JP2002177248A - Habitable room environment assessment method - Google Patents

Habitable room environment assessment method

Info

Publication number
JP2002177248A
JP2002177248A JP2000378517A JP2000378517A JP2002177248A JP 2002177248 A JP2002177248 A JP 2002177248A JP 2000378517 A JP2000378517 A JP 2000378517A JP 2000378517 A JP2000378517 A JP 2000378517A JP 2002177248 A JP2002177248 A JP 2002177248A
Authority
JP
Japan
Prior art keywords
subject
living room
change
hemoglobin concentration
blood pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000378517A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Forestry Co Ltd
Original Assignee
Sumitomo Forestry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Forestry Co Ltd filed Critical Sumitomo Forestry Co Ltd
Priority to JP2000378517A priority Critical patent/JP2002177248A/en
Publication of JP2002177248A publication Critical patent/JP2002177248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To objectively assess the amenity of a habitable room based on visual factors by measuring vital reactions of a person in the habitable room. SOLUTION: A subject is guided to the wholly-interior-finished habitable room to be assessed, one or more central neuron activity indices of the intracerebral blood of the subject such as change in oxygenated hemoglobin concentration, change in deoxygenated hemoglobin concentration, and change in total hemoglobin concentration are sequentially measured, and the amenity of the habitable room is assessed based on the results. Besides it, it is desirable to measure the autonomic nerve action indices of the subject such as systolic blood pressure, diastolic pressure, and pulse. A case where the total hemoglobin concentration increases and the systolic blood pressure becomes in the declining inclination is favorably correlated with a case where the subject feels comfortable so that when the measured values show such states, it can be assessed that the subject feels it comfortable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願に係る発明は、住宅・事
務所等における居室内の環境を評価する方法に係り、特
に居室内にいる者が視覚的に認識する快適さを評価する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the environment in a living room in a house or office, and more particularly to a method for evaluating the comfort that a person in a living room visually recognizes.

【0002】[0002]

【従来の技術】住宅や事務所用の建築物における居室内
の環境は、温度・湿度・空気清浄度等の空気質、振動・
騒音等の外的要因、居室の内装状態や内装に用いられる
建材の種類等によって影響される。これらのうち、空気
質や振動・騒音等は物理的な計測値によってある程度の
評価が可能であり、省庁等の基準や団体の規定等によっ
て規制値や望ましい数値が示されている。
2. Description of the Related Art The environment in a living room of a building for a house or an office includes air quality such as temperature, humidity, and air cleanliness, vibration, and the like.
It is influenced by external factors such as noise, the interior condition of the room, the type of building material used for the interior, and the like. Of these, air quality, vibration, noise, and the like can be evaluated to some extent by physical measurement values, and regulated values and desirable numerical values are indicated by standards of ministries and agencies, regulations of organizations, and the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、内装の
状態、例えば壁・天井・床の色や材質、及びこれらをど
のように組み合わせるかといった視覚的に認識される要
因は、物理的な数値で評価することが難しく、居室内に
いる者が快適と感じるか又は不快と感じるかといった極
めて主観的な評価は、個人の好き嫌いによって大きく異
なるものとなる。このため、居室の内装を設計しようと
する者にとって明確な基準がなく、設計者に迷いが生じ
たり、設計者の主観的な判断に依存することになる。し
たがって、設計された内装は、居室を使用する者にとっ
て快適なものとはならないことも起こり得る。一方、建
材のサンプルやモデルルーム等によって、居室を使用す
る者の主観的な判断をあらかじめ調査することも可能で
あるが、主観的な判断は確実性に乏しく、判断する者が
迷ってしまうこともしばしば生じ得ることである。
However, visually perceived factors such as the condition of the interior, for example, the colors and materials of walls, ceilings and floors, and how to combine them are evaluated by physical numerical values. It is difficult to do so, and a highly subjective evaluation of whether a person in the living room feels comfortable or uncomfortable varies greatly depending on individual likes and dislikes. For this reason, there is no clear standard for those who design the interior of the living room, and the designer may be confused or rely on the designer's subjective judgment. Therefore, the designed interior may not be comfortable for a person using the living room. On the other hand, it is possible to investigate in advance the subjective judgment of the person using the living room based on the building material sample or model room, etc., but the subjective judgment is poorly certain and the person making the judgment may get lost. Can also often occur.

【0004】本願に係る発明は、上記のような事情に鑑
みてなされたものであり、その目的は、視覚的な要因に
基づく居室の快適さを居室内にいる者の生体反応を測定
することによって、客観的に評価する方法を提供するこ
とである。
The invention according to the present application has been made in view of the above-mentioned circumstances, and an object of the invention is to measure a living body reaction of a person in a living room based on visual factors. To provide an objective evaluation method.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る発明は、 被験者を、全面に内装が
施された評価対象居室内に導き、 該被験者の脳内血液
の酸素化ヘモグロビン濃度変化、脱酸素化ヘモグロビン
濃度変化、総ヘモグロビン濃度変化を含む中枢神経活動
指標の1又は2以上を連続的に測定し、 その測定結果
に基づいて居室の快適感を評価することを特徴とする居
室環境評価方法を提供する。
According to a first aspect of the present invention, a subject is guided into a living room to be evaluated, which is fully decorated, and oxygen in blood in the brain of the subject is provided. It is characterized by continuously measuring one or more of the central nervous activity indicators including changes in deoxygenated hemoglobin concentration, changes in deoxygenated hemoglobin concentration, and changes in total hemoglobin concentration, and evaluating the comfort of the living room based on the measurement results. Provide a living room environment evaluation method.

【0006】このような居室環境評価方法では、被験者
が居室内でその内装の状態を視覚的に捉え、これに反応
して脳内の血流量等中枢神経活動指標が変動する。この
変動量を連続的に測定することによって、被験者が快適
と感じるか、不快と感じるかを判断することが可能とな
る。したがって、測定に用いた居室の具体的な内装が当
該被験者にとって快適か否かという判断ができ、さらに
複数の被験者に対して測定を実施することによって、多
数の人に快適と感じられる内装であるか否かというとい
う判断も可能となる。
In such a living room environment evaluation method, the subject visually grasps the state of the interior of the living room and the central nervous activity index such as the blood flow in the brain fluctuates in response to this. By continuously measuring the amount of change, it is possible to determine whether the subject feels comfortable or uncomfortable. Therefore, it can be determined whether or not the specific interior of the living room used for the measurement is comfortable for the subject, and by performing the measurement on a plurality of subjects, the interior is comfortable for many people. It is also possible to determine whether or not it is.

【0007】請求項2に係る発明は、請求項1に記載の
居室環境評価方法において、 前記中枢神経活動指標と
ともに、 該被験者の収縮期血圧、拡張期血圧、脈拍数
を含む自律神経活動指標の1又は2以上を連続的に測定
するものとする。
The invention according to claim 2 is the living room environment evaluation method according to claim 1, wherein the central nervous activity index and the autonomic nervous activity index including the subject's systolic blood pressure, diastolic blood pressure, and pulse rate are measured. One or two or more are measured continuously.

【0008】血圧や脈拍数等の自律神経活動指標は、快
適と感じているか不快と感じているかによって変動す
る。上記方法では、これらを連続的に測定し、中枢神経
活動指標と併せて用いるので、被験者の感じている快適
さをより的確に判断することが可能となる。
Autonomic nervous activity indices such as blood pressure and pulse rate vary depending on whether the user feels comfortable or uncomfortable. In the above method, since these are continuously measured and used in combination with the central nervous activity index, it is possible to more accurately determine the comfort felt by the subject.

【0009】請求項3に係る発明は、請求項1又は請求
項2に記載の居室環境評価方法において、 前記被験者
を、車椅子に座らせた状態で前記評価対象居室内に導く
ものとする。
According to a third aspect of the present invention, in the living room environment evaluation method according to the first or second aspect, the subject is guided into the room to be evaluated while sitting in a wheelchair.

【0010】この方法では、被験者は体を動かすことな
く評価対象の居室内に誘導されるので、運動による中枢
神経活動指標及び自律神経活動指標への影響を排除する
ことができる。したがって、居室の内装の状態を視覚的
に捉えることによる反応を正確に測定することができ
る。
In this method, the subject is guided into the living room to be evaluated without moving his / her body, so that the influence of exercise on the central nervous activity index and the autonomic nervous activity index can be eliminated. Therefore, it is possible to accurately measure a reaction caused by visually grasping the state of the interior of the living room.

【0011】請求項4に係る発明は、請求項1又は請求
項2に記載の居室環境評価方法において、 前記被験者
を、閉眼状態で前記評価対象居室内に導き、前記連続的
な測定を開始し、測定値の安定を確認した後に開眼さ
せ、さらに所定時間の測定を継続するものとする。
According to a fourth aspect of the present invention, in the living room environment evaluation method according to the first or second aspect, the subject is guided into the evaluation target living room with the eyes closed, and the continuous measurement is started. After confirming the stability of the measured value, the eye is opened, and the measurement is continued for a predetermined time.

【0012】この方法では、被験者を閉眼状態で評価対
象の居室内に導き、居室内の視覚情報を与えない状態
で、中枢神経活動指標又はこれと自律神経活動指標の測
定を行うため、測定値の安定が確認できる。そして、開
眼させることによって、居室内の状態が視覚情報となり
被験者の生体反応に現れ、この生体反応が測定される。
したがって、開眼前後の測定値を対比することによっ
て、他の要因を排除し、居室内で得る視覚的刺激に対す
る反応のみを、的確に測定することが可能となる。
In this method, the subject is guided into the room to be evaluated with the eyes closed, and the central nervous activity index or the autonomic nervous activity index is measured without providing visual information in the living room. Can be confirmed. Then, by opening the eyes, the state of the living room becomes visual information and appears in the biological reaction of the subject, and this biological reaction is measured.
Therefore, by comparing the measured values before and after opening the eye, other factors can be eliminated, and only the response to the visual stimulus obtained in the living room can be accurately measured.

【0013】請求項5に係る発明は、 請求項1から請
求項4までのいずれかに記載の居室環境評価方法におい
て、前記中枢神経活動指標は、脳組織内の血液中ヘモグ
ロビン濃度変化であり、波長が700nmから1500
nm程度の近赤外光を脳内に照射し、通過した光を検出
し、ヘモグロビンの吸光特性に基づいた吸光度の変化か
ら前記ヘモグロビン濃度変化を推定するものとする。
According to a fifth aspect of the present invention, in the living room environment evaluation method according to any one of the first to fourth aspects, the central nervous activity index is a change in blood hemoglobin concentration in brain tissue; Wavelength from 700nm to 1500
It is assumed that near-infrared light of about nm is irradiated into the brain, the light that has passed through is detected, and the change in hemoglobin concentration is estimated from a change in absorbance based on the light absorption characteristics of hemoglobin.

【0014】波長が700nmから1500nm程度の
近赤外光は、生体組織に対して高い透過性を有し、脳内
も透過し得る。そして、生体内を透過するときに、ヘモ
グロビンによって特定の周波数領域の光が吸収される。
この吸光度変化を測定することによって、生体内のヘモ
グロビンの濃度変化を推定することができる。
[0014] Near-infrared light having a wavelength of about 700 nm to 1500 nm has high transparency to living tissue, and can pass through the brain. Then, when the light passes through a living body, light in a specific frequency region is absorbed by hemoglobin.
By measuring the change in absorbance, the change in the concentration of hemoglobin in the living body can be estimated.

【0015】[0015]

【発明の実施の形態】以下、本願に係る発明の実施の形
態を図を用いて説明する。図1は、本願発明の一実施形
態である居室環境評価方法の概略工程を時間を追って示
す図である。この方法は、被験者を内装が施された居室
内に誘導し、居室の状態を視覚的に認識したときの被験
者の生体反応を測定するものである。評価方法の実施者
は、被験者を車椅子に座らせ、被験者の身体に測定用の
端末装置を取り付け、評価対象居室内に誘導する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing, over time, schematic steps of a living room environment evaluation method according to an embodiment of the present invention. In this method, a subject is guided into a living room with interior decoration, and a biological reaction of the subject when visually recognizing the state of the living room is measured. The implementer of the evaluation method places the subject in a wheelchair, attaches a terminal device for measurement to the body of the subject, and guides the subject into the living room to be evaluated.

【0016】居室内の所定位置に被験者を誘導すると実
施者は退室し、生体反応の測定を開始する。生体反応
は、中枢神経活動指標として脳血液動態、すなわち酸素
化ヘモグロビン濃度変化、脱酸素化ヘモグロビン濃度変
化、総ヘモグロビン濃度変化い表れ、自律神経活動指標
として収縮期血圧変化、拡張期血圧変化、脈拍数変化に
表れる。これらを1秒毎に、連続的に測定する。上記測
定を開始して、指標が安定した状態となったことを確認
した後、さらに30秒間の測定を行う。
When the subject is guided to a predetermined position in the living room, the practitioner leaves the room and starts measuring a biological reaction. The biological response is expressed as cerebral hemodynamics as central nervous activity indicators, that is, changes in oxygenated hemoglobin concentration, changes in deoxygenated hemoglobin concentration, changes in total hemoglobin concentration, and changes in systolic blood pressure, diastolic blood pressure, and pulse as autonomic nervous activity indicators. It appears in the number change. These are measured continuously every second. After starting the above measurement and confirming that the index is in a stable state, measurement is further performed for 30 seconds.

【0017】その後、実施者の指示により、被験者を開
眼させる。このとき、被験者は初めて居室内の状態を視
覚的に認識することになり、このままさらに90秒間測
定を続ける。上記開眼状態の測定完了により、生体反応
の測定は終了し、その後被験者に図2に示すような調査
票への記入を求めることによって、主観的な評価を調査
する。
Thereafter, the subject is opened according to the instruction of the practitioner. At this time, the subject visually recognizes the state of the living room for the first time, and continues measurement for another 90 seconds. Upon completion of the measurement of the eye-opened state, the measurement of the biological reaction is completed, and thereafter, the subject is asked to fill out a questionnaire as shown in FIG.

【0018】上記のような生体反応の測定に用いる装置
は、図3に示すように、一般的な車椅子1又は特製車椅
子に、被験者の指に取り付けて血圧及び脈拍数を検出す
る端末装置2と、被験者の頭部に取り付けて脳血液動態
の変化を検出する端末装置3を装備したものである。こ
れらの端末装置は、直接に又はターミナル4を経て、測
定器本体5に接続されており、測定器本体5によって測
定動作の制御及び測定値の記録が行われるようになって
いる。
As shown in FIG. 3, the apparatus used for measuring the above-mentioned biological reaction includes a terminal device 2 which is mounted on a general wheelchair 1 or a special wheelchair and which is attached to a finger of a subject to detect blood pressure and pulse rate. And a terminal device 3 attached to the subject's head to detect a change in cerebral blood dynamics. These terminal devices are connected to the measuring instrument main body 5 directly or via the terminal 4, and control of the measuring operation and recording of the measured values are performed by the measuring instrument main body 5.

【0019】上記中枢神経活動指標である脳血液動態の
変化は、次のような原理により測定する。頭部に取り付
けた端末装置3から近赤外光(波長が700nmから1
500nm)を脳内に照射し、脳組織を透過した光を検
出する。近赤外光は生体組織に対し、可視光領域に比べ
て高い透過性を有し、頭蓋骨をも透過し得る。そして、
血液中に含まれるヘモグロビンは酸素化及び脱酸素化に
対して、近赤外領域に特徴的な吸収帯を持つ。したがっ
て、この吸収帯における吸光度変化を測定することによ
って、上記脳血液動態の変化を測定し得る。この測定に
用いることができる測定装置として、例えば島津製作所
製OM−100シリーズ、浜松ホトニクス製NIROシ
リーズ、大塚電子製MCPD−1000、ユニソク製N
IR−1000シリーズがある。
The change in cerebral hemodynamics, which is an index of central nervous activity, is measured according to the following principle. Near infrared light (wavelength from 700 nm to 1) from terminal device 3 attached to the head
(500 nm) into the brain to detect light transmitted through the brain tissue. Near-infrared light has higher transparency to living tissue than the visible light region, and can transmit through the skull. And
Hemoglobin contained in blood has a characteristic absorption band in the near infrared region for oxygenation and deoxygenation. Therefore, the change in the cerebral hemodynamics can be measured by measuring the change in absorbance in this absorption band. Examples of measuring devices that can be used for this measurement include OM-100 series manufactured by Shimadzu Corporation, NIRO series manufactured by Hamamatsu Photonics, MCPD-1000 manufactured by Otsuka Electronics, and N
There is an IR-1000 series.

【0020】一方、自律神経活動指標である血圧と脈拍
数とはフィナプレス(FINgerArterial
PRESsure)法によって測定する。この方法は、
指を使って血圧を連続的に測定するものである。測定に
使用する端末装置2は、発光ダイオードと受光器との組
み合わせからなるプレスチモグラムと、空気を供給して
動脈の大きさを調整する血圧用カフとを備えている。
On the other hand, blood pressure and pulse rate, which are indexes of autonomic nervous activity, are determined by FINAPARTERIAL.
PRESure) method. This method
The blood pressure is continuously measured using a finger. The terminal device 2 used for measurement includes a plethysmogram composed of a combination of a light emitting diode and a light receiver, and a blood pressure cuff for supplying air to adjust the size of an artery.

【0021】測定は、まずカフ圧を上げていき、上記プ
レスチモグラムによって受光量の変化を観察して、血管
の太さの変動が最大になるカフ圧を探す。このカフ圧が
平均血圧となる。このカフ圧は、一定脈拍数ごとに再調
整が行われる。次に、このカフ圧を基準として血管の太
さが一定となるようにカフ圧を瞬時にサーボコントロー
ルし、その圧の変化から収縮期血圧(最高血圧)と拡張
期血圧(最低血圧)とを連続的に測定する。この方法で
は、収縮期血圧、拡張期血圧、平均血圧、脈拍数の瞬時
表示とトレンドグラフ表示とが可能であり、解析ソフト
の使用により、FFT(高速フーリエ変換)処理による
周波数解析などが可能である。
In the measurement, first, the cuff pressure is increased, and the change in the amount of received light is observed by the above-mentioned plethysmogram to find a cuff pressure at which the variation in the thickness of the blood vessel becomes maximum. This cuff pressure becomes the average blood pressure. This cuff pressure is readjusted every fixed pulse rate. Next, based on the cuff pressure, the cuff pressure is servo-controlled instantaneously so that the blood vessel thickness is constant, and the systolic blood pressure (systolic blood pressure) and the diastolic blood pressure (diastolic blood pressure) are determined from the change in the pressure. Measure continuously. According to this method, it is possible to instantaneously display a systolic blood pressure, a diastolic blood pressure, an average blood pressure, and a pulse rate and to display a trend graph. By using analysis software, it is possible to perform frequency analysis by FFT (Fast Fourier Transform) processing. is there.

【0022】以上に説明した測定の結果は、被験者が開
眼する前の安静時における測定値(開眼前10秒間の平
均)と、開眼後の測定値とを対比することによって、居
室内の状態を視覚的に認識したときの反応を抽出するこ
とができ、居室の視覚的な環境が被験者へ与える影響と
して評価することができる。つまり、被験者は安静状態
で居室に誘導され、運動等の影響は排除されており、ま
た、閉眼状態と視覚的刺激が付加された開眼状態とで生
体反応を対比しているので、居室内での視覚的刺激によ
る反応のみを検出していると考えられることができる。
The result of the above-described measurement is used to compare the measured value at rest (average for 10 seconds before eye opening) with the measured value after eye opening before the eyes of the subject are opened, so that the state of the living room can be determined. The reaction when visually recognized can be extracted, and the effect of the visual environment of the living room on the subject can be evaluated. In other words, the subject is guided to the living room in a resting state, and the effects of exercise and the like are eliminated, and the living body reaction is compared between the closed-eye state and the open-eye state with the added visual stimulus. It can be considered that only the response due to the visual stimulus is detected.

【0023】次に、上記測定を実際に実施し、居室環境
を評価した実験について説明する。実験は、大きさ、形
状、開口部の位置、家具の配置を全く同じにした部屋を
複数製作し、これらのそれぞれに順次複数の被験者を誘
導し、上記測定を行った。上記評価対象となる複数の部
屋は、図4に示すように、それぞれ二つの出入り口1
1,12と二つの窓13、14を有し、同じ形状のソフ
ァ15、テーブル16、植木17が置かれている。しか
し、内装が異なるものとなっており、図5に示すよう
に、内装面のうち木質材を用いている部分の比率をそれ
ぞれ0%、45%、90%としている。つまり、木質材
が0%の部屋では、天井、壁にはクロス貼りの内装が施
され、床面にはカーペットが敷設されている。これに対
し、木質材が45%、90%の部屋では床面が木材で仕
上げられ、壁面も所定の範囲で、木目をいかした板材が
用いられている。さらに、木質材90%の部屋では天井
も全面に板材が用いられている。
Next, a description will be given of an experiment in which the above-described measurement was actually performed and the living room environment was evaluated. In the experiment, a plurality of rooms having exactly the same size, shape, position of the opening, and arrangement of furniture were manufactured, and a plurality of subjects were sequentially guided to each of these rooms, and the above measurement was performed. As shown in FIG. 4, each of the plurality of rooms to be evaluated has two entrances 1
1 and 12 and two windows 13 and 14, and a sofa 15, a table 16, and a plant 17 of the same shape are placed. However, the interior is different, and as shown in FIG. 5, the proportions of the interior surface using wood material are set to 0%, 45%, and 90%, respectively. In other words, in the room where the wood material is 0%, the ceiling and the walls are decorated with a cloth and the carpet is laid on the floor. On the other hand, in the rooms where the wood material is 45% or 90%, the floor surface is finished with wood, and the wall surface is also in a predetermined range, and a board material with a good grain is used. Further, in a room made of 90% wood material, a plate material is used for the entire ceiling.

【0024】これらの部屋の窓は屋外の景色が影響する
のを排除するため、すべて屋外が見えないようにカーテ
ンで遮蔽されている。そして、被験者を部屋のほぼ全体
が見渡せる位置に誘導して測定を行う。なお、上記三つ
の部屋の他に木質材が40%の部屋も作製し、各被験者
は、まず初めにこの部屋で測定を行うものとしたが、こ
の部屋での測定値は評価に用いないものとした。これ
は、被験者の馴れにともない、測定を行う部屋の順序が
測定値に影響するのを排除するためである。
The windows in these rooms are all shielded by curtains so that the outdoor scenery is not affected. Then, the subject is guided to a position where almost the entire room can be seen and the measurement is performed. In addition to the above three rooms, a room made of 40% wood material was also prepared, and each subject first measured in this room, but the measured values in this room were not used for evaluation. And This is to eliminate the influence of the order of the room in which the measurement is performed on the measurement value as the subject becomes familiar.

【0025】次に、上記測定の結果について説明する。
図6は、居室内の内装面のうち、木質材の占める比率
(室内木材率)が0%、45%、90%の場合につい
て、開眼前後の総ヘモグロビン濃度変化を示すものであ
る。時間目盛りが0秒の時点で開眼しており、開眼後の
値は、開眼前10秒間の平均値に対する変化量(μM:
マイクロモル濃度)で示す。この図は、10人の被験者
(被験者数n=10)についての測定値の平均値を折線
で示し、標準誤差を縦線で示している。また、星印は、
危険率PをP< 0.01又はP< 0.05としたときに
有意差が認められた測定時点に付している。室内木材率
0%、45%、90%の場合のいずれについても、総ヘ
モグロビンの値は増加傾向を示しているが、室内木材率
の違いによる顕著な差は認められない。
Next, the result of the above measurement will be described.
FIG. 6 shows the change in the total hemoglobin concentration before and after opening the eyes when the ratio of the wood material (indoor wood ratio) in the interior surface of the living room is 0%, 45%, and 90%. The eye is open at the time scale of 0 second, and the value after opening the eye is the amount of change (μM:
(Micromolar concentration). In this figure, the average value of the measured values for 10 subjects (the number of subjects n = 10) is indicated by a broken line, and the standard error is indicated by a vertical line. Also, the star is
When the risk factor P is defined as P <0.01 or P <0.05, a significant time difference is indicated at the measurement time point. The values of total hemoglobin show an increasing tendency in any of the cases where the indoor wood ratio is 0%, 45%, and 90%, but no remarkable difference due to the difference in the indoor wood ratio is observed.

【0026】一方、図7、図8は、被験者の主観的な評
価によって「特に快適」と評価された部屋における測定
値と、「どちらでもない」と評価された部屋における測
定値とを、室内木材率とは関係なく分類し、集計した結
果を示すものである。図7に示されるように、被験者が
「特に快適」と評価した部屋での測定値は、左前頭部及
び右前頭部のいずれにおいても、開眼後顕著に総ヘモグ
ロビンの値及び酸化ヘモグロビンの値が増加している。
これに対して、被験者が「どちらでもない」と評価した
部屋での測定値は、図8に示されるように、総ヘモグロ
ビンの値及び酸化ヘモグロビンの値のいずれにおいても
顕著な変化は生じていない。また、収縮期血圧は、図9
に示されるように被験者が「特に快適」と評価した部屋
の測定値では、開眼後低下傾向を示す。これに対し、被
験者が「どちらでもない」と評価した部屋の測定値で
は、ほとんど変化が認められない。
On the other hand, FIGS. 7 and 8 show the measured values in the room evaluated as “particularly comfortable” and the measured values in the room evaluated as “neither” based on the subjective evaluation of the subject. It shows the results of classification and tabulation irrespective of the wood ratio. As shown in FIG. 7, the measurement values in the room evaluated by the subject as “particularly comfortable” indicate that the total hemoglobin value and the oxyhemoglobin value markedly after the eyes are opened in both the left frontal region and the right frontal region. It has increased.
On the other hand, as shown in FIG. 8, the measured values in the room evaluated by the subject as “neither” did not show any remarkable change in either the value of total hemoglobin or the value of oxyhemoglobin. . The systolic blood pressure is shown in FIG.
As shown in the figure, the measured value of the room evaluated as “particularly comfortable” by the subject shows a tendency to decrease after the eye opening. On the other hand, there is almost no change in the measured value of the room evaluated by the subject as “neither”.

【0027】以上のような実験の結果から、次のように
考えることができる。居室内における木材率の違いだけ
では、被験者の生体反応に顕著な傾向の違いは現れにく
いが、被験者の主観的な評価(嗜好)と脳血液動態の変
化及び収縮期血圧とは良好な相関を示す。つまり、被験
者が「快適」と感じると、総ヘモグロビンの値及び酸化
ヘモグロビンの値は、顕著に増加し、収縮期血圧は低下
する。したがって、脳血液動態の変化及び血圧の測定値
から居室の視覚的に認識される環境を評価することがで
き、被験者の主観的な評価と対比することによって、よ
り総合的な評価が可能となる。
From the results of the above experiments, the following can be considered. The difference in the wood ratio in the living room alone is not likely to cause a significant difference in the biological response of the subject, but a good correlation between the subject's subjective evaluation (preference) and changes in cerebral hemodynamics and systolic blood pressure. Show. That is, when the subject feels "comfortable", the value of total hemoglobin and the value of oxyhemoglobin significantly increase, and the systolic blood pressure decreases. Therefore, the visually perceived environment of the living room can be evaluated from the measured values of changes in cerebral hemodynamics and blood pressure, and a more comprehensive evaluation can be performed by comparing with the subjective evaluation of the subject. .

【0028】[0028]

【発明の効果】以上説明したように、本願に係る居室環
境評価方法では、酸素化ヘモグロビン濃度変化、脱酸素
化ヘモグロビン濃度変化、総ヘモグロビン濃度変化等の
中枢神経活動指標を測定することにより、被験者が視覚
的に認識する居室の環境を客観的に評価することが可能
となる。また、収縮期血圧、拡張期血圧、脈拍数等の自
律神経活動指標の測定を併せて行うことにより、総合的
な評価も可能となる。さらに、このような評価方法を行
うことにより、建築物の設計時には、居住者又は居室使
用者等が快適と感じる内装を把握し、これに反映した設
計が可能となる。また、中枢神経活動指標等の測定値と
主観的な嗜好とが一致しないときには、再評価等の対処
も可能であり、より適切な設計が可能となる。
As described above, in the living room environment evaluation method according to the present invention, the subject's central nervous activity index, such as a change in oxygenated hemoglobin concentration, a change in deoxygenated hemoglobin concentration, and a change in total hemoglobin concentration, is measured. It is possible to objectively evaluate the environment of the living room visually recognized by the user. In addition, comprehensive evaluation can be performed by additionally measuring autonomic nervous activity indices such as systolic blood pressure, diastolic blood pressure, and pulse rate. Further, by performing such an evaluation method, at the time of designing a building, it is possible to grasp the interior that a resident or a living room user or the like feels comfortable and to perform a design reflecting the interior. Further, when the measured value of the central nervous activity index or the like does not match the subjective preference, it is possible to take measures such as reevaluation and the like, and a more appropriate design is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の一実施形態である居室環境評価方法
の概略工程を時間を追って示す図である。
FIG. 1 is a diagram showing, over time, schematic steps of a living room environment evaluation method according to an embodiment of the present invention.

【図2】被験者による居室の主観的な評価を得るための
調査票を示す概略図である。
FIG. 2 is a schematic diagram showing a questionnaire for obtaining a subjective evaluation of a room by a subject.

【図3】本願発明に係る居室環境評価方法で用いること
ができる生体反応測定装置の一例を示す概略図である。
FIG. 3 is a schematic diagram showing an example of a biological reaction measurement device that can be used in the living room environment evaluation method according to the present invention.

【図4】本願発明に係る居室環境評価方法の試験的な実
施に用いた居室の平面図である。
FIG. 4 is a plan view of a living room used for experimental execution of a living room environment evaluation method according to the present invention.

【図5】本願発明に係る居室環境評価方法の試験的な実
施に用いた居室内部の状態を示す概略図である。
FIG. 5 is a schematic diagram showing the state of the interior of a living room used for a test implementation of the living room environment evaluation method according to the present invention.

【図6】図4、図5に示す部屋を用いて得られた脳血液
動態の変化の測定値を、部屋ごとに分類して示す図であ
る。
6 is a diagram showing measured values of changes in cerebral hemodynamics obtained using the rooms shown in FIGS. 4 and 5, classified by room.

【図7】図4、図5に示す部屋を用いて得られた脳血液
動態の変化の測定値から、被験者が「特に快適」と評価
した部屋の測定値を抽出して示す図である。
FIG. 7 is a diagram extracting and showing measured values of a room evaluated as “particularly comfortable” by a subject from measured values of changes in cerebral hemodynamics obtained using the rooms shown in FIGS. 4 and 5;

【図8】図4、図5に示す部屋を用いて得られた脳血液
動態の変化の測定値から、被験者が「どちらでもない」
と評価した部屋の測定値を抽出して示す図である。
FIG. 8 shows that a subject is “neither” from the measured values of changes in cerebral hemodynamics obtained using the rooms shown in FIGS.
It is a figure which extracts and shows the measured value of the room evaluated as.

【図9】図4、図5に示す部屋を用いて測定された収縮
期血圧の変化を示す図である。
FIG. 9 is a diagram showing changes in systolic blood pressure measured using the rooms shown in FIGS. 4 and 5;

【符号の説明】[Explanation of symbols]

1 車椅子 2 血圧及び脈拍数を検出する端
末装置 3 脳血液動態の変化を検出する
端末装置 4 ターミナル 5 測定器本体 11、12 出入り口 13、14 窓 15 ソファ 16 テーブル 17 植木
Reference Signs List 1 wheelchair 2 terminal device for detecting blood pressure and pulse rate 3 terminal device for detecting changes in cerebral blood dynamics 4 terminal 5 measuring instrument main body 11, 12 doorway 13, 14 window 15 sofa 16 table 17 garden plant

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G059 AA05 BB12 CC18 DD12 DD13 DD15 EE01 FF05 HH01 HH06 MM01 NN01 4C017 AA02 AA08 AA12 AC27 BC11 BC16 CC01 DE02 4C038 KK01 KL05 KL07 KM00 KX01 KX02 KY04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G059 AA05 BB12 CC18 DD12 DD13 DD15 EE01 FF05 HH01 HH06 MM01 NN01 4C017 AA02 AA08 AA12 AC27 BC11 BC16 CC01 DE02 4C038 KK01 KL05 KL05 KL07 KM00 KX01 KX02 KY04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被験者を、全面に内装が施された評価
対象居室内に導き、 該被験者の脳内血液の酸素化ヘモグロビン濃度変化、脱
酸素化ヘモグロビン濃度変化、総ヘモグロビン濃度変化
を含む中枢神経活動指標の1又は2以上を連続的に測定
し、 その測定結果に基づいて居室の快適感を評価することを
特徴とする居室環境評価方法。
1. A subject is guided into a living room to be evaluated, which is fully decorated, and a central nervous system including a change in oxygenated hemoglobin concentration, a change in deoxygenated hemoglobin concentration, and a change in total hemoglobin concentration of blood in the brain of the subject. A living room environment evaluation method characterized by continuously measuring one or more of the activity indices and evaluating the comfort of the living room based on the measurement result.
【請求項2】 前記中枢神経活動指標とともに、 該被験者の収縮期血圧、拡張期血圧、脈拍数を含む自律
神経活動指標の1又は2以上を連続的に測定することを
特徴とする請求項1に記載の居室環境評価方法。
2. The method according to claim 1, wherein one or more autonomic nervous activity indices including the systolic blood pressure, diastolic blood pressure, and pulse rate of the subject are continuously measured together with the central nervous activity index. The living room environment evaluation method described in.
【請求項3】 前記被験者は、車椅子に座らせた状態
で前記評価対象居室内に誘導することを特徴とする請求
項1又は請求項2に記載の居室環境評価方法。
3. The living room environment evaluation method according to claim 1, wherein the subject is guided into the evaluation target living room while sitting in a wheelchair.
【請求項4】 前記被験者を、閉眼状態で前記評価対
象居室内に導き、前記連続的な測定を開始し、測定値の
安定を確認した後に開眼させ、さらに所定時間の測定を
継続することを特徴とする請求項1又は請求項2に記載
の居室環境評価方法。
4. The method according to claim 1, wherein the subject is guided into the living room to be evaluated in a closed eye state, the continuous measurement is started, the eye is opened after confirming the stability of the measured value, and the measurement is continued for a predetermined time. The living room environment evaluation method according to claim 1 or 2, wherein:
【請求項5】 前記中枢神経活動指標は、脳組織内の
血液中ヘモグロビン濃度変化であり、波長が700nm
から1500nm程度の近赤外光を脳内に照射し、通過
した光を検出し、ヘモグロビンの吸光特性に基づいた吸
光度の変化から前記ヘモグロビン濃度変化を推定するも
のであることを特徴とする請求項1から請求項4までの
いずれかに記載の居室環境評価方法。
5. The central nervous activity index is a change in hemoglobin concentration in blood in brain tissue, and has a wavelength of 700 nm.
And irradiating the brain with near-infrared light having a wavelength of about 1500 nm, detecting the transmitted light, and estimating the change in hemoglobin concentration from a change in absorbance based on the light absorption characteristics of hemoglobin. The living room environment evaluation method according to any one of claims 1 to 4.
JP2000378517A 2000-12-13 2000-12-13 Habitable room environment assessment method Pending JP2002177248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000378517A JP2002177248A (en) 2000-12-13 2000-12-13 Habitable room environment assessment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000378517A JP2002177248A (en) 2000-12-13 2000-12-13 Habitable room environment assessment method

Publications (1)

Publication Number Publication Date
JP2002177248A true JP2002177248A (en) 2002-06-25

Family

ID=18847073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378517A Pending JP2002177248A (en) 2000-12-13 2000-12-13 Habitable room environment assessment method

Country Status (1)

Country Link
JP (1) JP2002177248A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506491A (en) * 2004-07-21 2008-03-06 インペリアル イノヴェーションズ リミテッド Apparatus and method for programming a pacemaker
JP2010057718A (en) * 2008-09-04 2010-03-18 Hitachi Ltd Bioluminescence measuring instrument with evaluation function
WO2010014467A3 (en) * 2008-07-29 2010-05-20 Baruch Robert A Cerebral vascular reactivity monitoring
JP2014062720A (en) * 2012-09-24 2014-04-10 Saitama Univ Amenity sensor and air conditioner using the same
JP2020091591A (en) * 2018-12-04 2020-06-11 東日本旅客鉄道株式会社 Indoor space design evaluation system and indoor space design evaluation method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506491A (en) * 2004-07-21 2008-03-06 インペリアル イノヴェーションズ リミテッド Apparatus and method for programming a pacemaker
US8688215B2 (en) 2004-07-21 2014-04-01 Imperial Innovations Limited Apparatus and method for programming a pacemaker
WO2010014467A3 (en) * 2008-07-29 2010-05-20 Baruch Robert A Cerebral vascular reactivity monitoring
US7744541B2 (en) 2008-07-29 2010-06-29 Raba Equity Partners Ii, Llc Cerebral vascular reactivity monitoring
US8088074B2 (en) 2008-07-29 2012-01-03 Raba Equity Partners Ii, Llc Cerebral vascular reactivity monitoring
JP2010057718A (en) * 2008-09-04 2010-03-18 Hitachi Ltd Bioluminescence measuring instrument with evaluation function
JP2014062720A (en) * 2012-09-24 2014-04-10 Saitama Univ Amenity sensor and air conditioner using the same
JP2020091591A (en) * 2018-12-04 2020-06-11 東日本旅客鉄道株式会社 Indoor space design evaluation system and indoor space design evaluation method
JP7250262B2 (en) 2018-12-04 2023-04-03 東日本旅客鉄道株式会社 INDOOR SPACE DESIGN EVALUATION SYSTEM AND INDOOR SPACE DESIGN EVALUATION METHOD

Similar Documents

Publication Publication Date Title
Khandelwal et al. Control of anxiety in pediatric patients using “Tell Show Do” method and audiovisual distraction
US20210186371A1 (en) Method and apparatus for assessing respiratory distress
Pennebaker et al. Blood pressure estimation and beliefs among normotensives and hypertensives.
Sakuragawa et al. Influence of wood wall panels on physiological and psychological responses
EP3551061B1 (en) System for monitoring patients suffering from respiratory disease comprising a portable medical device
EP3073901A1 (en) Sleep monitoring device
Aartman et al. Appraisal of behavioral measurement techniques for assessing dental anxiety and fear in children: A review
EP2729052A1 (en) Systems, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
DE112013005657T5 (en) Oximetry sensor assembly and procedure for sampling a blood oxygen concentration
Stoner et al. Effects of acute prolonged sitting on cerebral perfusion and executive function in young adults: A randomized cross‐over trial
Garde et al. Identifying individual sleep apnea/hypoapnea epochs using smartphone-based pulse oximetry
US20190209045A1 (en) A sensor system and method for determining a breathing type
Francis et al. Listener characteristics differentially affect self-reported and physiological measures of effort associated with two challenging listening conditions
US20160262691A1 (en) Method and system for pain monitoring and management in pediatric patients
Bellissimo et al. The effects of fast and slow yoga breathing on cerebral and central hemodynamics
Crockett et al. Breathing characteristics and symptoms of psychological distress: An exploratory study
JP2002177282A (en) Evaluation method for external stimulus working on human body
JP2002177248A (en) Habitable room environment assessment method
Hilmert et al. The varied impact of social support on cardiovascular reactivity
JP7361784B2 (en) Behavioral task evaluation system and behavioral task evaluation method
Miller et al. NIRS-based cerebrovascular regulation assessment: exercise and cerebrovascular reactivity
Feldner et al. Posttraumatic stress disorder and anxious and fearful reactivity to bodily arousal: a test of the mediating role of nicotine withdrawal severity among daily smokers in 12-hr nicotine deprivation.
Foster et al. Physiologic correlates of comfort in healthy children
Yu et al. Design and evaluation of an ambient lighting interface of HRV biofeedback system in home setting
WO2007013326A1 (en) Living body state judgment device and stimulus intensity judgment device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511