JP2002180196A - High strength spring steel - Google Patents

High strength spring steel

Info

Publication number
JP2002180196A
JP2002180196A JP2000386900A JP2000386900A JP2002180196A JP 2002180196 A JP2002180196 A JP 2002180196A JP 2000386900 A JP2000386900 A JP 2000386900A JP 2000386900 A JP2000386900 A JP 2000386900A JP 2002180196 A JP2002180196 A JP 2002180196A
Authority
JP
Japan
Prior art keywords
steel
carbides
cementite
rolling
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000386900A
Other languages
Japanese (ja)
Other versions
JP3971569B2 (en
Inventor
Masayuki Hashimura
雅之 橋村
Hiroshi Hagiwara
博 萩原
Takanari Miyaki
隆成 宮木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000386900A priority Critical patent/JP3971569B2/en
Priority to PCT/JP2001/011216 priority patent/WO2002050327A1/en
Priority to DE60131294T priority patent/DE60131294T2/en
Priority to KR10-2002-7012197A priority patent/KR100514120B1/en
Priority to EP01271133A priority patent/EP1347069B1/en
Priority to US10/362,651 priority patent/US7789974B2/en
Publication of JP2002180196A publication Critical patent/JP2002180196A/en
Application granted granted Critical
Publication of JP3971569B2 publication Critical patent/JP3971569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide spring steel in which high strength and coiling properties are reconciled after heat treatment. SOLUTION: The spring steel has a composition containing, by mass, 0.4 to 0.8% C, 0.9 to 3.0% Si, 0.1 to 2.0% Mn, <=0.015% P, <=0.015% S, <=2.0% (inclusive of 0%) Cr and 0.001 to 0.007% N, and the balance iron with inevitable impurities. In its microstructure after hot rolling, the density of cementite spheroidal carbides with a diameter of the equivalent circle of 0.2 to 3 μm is <=0.5 pieces/μm2, and the density of cementite spheroidal carbides with a diameter of the equivalent circle of >3 μm is <=0.005 pieces/μm2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱処理後に高強度か
つ高靱性を有し、自動車および一般機械向けばねに供す
る鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to steel having high strength and high toughness after heat treatment and used as a spring for automobiles and general machinery.

【0002】[0002]

【従来の技術】自動車の軽量化、高性能化に伴い、ばね
も高強度化され、熱処理後に引張強度1600MPaを
超えるような高強度鋼がばねに供されている。近年では
引張強度1900MPaを超える鋼も使用されている。
2. Description of the Related Art As automobiles are becoming lighter and more sophisticated, springs are becoming stronger. High-strength steels having a tensile strength exceeding 1600 MPa after heat treatment are used for springs. In recent years, steels having a tensile strength exceeding 1900 MPa have been used.

【0003】鋼を用いたコイルばねの製造方法では鋼を
オーステナイト域まで加熱してコイリングし、その後、
焼入れ焼戻しを行う熱間コイリングとあらかじめ鋼に焼
入れ焼戻しを施した高強度鋼線を冷間にてコイリングす
る冷間コイリングがある。いずれの場合にも焼入れ焼戻
しによってばねの基本強度を決定づける。従ってばね鋼
に対しては焼入れ焼戻し後の特性を考えた成分設計が重
要である。
[0003] In a method of manufacturing a coil spring using steel, the steel is heated to an austenite region and coiled, and thereafter,
There are hot coiling in which quenching and tempering is performed and cold coiling in which high-strength steel wire in which steel has been quenched and tempered in advance is cold-coiled. In each case, the basic strength of the spring is determined by quenching and tempering. Therefore, for spring steel, it is important to design components in consideration of the properties after quenching and tempering.

【0004】具体的にはその手法として特開昭57−3
2353号公報ではV、Nb、Mo等の元素を添加する
ことで焼入れ性を向上させるとともに、焼戻しで析出す
る微細炭化物を生成させ、それによって転位の動きを制
限し、耐へたり特性を向上させるとしている。
[0004] Specifically, Japanese Patent Application Laid-Open No. Sho 57-3
No. 2353 discloses that the addition of elements such as V, Nb, and Mo improves the hardenability and generates fine carbides precipitated by tempering, thereby restricting the movement of dislocations and improving the sag resistance. And

【0005】しかし鋼製造工程では転炉−鋳造−ビレッ
ト圧延−線材圧延のように何度も加熱されると同時に何
度も室温まで冷却される。このような場合、添加したC
r、V、Nb、Moなどの炭化物生成元素は鋼を硬化さ
せると同時に粗大な炭化物として鋼中に残留し易い。特
に引張強度1900MPaを超えるような高強度を指向
する場合にはこれら合金元素の添加量が多くなるために
残留する炭化物も多い。これまで特開平11−6033
号公報などではCr、V、Nb、Mo等の炭化物(以後
これらを合金系炭化物と記す)に注目してそれらの大き
さを規定した発明がなされている。しかし実際に鋼の強
度を支配するのはこれらの微細炭化物ではなく、鉄の炭
化物、すなわちセメンタイトを主成分とする炭化物(以
後セメンタイト系炭化物と記す)の挙動であり、このセ
メンタイトを制御できることがばね鋼にとって重要であ
る。
[0005] However, in the steel manufacturing process, heating is performed many times as in a converter, casting, billet rolling, and wire rod rolling, and simultaneously cooling to room temperature is performed many times. In such a case, the added C
Carbide-forming elements such as r, V, Nb, and Mo harden the steel and tend to remain in the steel as coarse carbides. In particular, when aiming for a high strength exceeding 1900 MPa in tensile strength, the amount of addition of these alloying elements increases, so that a large amount of carbide remains. Until now, JP-A-11-6033
In Japanese Patent Application Laid-Open Publication No. H10-157, there is an invention that focuses on carbides such as Cr, V, Nb, and Mo (hereinafter, these are referred to as alloy-based carbides) and defines their sizes. However, it is not these fine carbides that actually control the strength of the steel, but the behavior of iron carbide, that is, the carbide mainly composed of cementite (hereinafter referred to as cementite-based carbide). Important for steel.

【0006】合金系炭化物の粒径に関しては、例えば特
開平10−251804号公報のようにNb、V系の炭
化物の平均粒径に注目した発明がなされているが、この
先行技術では圧延中の冷却水によって異常組織が生じる
ことを懸念する記述があり(段落0015)、実質的に
は乾式圧延を推奨している。このことは工業的には非定
常作業であり、通常の圧延と明らかに異なることが推定
され、たとえ平均粒径を制御しても周辺マトリックス組
織に不均一を生じると圧延トラブルを生じることを示唆
している。従ってV、Nb系炭化物などの合金系炭化物
の平均粒径の制御だけでは工業的に不十分であることを
示している。
As for the grain size of alloy-based carbides, for example, Japanese Patent Application Laid-Open No. 10-251804 discloses an invention that focuses on the average grain size of Nb and V-based carbides. There is a description that there is a concern that an abnormal structure may be caused by cooling water (paragraph 0015), and the dry rolling is substantially recommended. This is a non-stationary operation industrially, and is presumed to be clearly different from normal rolling, suggesting that even if the average grain size is controlled, unevenness in the surrounding matrix structure causes rolling trouble. are doing. Therefore, it is shown that control of the average particle size of alloy carbides such as V and Nb-based carbides is industrially insufficient.

【0007】[0007]

【発明が解決しようとする課題】本発明は工業的に製造
可能かつ焼入れ焼戻し後にばね向けの強度とコイリング
性を付与できるばね鋼を提供することを課題としてい
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a spring steel which can be manufactured industrially and which can impart strength and coiling properties for a spring after quenching and tempering.

【0008】[0008]

【課題を解決するための手段】発明者らは従来のばね鋼
では注目されていなかった鋼中炭化物、特にセメンタイ
トの大きさを微細化することで焼入れ焼戻し後に高強度
とコイリング性を両立させたばね鋼を開発するに至っ
た。
Means for Solving the Problems The inventors of the present invention have succeeded in achieving high strength and high coilability after quenching and tempering by reducing the size of carbides in steel, particularly cementite, which has not been noticed in conventional spring steels. This led to the development of steel.

【0009】すなわち、本発明は次に示すばね鋼を要旨
とする。
That is, the present invention provides the following spring steel.

【0010】(1) 質量%において、C:0.4〜
0.8%、Si:0.9〜3.0%、Mn:0.1〜
2.0%、P:0.015%以下、S:0.015%以
下、Cr:2.0%以下(0%を含む)、N:0.00
1〜0.007%、残部鉄および不可避的不純物を含
み、熱間圧延後のミクロ組織において円相当径0.2〜
3μmのセメンタイト系球状炭化物存在密度が0.5個
/μm2以下、円相当径3μm超のセメンタイト系球状
炭化物の存在密度が0.005個/μm2以下であるこ
とを特徴とするばね鋼。
(1) In mass%, C: 0.4 to
0.8%, Si: 0.9 to 3.0%, Mn: 0.1 to
2.0%, P: 0.015% or less, S: 0.015% or less, Cr: 2.0% or less (including 0%), N: 0.00
1 to 0.007%, the balance including iron and unavoidable impurities, and a microequivalent diameter of 0.2 to 0.2 in the microstructure after hot rolling.
A spring steel having an existing density of 0.5 μm / μm 2 or less of cementite-based spherical carbides of 3 μm, and 0.005 / μm 2 or less of cementite-based spherical carbides having a circle equivalent diameter of more than 3 μm.

【0011】(2) さらに、質量%で、W:0.05
〜1.0%、Co:0.05〜5.0%の1種または2
種を含有することを特徴とする上記(1)記載のばね
鋼。
(2) Further, in mass%, W: 0.05
1.0%, Co: 0.05 to 5.0%, 1 or 2 types
The spring steel according to the above (1), comprising a seed.

【0012】(3) さらに、質量%で、Ti:0.0
05〜0.1%、Mo:0.05〜1.0%、V:0.
05〜0.7%、Nb:0.01〜0.05%の1種ま
たは2種以上を含有することを特徴とする上記(1)ま
たは(2)記載のばね鋼。
(3) Further, in mass%, Ti: 0.0
05-0.1%, Mo: 0.05-1.0%, V: 0.
The spring steel according to the above (1) or (2), characterized in that the spring steel contains one or more of 0.05 to 0.7% and Nb: 0.01 to 0.05%.

【0013】(4) さらに、質量%で、B:0.00
05〜0.006%を含有することを特徴とする上記
(1)〜(3)のいずれかに記載のばね鋼。
(4) Further, in mass%, B: 0.00
The spring steel according to any one of the above (1) to (3), containing 0.05 to 0.006%.

【0014】(5) さらに、質量%で、Ni:0.0
5〜5.0%、Cu:0.05〜0.5%の1種または
2種を含有することを特徴とする上記(1)〜(4)の
いずれかに記載のばね鋼。
(5) Further, in mass%, Ni: 0.0
The spring steel according to any one of the above (1) to (4), comprising one or two of 5 to 5.0% and Cu: 0.05 to 0.5%.

【0015】(6) さらに、質量%で、Mg:0.0
002〜0.01%を含有することを特徴とする上記
(1)〜(5)のいずれかに記載のばね鋼。
(6) Further, in mass%, Mg: 0.0
The spring steel according to any one of the above (1) to (5), which contains 002 to 0.01%.

【0016】[0016]

【発明の実施の形態】発明者は適正な化学成分を規定す
ることにより高強度を得るとともに、熱処理によって鋼
中炭化物形状を制御して、ばねを製造する際に十分なコ
イリング特性が確保されるばね鋼を発明するに至った。
BEST MODE FOR CARRYING OUT THE INVENTION The inventor obtains high strength by defining appropriate chemical components, and controls the shape of carbide in steel by heat treatment to ensure sufficient coiling characteristics when manufacturing a spring. Invented spring steel.

【0017】その詳細を以下に示す。まず、鋼の化学成
分を規定した理由について説明する。
The details will be described below. First, the reason for defining the chemical composition of steel will be described.

【0018】Cは鋼材の基本強度に大きな影響を及ぼす
元素であり、十分な強度を得るために0.4〜0.8%
とした。C量が0.4%未満では十分な強度を得られ
ず、他の合金元素をさらに多量に投入せざるを得ず、
0.8%超では通常の圧延後に粗大セメンタイトを多量
に析出するため、靭性を著しく低下させる。この靭性の
低下は同時にコイリング特性を低下させる。またばね鋼
製造工程における熱処理温度を高く設定する必要を生じ
たり、高周波処理を困難にするなど、工業上の弊害を生
じる。
C is an element that has a large effect on the basic strength of the steel material.
And If the C content is less than 0.4%, sufficient strength cannot be obtained, and other alloying elements must be added in a larger amount.
If it exceeds 0.8%, a large amount of coarse cementite is precipitated after ordinary rolling, so that the toughness is significantly reduced. This reduction in toughness simultaneously reduces the coiling properties. In addition, there is an industrial problem such as the necessity of setting a high heat treatment temperature in the spring steel manufacturing process and making high frequency processing difficult.

【0019】Siはばねの強度、硬度と耐へたり性を確
保するために必要な元素であり、少ない場合、必要な強
度、耐へたり性が不足するため、0.9%を下限とし
た。またSiは粒界の炭化物系析出物を球状化、微細化
する効果があり、積極的に添加することで粒界析出物の
粒界占有面積率を小さくする効果がある。しかし多量に
添加しすぎると、材料を硬化させるだけでなく、脆化す
る。そこで焼入れ焼戻し後の脆化を防ぐために3.0%
を上限とした。
Si is an element necessary for securing the strength, hardness and sag resistance of the spring. If the amount is small, the necessary strength and sag resistance are insufficient, so the lower limit is 0.9%. . Si has the effect of spheroidizing and refining the carbide-based precipitates at the grain boundaries, and has the effect of reducing the area occupied by the grain boundary precipitates by actively adding them. However, when added in a large amount, the material not only hardens, but also becomes brittle. Therefore, to prevent embrittlement after quenching and tempering, 3.0%
Was set as the upper limit.

【0020】Mnは焼入れ性を向上させるとともにマト
リックスを硬化させる。また鋼中に存在するSをMnS
として固定し、Sを無害化することができる。また本発
明で特に注目している炭化物の挙動に対して炭化物を作
らずに強度を確保できる元素である。そこでMnSとし
てSを固定するために0.1%を下限とする。強度を確
保するためにはMnは0.5%以上が好ましい。またM
nによる脆化を防止するために上限を2.0%とした。
Mn improves the hardenability and hardens the matrix. Further, S present in steel is replaced with MnS
And S can be rendered harmless. Further, it is an element that can secure the strength without producing carbide with respect to the behavior of carbide which is particularly noted in the present invention. Therefore, the lower limit is set to 0.1% in order to fix S as MnS. In order to ensure strength, Mn is preferably 0.5% or more. Also M
The upper limit is set to 2.0% in order to prevent embrittlement due to n.

【0021】Crは焼入れ性および焼戻し軟化抵抗を向
上させるために有効な元素であり、窒化処理してばね表
面を硬化させばね疲労強度を向上させる場合、Cr量が
多い方が短時間の窒化処理で硬化層が深くなり、最高硬
度も高くなり易い。従って窒化を前提とする場合にはC
rを添加することが好ましい。しかし添加量が多いとコ
スト増を招くだけでなく、焼入れ焼戻し後に見られるセ
メンタイトを粗大化させる。結果として線材は脆化する
ためにコイリング時に折損を生じ易くするので注意を要
する。特に圧延後に析出しているセメンタイト中にCr
は固溶するので、セメンタイトを安定化させ、焼入れ加
熱時に未溶解になり易い。この点はオイルテンパー線や
高周波加熱処理材などには大きな影響を与える。そこで
ばね製造時の焼入れ加熱時にセメンタイトの固溶が困難
となり、著しくばねまたはばね用鋼線製造時の熱処理が
困難になる2.0%を上限とした。
Cr is an element effective for improving hardenability and tempering softening resistance. When nitriding is performed to harden the spring surface and improve spring fatigue strength, the higher the amount of Cr, the shorter the nitriding time , The hardened layer becomes deeper and the maximum hardness tends to increase. Therefore, when nitriding is assumed, C
It is preferred to add r. However, a large amount of addition not only causes an increase in cost but also coarsens cementite observed after quenching and tempering. As a result, care must be taken because the wire becomes brittle and thus easily breaks during coiling. In particular, Cr is contained in the cementite precipitated after rolling.
Is a solid solution, stabilizes cementite, and is likely to be undissolved during quenching and heating. This point has a great effect on oil-tempered wires, high-frequency heating materials, and the like. Therefore, the upper limit is set to 2.0%, at which the cementite becomes difficult to form a solid solution during quenching and heating during the production of the spring, and the heat treatment during the production of the spring or the spring steel wire becomes extremely difficult.

【0022】NはV、Nbなど窒化物を生成する元素を
添加すると容易に窒化物を生成する。それらは炭窒化物
の生成を容易にする。これら炭窒化物は焼入れ時のオー
ステナイト粒成長を抑制するピン止め粒子となるためオ
ーステナイト粒径の微細化に有効である。このような目
的から0.001%以上のNを添加する。一方、過剰な
Nは窒化物および窒化物を核として生成した炭窒化物お
よび炭化物の粗大化を招くので、その上限を0.007
%とした。
N easily forms a nitride when an element which generates a nitride such as V or Nb is added. They facilitate the formation of carbonitrides. Since these carbonitrides become pinned particles that suppress austenite grain growth during quenching, they are effective in reducing the austenite grain size. For such a purpose, 0.001% or more of N is added. On the other hand, excessive N causes coarsening of nitrides and carbonitrides and carbides formed with nitrides as nuclei.
%.

【0023】Pは鋼を硬化させるが、さらに偏析を生
じ、材料を脆化させる。特にオーステナイト粒界に偏析
したPは衝撃値の低下や水素の侵入により遅れ破壊など
を引き起こす。そのため少ない方がよい。そこで脆化傾
向が顕著となる0.015%以下と制限した。
P hardens the steel, but also causes segregation and embrittles the material. In particular, P segregated at the austenite grain boundary causes a delayed fracture due to a decrease in impact value or penetration of hydrogen. Therefore, the smaller the better. Therefore, the content is limited to 0.015% or less at which the tendency of embrittlement becomes remarkable.

【0024】SもPと同様に鋼中に存在すると鋼を脆化
させる。Mnによって極力その影響を小さくするが、M
nSも介在物の形態をとるため、破壊特性は低下する。
特に高強度鋼のでは微量のMnSから破壊を生じること
もあり、Sも極力少なくすることが望ましい。その悪影
響が顕著となる0.015%を上限とした。
S also embrittles the steel when it is present in the steel, like P. The effect is minimized by Mn.
Since nS also takes the form of inclusions, the destruction characteristics are degraded.
In particular, in the case of high-strength steel, a small amount of MnS may cause destruction, and it is desirable to reduce S as much as possible. The upper limit is set to 0.015% at which the adverse effect becomes significant.

【0025】Wは焼入れ性を向上させるとともに、鋼中
で炭化物を生成し、強度を高める働きがある。特にセメ
ンタイトや他の合金系炭化物の粗大化を抑制できるので
重要である。その添加量が0.05%未満では効果は見
られず、1.0%超では粗大な炭化物を生じ、かえって
延性などの機械的性質を損なう恐れがあるのでWの添加
量を0.05〜1.0%とした。
W has the function of improving the hardenability and generating carbides in the steel to increase the strength. Particularly, it is important because coarsening of cementite and other alloy-based carbides can be suppressed. If the addition amount is less than 0.05%, no effect is observed, and if it exceeds 1.0%, coarse carbides are formed, and mechanical properties such as ductility may be rather impaired. 1.0%.

【0026】Coは焼入れ性を低下させるものの、高温
における強度を確保できる。また炭化物の生成を阻害す
るため、本発明で問題となる粗大な炭化物の生成を抑制
する働きがある。0.05%未満ではその効果が小さ
く、5.0%を超えるとその効果が飽和するため、0.
05〜5.0%とした。
Although Co reduces the hardenability, it can ensure the strength at high temperatures. In addition, since it inhibits the formation of carbides, it has a function of suppressing the formation of coarse carbides which is a problem in the present invention. If it is less than 0.05%, the effect is small, and if it exceeds 5.0%, the effect is saturated.
05 to 5.0%.

【0027】このWとCoは鋼中でのメカニズムこそ異
なるものの、両者ともセメンタイト系炭化物を小さくす
る効果を有しているため、本発明のように鋼としてC量
の高い場合にはセメンタイト微細化かつ易固溶化に有効
である。そこでWとCoのいずれか1種または2種を添
加することとした。
Although W and Co have different mechanisms in steel, both have an effect of reducing cementite-based carbides. Therefore, when steel has a high C content as in the present invention, cementite is refined. And it is effective for easy solid solution. Therefore, one or two of W and Co are added.

【0028】Ti、Mo、VおよびNbは鋼中で窒化
物、炭化物、炭窒化物として析出する。従ってこれらの
元素を1種または2種以上を添加すれば、これら析出物
を生成し、焼戻し軟化抵抗を得ることができ、高温での
焼戻しや工程で入れられる歪み取り焼鈍や窒化などの熱
処理を経ても軟化せず高強度を発揮させることができ
る。このことは窒化後のばね内部硬度の低下を抑制した
り、ホットセッチングや歪み取り焼鈍を容易にするた
め、最終的なばねの疲労特性を向上させることとなる。
しかしTi、Mo、VおよびNbは添加量が多すぎる
と、それらの析出物が大きくなりすぎ、鋼中炭素と結び
ついて粗大炭化物を生成する。このことは鋼線の高強度
化に寄与すべきC量を減少させ、添加したC量相当の強
度が得られなくなる。さらに粗大炭化物が応力集中源と
なるためコイリング中の変形で折損し易くなる。
Ti, Mo, V and Nb precipitate as nitrides, carbides and carbonitrides in steel. Therefore, if one or more of these elements are added, these precipitates are formed and tempering softening resistance can be obtained, and heat treatment such as tempering at a high temperature and strain relief annealing or nitriding applied in the process can be performed. High strength can be exhibited without softening even after passing through. This suppresses a decrease in the internal hardness of the spring after nitriding and facilitates hot setting and strain relief annealing, thereby improving the final fatigue characteristics of the spring.
However, if Ti, Mo, V and Nb are added in too large amounts, their precipitates become too large and combine with carbon in the steel to form coarse carbides. This reduces the amount of C that should contribute to the increase in the strength of the steel wire, and the strength corresponding to the added amount of C cannot be obtained. Furthermore, since coarse carbides are a source of stress concentration, they are easily broken by deformation during coiling.

【0029】Tiについては窒化物の析出温度は高く、
溶鋼中で既に析出している。またその結合力は強いの
で、鋼中のNを固定する場合にも用いる。Bを添加する
場合にはBをBNとさせないためにも、Nを十分に固定
できるだけ添加する必要がある。そこでTiによってN
を固定することが好ましい。Tiの添加量はオーステナ
イト粒径が微細化できる最低限の必要添加量0.005
%を下限とし、析出物寸法が破壊特性に悪影響を及ぼさ
ない最大量0.1%を上限とした。
For Ti, the precipitation temperature of the nitride is high,
Already precipitated in molten steel. Further, since the bonding force is strong, it is also used for fixing N in steel. When B is added, it is necessary to add N as much as possible in order to prevent B from becoming BN. So Ti by N
Is preferably fixed. The addition amount of Ti is the minimum necessary addition amount 0.005 which can make the austenite particle size fine.
% As the lower limit, and the upper limit of 0.1%, at which the precipitate size does not adversely affect the fracture characteristics, was set as the upper limit.

【0030】Moは0.05〜1.0%を添加すること
で焼入れ性を向上させるとともに、焼戻し軟化抵抗を与
えることができる。すなわち強度を制御する際の焼戻し
温度を高温化させることができる。この点は粒界炭化物
の粒界占有面積率を低下させるのに有利である。すなわ
ちフィルム状に析出する粒界炭化物を高温で焼戻すこと
で球状化させ、粒界面積率を低減することに効果があ
る。またMoは鋼中ではセメンタイトとは別にMo系炭
化物を生成する。特にV等に比べその析出温度が低いの
で炭化物の粗大化を抑制する効果がある。その添加量は
0.05%未満では効果が認められず、1.0%超では
効果が飽和する。
By adding 0.05 to 1.0% of Mo, hardenability can be improved and tempering softening resistance can be given. That is, the tempering temperature for controlling the strength can be increased. This is advantageous in reducing the area occupied by the grain boundary carbides. That is, it is effective in tempering the grain boundary carbide precipitated in the form of a film at a high temperature to make the grain boundary spherical, thereby reducing the grain boundary area ratio. Mo generates Mo-based carbides separately from cementite in steel. In particular, since the deposition temperature is lower than that of V or the like, there is an effect of suppressing coarsening of carbide. If the amount is less than 0.05%, no effect is observed, and if it exceeds 1.0%, the effect is saturated.

【0031】またVについては窒化物、炭化物、炭窒化
物の生成によるオーステナイト粒径の粗大化抑制の他に
焼戻し温度での鋼線の硬化や窒化時の表層の硬化に利用
することもできる。その添加量は0.05%未満では添
加した効果がほとんど認められず、0.7%超では粗大
な未固溶介在物を生成し、靭性を低下させる。
V can be used for hardening a steel wire at a tempering temperature and for hardening a surface layer at the time of nitriding, in addition to suppressing coarsening of austenite grain size by forming nitrides, carbides and carbonitrides. If the addition amount is less than 0.05%, the effect of the addition is hardly recognized, and if it exceeds 0.7%, coarse undissolved inclusions are formed, and the toughness is reduced.

【0032】Nbも同様に窒化物、炭化物、炭窒化物の
生成によるオーステナイト粒径の粗大化抑制の他に焼戻
し温度での鋼線の硬化や窒化時の表層の硬化に利用する
こともできる。NbはV、Mo等よりも高温でも微細炭
化物を生成するため、その添加量が微量であっても熱処
理鋼線製造時のオーステナイト粒径微細化にも効果が大
きく非常に有効な元素である。0.01%未満では効果
がほとんど認められず、0.05%超では粗大な未固溶
介在物を生成し、靭性を低下させるので0.01〜0.
05%とした。
Similarly, Nb can be used for hardening of a steel wire at a tempering temperature and hardening of a surface layer at the time of nitriding, in addition to suppressing coarsening of austenite grain size due to formation of nitrides, carbides and carbonitrides. Since Nb generates fine carbides even at higher temperatures than V, Mo, etc., Nb is a very effective element that has a large effect on the reduction of the austenite grain size during the production of heat-treated steel wires, even if its addition amount is very small. If the content is less than 0.01%, almost no effect is recognized, and if it exceeds 0.05%, coarse undissolved inclusions are formed and the toughness is reduced.
05%.

【0033】Bは焼入れ性向上元素として知られてい
る。さらにオーステナイト粒界の清浄化に効果がある。
すなわち、粒界に偏析して靭性を低下させるP、S等の
元素をBを添加することで無害化し、破壊特性を向上さ
せる。その際、BがNと結合してBNを生成するとその
効果は失われる。添加量はその効果が明確になる0.0
005%を下限とし、効果が飽和する0.006%を上
限とした。
B is known as a hardenability improving element. Further, it is effective for cleaning austenite grain boundaries.
That is, by adding elements such as P and S that segregate at the grain boundaries and lower the toughness, B is rendered harmless and the fracture characteristics are improved. At that time, if B combines with N to form BN, the effect is lost. The amount of addition is 0.0
The lower limit was 005%, and the upper limit was 0.006% at which the effect was saturated.

【0034】Niは焼入れ性を向上させ、熱処理によっ
て安定して高強度化することができる。またマトリック
スの延性を向上させてコイリング性を向上させる。さら
にばねの耐食性を向上させ、腐食環境で用いるばねには
有効である。その添加量は0.05%未満では高強度化
や延性向上に効果が認められず、5.0%を超えると効
果が飽和し、コスト等の点で不利になる。
Ni improves the hardenability and can stably increase the strength by heat treatment. Further, the ductility of the matrix is improved to improve the coilability. Further, the corrosion resistance of the spring is improved, which is effective for a spring used in a corrosive environment. If the amount of addition is less than 0.05%, no effect on increasing strength and ductility is recognized, and if it exceeds 5.0%, the effect is saturated and disadvantages are caused in terms of cost and the like.

【0035】Cuについては、Cuを添加することで脱
炭を防止できる。脱炭層はばね加工後に疲労寿命を低下
させるため、極力少なくする努力が成されている。また
脱炭層が深くなった場合にはピーリングとよばれる皮む
き加工によって表層を除去する。またNiと同様に耐食
性を向上させる効果もある。
Regarding Cu, decarburization can be prevented by adding Cu. Efforts have been made to reduce the decarburized layer as much as possible to reduce the fatigue life after spring processing. When the decarburized layer becomes deep, the surface layer is removed by peeling called peeling. It also has the effect of improving the corrosion resistance, similarly to Ni.

【0036】従って、脱炭層を抑制することでばねの疲
労寿命向上やピーリング工程の省略することができる。
Cuの脱炭抑制効果や耐食性向上効果は0.05%以上
で発揮することができ、後述するようにNiを添加した
としても0.5%を超えると脆化により圧延きずの原因
となり易い。そこで下限を0.05%、上限を0.5%
とした。Cu添加によって室温における機械的性質を損
なうことはほとんどないが、Cuを0.3%を超えて添
加する場合には熱間延性を劣化させるために圧延時にビ
レット表面に割れを生じる場合がある。そのため圧延時
の割れを防止するNi添加量をCuの添加量に応じて
[Cu%]<[Ni%]とすることが好ましい。
Accordingly, by suppressing the decarburized layer, the fatigue life of the spring can be improved and the peeling step can be omitted.
The effect of suppressing decarburization of Cu and the effect of improving corrosion resistance can be exhibited at 0.05% or more. As described later, even if Ni is added, if it exceeds 0.5%, it is likely to cause rolling flaws due to embrittlement. Therefore, the lower limit is 0.05% and the upper limit is 0.5%
And The addition of Cu hardly impairs the mechanical properties at room temperature, but when Cu is added in excess of 0.3%, the hot ductility is degraded, so that the billet surface may crack during rolling. Therefore, it is preferable that the amount of Ni added to prevent cracking during rolling is [Cu%] <[Ni%] according to the amount of Cu added.

【0037】Mgは酸化物生成元素であり、溶鋼中では
酸化物を生成する。その温度域はMnSの生成温度より
も高く、MnS生成時には既に溶鋼中に存在している。
従ってMnSの析出核として用いることができ、これに
よりMnSの分布を制御できることを見出した。すなわ
ちMg系酸化物は従来鋼に多く見られるSi、Al系酸
化物より微細に溶鋼中に分散するため、Mg系酸化物を
核としたMnSは鋼中に微細に分散することとなる。従
って同じS含有量であってもMgの有無によってMnS
分布が異なり、それらを添加する方がMnS粒径はより
微細になる。その効果は微量でも十分得られ、Mgが
0.0002%以上であればMnSは微細化する。しか
し0.01%以上は溶鋼中に残留しにくいため、工業的
には0.01%が上限と考えられる。そこでMg添加量を
0.0002〜0.01%とした。このMgはMnS分
布等の効果により、耐食性、遅れ破壊の向上および圧延
割れ防止などに効果があり、極力添加する方が望まし
く、好ましい添加量は0.0005〜0.01%であ
る。
Mg is an oxide forming element, and forms an oxide in molten steel. The temperature range is higher than the MnS formation temperature, and is already present in the molten steel at the time of MnS formation.
Therefore, it has been found that it can be used as a precipitation nucleus of MnS, whereby the distribution of MnS can be controlled. That is, since Mg-based oxides are more finely dispersed in molten steel than Si and Al-based oxides often found in conventional steels, MnS with Mg-based oxides as nuclei is finely dispersed in steel. Therefore, even with the same S content, MnS
The distributions are different and the MnS particle size becomes finer when they are added. The effect can be sufficiently obtained even with a very small amount. If Mg is 0.0002% or more, MnS becomes finer. However, since 0.01% or more hardly remains in molten steel, 0.01% is considered to be the upper limit industrially. Therefore, the added amount of Mg is set to 0.0002 to 0.01%. This Mg is effective in improving corrosion resistance, delayed fracture, and preventing rolling cracks due to the effects of MnS distribution and the like. It is desirable to add Mg as much as possible, and the preferable addition amount is 0.0005 to 0.01%.

【0038】本発明で対象とする従来よりも高強度を指
向したばね鋼に関して製造上の問題点について述べる。
ばねでは焼入れ焼戻しによって高強度化するが、従来の
成分系では焼戻し温度を低くせざるを得ず、一般に脆化
して実用に耐え得ない。また冷間コイリングによる製造
では焼入れ焼戻し後にコイリングするため、コイリング
時に折損する。そのためC量を若干増加させたり合金元
素を添加することが一般に行われる。しかしCr、V等
の合金元素を増加させると偏析を生じ、濃化部分では局
部的に融点を下がるため、割れを生じ易い。これが圧延
時の疵の一因であると考えられる。
The manufacturing problems of the spring steel which is aimed at higher strength than the conventional one in the present invention will be described.
In a spring, the strength is increased by quenching and tempering. However, in a conventional component system, the tempering temperature has to be lowered, and it is generally brittle and cannot withstand practical use. In the production by cold coiling, since coiling is performed after quenching and tempering, the coil is broken during coiling. Therefore, it is common practice to slightly increase the amount of C or to add an alloy element. However, when alloying elements such as Cr and V are increased, segregation occurs, and a melting point is locally lowered in a concentrated portion, so that cracks are easily generated. This is considered to be one of the causes of the flaw during rolling.

【0039】さらに本発明で注目すべき炭化物に関して
説明する。鋼の性能を考える場合、鋼中の炭化物の形態
が重要になってくる。ここでいう鋼中炭化物とは鋼中に
熱処理後に鋼中に認められるセメンタイトおよびそれに
合金元素の固溶した炭化物、(以後、両者を総じてセメ
ンタイトと記す)およびNb、V、Ti等の合金元素の
炭化物および炭窒化物(以後これらを合金系炭化物と記
す)のことである。これら炭化物は鋼線を鏡面研磨し、
エッチングすることで観察することができる。
The carbides which should be noted in the present invention will be further described. When considering the performance of steel, the form of carbides in steel becomes important. The carbides in the steel referred to herein are cementite found in the steel after heat treatment in the steel and carbides dissolved in the alloy elements thereof (hereinafter, both are collectively referred to as cementite) and alloy elements such as Nb, V, and Ti. Carbides and carbonitrides (hereinafter referred to as alloy-based carbides). These carbides mirror-polished the steel wire,
It can be observed by etching.

【0040】図1に焼入れ焼戻し組織の典型的な例の顕
微鏡写真を示す。これによると鋼中にはパーライト状あ
るいは板状析出した炭化物と球状炭化物1の2種が認め
られる。ばね鋼は鋳造後、ビレット形状への圧延後、一
旦室温まで冷却後、受注に応じて線材サイズへ圧延され
る。さらにばね鋼の製造では焼入れ焼戻しを行うが、パ
ーライト状または板状のセメンタイトは容易に固溶する
が、球状化して安定化した炭化物は次工程での焼入れ焼
戻し工程で容易に固溶しないため、添加したC量相当の
強度を確保できなかったり、コイリング時の延性を低下
させることになる。また線材圧延時にも圧延疵の原因と
なる。
FIG. 1 shows a micrograph of a typical example of a quenched and tempered structure. According to this, two types of carbides, pearlite-like or plate-like precipitates and spherical carbides 1, are recognized in the steel. The spring steel is cast, rolled into a billet shape, cooled once to room temperature, and then rolled to a wire size according to an order. Furthermore, in the production of spring steel, quenching and tempering is performed, but pearlite-like or plate-like cementite easily dissolves in solid form, but carbides stabilized by spheroidization do not easily dissolve in the quenching and tempering step in the next step. The strength corresponding to the added amount of C cannot be secured, or the ductility during coiling is reduced. It also causes rolling flaws during wire rolling.

【0041】この残留した炭化物は焼入れ焼戻しによる
強度と靭性には全く寄与しないため、鋼中Cを固定して
単に添加Cを浪費しているだけでなく、応力集中源にも
なるため鋼線の機械的性質を低下させる要因となる。こ
の球状炭化物は冷却後の再加熱(線材圧延、ばね製作時
の焼入れなど)の加熱時に固溶しなかったため、球形に
炭化物が成長したものである。従って極力線材圧延直後
にも少ない方が好ましい。特にオイルテンパー処理など
圧延後の熱処理でこの球状炭化物はさらに成長して粗大
化する。このような観点から円相当径3μm以下と通常
では問題にならないとされていた炭化物であっても問題
となる可能性が大きい。本発明ではこれまで注目されて
いなかったFeとCを主成分とするセメンタイトも例外
でないことを見出した。この粗大な未溶解炭化物はばね
製造時まで影響を及ぼすだけでなく、圧延時にも疵の原
因となる。
Since the remaining carbide does not contribute to the strength and toughness due to quenching and tempering at all, it not only wastes the added C by fixing C in the steel, but also becomes a source of stress concentration because it becomes a source of stress concentration. It becomes a factor to lower the mechanical properties. Since this spherical carbide did not form a solid solution during reheating after cooling (such as wire rod rolling and quenching during spring production), the carbide grew spherically. Therefore, it is preferable that the amount is as small as possible immediately after rolling the wire rod. In particular, this spherical carbide further grows and becomes coarse by heat treatment after rolling such as oil tempering. From such a viewpoint, there is a great possibility that even a carbide having a circle-equivalent diameter of 3 μm or less which is normally not a problem will cause a problem. In the present invention, it has been found that cementite containing Fe and C as main components, which has not been noticed so far, is no exception. This coarse undissolved carbide not only exerts an effect until the spring is manufactured, but also causes flaws during the rolling.

【0042】このセメンタイト系炭化物はセメンタイト
にCr、Mo等の合金元素が固溶したものも含み、一般
にこれらが固溶したセメンタイトは安定化して、固溶し
難くなる。検出上の特徴としてはエッチングによって現
出した炭化物をEDXで分析した場合、Fe、Cを主成
分として検出するとともに、固溶している合金元素も検
出される場合もある。以後、このようなFeとCを主成
分とする炭化物をセメンタイト系炭化物、また形状が球
状の場合を特にセメンタイト系球状炭化物と記す。
The cementite-based carbides include those in which alloy elements such as Cr and Mo are solid-dissolved in cementite. Generally, cementite in which these are dissolved is stabilized and hardly dissolved. As a feature of detection, when a carbide that appears by etching is analyzed by EDX, Fe and C are detected as main components, and an alloy element in solid solution is sometimes detected. Hereinafter, such carbides containing Fe and C as main components are referred to as cementite-based carbides, and those having a spherical shape are particularly referred to as cementite-based spherical carbides.

【0043】図2(a)、(b)にSEMに取り付けた
EDXによる炭化物の解析例を示す。この結果は透過電
子顕微鏡でのレプリカ法でも同様の解析結果が得られ
る。従来の発明は高強度を得るために添加したV、Nb
等の合金元素系の炭化物だけに注目しており、その一例
が図2(a)で炭化物中にFeピークが非常に小さいこ
とが特徴である。しかし本発明では従来の合金元素系炭
化物だけでなく、図2(b)に示すように、円相当径3
μm以下のFe3Cとそれに合金元素がわずかに固溶し
たセメンタイト系球状炭化物の析出に注目した。本発明
のように従来鋼線以上の高強度と加工性の両立を達成す
る場合には3μm以下のセメンタイト系球状炭化物が多
いと、加工性が大きく損なわれる。
FIGS. 2A and 2B show examples of analysis of carbide by EDX attached to the SEM. The same analysis result can be obtained by the replica method using a transmission electron microscope. The conventional invention uses V, Nb added to obtain high strength.
Attention is paid only to alloy element-based carbides, such as those shown in FIG. 2A, and one example thereof is a feature in that the Fe peak in the carbide is very small in FIG. However, in the present invention, as shown in FIG.
Attention was paid to precipitation of a cementite-based spherical carbide in which Fe 3 C of μm or less and an alloy element thereof were slightly dissolved in the alloy. In the case of achieving both high strength and workability higher than conventional steel wires as in the present invention, if there are many cementite-based spherical carbides of 3 μm or less, workability is greatly impaired.

【0044】鋼を焼入れ焼戻ししてからコイリングする
場合にはセメンタイト系球状炭化物がそのコイリング特
性、すなわち破断までの曲げ特性に影響する。これまで
高強度を得るためにCだけでなく、Cr、V等の合金元
素を多量に添加した場合、粗大な球状炭化物が多量に生
成するためにコイリング特性の劣化や圧延疵発生の原因
となるとされて注目されていたが、圧延疵やコイリング
に影響するのは図2(b)のようにFe3Cとそれに合
金元素がわずかに固溶したいわゆるセメンタイト系球状
炭化物であり、大量に存在したり、粗大に成長した場合
には圧延における割れ発生を助長するとともに、熱処理
後の鋼線の機械的性質、特にコイリング特性を低下させ
る。
In the case of coiling after quenching and tempering steel, cementite-based spherical carbide affects its coiling properties, that is, its bending properties up to fracture. Until now, not only C but also a large amount of alloying elements such as Cr and V have been added in order to obtain high strength. In this case, a large amount of coarse spherical carbides is generated, which causes deterioration of the coiling characteristics and generation of rolling flaws. As shown in FIG. 2 (b), what affects rolling flaws and coiling is a so-called cementite-based spherical carbide in which Fe 3 C and its alloying element are slightly dissolved, and are present in large quantities. If the steel wire grows coarsely, it promotes the generation of cracks in rolling and reduces the mechanical properties, particularly the coiling properties, of the steel wire after heat treatment.

【0045】これらの球状炭化物は鏡面研磨したサンプ
ルにピクラールなどのエッチングを施すことで観察可能
であるが、ここで対象とする炭化物は円相当径0.2〜
3μmのセメンタイト系球状炭化物の観察やその寸法な
どの詳細な観察評価には走査型電子顕微鏡により300
0倍以上の高倍率で観察する必要がある。従来から鋼中
の微細な炭化物は鋼の強度、焼戻し軟化抵抗を確保する
には不可欠ではあるが、本発明者はその有効な粒径は円
相当径0.1μm以下で、逆に円相当径1μmを超える
とむしろ強度やオーステナイト粒径微細化への貢献はな
く、単に変形特性を劣化させるだけであることを見出し
た。
These spherical carbides can be observed by subjecting a mirror-polished sample to etching such as picral, but the carbides of interest here have a circle equivalent diameter of 0.2 to
For observation and detailed observation evaluation of the size and the like of the cementite-based spherical carbide of 3 μm, use of a scanning electron microscope
It is necessary to observe at a high magnification of 0 or more. Conventionally, fine carbides in steel have been indispensable for securing the strength of the steel and the resistance to tempering softening, but the present inventors have found that the effective particle size is 0.1 μm or less in circle equivalent diameter, and conversely It has been found that if it exceeds 1 μm, it does not contribute to the reduction of the strength or the austenite grain size, but merely deteriorates the deformation characteristics.

【0046】また本発明ではセメンタイト系球状炭化物
寸法(円相当径)3μm以下の場合には寸法だけでな
く、数も大きな要因となる。従ってその両者を考慮して
本発明範囲を規定した。すなわち円相当径が0.2〜3
μmと小さくとも、その数が非常に多く、検鏡面におけ
る存在密度が0.5個/μm2を超えるとコイリング特
性の劣化が顕著になる。
In the present invention, when the size of the cementite-based spherical carbide (equivalent circle diameter) is 3 μm or less, not only the size but also the number is a major factor. Therefore, the scope of the present invention has been defined in consideration of both of them. That is, the equivalent circle diameter is 0.2 to 3
Even if it is as small as μm, the number is very large, and if the existence density on the speculum surface exceeds 0.5 / μm 2 , the coiling characteristics will be significantly deteriorated.

【0047】さらに炭化物の寸法が3μmを超えると寸
法の影響がより大きくなるため、検鏡面における存在密
度が0.005個/μm2を超えるとコイリング特性の
劣化が顕著になる。
Further, if the size of the carbide exceeds 3 μm, the influence of the size becomes greater, and if the existence density on the speculum surface exceeds 0.005 / μm 2 , the deterioration of the coiling characteristics becomes remarkable.

【0048】これらは熱間圧延直後に残留していても後
の伸線−ばね製造工程における各種熱処理にも容易に溶
解されないため、線材圧延直後にも残留しない方がよ
い。従って圧延後のミクロ組織において円相当径0.2
〜3μmのセメンタイト系球状炭化物存在密度が0.5
個/μm2以下、円相当径3μm超のセメンタイト系球
状炭化物の存在密度が0.005個/μm2以下とし
た。
Even if these remain immediately after hot rolling, they are not easily melted by various heat treatments in the subsequent drawing-spring manufacturing process. Therefore, in the microstructure after rolling, the equivalent circle diameter is 0.2.
存在 3 μm cementite spherical carbide existing density is 0.5
Particles / μm 2 or less, and the existing density of cementite-based spherical carbide having an equivalent circle diameter of more than 3 μm was 0.005 particles / μm 2 or less.

【0049】線材の圧延には連続鋳造→ビレット圧延→
線材圧延あるいは連続鋳造→線材圧延の工程をとり、各
工程間ではA1変態点よりも低温になるため、連続鋳造
後に既に炭化物が析出している。従って、線材圧延後に
残留しているセメンタイト系球状炭化物を減少させるた
めには、ビレット圧延のための加熱および線材圧延のた
めの加熱を粗大炭化物が固溶するのに十分高温かつ長時
間にする必要がある。
For the rolling of the wire rod, continuous casting → billet rolling →
Taking a wire rod rolling or continuous casting → wire rolling process, to become a temperature lower than the A 1 transformation point between each step, already carbides after continuous casting are precipitated. Therefore, in order to reduce the cementite-based spherical carbide remaining after wire rod rolling, it is necessary to perform heating for billet rolling and heating for wire rolling at a sufficiently high temperature and for a long time to allow the coarse carbides to form a solid solution. There is.

【0050】[0050]

【実施例】表1に本発明の実施例と比較例を示す。EXAMPLES Table 1 shows examples of the present invention and comparative examples.

【0051】本発明の実施例1は250t転炉によって
精錬したものを連続鋳造によってビレットを作成した。
またその他の実施例は2t−真空溶解炉で溶製後、圧延
によってビレットを作成した。その際、発明例では12
00℃以上の高温に一定時間保定した。その後いずれの
場合もビレットからφ8mmに圧延し、伸線によってφ
4mmとした。一方、比較例は通常の圧延条件で圧延さ
れ伸線に供した。
In Example 1 of the present invention, a billet was produced by continuous casting of a product refined by a 250 t converter.
In other examples, billets were produced by rolling after melting in a 2t-vacuum melting furnace. At that time, in the invention example, 12
The temperature was kept at a high temperature of 00 ° C. or more for a certain period of time. After that, in each case, the billet was rolled to φ8 mm,
4 mm. On the other hand, the comparative example was rolled under normal rolling conditions and subjected to wire drawing.

【0052】本発明は圧延疵と圧延後の焼入れ焼戻し後
の特性において従来技術とは異なる優れた特性を有する
ため、その評価は圧延直後と焼入れ焼戻し後の特性によ
って行った。圧延直後の疵は目視によって圧延疵の有無
を観察した。
Since the present invention has excellent properties different from those of the prior art in terms of rolling flaws and properties after quenching and tempering after rolling, the evaluation was made based on properties immediately after rolling and after quenching and tempering. The flaws immediately after rolling were visually observed for rolling flaws.

【0053】伸線によってφ4mmまで伸線した後、輻
射炉内を通過させ即座にオイル中に焼入れることで焼入
れ、さらに溶融Pb中を通過させて焼戻しするいわゆる
オイルテンパー処理を行い、焼入れ焼戻しした。
After the wire was drawn to φ4 mm by wire drawing, it was quenched by passing through a radiant furnace and immediately quenched in oil, and further passed through molten Pb to perform tempering, so-called quenching and tempering. .

【0054】オイルテンパー処理では伸線材を連続的に
加熱炉を通過させ、鋼内部温度が十分に加熱されるよ
う、加熱炉通過時間を設定した。この加熱が不十分であ
ると焼入れ不足を生じ、十分な強度を達成することがで
きない。本実施例では加熱温度950℃、加熱時間15
0sec、焼入れ温度50℃(オイル槽)とした。さら
に焼戻し温度400〜550℃、焼戻し時間1minで
焼戻し、強度を調整した。焼入れおよび焼戻し時の加熱
温度およびその結果得られた大気雰囲気での引張強度は
表1中に明記した通りで、引張強度を2100MPa程
度に調整した。
In the oil tempering treatment, the wire drawing material was continuously passed through the heating furnace, and the heating furnace passage time was set so that the steel internal temperature was sufficiently heated. If the heating is insufficient, insufficient quenching occurs, and sufficient strength cannot be achieved. In this embodiment, the heating temperature is 950 ° C. and the heating time is 15
0 sec and a quenching temperature of 50 ° C. (oil tank). Furthermore, tempering was performed at a tempering temperature of 400 to 550 ° C. and a tempering time of 1 min to adjust the strength. The heating temperature during quenching and tempering and the resulting tensile strength in the air atmosphere were as specified in Table 1, and the tensile strength was adjusted to about 2100 MPa.

【0055】実施例には本発明で重要と考えられるセメ
ンタイトを含む鋼中の球状炭化物についても併記してお
いた。炭化物の寸法および数の評価は熱間圧延線材およ
び熱処理ままの鋼線の長手方向断面に鏡面まで研磨し、
さらにピクリン酸によってわずかにエッチングして炭化
物を浮き出させた。光学顕微鏡レベルでは炭化物の寸法
測定は困難なため、熱間圧延線材、鋼線の1/2R部を
走査型電子顕微鏡で倍率:5000倍にて無作為に10
視野の写真を撮影した。さらにその写真から球状になっ
ている炭化物(セメンタイト系球状炭化物)を走査型電
子顕微鏡に取りつけたX線マイクロアナライザーにて、
セメンタイト系であることを確認しつつ、その寸法およ
び数を画像処理装置を用いて測定した。そのデータを用
いて個々の球状炭化物の円相当径と存在密度を算出し
た。全測定面積は3088.8μm 2である。
In the examples, semesters considered important in the present invention are shown.
Spheroidal carbides in steels containing lintite are also described.
Was. Evaluation of the size and number of carbide
Polished to the mirror surface in the longitudinal section of the as-heat treated steel wire,
Furthermore, it is slightly etched with picric acid and carbonized.
Things were raised. Carbide dimensions at the optical microscope level
Because measurement is difficult, hot rolled wire and 1 / 2R part of steel wire
Scanning electron microscope, magnification: 5,000 times, random 10
A photograph of the field of view was taken. And from that photo it becomes spherical
Scanning carbide (cementite spherical carbide)
X-ray microanalyzer attached to the microscope
While confirming that it is cementitious,
The number was measured using an image processing apparatus. Use that data
Calculate the equivalent circle diameter and density of each spherical carbide
Was. The total measurement area is 3088.8 μm TwoIt is.

【0056】引張特性はJIS Z 2201 9号試
験片によりJIS Z 2241に準拠して行い、その
破断荷重から引張強度を算出した。
The tensile properties were measured using JIS Z 22019 test pieces in accordance with JIS Z 2241, and the tensile strength was calculated from the breaking load.

【0057】また延性についてはノッチ曲げ試験によっ
て評価した。ノッチ曲げ試験の概要を図3に示す。また
以下のような手順で行った。図3(a)に示すように、
先端半径50μmのポンチによって鋼線の長手方向に直
角に最大深さ30μmの溝(ノッチ)2を付け、その溝
部に最大引張応力を負荷させるように両側を支持し、中
央に荷重3を加えて変形させる3点曲げ変形を加えた。
ノッチ部から破断するまで曲げ変形を加え続け、破断時
の曲げ角度を測定した。測定角度は図3(b)に示す通
りで、測定角度(θ)が大きいほどコイリング特性が良
好である。経験的にはφ4mmの鋼線においてノッチ曲
げ角度25゜以下ではコイリングは困難である。
The ductility was evaluated by a notch bending test. FIG. 3 shows the outline of the notch bending test. The procedure was as follows. As shown in FIG.
A groove (notch) 2 having a maximum depth of 30 μm is formed at right angles to the longitudinal direction of the steel wire with a punch having a tip radius of 50 μm, and both sides are supported so that the maximum tensile stress is applied to the groove, and a load 3 is applied to the center. A three-point bending deformation for deformation was added.
The bending deformation was continued to be applied until breaking from the notch, and the bending angle at the time of breaking was measured. The measurement angle is as shown in FIG. 3B, and the larger the measurement angle (θ), the better the coiling characteristics. Empirically, coiling is difficult at a notch bending angle of 25 ° or less in a φ4 mm steel wire.

【0058】発明例では圧延後の球状炭化物の寸法が小
さく、圧延疵を防止するとともに、焼入れ焼戻し後に高
強度と良好なノッチ曲げ特性を示した。しかし比較例は
ノッチ曲げ特性において劣り、コイリング性に関して劣
っていることを示唆した。また圧延疵も認められ、圧延
が困難であることが判明した。
In the invention examples, the dimensions of the spherical carbides after rolling were small, preventing rolling flaws, and exhibited high strength and good notch bending characteristics after quenching and tempering. However, the comparative examples suggested that the notch bending properties were inferior and the coiling properties were inferior. Rolling flaws were also observed, indicating that rolling was difficult.

【0059】さらに表2にφ15mmで線材圧延し、φ
12mmで伸線、オイルテンパー処理した場合の本発明
と比較鋼の化学成分、圧延疵の有無、円相当径0.2〜
3μmの炭化物存在密度、円相当径3μm超の炭化物存
在密度、引張強度、コイリング特性(引張試験における
絞り)を示す。
Further, as shown in Table 2, the wire rod was rolled at a diameter of 15 mm,
Chemical composition of the present invention and comparative steel when drawn at 12 mm and oil-tempered, presence or absence of rolling flaws, equivalent circle diameter of 0.2 to
The carbide existence density of 3 μm, the carbide existence density of more than 3 μm in equivalent circle diameter, tensile strength, and coiling characteristics (drawing in a tensile test) are shown.

【0060】φ12mmではオイルテンパーおよびばね
製造時の歪取り焼鈍を模した400℃×20minの焼
鈍を施し、引張強度1950〜2000MPaになるよ
うに調整した。
For φ12 mm, annealing was performed at 400 ° C. for 20 minutes to simulate the strain relief annealing at the time of manufacturing an oil temper and a spring, and the tensile strength was adjusted to 1950 to 2000 MPa.

【0061】また表2に示すφ12mmの鋼線に関する
評価結果から炭化物存在密度が本規定範囲外にある比較
材はコイリング性の指標となる絞りが小さく、また圧延
後に円相当径3μm超の炭化物が0.005個/μm2
以上認められると熱処理後も残留し、絞りが低下してい
る。従ってコイリング性に劣ると考えられる。
From the evaluation results of the φ12 mm steel wire shown in Table 2, the comparative material having a carbide existing density outside the specified range has a small drawing which is an index of the coilability, and has a carbide having an equivalent circle diameter of more than 3 μm after rolling. 0.005 pieces / μm 2
When the above is observed, it remains after the heat treatment, and the drawing is reduced. Therefore, it is considered that the coilability is poor.

【0062】また表1および2でも本発明の請求項の範
囲を逸脱した鋼種は基本的に圧延疵が残留し易いことが
わかる。この原因はセメンタイト系球状炭化物も大きく
関わったいると考えられ、その圧延後の健全部からの観
察結果では本発明の規定を超えるセメンタイト系球状炭
化物が検出されている。このことは鋼を複数回加熱して
オーステナイト化する場合でも、その前組織に炭化物を
残していると、後工程、例えば線材圧延、オイルテンパ
ー処理後のコイリング、熱間コイリングにおいても容易
に疵などを生じる可能性があることを示唆している。
[0062] Tables 1 and 2 also indicate that steel flaws outside the scope of the claims of the present invention basically have rolling flaws that are likely to remain. It is thought that the cause is that cementite-based spherical carbides are also greatly involved, and cementite-based spherical carbides exceeding the requirements of the present invention have been detected from the results of observation from a healthy part after rolling. This means that even if the steel is heated multiple times to austenite, if carbides remain in the structure before it, flaws are easily formed in subsequent processes, such as wire rolling, coiling after oil tempering, and hot coiling. It may indicate that

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】[0065]

【発明の効果】本発明鋼は、鋼中セメンタイトを含む炭
化物の析出を制御可能な成分とすることで高強度化可能
な成分系を有しているにもかかわらず工業的に製造可能
にした。また熱処理加工後には高強度のばね製造を可能
にした。特に冷間コイリングするばねにおいても強度を
1900MPa以上に高強度化するとともに、コイリン
グ性を確保し高強度かつ破壊特性に優れたばねを製造可
能になる。
The steel of the present invention can be industrially manufactured in spite of having a component system capable of increasing the strength by making the precipitation of carbide including cementite in the steel a controllable component. . After the heat treatment, high strength springs can be manufactured. In particular, the strength of a cold coiled spring can be increased to 1900 MPa or more, and a spring having high coiling properties, high strength and excellent breaking characteristics can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼入れ焼戻し組織を示す鋼の顕微鏡写真であ
る。
FIG. 1 is a micrograph of steel showing a quenched and tempered structure.

【図2】セメンタイト系球状炭化物分析例を示す図であ
る。
FIG. 2 is a diagram showing an example of analysis of a cementite-based spherical carbide.

【図3】ノッチ曲げ試験方法を示す図である。FIG. 3 is a view showing a notch bending test method.

【符号の説明】[Explanation of symbols]

1 球状炭化物 2 溝(ノッチ) 3 荷重 θ 測定角度 1 Spherical carbide 2 Groove (notch) 3 Load θ Measurement angle

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 質量%において、C:0.4〜0.8
%、Si:0.9〜3.0%、Mn:0.1〜2.0
%、P:0.015%以下、S:0.015%以下、C
r:2.0%以下(0%を含む)、N:0.001〜
0.007%、残部鉄および不可避的不純物を含み、熱
間圧延後のミクロ組織において円相当径0.2〜3μm
のセメンタイト系球状炭化物存在密度が0.5個/μm
2以下、円相当径3μm超のセメンタイト系球状炭化物
の存在密度が0.005個/μm2以下であることを特
徴とするばね鋼。
C. 0.4 to 0.8 in mass%
%, Si: 0.9 to 3.0%, Mn: 0.1 to 2.0
%, P: 0.015% or less, S: 0.015% or less, C
r: 2.0% or less (including 0%), N: 0.001 to
0.007%, containing the balance iron and unavoidable impurities, and has an equivalent circle diameter of 0.2 to 3 μm in the microstructure after hot rolling.
The density of cementite-based spherical carbides is 0.5 / μm
A spring steel characterized in that the density of cementite-based spherical carbides having an equivalent circle diameter of not more than 2 and a diameter of more than 3 μm is not more than 0.005 / μm 2 .
【請求項2】 さらに、質量%で、W:0.05〜1.
0%、Co:0.05〜5.0%の1種または2種を含
有することを特徴とする請求項1記載のばね鋼。
2. W: 0.05-1.% By mass%.
2. The spring steel according to claim 1, further comprising one or two of 0% and Co: 0.05 to 5.0%. 3.
【請求項3】 さらに、質量%で、Ti:0.005〜
0.1%、Mo:0.05〜1.0%、V:0.05〜
0.7%、Nb:0.01〜0.05%の1種または2
種以上を含有することを特徴とする請求項1または2記
載のばね鋼。
3. The composition according to claim 1, further comprising:
0.1%, Mo: 0.05-1.0%, V: 0.05-
0.7%, Nb: one or two of 0.01 to 0.05%
The spring steel according to claim 1, wherein the spring steel contains at least one kind.
【請求項4】 さらに、質量%で、B:0.0005〜
0.006%を含有することを特徴とする請求項1〜3
のいずれかに記載のばね鋼。
4. Further, B: 0.0005 to 5% by mass.
4. The composition according to claim 1, which contains 0.006%.
The spring steel according to any one of the above.
【請求項5】 さらに、質量%で、Ni:0.05〜
5.0%、Cu:0.05〜0.5%の1種または2種
を含有することを特徴とする請求項1〜4のいずれかに
記載のばね鋼。
5. The method according to claim 1, further comprising:
The spring steel according to any one of claims 1 to 4, comprising one or two of 5.0% and Cu: 0.05 to 0.5%.
【請求項6】 さらに、質量%で、Mg:0.0002
〜0.01%を含有することを特徴とする請求項1〜5
のいずれかに記載のばね鋼。
6. Mg: 0.0002 by mass%.
6. The composition according to claim 1, wherein the content is 0.01 to 0.01%.
The spring steel according to any one of the above.
JP2000386900A 2000-12-20 2000-12-20 Hot rolled wire rod for high strength springs Expired - Fee Related JP3971569B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000386900A JP3971569B2 (en) 2000-12-20 2000-12-20 Hot rolled wire rod for high strength springs
PCT/JP2001/011216 WO2002050327A1 (en) 2000-12-20 2001-12-20 High-strength spring steel and spring steel wire
DE60131294T DE60131294T2 (en) 2000-12-20 2001-12-20 HIGH STRENGTH SPRING STEEL AND SPRING STEEL WIRE
KR10-2002-7012197A KR100514120B1 (en) 2000-12-20 2001-12-20 High-strength spring steel and spring steel wire
EP01271133A EP1347069B1 (en) 2000-12-20 2001-12-20 High-strength spring steel and spring steel wire
US10/362,651 US7789974B2 (en) 2000-12-20 2001-12-20 High-strength spring steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000386900A JP3971569B2 (en) 2000-12-20 2000-12-20 Hot rolled wire rod for high strength springs

Publications (2)

Publication Number Publication Date
JP2002180196A true JP2002180196A (en) 2002-06-26
JP3971569B2 JP3971569B2 (en) 2007-09-05

Family

ID=18853928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000386900A Expired - Fee Related JP3971569B2 (en) 2000-12-20 2000-12-20 Hot rolled wire rod for high strength springs

Country Status (1)

Country Link
JP (1) JP3971569B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266725A (en) * 2007-04-20 2008-11-06 Sumitomo Electric Ind Ltd Oil-tempered wire, and method for manufacturing oil-tempered wire
WO2008156295A2 (en) * 2007-06-19 2008-12-24 Posco High strength and toughness spring having excellent fatigue life, steel wire rod and steel wire for the same and producing method of said steel wire and spring
US20130183191A1 (en) * 2010-09-15 2013-07-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Bearing steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266725A (en) * 2007-04-20 2008-11-06 Sumitomo Electric Ind Ltd Oil-tempered wire, and method for manufacturing oil-tempered wire
WO2008156295A2 (en) * 2007-06-19 2008-12-24 Posco High strength and toughness spring having excellent fatigue life, steel wire rod and steel wire for the same and producing method of said steel wire and spring
WO2008156295A3 (en) * 2007-06-19 2009-02-26 Posco High strength and toughness spring having excellent fatigue life, steel wire rod and steel wire for the same and producing method of said steel wire and spring
US20130183191A1 (en) * 2010-09-15 2013-07-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Bearing steel
US9598752B2 (en) * 2010-09-15 2017-03-21 Kobe Steel, Ltd. Bearing steel

Also Published As

Publication number Publication date
JP3971569B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
KR100514120B1 (en) High-strength spring steel and spring steel wire
KR100851083B1 (en) Steel and steel wire for high strength spring
JP4555768B2 (en) Steel wire for high strength spring
EP2058411B1 (en) High strength heat-treated steel wire for spring
JP4478072B2 (en) High strength spring steel
JP4980496B2 (en) Heat-treated steel wire for high-strength springs and pre-drawn steel wire for high-strength springs
JP3851095B2 (en) Heat-treated steel wire for high-strength springs
WO2011004913A1 (en) Steel wire for high-strength spring
US20100028196A1 (en) High Strength Spring Steel and High Strength Heat Treated Steel Wire for Spring
JP3971571B2 (en) Steel wire for high strength spring
JP4559959B2 (en) High strength spring steel
JP6977880B2 (en) High carbon hot-rolled steel sheet and its manufacturing method
JP2008266725A (en) Oil-tempered wire, and method for manufacturing oil-tempered wire
KR20100077250A (en) High-strength spring steel and
JP3971569B2 (en) Hot rolled wire rod for high strength springs
JP2005307257A (en) Steel for carburized component or carbonitrided component and method for producing carburized component or carbonitrided component
JP3971570B2 (en) Hot rolled wire rod for high strength springs
JP3971602B2 (en) Hot rolled wire rod for high strength springs
JP7444096B2 (en) Hot rolled steel sheet and its manufacturing method
JP4745941B2 (en) High carbon steel wire and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070608

R151 Written notification of patent or utility model registration

Ref document number: 3971569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees