JP2002177783A - Catalyst and method for manufacturing synthetic gas - Google Patents

Catalyst and method for manufacturing synthetic gas

Info

Publication number
JP2002177783A
JP2002177783A JP2000378247A JP2000378247A JP2002177783A JP 2002177783 A JP2002177783 A JP 2002177783A JP 2000378247 A JP2000378247 A JP 2000378247A JP 2000378247 A JP2000378247 A JP 2000378247A JP 2002177783 A JP2002177783 A JP 2002177783A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
hydrogen
synthesis gas
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000378247A
Other languages
Japanese (ja)
Other versions
JP3976498B2 (en
Inventor
Toshimitsu Suzuki
俊光 鈴木
Kiyoharu Nakagawa
清晴 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000378247A priority Critical patent/JP3976498B2/en
Publication of JP2002177783A publication Critical patent/JP2002177783A/en
Application granted granted Critical
Publication of JP3976498B2 publication Critical patent/JP3976498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a synthetic gas while reaction at high temperature and carbon deposition are kept under control. SOLUTION: The production of the synthetic gas by partial oxidation of methane is carried out by filling a reaction tube with 60 mg catalyst containing 5 wt.% metal nickel in diamond oxide and reacting methane of 25 ml/minute flow velocity with oxygen of 5 ml/minute flow velocity at 550-700 deg.C. As a result, the synthetic gas of hydrogen and carbon monoxide is obtained as a product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はメタン、エタン、プ
ロパンなどの低級飽和炭化水素から合成ガスを製造する
方法と、その方法に用いる触媒に関するものである。水
素や一酸化炭素等は化学工業原料であるだけでなく、水
素は今後の燃料電池の原料として重要なものである。
The present invention relates to a method for producing synthesis gas from lower saturated hydrocarbons such as methane, ethane and propane, and a catalyst used in the method. Hydrogen and carbon monoxide are not only raw materials for the chemical industry, but hydrogen is also important as a raw material for future fuel cells.

【0002】[0002]

【従来の技術】化学工業において重要な原料である合成
ガス(一酸化炭素と水素の混合ガス)は、現在天然ガスの
主成分であるメタンなどの軽質炭化水素と水蒸気との反
応(1)によって製造されており、通常酸化アルミニウム
(Al2O3)または酸化マグネシウム(MgO)担体に担持したニ
ッケル触媒を用い、20〜40 atm、800〜1000℃の反応条
件で行われている。しかし、大きな吸熱反応で実用プロ
セスは高温下で操作が行われているので、省エネルギー
の観点からより効率的な製法の開発が望まれている。 CH4 + H2O = CO + 3H2 ΔH0298= +206 kJ/mol (1)
2. Description of the Related Art Synthesis gas (mixed gas of carbon monoxide and hydrogen), which is an important raw material in the chemical industry, is produced by the reaction of light hydrocarbons such as methane, which is the main component of natural gas, with water vapor (1). Manufactured and usually aluminum oxide
The reaction is performed under the reaction conditions of 20 to 40 atm and 800 to 1000 ° C. using a nickel catalyst supported on (Al 2 O 3 ) or magnesium oxide (MgO) carrier. However, since the practical process is operated at a high temperature due to a large endothermic reaction, it is desired to develop a more efficient production method from the viewpoint of energy saving. CH 4 + H 2 O = CO + 3H 2 ΔH 0 298 = +206 kJ / mol (1)

【0003】加えて、この反応は化学量論的にはメタン
と水の分圧比は1であるが、この分圧比では触媒上に炭
素析出が起こり触媒の失活が起こりやすいので、実際の
反応においては炭素析出抑制のために水をメタンに対し
て1.5倍〜5倍導入している。このため、生成ガスの熱エ
ネルギーの回収を行っても、なおエネルギー消費量は大
きく経済性をより一層高める必要がある。また、この反
応に対する触媒開発の課題は活性の促進よりも、炭素析
出の抑制である。炭素析出は触媒活性の低下のみなら
ず、反応器の閉塞や触媒の物理構造の破壊までももたら
す重要な問題である。
[0003] In addition, in this reaction, the partial pressure ratio of methane and water is stoichiometrically 1. However, at this partial pressure ratio, carbon is deposited on the catalyst and the catalyst is easily deactivated. In, water is introduced 1.5 to 5 times with respect to methane to suppress carbon deposition. For this reason, even if the thermal energy of the produced gas is recovered, the energy consumption is still large and it is necessary to further improve the economic efficiency. The challenge in developing a catalyst for this reaction is to suppress carbon deposition rather than promote activity. Carbon deposition is an important problem that causes not only a decrease in catalyst activity but also clogging of the reactor and destruction of the physical structure of the catalyst.

【0004】そこで、メタンの酸素酸化(部分酸化反応)
による合成ガス生成反応(2)が最近、省エネルギープロ
セスの観点から再検討されるようになった。 CH4 + (1/2)O2 → CO + 2H2 ΔH0298= -36 kJ/mol (2)
Therefore, oxygen oxidation of methane (partial oxidation reaction)
Has recently been reexamined from the viewpoint of energy saving process. CH 4 + (1/2) O 2 → CO + 2H 2 ΔH 0 298 = -36 kJ / mol (2)

【0005】AshcroftらはLn2Ru2O7(Ln = ランタノイ
ド)を触媒に用いて777℃でCH4とO2より高収率、高選択
性でCOとH2が得られることを報告している(A.T. Achcro
ft,A.K. Cheetham, J.S. Food, M.L.H. Green, C.P. Gr
ey, A.J. Murrel, P.D.F. Vermon, Nature, 344 (1990)
319.)。
Ashcroft et al. Reported that using Ln 2 Ru 2 O 7 (Ln = lanthanoid) as a catalyst, CO and H 2 were obtained at a higher yield and higher selectivity than CH 4 and O 2 at 777 ° C. (AT Achcro
ft, AK Cheetham, JS Food, MLH Green, CP Gr
ey, AJ Murrel, PDF Vermon, Nature, 344 (1990)
319.).

【0006】LunsfordらはNi/Al2O3触媒を用いてCH4
部分酸化反応を行い、750℃以上で95%以上の選択率でCO
とH2を得ることができることを報告している(D. Dissan
ayake, M.P. Rosynek, K.C.C. Kharas, J.H. Lunsford,
J. Catal, 132 (1991) 117.)。しかし、これらの触媒
による酸素酸化においても750℃以上の高温が必要であ
り、ニッケルを触媒活性種として使用すると水蒸気改質
と同様に炭素析出が課題となっている。
Have performed a partial oxidation reaction of CH 4 using a Ni / Al 2 O 3 catalyst and obtained CO 2 with a selectivity of 95% or more at 750 ° C. or more.
It has reported that it is possible to a obtain a H 2 (D. Dissan
ayake, MP Rosynek, KCC Kharas, JH Lunsford,
J. Catal, 132 (1991) 117.). However, oxygen oxidation by these catalysts also requires a high temperature of 750 ° C. or more, and when nickel is used as a catalytically active species, carbon deposition is a problem as in steam reforming.

【0007】本発明者らは、これまでにメタンの酸素酸
化(部分酸化)反応による合成ガス生成をより低温で効率
的に行なうために、新しい触媒の開発を目的としてイリ
ジウムと数種の担体を用いて詳細な検討を行い、イリジ
ウム/酸化チタン触媒を用いたところ、従来知られてい
る触媒に匹敵する合成ガス生成活性を示し、炭素析出も
全く認められないことを見出した(K. Nakagawa, T. Suz
uki, T. Kobayashi and M. Haruta, Chem. Lett, (199
6) 1029)。しかし、この触媒に用いられるイリジウムは
高価な稀少貴金属であり実用プロセスとしてはコストの
課題がある。
The present inventors have proposed iridium and several kinds of carriers for the purpose of developing a new catalyst in order to efficiently produce a synthesis gas at a lower temperature by an oxygen oxidation (partial oxidation) reaction of methane. A detailed study was conducted using the iridium / titanium oxide catalyst, and it was found that the iridium / titanium oxide catalyst exhibited a syngas generation activity comparable to a conventionally known catalyst and no carbon deposition was observed (K. Nakagawa, T. Suz
uki, T. Kobayashi and M. Haruta, Chem. Lett, (199
6) 1029). However, iridium used for this catalyst is an expensive rare precious metal, and there is a problem of cost as a practical process.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、従来
のメタンからの合成ガス製造の問題点である、高温での
反応および炭素析出を抑制し、触媒活性の安定化および
寿命の延長を図るものである。
SUMMARY OF THE INVENTION An object of the present invention is to suppress the reaction and carbon deposition at a high temperature, which are problems of the conventional synthesis gas production from methane, to stabilize the catalytic activity and extend the life. It is intended.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の問
題点を解決すべく鋭意検討した結果、ニッケルその他の
いくつかの金属触媒の担体として、従来用いられたこと
のない酸化ダイヤモンドを用いることで、課題を克服さ
せるに至った。さらに、本発明の触媒を用いると、メタ
ンを原料として水素と一酸化炭素の混合ガスである合成
ガスを製造できるだけでなく、エタンやプロパンといっ
た低級飽和炭化水素からも合成ガスを製造することがで
きる。いずれを原料とした場合でも反応生成物に二酸化
炭素が含まれるが、二酸化炭素は容易に除去できるの
で、反応生成物を合成ガスとして取り出すことができ
る。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, as a carrier for nickel and some other metal catalysts, a diamond oxide which has not been conventionally used has been used. The use has led to overcoming the problem. Furthermore, when the catalyst of the present invention is used, not only can synthesis gas being a mixed gas of hydrogen and carbon monoxide be produced from methane as a raw material, but also synthesis gas can be produced from lower saturated hydrocarbons such as ethane and propane. . In either case, carbon dioxide is contained in the reaction product, but the carbon dioxide can be easily removed, so that the reaction product can be taken out as a synthesis gas.

【0010】本発明の合成ガス製造触媒は、酸化ダイヤ
モンドを担体とし、その表面にニッケル、ロジウム、パ
ラジウム、ルテニウム、イリジウム及びコバルトからな
る群から選ばれたいずれかの金属を担持したものであ
る。
The synthesis gas production catalyst of the present invention uses diamond oxide as a carrier, and carries on its surface any metal selected from the group consisting of nickel, rhodium, palladium, ruthenium, iridium and cobalt.

【0011】水素を含有した混合ガスを製造する本発明
の1つの局面は、触媒の存在下で550〜700℃の温度範囲
で低級飽和炭化水素と酸素から部分酸化反応によって合
成ガスを製造する。この部分酸化反応に用いる触媒は、
酸化ダイヤモンドを担体とし、その表面にニッケル、ロ
ジウム、パラジウム、ルテニウム及びイリジウムからな
る群から選ばれたいずれかの金属を担持したものであ
る。
One aspect of the present invention for producing a hydrogen-containing mixed gas is to produce a synthesis gas from a lower saturated hydrocarbon and oxygen by a partial oxidation reaction in a temperature range of 550 to 700 ° C. in the presence of a catalyst. The catalyst used for this partial oxidation reaction is
It has diamond oxide as a carrier, and carries on its surface any metal selected from the group consisting of nickel, rhodium, palladium, ruthenium and iridium.

【0012】水素を含有した混合ガスを製造する本発明
の他の局面は、触媒の存在下で600〜800℃の温度範囲で
低級飽和炭化水素と水蒸気から水蒸気改質反応によって
合成ガスを製造する。この水蒸気改質反応に用いる触媒
は、酸化ダイヤモンドを担体とし、その表面にニッケ
ル、ロジウム、パラジウム、ルテニウム、イリジウム及
びロジウムからなる群から選ばれたいずれかの金属を担
持したものである。
Another aspect of the present invention for producing a mixed gas containing hydrogen is to produce a synthesis gas by a steam reforming reaction from a lower saturated hydrocarbon and steam at a temperature in the range of 600 to 800 ° C. in the presence of a catalyst. . The catalyst used in the steam reforming reaction is a catalyst in which diamond oxide is used as a carrier, and a metal selected from the group consisting of nickel, rhodium, palladium, ruthenium, iridium and rhodium is supported on the surface thereof.

【0013】また、水蒸気改質反応で用いる触媒は水素
還元処理を施さなくてもよい。もちろん、水素還元処理
を施すことを排除するものではない。本発明の製造方法
において、低級飽和炭化水素としてメタンを使用した場
合は、得られる合成ガスは化学工業において重要な原料
である、水素と一酸化炭素とからなる合成ガスとなる。
表面を酸化したダイヤモンドを触媒担体に用いると、活
性金属種と担体の相互作用が弱くなり、担持された活性
種の酸化還元が容易に起こる。本発明はこの性質を効果
的に利用したものである。
[0013] The catalyst used in the steam reforming reaction may not be subjected to the hydrogen reduction treatment. Of course, this does not exclude the application of the hydrogen reduction treatment. In the production method of the present invention, when methane is used as a lower saturated hydrocarbon, the resulting synthesis gas is a synthesis gas comprising hydrogen and carbon monoxide, which are important raw materials in the chemical industry.
When diamond whose surface is oxidized is used as a catalyst carrier, the interaction between the active metal species and the carrier is weakened, and the redox of the supported active species easily occurs. The present invention utilizes this property effectively.

【0014】[0014]

【実施例】ここで用いるダイヤモンドは工業用の研磨用
微粒子ダイヤモンドで、市販のものであるが、その表面
は製造工程によって一定でなく様々な構造を有している
ので、使用前に450℃で1時間、空気酸化して酸化ダイヤ
モンドを調製しこれを用いる。酸化ダイヤモンドに担持
したニッケル触媒を調製する場合は、硝酸ニッケル0.04
9〜0.495gを水20mLに溶解させたものに酸化ダイヤモン
ド(粒径0.5マイクロメーター以下)1.99〜1.90gを加え、
攪拌しながら、一昼夜放置した後、過剰の水を蒸発乾固
させた。乾燥させた試料を磁性ボートに載せ、電気炉中
で10℃/minの昇温速度で空気流通下450℃まで昇温させ
た後、同温度で3時間保持し、硝酸塩を酸化ニッケルに
変換させた。この触媒はニッケル金属を重量として0.5
〜5%含んでいる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The diamond used here is a fine grain diamond for industrial use and is commercially available, but its surface is not constant depending on the manufacturing process and has various structures. Oxidized diamond is prepared by air oxidation for 1 hour and used. When preparing a nickel catalyst supported on oxidized diamond, nickel nitrate 0.04
9-0.495 g dissolved in 20 mL of water was added to 1.99-1.90 g of oxidized diamond (particle size 0.5 micrometer or less),
After standing overnight with stirring, excess water was evaporated to dryness. The dried sample was placed on a magnetic boat, heated in an electric furnace at a rate of 10 ° C / min to 450 ° C under air circulation, and held at the same temperature for 3 hours to convert nitrate to nickel oxide. Was. This catalyst has a nickel metal weight of 0.5
Contains ~ 5%.

【0015】他の金属触媒も水溶性塩を用いて同様の処
理により、酸化ダイヤモンドに担持した触媒を調製し
た。このように調製した触媒60〜100mgを精秤し、内径1
0mm、長さ250mmの石英ガラス製反応管に充填後、縦型電
気炉に反応管を設置した。反応管の内部に挿入した熱電
対により触媒層の温度を測定すると同時に電気炉の温度
を制御した。炭化水素および酸素は質量流量制御弁を通
して反応管へ導き、触媒層で反応させた。反応管出口の
生成物を捕集し、ガスクロマトグラフにより成分を分析
し、あらかじめ、作成した検量線により定量した。水蒸
気との反応では、炭化水素を導入するところは上述のと
おりであるが、シリンジポンプに水を入れ反応器上部か
ら一定流量で水を供給し、触媒層上部に充填したアルミ
ナボールにより水を加熱し、水蒸気として触媒層で炭化
水素と反応させた。反応生成物は出口に設けた水分離器
により、水蒸気を凝縮させた後捕集し、ガスクロマトグ
ラフにより分析した。
Other metal catalysts were prepared in the same manner using a water-soluble salt to prepare a catalyst supported on diamond oxide. 60 to 100 mg of the catalyst thus prepared was precisely weighed,
After filling into a quartz glass reaction tube having a length of 0 mm and a length of 250 mm, the reaction tube was set in a vertical electric furnace. The temperature of the catalyst layer was measured with a thermocouple inserted inside the reaction tube, and at the same time, the temperature of the electric furnace was controlled. Hydrocarbons and oxygen were introduced into the reaction tube through a mass flow control valve and reacted in the catalyst layer. The product at the outlet of the reaction tube was collected, analyzed for its components by gas chromatography, and quantified by a previously prepared calibration curve. In the reaction with steam, the introduction of hydrocarbons is as described above, but water is supplied to the syringe pump, water is supplied at a constant flow rate from the upper part of the reactor, and the water is heated by alumina balls filled in the upper part of the catalyst layer. Then, it was reacted with hydrocarbons in the catalyst layer as steam. The reaction product was collected after condensing water vapor with a water separator provided at the outlet, and analyzed by gas chromatography.

【0016】(実施例1)メタンの部分酸化による合成
ガス生成(反応式2)を、酸化ダイヤモンドにニッケル金
属を5wt%含む触媒60mgを上記反応管に充填し、メタン25
mL/min、酸素5mL/minの流速で400℃から50℃ずつ高い温
度に設定して反応させた。反応開始から2時間経過後、4
00、450、500、550、600、650、700℃の各温度で30分ず
つ一定温度に触媒層を保ち、生成物を分析し、水素、一
酸化炭素収量を定量した。結果を表1の実験番号1〜4
に示す。
Example 1 Synthesis gas generation by partial oxidation of methane (reaction formula 2) was carried out. 60 mg of a catalyst containing 5 wt% of nickel metal in oxidized diamond was charged into the above reaction tube, and methane 25 was added.
The reaction was carried out at a flow rate of mL / min and oxygen of 5 mL / min, each set at a higher temperature from 400 ° C. to 50 ° C. After 2 hours from the start of the reaction, 4
The catalyst layer was kept at a constant temperature for 30 minutes at each of 00, 450, 500, 550, 600, 650, and 700 ° C., and the products were analyzed to determine the hydrogen and carbon monoxide yields. The results are shown in Table 1 as Experiment Nos. 1-4.
Shown in

【0017】[0017]

【表1】 [Table 1]

【0018】表1の実験番号2〜4より明らかに、600℃
から700℃にかけて水素、一酸化炭素収量は増大し、700
℃では水素収量530mmol/hr・g-catalyst、一酸化炭素収
量315mmol/hr・g-catalystを得、炭素析出も全く認めら
れなかった。触媒の安定性を調べるために、反応開始か
ら7時間後のデータを測定した。結果を表1の実験番号
5に示す。実験番号4とほぼ等しい値が得られ、見かけ
上触媒の色の変化も認められず、炭素析出は見られなか
った。
It is apparent from the experimental numbers 2 to 4 in Table 1 that the temperature is 600 ° C.
From 700 to 700 ° C, the yield of hydrogen and carbon monoxide increased
At ℃, a hydrogen yield of 530 mmol / hr · g-catalyst and a carbon monoxide yield of 315 mmol / hr · g-catalyst were obtained, and no carbon deposition was observed. In order to examine the stability of the catalyst, data after 7 hours from the start of the reaction was measured. The results are shown in Table 1, Experiment No. 5. A value almost equal to that of Experiment No. 4 was obtained, and no apparent change in the color of the catalyst was observed, and no carbon deposition was observed.

【0019】(実施例2)実施例1の実験番号2と同じ
条件で、酸化ダイヤモンドに担持するニッケル金属の担
持量のみを0.5、1、3、5wt%と変化させて反応温度600℃
で反応を行った結果を表2に示す。
(Example 2) The reaction temperature was 600 ° C under the same conditions as in Experiment No. 2 of Example 1 except that the amount of nickel metal supported on diamond oxide was changed to 0.5, 1, 3, and 5 wt%.
Table 2 shows the results of the reaction.

【0020】[0020]

【表2】 [Table 2]

【0021】実験番号3のニッケル担持量3wt%のとき最
も多い水素収量498mmol/hr・g-catalyst、一酸化炭素収
量183 mmol/hr・g-catalystを得た。さらに、実験番号1
の低担持量のニッケル金属0.5wt%においても、水素収量
358mmol/hr・g-catalyst、一酸化炭素収量147mmol/hr・
g-catalystの高い収量が得られた。
In Experiment No. 3, when the amount of nickel supported was 3 wt%, the largest hydrogen yield of 498 mmol / hr · g-catalyst and the yield of carbon monoxide of 183 mmol / hr · g-catalyst were obtained. Experiment number 1
Hydrogen yield at 0.5wt% nickel metal with low loading
358 mmol / hrg-catalyst, carbon monoxide yield 147 mmol / hr
High yields of g-catalyst were obtained.

【0022】(実施例3)触媒の担体は酸化ダイヤモン
ドとして、活性金属種をニッケルからロジウム(Rh)、
パラジウム(Pd)、ルテニウム(Ru)、イリジウム(I
r)、鉄(Fe)、白金(Pt)、コバルト(Co)と代え
て、金属5wt%を担持した触媒を用いて実施例2と同様に
メタンの部分酸化反応による合成ガス生成について検討
を行った。結果を表3に示す。
Example 3 The catalyst carrier was diamond oxide, and the active metal species was nickel to rhodium (Rh).
Palladium (Pd), ruthenium (Ru), iridium (I
r), using a catalyst supporting 5 wt% of metal instead of iron (Fe), platinum (Pt), and cobalt (Co), to investigate synthesis gas generation by partial oxidation of methane in the same manner as in Example 2. Was. Table 3 shows the results.

【0023】[0023]

【表3】 [Table 3]

【0024】実施例2のニッケルが最も多い水素、一酸
化炭素収量を示したが、続いて、表3の実験番号1、
2、3、4のロジウム、パラジウム、ルテニウム、イリ
ジウムの順に水素、一酸化炭素の生成が認められた。し
かし、表3の実験番号5、6、7の鉄、白金、コバルト
では水素の生成は認められなかった。
The hydrogen and carbon monoxide yields in Example 2 which were the highest in nickel were shown.
Generation of hydrogen and carbon monoxide was observed in the order of 2, 3, and 4 rhodium, palladium, ruthenium, and iridium. However, hydrogen generation was not recognized in iron, platinum, and cobalt of Experiment Nos. 5, 6, and 7 in Table 3.

【0025】(実施例4)メタンの水蒸気改質による合
成ガス生成(反応式1)を酸化ダイヤモンドにニッケル金
属を5wt%含む触媒100mgを上記反応管に充填し、メタン5
mL/min、水蒸気供給量15mL/min、アルゴン25mL/minの流
速で600℃から100℃ずつ高い温度に設定して反応させ
た。反応開始から2時間経過後、600、700、800℃の各温
度で30分ずつ一定温度に触媒層を保ち生成物を分析し、
水素、一酸化炭素収量を測定した。結果を表4に示す。
Example 4 Synthesis gas generation by steam reforming of methane (reaction formula 1) was carried out. 100 mg of a catalyst containing 5 wt% of nickel metal in diamond oxide was charged into the above reaction tube, and methane 5
The reaction was carried out at a flow rate of mL / min, a supply rate of steam of 15 mL / min, and a flow rate of argon at 25 mL / min, each set to a higher temperature from 600 ° C to 100 ° C. After 2 hours from the start of the reaction, the product is analyzed by keeping the catalyst layer at a constant temperature for 30 minutes at each of 600, 700, and 800 ° C,
The hydrogen and carbon monoxide yields were measured. Table 4 shows the results.

【0026】[0026]

【表4】 [Table 4]

【0027】実験番号1〜3より明らかに600から800℃に
かけて水素、一酸化炭素収量は増大し、800℃では水素
収量438mmol/hr・g-catalyst、一酸化炭素収量99.8 mmo
l/hr・g-catalystを得、炭素析出も認められなかった。
It is clear from Experiment Nos. 1-3 that the yield of hydrogen and carbon monoxide increases from 600 to 800 ° C., and at 800 ° C., the yield of hydrogen is 438 mmol / hr · g-catalyst, and the yield of carbon monoxide is 99.8 mmo.
l / hr · g-catalyst was obtained, and no carbon deposition was observed.

【0028】(実施例5)触媒の担体は酸化ダイヤモン
ドとして、活性金属種をニッケルからロジウム、イリジ
ウム、白金、パラジウム、ルテニウム、コバルトと代え
て、金属5wt%を担持した触媒を用いて前処理として水蒸
気改質で通常行われる触媒の水素還元を、水素5mL/mi
n、アルゴン30mL/minの流通下で600℃で1時間行なった
後、実施例4の実験番号1と同様にメタンの水蒸気改質
による合成ガス生成について検討を行なった。結果を表
5に示す。
(Example 5) The catalyst carrier was diamond oxide, and the active metal species was changed from nickel to rhodium, iridium, platinum, palladium, ruthenium, and cobalt, and pretreatment was performed using a catalyst carrying 5 wt% of metal. Hydrogen reduction of catalyst usually performed by steam reforming is performed at 5 mL / mi of hydrogen.
After performing the reaction at 600 ° C. for 1 hour under a flow of n and 30 mL / min of argon, the synthesis gas generation by steam reforming of methane was examined in the same manner as in Experiment No. 1 of Example 4. Table 5 shows the results.

【0029】[0029]

【表5】 [Table 5]

【0030】実験番号1のニッケル(水素還元なし)(実
施例4の実験番号1と同じもの)が最も多い水素、一酸
化炭素収量を示し、続いて、実験番号3〜8のルテニウ
ム、コバルト、イリジウム、ロジウム、パラジウム、白
金の順に水素、一酸化炭素の生成が認められた。しか
し、鉄はほとんど触媒活性を示していない。実験番号2
のニッケルについてみると、水素還元によって水素収量
が減少している。このことから、酸化ダイヤモンドを担
体に用いると、触媒の前処理行程としての水素還元を必
要としないことがわかる。
Nickel of Run No. 1 (no hydrogen reduction) (same as Run No. 1 of Example 4) showed the highest hydrogen and carbon monoxide yields, followed by Ruthenium, Cobalt of Run Nos. 3-8 Production of hydrogen and carbon monoxide was observed in the order of iridium, rhodium, palladium, and platinum. However, iron shows little catalytic activity. Experiment number 2
As for nickel, hydrogen yield is reduced by hydrogen reduction. This indicates that the use of diamond oxide as a carrier does not require hydrogen reduction as a catalyst pretreatment step.

【0031】(比較例1)触媒の担体を酸化ダイヤモン
ドに代えてニッケル触媒の担体として一般的に用いられ
ている酸化マグネシウム(MgO)、酸化アルミニウム(A
l2O3)、酸化チタン(TiO2)、酸化ランタン(La
2O3)、活性炭、酸化ケイ素(SiO2)にニッケル金属を5
wt%含む触媒を使用して、触媒60mgを上記反応管に充填
し、メタン25mL/min、酸素5mL/minの流速で、反応温度6
00℃で、メタンの部分酸化反応による合成ガス生成につ
いて検討を行った。結果を表6に示す。
(Comparative Example 1) Magnesium oxide (MgO) and aluminum oxide (A) which are generally used as nickel catalyst carriers instead of diamond oxide
l 2 O 3 ), titanium oxide (TiO 2 ), lanthanum oxide (La
2 O 3 ), activated carbon, silicon oxide (SiO 2 ) with nickel metal
Using a catalyst containing wt%, 60 mg of the catalyst was charged into the reaction tube, and the reaction temperature was 6 at a flow rate of methane of 25 mL / min and oxygen of 5 mL / min.
At 00 ° C, the synthesis gas generation by the partial oxidation reaction of methane was studied. Table 6 shows the results.

【0032】[0032]

【表6】 [Table 6]

【0033】実験番号1、2、3の酸化マグネシウム、
酸化アルミニウム、酸化チタンにおいてわずかに水素、
一酸化炭素の生成が認められたが、実施例1の実験番号
2の酸化ダイヤモンドに匹敵する性能を示す担体を得る
ことは出来なかった。加えて、酸化アルミニウムを用い
たときは10時間の反応において著しい炭素析出が起こり
反応管が閉塞するに至った。
Magnesium oxides of Experiment Nos. 1, 2, and 3
Aluminum oxide, slightly hydrogen in titanium oxide,
Although generation of carbon monoxide was observed, a carrier having performance comparable to that of the diamond oxide of Experiment No. 2 of Example 1 could not be obtained. In addition, when aluminum oxide was used, remarkable carbon deposition occurred in the reaction for 10 hours, and the reaction tube was closed.

【0034】(比較例2)触媒の担体を酸化ダイヤモン
ドに代えてニッケル触媒の担体として一般的に用いられ
ている酸化アルミニウム、酸化チタン、酸化マグネシウ
ム、酸化ケイ素、酸化ランタンにニッケル金属を5wt%含
む触媒を使用して、触媒100mgを上記反応管に充填し、
前処理として水蒸気改質で通常行われる触媒の水素還元
を、水素5mL/min、アルゴン30mL/min流通下で600℃で1
時間行った後、実施例4、実験番号1と同様の反応条件
でメタンの水蒸気改質による合成ガス生成を行った。結
果を表7に示す。
Comparative Example 2 Aluminum oxide, titanium oxide, magnesium oxide, silicon oxide, and lanthanum oxide, which are commonly used as a nickel catalyst carrier instead of diamond oxide, contain 5 wt% of nickel metal. Using a catalyst, 100 mg of the catalyst is filled in the reaction tube,
Hydrogen reduction of the catalyst usually performed by steam reforming as pretreatment is performed at 600 ° C under a flow of 5 mL / min of hydrogen and 30 mL / min of argon.
After the time, synthesis gas was produced by steam reforming of methane under the same reaction conditions as in Example 4 and Experiment No. 1. Table 7 shows the results.

【0035】[0035]

【表7】 [Table 7]

【0036】実験番号1、2、3、4、5の酸化アルミ
ニウム、酸化チタン、酸化マグネシウム、酸化ケイ素、
酸化ランタンにおいて水素、一酸化炭素の生成が認めら
れたが、炭素析出も認められ、実施例4、実験番号1の
酸化ダイヤモンドに匹敵する担体を得ることは出来なか
った。
Aluminum oxide, titanium oxide, magnesium oxide, silicon oxide of Experiment Nos. 1, 2, 3, 4, 5
In lanthanum oxide, generation of hydrogen and carbon monoxide was observed, but carbon deposition was also observed, and a carrier comparable to the diamond oxide of Example 4, Experiment No. 1 could not be obtained.

【0037】[0037]

【発明の効果】本発明は、酸化ダイヤモンドの表面にニ
ッケルその他の金属を担持した触媒であり、この触媒を
用いることにより低級飽和炭化水素を原料にして合成ガ
スを製造することができる。また、本発明の製造方法
は、その触媒を用いて合成ガスを製造する方法であり、
酸化ダイヤモンドの表面にニッケル、ロジウム、パラジ
ウム、ルテニウム及びイリジウムからなる群から選ばれ
たいずれかの金属を担持した触媒の存在下で550〜700℃
の温度範囲で低級飽和炭化水素と酸素から部分酸化反応
によって、又は酸化ダイヤモンドを担体の表面にニッケ
ル、ロジウム、パラジウム、ルテニウム、イリジウム及
びロジウムからなる群から選ばれたいずれかの金属を担
持した触媒の存在下で600〜800℃の温度範囲で低級飽和
炭化水素と水蒸気から水蒸気改質反応によって、水素を
含有した混合ガスを製造するようにした。これにより、
高温での反応および炭素析出を抑制し、触媒活性の安定
化および寿命の延長を図ることができる。
According to the present invention, there is provided a catalyst in which nickel or another metal is supported on the surface of diamond oxide. By using this catalyst, a synthesis gas can be produced from a lower saturated hydrocarbon as a raw material. Further, the production method of the present invention is a method for producing a synthesis gas using the catalyst,
Nickel, rhodium, palladium, ruthenium and iridium on the surface of the diamond oxide in the presence of a catalyst supporting any metal selected from the group consisting of iridium and 550 ~ 700 ° C ...
Catalyst in which a metal selected from the group consisting of nickel, rhodium, palladium, ruthenium, iridium and rhodium is supported by a partial oxidation reaction from a lower saturated hydrocarbon and oxygen in the temperature range of A mixed gas containing hydrogen is produced from a lower saturated hydrocarbon and steam by a steam reforming reaction in a temperature range of 600 to 800 ° C. in the presence of hydrogen. This allows
The reaction at high temperature and carbon deposition can be suppressed, and the catalyst activity can be stabilized and the life can be extended.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/46 301 B01J 23/46 311M 311 32/00 23/745 C01B 3/40 23/75 H01M 8/06 G 32/00 B01J 23/74 321M C01B 3/40 301M H01M 8/06 311M Fターム(参考) 4G040 EA03 EA06 EA07 EB16 EC01 EC02 EC03 4G069 AA03 AA08 BA08A BA08B BB01A BB01B BC66B BC67A BC67B BC68A BC68B BC70A BC70B BC71A BC71B BC72A BC72B BC74A BC74B BC75B BD02A BD02B CC17 DA06 EA01Y FA02 FB14 FB40 4G140 EA03 EA06 EA07 EB16 EC01 EC02 EC03 5H027 AA02 BA01 BA16 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 23/46 301 B01J 23/46 311M 311 32/00 23/745 C01B 3/40 23/75 H01M 8 / 06 G 32/00 B01J 23/74 321M C01B 3/40 301M H01M 8/06 311M F-term (reference) 4G040 EA03 EA06 EA07 EB16 EC01 EC02 EC03 4G069 AA03 AA08 BA08A BA08B BB01A BB01B BC66B BCBC BCA BC67A BC68A BCBC BC BC BC72B BC74A BC74B BC75B BD02A BD02B CC17 DA06 EA01Y FA02 FB14 FB40 4G140 EA03 EA06 EA07 EB16 EC01 EC02 EC03 5H027 AA02 BA01 BA16

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 酸化ダイヤモンドを担体とし、その表面
にニッケルを担持したことを特徴とする合成ガス製造触
媒。
1. A synthesis gas production catalyst comprising diamond oxide as a carrier and nickel supported on the surface thereof.
【請求項2】 酸化ダイヤモンドを担体とし、その表面
にロジウム、パラジウム、ルテニウム及びイリジウムか
らなる群から選ばれた金属を担持したことを特徴とする
合成ガス製造触媒。
2. A synthesis gas production catalyst comprising: diamond oxide as a carrier; and a metal selected from the group consisting of rhodium, palladium, ruthenium and iridium supported on the surface thereof.
【請求項3】 酸化ダイヤモンドを担体とし、その表面
にコバルトを担持したことを特徴とする合成ガス製造触
媒。
3. A synthesis gas production catalyst comprising diamond oxide as a carrier and cobalt supported on the surface thereof.
【請求項4】 請求項1又は2に記載の触媒を用いて55
0〜700℃の温度範囲で低級飽和炭化水素と酸素から合成
ガスを製造する方法。
4. Use of the catalyst according to claim 1 or 2
A method for producing a synthesis gas from a lower saturated hydrocarbon and oxygen in a temperature range of 0 to 700 ° C.
【請求項5】 請求項1,2又は3に記載の触媒を用い
て600〜800℃の温度範囲で低級飽和炭化水素と水蒸気か
ら合成ガスを製造する方法。
5. A method for producing a synthesis gas from a lower saturated hydrocarbon and steam at a temperature in the range of 600 to 800 ° C. using the catalyst according to claim 1, 2, or 3.
【請求項6】 前記触媒は水素還元処理を施さずに使用
する請求項5に記載の方法。
6. The method according to claim 5, wherein the catalyst is used without being subjected to a hydrogen reduction treatment.
【請求項7】 前記低級飽和炭化水素はメタンであり、
前記合成ガスは水素と一酸化炭素との混合ガスである請
求項4から6のいずれかに記載の方法。
7. The lower saturated hydrocarbon is methane,
7. The method according to claim 4, wherein the synthesis gas is a mixed gas of hydrogen and carbon monoxide.
JP2000378247A 2000-12-13 2000-12-13 Syngas production catalyst and synthesis gas production method Expired - Lifetime JP3976498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000378247A JP3976498B2 (en) 2000-12-13 2000-12-13 Syngas production catalyst and synthesis gas production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000378247A JP3976498B2 (en) 2000-12-13 2000-12-13 Syngas production catalyst and synthesis gas production method

Publications (2)

Publication Number Publication Date
JP2002177783A true JP2002177783A (en) 2002-06-25
JP3976498B2 JP3976498B2 (en) 2007-09-19

Family

ID=18846854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378247A Expired - Lifetime JP3976498B2 (en) 2000-12-13 2000-12-13 Syngas production catalyst and synthesis gas production method

Country Status (1)

Country Link
JP (1) JP3976498B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066520A (en) * 2007-09-13 2009-04-02 Kansai Electric Power Co Inc:The Partial oxidation catalyst for hydrocarbon, and method and apparatus for manufacturing hydrogen-containing gas using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066520A (en) * 2007-09-13 2009-04-02 Kansai Electric Power Co Inc:The Partial oxidation catalyst for hydrocarbon, and method and apparatus for manufacturing hydrogen-containing gas using the same

Also Published As

Publication number Publication date
JP3976498B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
US6409940B1 (en) Nickel-rhodium based catalysts and process for preparing synthesis gas
RU2409878C2 (en) Method and catalyst for hydrogenating carbon oxides
AU768519B2 (en) Catalytic partial oxidation process and promoted nickel based catalysts supported on magnesium oxide
US7226548B2 (en) Syngas catalysts and their method of use
US6635191B2 (en) Supported nickel-magnesium oxide catalysts and processes for the production of syngas
US7384986B2 (en) Process for the selective methanation of carbonmonoxide (CO) contained in a hydrogen-rich reformate gas
JP2002519182A (en) Catalytic partial oxidation using rhodium-iridium alloy catalyst
JP4185952B2 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
EP1487740A1 (en) Controlled-pore catalyst structures and process for producing synthesis gas
WO2003039740A1 (en) Combustion deposited metal-metal oxide catalysts and process for producing synthesis gas
US20080241038A1 (en) Preparation of manganese oxide-ferric oxide-supported nano-gold catalyst and using the same
US7432222B2 (en) High temperature stable non-noble metal catalyst, process for production of syngas using said catalyst
JP4132295B2 (en) Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide gas
JP2009297715A (en) Catalytic reduction and oxidation method
KR100858924B1 (en) Supported catalyst for producing hydrogen gas by steam reforming reaction of liquefied natural gas, method for preparing the supported catalyst and method for producing hydrogen gas using the supported catalyst
JP2001080907A (en) Method for preliminarily reforming oxygen-containing gas
US20080193354A1 (en) Preparation of manganese oxide-cerium oxide-supported nano-gold catalyst and the application thereof
US6897178B1 (en) Carbide/nitride based fuel processing catalysts
JP2002500952A (en) Catalyst suitable for producing hydrogen and carbon monoxide from hydrocarbon feedstocks
JP2002177783A (en) Catalyst and method for manufacturing synthetic gas
JPH11323352A (en) Manufacture of hydrocarbon oil
JP2003047846A (en) Catalyst and method for reforming dimethyl ether
JPS60122038A (en) Catalyst for reforming methanol
JP2005193111A (en) Synthetic gas producing catalyst and method for producing synthetic gas by using the same
AU2002367767B2 (en) Controlled-pore catalyst structures and process for producing synthesis gas

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150