水を抜き取りあるいは供給す
る。
[0012] If necessary, a pipe for draining or supplying water is inserted into the borehole to drain or supply water.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0013】実施例1の構成を図1に示す。実施例1
は、地盤(100)に掘削された掘削穴(120)と掘
削穴(130)の先端付近で連通させ、掘削穴(12
0)の入口から空気送入ノズル(231)で低温空気を
吹き込み、掘削穴内面(121)と掘削穴内面(13
1)を凍結させるものである。低温空気は、低温空気発
生装置(200)で生成され、空気弁(220)で調整
され、低温空気管(210)を通して空気送入管(23
0)へと導かれる。空気送入管(230)はフランジ
(232)、取付具(234)で地盤(100)へ固定
され、低温空気はシール材(233)でシールされる。
破線の矢印で示される空気流方向(240)は低温空気
の流れの方向を示す。
FIG. 1 shows the configuration of the first embodiment. Example 1
Communicates with the excavation hole (120) excavated in the ground (100) in the vicinity of the tip of the excavation hole (130).
0), low-temperature air is blown from the inlet of the air inlet nozzle (231) to the inner surface (121) of the borehole and the inner surface (13) of the borehole.
1) is frozen. Cryogenic air is generated in a cryogenic air generator (200), regulated by an air valve (220), and passed through a cryogenic air pipe (210) to an air inlet pipe (23).
0). The air inlet pipe (230) is fixed to the ground (100) with a flange (232) and a fixture (234), and the low-temperature air is sealed with a sealing material (233).
The air flow direction (240) indicated by the dashed arrow indicates the direction of the flow of the cold air.

【0014】実施例2の構成を図2に示す。実施例2
は、掘削穴の構成例を示したものである。図中の(A)
は、掘削穴(120)と掘削穴(130)の両方に交差
する連通穴(140)を設けたもので、(B)は、実施
例1に示した掘削穴を複数個設けたものである。掘削穴
の配列は、数多くあり、低温空気の流し方も、直列や並
列、配置も千鳥や碁盤目などの組合せが考えられ、いず
れの場合も低温空気が流れることができれば本発明を適
用できる。
FIG. 2 shows the configuration of the second embodiment. Example 2
Shows an example of the configuration of a drilled hole. (A) in the figure
Is provided with a communication hole (140) intersecting both the excavation hole (120) and the excavation hole (130), and (B) is provided with a plurality of excavation holes shown in the first embodiment. . There are many arrangements of the excavation holes, and the flow of the low-temperature air may be in a series or in parallel, and the arrangement may be a combination of staggered or cross-cut.

【0015】実施例3の構成を図3に示す。実施例3
は、単一の掘削穴(120)を冷凍する場合のものであ
り、空気送入管(230)を掘削穴(120)の先端付
近まで挿入して低温空気を噴出し、掘削穴の先端部を冷
却後、掘削穴内面(121)を冷却、掘削穴(120)
入口から使用後の低温空気を放出するものである。
FIG. 3 shows the configuration of the third embodiment. Example 3
Is for freezing a single drilling hole (120), in which an air inlet pipe (230) is inserted near the tip of the drilling hole (120) to blow out low-temperature air, and After cooling, the inner surface (121) of the drill hole is cooled and the drill hole (120) is cooled.
The used low-temperature air is discharged from the inlet.

【0016】実施例4の構成を図4に示す。実施例4
は、実施例3において掘削穴(120)の内部に多量の
水が溜まる、あるいは流入する場合のものであり、水抜
管(310)と導水管(320)を通してポンプ(34
0)で排水し、掘削管内壁(121)の凍結を効率よく
行わせるものである。
FIG. 4 shows the configuration of the fourth embodiment. Example 4
Is a case in which a large amount of water accumulates or flows into the borehole (120) in the third embodiment, and the pump (34) passes through the drainage pipe (310) and the water guide pipe (320).
0) to drain the water, and to efficiently freeze the inner wall (121) of the drilling pipe.

【0017】実施例5の構成を図5に示す。実施例3に
おいて、掘削穴(120)の底部に亀裂(101)など
があり、水が流出して不足する場合、外部からの注水で
適当な位置に水面(300)を保持して凍結させ、必要
な水分量を確保するものである。一般的な掘削では、ド
リルの先端部に冷却と潤滑用の適量の水が必要である。
FIG. 5 shows the structure of the fifth embodiment. In the third embodiment, when there is a crack (101) or the like at the bottom of the excavation hole (120) and water runs out and runs short, the water surface (300) is held at an appropriate position by water injection from the outside and frozen. This is to ensure the necessary water content. Typical drilling requires an appropriate amount of water at the tip of the drill for cooling and lubrication.

【0018】実施例6の構成を図6に示す。実施例6
は、掘削と同時に掘削穴内面(121)の凍結を行うも
ので、掘削用のドリル支持管(400)の外周に低温空
気の密閉室(250)を設け、ドリル支持管(400)
と掘削穴(120)の間に生成される外空間(440)
を通して低温空気を掘削穴(120)へと流し、冷却穴
内壁(121)を凍結させる。掘削穴(120)の底部
に達した低温空気は、掘削用のドリル刃先端(421)
と底部の隙間などを通って内空間(430)へと流れ、
大気へ放出される。ドリル支持管(400)と掘削で切
り取られた石柱(150)との間の内空間(430)で
は、切削粉などが水中の低温空気の浮力によって押し上
げられる。低温空気が気泡ポンプの役割をする。
FIG. 6 shows the structure of the sixth embodiment. Example 6
Performs freezing of the inner surface of the drilling hole (121) at the same time as drilling. A closed room (250) for low-temperature air is provided on the outer periphery of the drilling support tube (400) for drilling, and the drill support tube (400) is provided.
Outer space (440) created between the borehole (120)
Through the borehole (120) to freeze the cooling hole inner wall (121). The low-temperature air reaching the bottom of the drilling hole (120) is used for drilling a drill bit (421).
Flows to the inner space (430) through the gap between
Released to the atmosphere. In an inner space (430) between the drill support pipe (400) and the pillar (150) cut out by drilling, cutting powder and the like is pushed up by the buoyancy of low-temperature air in water. Cold air acts as a bubble pump.

【0019】実施例7の構成を図7に示す。実施例6に
おいて、ドリル基材(410)やドリル刃(420)に
上部空気孔(411),下部空気孔(424)を設け
て、低温空気の流量を増加させるものである。空気の流
れを良くする上部空気孔(411)の形状例を図8に示
す。
FIG. 7 shows the structure of the seventh embodiment. In the sixth embodiment, an upper air hole (411) and a lower air hole (424) are provided in the drill base (410) and the drill blade (420) to increase the flow rate of low-temperature air. FIG. 8 shows an example of the shape of the upper air hole (411) for improving the air flow.

【発明の効果】【The invention's effect】

【0020】空気のみを使用した冷凍で人類と環境に安
全であり、人間が作業する坑道などの内部で使用しても
特別な換気装置が不要であるばかりでなく、内部で低温
空気を放出する場合は、換気装置の役割も果たす。
Refrigeration using only air is safe for human beings and the environment. Not only does it require a special ventilator even when used inside a tunnel where humans work, but also releases cold air inside. If so, it also serves as a ventilator.

【0021】冷却管の破損などが生じ、冷媒が漏れても
人や環境への害が無い。
Even if the cooling pipe is damaged and the refrigerant leaks, there is no harm to humans and the environment.

【0022】従来の冷却管が不要であり、付設や撤去な
どの費用が少ない。
The conventional cooling pipe is unnecessary, and the cost for installation and removal is small.

【0023】地盤に設けた掘削穴に直接低温空気を吹き
込むために、熱抵抗が少なく冷却効率が高い。冷却
空気の流速が速いため熱伝達率が高い。−20から−
160℃まで低温空気の温度を自由に調節できるので凍
結速度を調整しやすい。
Since the low-temperature air is directly blown into the excavation hole provided in the ground, the heat resistance is small and the cooling efficiency is high. High heat transfer rate due to high cooling air flow rate. From -20 to-
Since the temperature of the low-temperature air can be freely adjusted to 160 ° C., the freezing speed can be easily adjusted.

【0024】特別な冷却管が不要なために、掘削穴の形
状を自由に形成することができる。
Since a special cooling pipe is not required, the shape of the excavation hole can be freely formed.

【0025】掘削と同時に掘削穴の凍結が可能である。
同時凍結により、適量の水を供給して掘削ドリルに必要
な水を保持することも可能である。
The excavation hole can be frozen at the same time as the excavation.
By co-freezing, it is also possible to supply an appropriate amount of water to retain the water required for the drill.

【0026】[0026]

【図面の簡単な説明】[Brief description of the drawings]

【図1】V字型掘削穴への低温空気直接挿入冷凍法FIG. 1 Refrigeration method by direct insertion of low-temperature air into a V-shaped drill hole

【図2】U字型掘削穴とW型掘削穴FIG. 2 U-shaped and W-shaped drill holes

【図3】単一掘削穴空気冷凍法FIG. 3 Single hole air refrigeration method

【図4】排水併用単一掘削穴空気冷凍法FIG. 4 Air refrigeration method with a single drilling hole combined with drainage

【図5】給水併用亀裂閉塞単一掘削穴空気冷凍法Fig. 5 Air refrigeration method with water supply and crack closure single borehole

【図6】掘削同時単一掘削穴空気冷凍法FIG. 6: Simultaneous excavation single air hole air refrigeration method

【図7】空気孔FIG. 7: air holes

【図8】空気孔形状FIG. 8: Air hole shape

【0027】[0027]

【符号の説明】[Explanation of symbols]

(100) 地盤 (101) 亀裂 (110) 地表面 (120) 掘削穴 (121) 掘削穴内壁 (130) 掘削穴 (131) 掘削穴内壁 (140) 連通穴 (150) 石柱 (200) 低温空気発生装置 (210) 低温空気管 (220) 空気弁 (230) 空気送入管 (231) 空気送入ノズル (232) 空気送入管フランジ (233) シール材 (234) 取付具 (240) 空気流方向 (300) 水面 (310) 水抜管 (320) 導水管 (330) 水弁 (340) ポンプ (350) 水流方向 (400) ドリル支持管 (410) ドリル基材 (411) 上部空気孔 (420) ドリル刃 (421) ドリル刃先端 (422) ドリル刃内面 (423) ドリル刃外面 (424) 下部空気孔 (430) 内空間 (440) 外空間 (100) Ground (101) Crack (110) Ground surface (120) Drilled hole (121) Drilled hole inner wall (130) Drilled hole (131) Drilled hole inner wall (140) Communication hole (150) Stone pillar (200) Low-temperature air generation Device (210) Cold air pipe (220) Air valve (230) Air inlet pipe (231) Air inlet nozzle (232) Air inlet pipe flange (233) Seal material (234) Fixture (240) Air flow direction (300) Water surface (310) Drainage pipe (320) Water pipe (330) Water valve (340) Pump (350) Water flow direction (400) Drill support pipe (410) Drill base material (411) Upper air hole (420) Drill Blade (421) Drill blade tip (422) Drill blade inner surface (423) Drill blade outer surface (424) Lower air hole (430) Inner space (440) Outer space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松尾 栄人 諌早市原口名655−10 (72)発明者 松尾 雅智 長崎市界町2丁目12−7 キングマンショ ン304 (72)発明者 松尾 亜希子 諌早市原口名655−10 (72)発明者 松尾 拓也 大村市東大村1丁目2693−46 Fターム(参考) 2D043 CA14  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Eito Matsuo Haraguchi, Isahaya 655-10 (72) Inventor Masatoshi Matsuo 2-12-7 Kachimachi, Nagasaki City Kingman 304 (72) Inventor Akiko Matsuo Isahaya Ichiharaguchi name 655-10 (72) Inventor Takuya Matsuo 1-2693-46 Higashi-Omura, Omura-shi F term (reference) 2D043 CA14

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】地盤凍結工法において掘削穴に低温空気を
吹き込んで掘削穴の壁面及び掘削穴を設けた地盤を凍結
させることを特徴とする地盤凍結工法。
1. A ground freezing method, wherein low-temperature air is blown into a drilled hole in a ground freezing method to freeze the wall surface of the drilled hole and the ground provided with the drilled hole.
【請求項2】地盤凍結工法において掘削穴が連通した少
なくとも1つの低温空気が流入する掘削穴と少なくとも
1つの低温空気が流出する掘削穴を設け、低温空気を掘
削穴に吹き込んで掘削穴の壁面及び掘削穴を設けた地盤
を凍結させることを特徴とする地盤凍結工法。
2. A ground freezing method, wherein at least one excavation hole through which the excavation hole communicates and at least one excavation hole through which the low-temperature air flows out is provided, and the low-temperature air is blown into the excavation hole to form a wall surface of the excavation hole. And a method of freezing a ground provided with an excavation hole.
【請求項3】地盤凍結工法において掘削穴に空気送入管
を挿入し、空気送入管を通して低温空気を吹き込み、空
気送入管と掘削穴との間の空隙を通して流出させて掘削
穴の壁面及び掘削穴を設けた地盤を凍結させることを特
徴とする地盤凍結工法。
3. An air inlet pipe is inserted into an excavation hole in the ground freezing method, low-temperature air is blown through the air inlet pipe, and the air is discharged through a gap between the air inlet pipe and the excavation hole. And a method of freezing a ground provided with an excavation hole.
【請求項4】地盤凍結工法において掘削用ドリルの外周
に密封装置を設け、密封装置に低温空気を吹き込み、掘
削穴と掘削用ドリル支持管の間に生成される空間を通し
て低温空気を掘削穴先端部に送り込んで掘削穴の壁面及
び掘削穴を設けた地盤を凍結させることを特徴とする地
盤凍結工法。
4. In the ground freezing method, a sealing device is provided on the outer periphery of the drill, and low-temperature air is blown into the sealing device, and the low-temperature air is passed through a space created between the drill hole and the drill support pipe. A method for freezing the ground, wherein the ground is frozen by feeding the excavated hole to the wall of the ground.
【請求項5】請求項4において掘削用ドリルと支持管に
少なくとも1個の空気孔を設けることにより、掘削穴の
壁面及び掘削穴を設けた地盤凍結を促進することを特徴
とする地盤凍結工法。
5. The ground freezing method according to claim 4, wherein at least one air hole is provided in the drilling drill and the support pipe to promote the freezing of the wall surface of the drilling hole and the ground provided with the drilling hole. .
【請求項6】請求項1、請求項2、請求項3、請求項4
及び請求項5において水補給用管を挿入して不足水を供
給することを特徴とする地盤凍結工法。
6. The first, second, third and fourth aspects of the present invention.
6. The method of freezing ground according to claim 5, wherein a water supply pipe is inserted to supply the insufficient water.
【請求項7】請求項1、請求項2、請求項3、請求項4
及び請求項5において水抜用管を挿入して余剰水を抜き
取ることを特徴とする地盤凍結工法。
7. The first, second, third and fourth aspects of the present invention.
6. The ground freezing method according to claim 5, wherein a drain pipe is inserted to extract excess water.
【請求項8】請求項1、請求項2及び請求項3において
地表面を幕などで覆って掘削穴から流出する低温空気の
余剰冷熱で地盤を凍結させることを特徴とする地盤凍結
工法。
8. A ground freezing method according to claim 1, wherein the ground surface is covered with a curtain or the like, and the ground is frozen by surplus cold heat of low-temperature air flowing out of the excavation hole.
JP2000404074A 2000-12-11 2000-12-11 Ground freezing construction method Pending JP2002180450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000404074A JP2002180450A (en) 2000-12-11 2000-12-11 Ground freezing construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000404074A JP2002180450A (en) 2000-12-11 2000-12-11 Ground freezing construction method

Publications (1)

Publication Number Publication Date
JP2002180450A true JP2002180450A (en) 2002-06-26

Family

ID=18868089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000404074A Pending JP2002180450A (en) 2000-12-11 2000-12-11 Ground freezing construction method

Country Status (1)

Country Link
JP (1) JP2002180450A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103669376A (en) * 2013-11-19 2014-03-26 河南化工职业学院 Design method of unsteady state temperature field artificially frozen soil curtain
CN105040744A (en) * 2015-07-03 2015-11-11 湖南科技大学 Thermal insulation device of foundation under plateau frozen earth condition and construction method of thermal insulation device
JP2019108766A (en) * 2017-12-20 2019-07-04 東京電力ホールディングス株式会社 Maintenance method of frozen soil and construction method of frozen soil
CN111175475A (en) * 2020-02-20 2020-05-19 同济大学 Self-sinking circular foundation pit excavation simulation device
JP2020200725A (en) * 2019-06-13 2020-12-17 基礎地盤コンサルタンツ株式会社 Ground sampling device and ground sampling method
CN113638459A (en) * 2021-08-13 2021-11-12 海南大学 Seabed foundation pit excavation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103669376A (en) * 2013-11-19 2014-03-26 河南化工职业学院 Design method of unsteady state temperature field artificially frozen soil curtain
CN105040744A (en) * 2015-07-03 2015-11-11 湖南科技大学 Thermal insulation device of foundation under plateau frozen earth condition and construction method of thermal insulation device
JP2019108766A (en) * 2017-12-20 2019-07-04 東京電力ホールディングス株式会社 Maintenance method of frozen soil and construction method of frozen soil
JP6997614B2 (en) 2017-12-20 2022-01-17 東京電力ホールディングス株式会社 How to maintain frozen soil and how to create frozen soil
JP2020200725A (en) * 2019-06-13 2020-12-17 基礎地盤コンサルタンツ株式会社 Ground sampling device and ground sampling method
JP7023258B2 (en) 2019-06-13 2022-02-21 基礎地盤コンサルタンツ株式会社 Ground sample collection device and ground sample collection method
CN111175475A (en) * 2020-02-20 2020-05-19 同济大学 Self-sinking circular foundation pit excavation simulation device
CN111175475B (en) * 2020-02-20 2021-09-03 同济大学 Self-sinking circular foundation pit excavation simulation device
CN113638459A (en) * 2021-08-13 2021-11-12 海南大学 Seabed foundation pit excavation device
CN113638459B (en) * 2021-08-13 2022-05-03 海南大学 Seabed foundation pit excavation device

Similar Documents

Publication Publication Date Title
CN104061013B (en) One utilizes freezing process to improve the infiltrative method of low-permeability coal seam and device
WO2021120701A1 (en) Coal seam permeability increasing method utilizing cyclic damage of liquid nitrogen cold impact and phase change gas
CN108087013B (en) Mine cooling and heat damage utilization system
CN106216381B (en) The freezing isolation of contaminated soil and thermal desorption integral system in situ and processing method
JP2002180450A (en) Ground freezing construction method
US3774701A (en) Method and apparatus for drilling
JP2007064549A (en) Geothermal air-conditioning system
US2145473A (en) Method of and apparatus for cleaving or splitting rock or the like
CN103924999A (en) Cooling and heating combined coal seam water injection cooling method
CN106593512B (en) A kind of high-temperature mine tunnel combined supporting and cooling device
Quan et al. Climatic hazard assessment in selected underground hard coal mines in Vietnam
CN109083646A (en) Liquid gas Freezing stratum as rapid engineering method and device
JP3887666B2 (en) Bedrock underground storage space with heat pump and cooling circulation well
CN107313796A (en) A kind of coal mine heat evil prevention and controls
RU2625830C1 (en) Device for wells thermal insulation in perennially frozen rocks
JP4374528B2 (en) Underground cryogenic tank facility and ground freeze prevention method applied to it
CN112855243A (en) Heat pipe cooling and ventilating device for underground high-temperature stope and construction method and ventilating method thereof
JPH0464688A (en) Tunneling method
RU2123648C1 (en) Method of accumulating cold and device for realization of this method
CN220666184U (en) Novel spiral freezing pipe with controllable freezing section
JPH1018755A (en) Tunnel excavating work method
CN214836494U (en) Heat pipe cooling and ventilating device for underground high-temperature stope
SU1469177A1 (en) Method of air-conditioning in workings of excavation area of deep mine
RU2170810C2 (en) Method of thaw prevention of wellbore region in permafrost zone
Talalay Air and Foam Drilling in Frozen Soils