JP2002176770A - Switching power source - Google Patents

Switching power source

Info

Publication number
JP2002176770A
JP2002176770A JP2000373684A JP2000373684A JP2002176770A JP 2002176770 A JP2002176770 A JP 2002176770A JP 2000373684 A JP2000373684 A JP 2000373684A JP 2000373684 A JP2000373684 A JP 2000373684A JP 2002176770 A JP2002176770 A JP 2002176770A
Authority
JP
Japan
Prior art keywords
switching power
power supply
output voltage
error amplifier
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000373684A
Other languages
Japanese (ja)
Other versions
JP3779542B2 (en
Inventor
Masaki Oshima
正樹 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2000373684A priority Critical patent/JP3779542B2/en
Publication of JP2002176770A publication Critical patent/JP2002176770A/en
Application granted granted Critical
Publication of JP3779542B2 publication Critical patent/JP3779542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control circuit capable of attaining high-speed response to the output voltage and stabilization according to a remote sense method, especially when a load changes. SOLUTION: This switching power source includes a first error amplifier for compensating for a phase, and a second error amplifier for detecting a sudden change in output voltage and conducting a high-speed response. The output voltage detecting position of the second error amplifier is disposed on a load side more than that of the first error amplifier. A resistor or an impedance component which has a value higher than or equal to a fixed value is inserted in between the output voltage detecting positions of the first error amplifier and the second error amplifier. It is thus possible to obtain the switching power supply having a remote sense function which is stable and excellent and capable of eliminating a phase delay in a control loop centered on an amplifier in which the output voltage provides error signals during a steady state for the sudden change in the load.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明はスイッチング電源に関
し、特に負荷が変動した時にリモートセンス方式により
出力電圧の高速応答化と安定化を図った制御回路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a switching power supply, and more particularly, to a control circuit which achieves high-speed response and stabilization of an output voltage by a remote sensing method when a load changes.

【0002】[0002]

【従来の技術】従来スイッチング電源の負荷変動による
出力電圧の変動を安定化する手段として、位相補償され
た誤差増幅器と高速応答用誤差増幅器の2種類の誤差増
幅器を並列動作する方式が提案されているが、この方式
でリモートセンスを行うと、定常時の誤差信号を提供す
る増幅器を中心とした制御ループの位相が遅れ、不安定
な動作となると言う問題が有った。
2. Description of the Related Art Conventionally, as a means for stabilizing fluctuations in output voltage due to fluctuations in the load of a switching power supply, a method has been proposed in which two types of error amplifiers, a phase-compensated error amplifier and a high-speed response error amplifier, are operated in parallel. However, when remote sensing is performed by this method, there is a problem that the phase of a control loop centered on an amplifier that provides an error signal in a steady state is delayed, resulting in unstable operation.

【0003】図6は従来方式のスイッチング電源回路
で、位相補償された誤差増幅器20と高速応答用誤差増
幅器25の2種類の誤差増幅器を並列に接続し、その出
力と同期信号の差を誤差増幅器13により比較してパル
ス幅を制御している。図8は図6の回路でリモートセン
スを行った例である。
FIG. 6 shows a conventional switching power supply circuit in which two types of error amplifiers, a phase-compensated error amplifier 20 and a high-speed response error amplifier 25, are connected in parallel, and the difference between the output and the synchronization signal is determined by the error amplifier. 13, the pulse width is controlled by comparison. FIG. 8 shows an example in which remote sensing is performed by the circuit of FIG.

【0004】図8における負荷12は図9に示すように
配線抵抗33及び38、配線インダクタンス34及び3
9、バイパスコンデンサ35等の寄生成分を含んでお
り、出力端子より負荷側には遅れ要素からなる回路が形
成されている。従って負荷の変動により電圧の変動が発
生した場合にこれをリモートセンス方式で安定化するた
めに高速で応答できない状況にある。
As shown in FIG. 9, a load 12 shown in FIG. 8 has wiring resistances 33 and 38 and wiring inductances 34 and 3.
9, a circuit including a delay element is formed on the load side from the output terminal, including a parasitic component such as the bypass capacitor 35. Therefore, when a voltage fluctuation occurs due to a load fluctuation, it cannot be responded at a high speed because the voltage fluctuation is stabilized by the remote sensing method.

【0005】また図8の従来方式のスイッチング電源回
路では遅れ成分の影響によりスイッチング電源の制御ル
ープの位相余裕が低下し、スイッチング電源の不安定性
を引き起こす問題があり、低コストで解決できる制御方
式が望まれている。
In the conventional switching power supply circuit shown in FIG. 8, there is a problem that the phase margin of the control loop of the switching power supply is reduced due to the influence of the delay component and the switching power supply becomes unstable. Is desired.

【0006】[0006]

【本発明が解決しようとする課題】本発明は上記従来技
術の問題点を鑑みてなされたもので、その目的はリモー
トセンス方式において配線抵抗、配線インダクタンス、
バイパスコンデンサ等による遅れ成分の影響を排除し、
スイッチング電源の不安定性を改善し、低コストで解決
できる方法が提供できる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object the wiring resistance, wiring inductance,
Eliminates the effects of delay components due to bypass capacitors, etc.
It is possible to provide a method capable of improving the instability of the switching power supply and solving the problem at a low cost.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
になされた請求項記載の発明は、PWM制御されている
スイッチング素子と、出力電圧に相当する第1の検出信
号と第1の基準電圧を比較して第1のレベルの誤差信号
を出力する第1の誤差増幅器と、出力電圧に相当する第
2の検出信号と第2の基準電圧を比較して第2のレベル
の誤差信号を出力する第2の誤差増幅器とから成るスイ
ッチング電源を構成する。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the invention according to the present invention is directed to a switching element under PWM control, a first detection signal corresponding to an output voltage, and a first reference voltage. And outputs a first level error signal, and outputs a second level error signal by comparing a second detection signal corresponding to an output voltage with a second reference voltage. And a second power amplifier.

【0008】第1の誤差増幅器の検出信号用端子と出力
端子の間に位相補償用の容量素子が接続され、第1レベ
ルの誤差信号または第2レベルの誤差信号を用いてPW
M制御し、且つ第2の検出信号を採取する位置が第1の
検出信号を採取する位置より出力端子側であり、且つ第
1の検出信号を採取する位置と第2の検出信号を採取す
る位置の間に抵抗成分が挿入されている。
A phase compensating capacitive element is connected between a detection signal terminal and an output terminal of the first error amplifier, and a PW signal is output using a first level error signal or a second level error signal.
The position where the M control is performed and the second detection signal is collected is closer to the output terminal than the position where the first detection signal is collected, and the position where the first detection signal is collected and the second detection signal are collected. A resistance component is inserted between the positions.

【0009】抵抗成分が導体抵抗であることは位相のず
れをもたずに、かつ電圧変動が生じた場合に余分な電圧
を発生することなく、電圧変動をこの抵抗の入力側と出
力側で検出するために、第1の誤差増幅器における余分
な電圧の影響を抑えることが可能で余分な遅れをなくす
ことために有効である。また電源の基板の配線抵抗であ
る導体抵抗を用いる事は、前記の効果を安価に高効率に
実現する。
[0009] The fact that the resistance component is a conductor resistance means that the voltage fluctuation is applied to the input side and the output side of the resistor without a phase shift and without generating an extra voltage when the voltage fluctuation occurs. For the detection, the influence of the extra voltage in the first error amplifier can be suppressed, which is effective for eliminating extra delay. The use of the conductor resistance, which is the wiring resistance of the substrate of the power supply, realizes the above-described effects at low cost and with high efficiency.

【0010】第2の検出信号を採取する位置と第2の基
準電圧のグランド電位がリモートセンスの形でスイッチ
ング電源の負荷側に配線されるので、第2の検出信号を
採取する位置の電圧により充電され、出力電圧の変化す
る前の電圧を保持する為、感度良く負荷変動を検出する
のに有効である。
[0010] Since the second detection signal sampling position and the ground potential of the second reference voltage are wired to the load side of the switching power supply in the form of remote sensing, the voltage at the second detection signal sampling position is determined by the voltage at the second detection signal sampling position. Since the battery is charged and the voltage before the output voltage is changed is held, it is effective to detect a load change with high sensitivity.

【0011】第2の基準電圧を得るための基準電圧源が
第2検出信号を採取する位置の出力電圧により充電され
ることにより所定の電圧が得られ且出力電圧が変化する
前の電圧をある期間だけ保持する時定数回路を有するこ
とは、負荷変動に対し高感度な誤差信号を提供すること
ができるので有効である。
A reference voltage source for obtaining the second reference voltage is charged with the output voltage at the position where the second detection signal is sampled, so that a predetermined voltage is obtained and the voltage before the output voltage changes is a certain voltage. Providing a time constant circuit for holding only for a period is effective because an error signal with high sensitivity to a load change can be provided.

【0012】第2の基準電圧を得るための基準電圧源と
して、第2の誤差増幅器が2個の比較器、又は2個の高
利得の誤差増幅器にすると、負荷変動に対して高速な誤
差信号を安定して提供することができるので有効であ
る。
When the second error amplifier is composed of two comparators or two high-gain error amplifiers as a reference voltage source for obtaining the second reference voltage, an error signal which is fast with respect to a load change is provided. Is effective because it can be provided stably.

【0013】[0013]

【発明の実施の形態】図1は本発明の第1の実施例であ
ってスイッチング電源のブロック回路図を示している
が、従来のスイッチング電源と異なる点は、高速応答用
の第2の誤差増幅器は出力電圧検出点のプラス側が抵抗
成分10を挿入して、位相補償された第1の誤差増幅器
の出力電圧検出点より負荷側に有る点である。
FIG. 1 is a block diagram of a switching power supply according to a first embodiment of the present invention. The difference from the conventional switching power supply is that a second error for a high-speed response is provided. The amplifier is such that the plus side of the output voltage detection point is on the load side with respect to the output voltage detection point of the phase error compensated first error amplifier with the resistance component 10 inserted.

【0014】図2は、図1の回路の負荷急変時における
動作波形である。図2(a)は負荷電流がt=0からt
1の期間で定格出力から1/3の出力電流に変動した場
合を示す。図2(b)の波形は、基板の導体抵抗成分r
1の電位降下−r1×Ioをコンデンサ9のプラス端子
を基準に見たものである。図2(c)の波形は、コンデ
ンサ9の電圧Vcの波形である。図2(d)の波形は、
出力端子電圧Voで、−r1×IoとVcの和の波形とな
る。
FIG. 2 shows operation waveforms of the circuit shown in FIG. 1 when the load changes suddenly. FIG. 2A shows that the load current is changed from t = 0 to t.
The case where the output current fluctuated from the rated output to 1/3 in the period of 1 is shown. The waveform of FIG. 2B shows the conductor resistance component r of the substrate.
The potential drop of 1−r1 × Io is viewed with reference to the plus terminal of the capacitor 9. 2C is a waveform of the voltage Vc of the capacitor 9. The waveform in FIG.
At the output terminal voltage Vo, the waveform becomes the sum of -r1 × Io and Vc.

【0015】これに対し図6の様な従来の回路における
動作波形は図7の様になる。図7では、コンデンサ電圧
Vcが出力端子間電圧Voに等しい。即ち高速応答用の
増幅器25を用いて、同一の設定値Vo+thで出力電圧
変動を検出する場合、図2の方が電位降下−r1×Io
の分だけコンデンサ電圧Vcの電圧変動が小さくて済
む。その分、負荷変動によるコンデンサ電圧Vcの電圧
変動を改善する事になる。
On the other hand, the operation waveform of the conventional circuit as shown in FIG. 6 is as shown in FIG. In FIG. 7, the capacitor voltage Vc is equal to the output terminal voltage Vo. That is, when the output voltage fluctuation is detected at the same set value Vo + th using the amplifier 25 for high-speed response, the potential drop in FIG. 2 is −r1 × Io.
, The voltage fluctuation of the capacitor voltage Vc can be reduced. Accordingly, the voltage fluctuation of the capacitor voltage Vc due to the load fluctuation is improved.

【0016】この新たに挿入される抵抗成分に因る電圧
変化は負荷変動に対して通常10%以上有れば効果的に
検出可能となる。例えば出力5Vの電源では、静的出力
電流の変動分ΔIoが5Aと10Aとの間では静的出力
電圧の変化分ΔVoは例えば10mV以下の場合が多
い。この場合の抵抗成分r1は、 r1 =(ΔVo/ΔIo)×0.1 ={10[mV]/(10−5)[A]}×0.1= 0.2 [mΩ] ...(1 ) となり0.2[mΩ]以上あれば検出動作に効果的な作用をす
る。
The change in voltage due to the newly inserted resistance component can be effectively detected if the change in load is usually 10% or more. For example, in a power supply with an output of 5 V, the variation ΔVo of the static output voltage is often, for example, 10 mV or less when the variation ΔIo of the static output current is between 5 A and 10 A. The resistance component r1 in this case is: r1 = (ΔVo / ΔIo) × 0.1 = {10 [mV] / (10−5) [A]} × 0.1 = 0.2 [mΩ]. . . (1) It becomes effective if it is 0.2 [mΩ] or more, in the detection operation.

【0017】図3は、本発明の第2の実施例によるスイ
ッチング電源のブロック図であって、図1と異なる点
は、高速応答用の誤差増幅器25は出力電圧検出点のマ
イナス側も抵抗成分30が挿入され、位相補償された第
1の誤差増幅器の出力電圧検出点より負荷側に有る点で
ある。
FIG. 3 is a block diagram of a switching power supply according to a second embodiment of the present invention. The difference from FIG. 1 is that the error amplifier 25 for high-speed response has a resistance component on the minus side of the output voltage detection point. 30 is inserted and located on the load side from the output voltage detection point of the phase-compensated first error amplifier.

【0018】また高速応答用の誤差増幅器25の基準電
圧を抵抗26とコンデンサ27を使って出力電圧から作
っている点も図1と異なる。これによりコンデンサ27
の両端に、抵抗26とコンデンサ27の時定数からなる
タイマー特性を有する出力電圧が基準電圧として保持さ
れる。
The difference from FIG. 1 is that the reference voltage of the error amplifier 25 for high-speed response is generated from the output voltage by using the resistor 26 and the capacitor 27. Thereby, the capacitor 27
An output voltage having a timer characteristic composed of a time constant of the resistor 26 and the capacitor 27 is held as a reference voltage at both ends of the output voltage.

【0019】図4は、本発明の第3の実施例によるスイ
ッチング電源のブロック図であって、図3と異なる点
は、高速応答用の誤差増幅器25の出力電圧検出点が、
リモートセンスの形で、寄生素子を含まない負荷回路3
6の近傍に有る点である。図4では、負荷の基板の配線
の寄生抵抗成分33、38が挿入抵抗値r1に相当す
る。抵抗値r1に因る電位降下の分だけ、高速応答用の
誤差増幅器25の出力電圧検出感度を向上させている。
図4では寄生インダクタ34、39も交流的には抵抗成
分r1と同様に電流を制限する方向に作用するので、誤
差増幅器25の感度向上と、電源の制御ループでの位相
遅れの改善に有効である。
FIG. 4 is a block diagram of a switching power supply according to a third embodiment of the present invention. The difference from FIG. 3 is that the output voltage detection point of the error amplifier 25 for high-speed response is
Load circuit 3 without parasitic elements in the form of remote sensing
6 is in the vicinity. In FIG. 4, the parasitic resistance components 33 and 38 of the wiring of the load substrate correspond to the insertion resistance value r1. The output voltage detection sensitivity of the error amplifier 25 for high-speed response is improved by the potential drop caused by the resistance value r1.
In FIG. 4, the parasitic inductors 34 and 39 also act in the direction of limiting the current in the same manner as the resistance component r1, so that they are effective for improving the sensitivity of the error amplifier 25 and improving the phase delay in the control loop of the power supply. is there.

【0020】図4において、位相補償された誤差増幅器
20は出力コンデンサ9の電圧で応答するので、定常動
作時は、配線抵抗33、38、配線インダクタンス3
4、39、バイパスコンデンサ35等の寄生要素による
遅れの影響を制御ループは受けない。負荷急変時には、
高速応答用の誤差増幅器25がリモートセンスの形で負
荷変動を効率的に検出しスイッチング電源を高速応答さ
せる。
In FIG. 4, the phase-compensated error amplifier 20 responds with the voltage of the output capacitor 9, so that during normal operation, the wiring resistances 33 and 38 and the wiring inductance 3
The control loop is not affected by delays caused by parasitic elements such as 4, 39 and the bypass capacitor 35. When the load suddenly changes,
An error amplifier 25 for high-speed response efficiently detects a load change in the form of remote sensing, and makes a switching power supply respond quickly.

【0021】図5は、本発明の第4の実施例によるスイ
ッチング電源のブロック図であって、図4と異なる点
は、高速応答用の誤差増幅器25が、過電圧検出用の比
較器42と低電圧検出用の比較器45、から成っている
点である。その為、基準電圧43は基準電圧21より例
えば3%大きい値で、基準電圧46は基準電圧21より
例えば3%小さい値である。但しリモートセンス方式な
ので、出力電流 Ioと配線抵抗33,38に因る抵抗値
r1に因るドロップ分( Io×r1)に相当する分だ
け、基準電圧43、46は基準電圧21より高めに設定
される必要がある。
FIG. 5 is a block diagram of a switching power supply according to a fourth embodiment of the present invention. The difference from FIG. 4 is that the error amplifier 25 for high-speed response is connected to the comparator 42 for overvoltage detection and the low-voltage comparator 42. And a comparator 45 for voltage detection. Therefore, the reference voltage 43 is, for example, 3% higher than the reference voltage 21, and the reference voltage 46 is, for example, 3% lower than the reference voltage 21. However, because of the remote sensing method, the reference voltages 43 and 46 are set higher than the reference voltage 21 by the amount corresponding to the output current Io and the drop (Io × r1) caused by the resistance r1 caused by the wiring resistances 33 and 38. Need to be done.

【0022】[0022]

【発明の効果】本発明によれば、位相補償が行われる第
1の誤差増幅器と出力電圧の急変を検出し高速応答する
第2の誤差増幅器を設け、且つ第1の誤差増幅器の出力
電圧検出位置より第2の誤差増幅器の出力電圧検出位置
を負荷側に配置し、且つ一定値以上の抵抗成分を第1の
誤差増幅器の出力電圧検出位置と第2の誤差増幅器の出
力電圧検出位置との間に挿入する事により、出力電圧が
負荷急変にも安定で、良好なリモートセンス機能を有す
るスイッチング電源を安価に提供する事ができる。
According to the present invention, a first error amplifier for performing phase compensation and a second error amplifier for detecting a sudden change in the output voltage and responding at a high speed are provided, and the output voltage of the first error amplifier is detected. The output voltage detection position of the second error amplifier is arranged on the load side from the position, and the resistance component having a certain value or more is set between the output voltage detection position of the first error amplifier and the output voltage detection position of the second error amplifier. By inserting the switching power supply between them, it is possible to provide an inexpensive switching power supply that has a stable output voltage even when the load suddenly changes and has a good remote sensing function.

【0023】[0023]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるスイッチング電源である第1の実
施例の回路図
FIG. 1 is a circuit diagram of a first embodiment which is a switching power supply according to the present invention.

【図2】図1の回路における動作波形図FIG. 2 is an operation waveform diagram in the circuit of FIG. 1;

【図3】本発明によるスイッチング電源である第2の実
施例の回路図
FIG. 3 is a circuit diagram of a switching power supply according to a second embodiment of the present invention;

【図4】本発明によるスイッチング電源である第3の実
施例の回路図
FIG. 4 is a circuit diagram of a switching power supply according to a third embodiment of the present invention;

【図5】本発明によるスイッチング電源である第4の実
施例の回路図
FIG. 5 is a circuit diagram of a switching power supply according to a fourth embodiment of the present invention.

【図6】従来のスイッチング電源である第1の回路例FIG. 6 is a first circuit example which is a conventional switching power supply.

【図7】図6の回路における動作波形図FIG. 7 is an operation waveform diagram in the circuit of FIG. 6;

【図8】従来のスイッチング電源である第2の回路例FIG. 8 shows a second example of a circuit which is a conventional switching power supply.

【図9】リモートセンスを行った場合の電源と負荷回路FIG. 9 shows a power supply and a load circuit when remote sensing is performed.

【符号の説明】[Explanation of symbols]

1.入力電源 2.入力端子 3.入力コンデンサ 4.主スイッチ 5.主トランス 6.2次側整流ダイオード 7.2次側フライホイールダイオード 8.出力チョーク 9.出力コンデンサ 10.30.電源の基板の導体抵抗成分 11.出力端子 12.負荷回路 13.比較器 14.19.24.27.コンデンサ 15.定電流供給回路 16.定電流放電回路 18.フォトカプラ 17.22.23.26.40.抵抗素子 20.第1の増幅器(定常動作時用) 21.32.43.46.基準電圧源 25.第2の増幅器(負荷急変動作時用) 28.1次側制御回路;(グランド電位はコンデンサ3
の−端子に同じ。) 29.2次側制御回路;(グランド電位はコンデンサ9
の−端子に同じ。) 31.リモートセンス用端子 33.38.配線の導体抵抗成分 34.39.配線の寄生インダクタンス成分 35.負荷用バイパスコンデンサ 36.負荷回路;(寄生素子を含まない) 41.44.デカップリング用ダイオード 42.45.比較器
1. Input power supply 2. Input terminal 3. Input capacitor 4. Main switch 5. Main transformer 6. Secondary side rectifier diode 7. Secondary side flywheel diode 8. Output choke 9. Output capacitor 10.30. 10. Conductor resistance component of power supply board Output terminal 12. Load circuit 13. Comparator 14.19.24.27. Capacitor 15. Constant current supply circuit 16. Constant current discharge circuit 18. Photo coupler 17.22.23.26.40. Resistance element 20. First amplifier (for normal operation) 21.2.43.4.46. Reference voltage source 25. Second amplifier (for sudden load change operation) 28. Primary side control circuit;
Same as-terminal. 29. Secondary-side control circuit; (ground potential is capacitor 9)
Same as-terminal. ) 31. Terminal for remote sensing 33.38. Conductor resistance component of wiring 34.39. Parasitic inductance component of wiring 35. Load bypass capacitor 36. Load circuit; (not including parasitic element) 41.44. Decoupling diode 42.45. Comparator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】PWM制御されているスイッチング素子
と、出力電圧に相当する第1の検出信号と第1の基準電
圧を比較して第1のレベルの誤差信号を出力する第1の
誤差増幅器と、出力電圧に相当する第2の検出信号と第
2の基準電圧を比較して第2のレベルの誤差信号を出力
する第2の誤差増幅器とから成るスイッチング電源にお
いて、第1の誤差増幅器の検出信号用端子と出力端子の
間に位相補償用の容量素子が接続され、第1のレベルの
誤差信号または第2のレベルの誤差信号を用いてPWM
制御し、且つ第2の検出信号を採取する位置が第1の検
出信号を採取する位置より出力端子側であり、且つ第1
の検出信号を採取する位置と第2の検出信号を採取する
位置の間に抵抗成分またはインダクタンス成分が挿入さ
れた事を特徴とするスイッチング電源。
1. A switching element under PWM control, a first error amplifier for comparing a first detection signal corresponding to an output voltage with a first reference voltage and outputting an error signal of a first level. And a second error amplifier for comparing a second detection signal corresponding to the output voltage with a second reference voltage and outputting a second level error signal. A phase compensating capacitive element is connected between the signal terminal and the output terminal, and PWM is performed using the first level error signal or the second level error signal.
The position for controlling and sampling the second detection signal is closer to the output terminal than the position for sampling the first detection signal;
A switching power supply characterized in that a resistance component or an inductance component is inserted between a position where the detection signal is sampled and a position where the second detection signal is sampled.
【請求項2】請求項1に記載のスイッチング電源におい
て、抵抗成分が導体抵抗から成る事を特徴とするスイッ
チング電源。
2. The switching power supply according to claim 1, wherein the resistance component comprises a conductor resistance.
【請求項3】請求項1および請求項2に記載のスイッチ
ング電源において、インダクタンス成分が導体の寄生イ
ンダクタンスから成る事を特徴とするスイッチング電
源。
3. The switching power supply according to claim 1, wherein the inductance component comprises a parasitic inductance of a conductor.
【請求項4】請求項1〜3に記載のスイッチング電源に
おいて、第2の検出信号を採取する位置と第2の基準電
圧のグランド電位がリモートセンスの形で前記スイッチ
ング電源の負荷側に配線された事を特徴とするスイッチ
ング電源。
4. The switching power supply according to claim 1, wherein a position at which the second detection signal is sampled and a ground potential of the second reference voltage are wired to the load side of the switching power supply in the form of remote sensing. Switching power supply characterized by the following.
【請求項5】請求項1〜4に記載のスイッチング電源に
おいて、第2の基準電圧を得る為の基準電圧源が、第2
の検出信号を採取する位置の出力電圧により充電される
事により所定の電圧が得られ、且つ出力電圧が変化した
時、出力電圧が変化する前の電圧を一定期間だけ保持す
る時定数回路を有する事を特徴とするスイッチング電
源。
5. The switching power supply according to claim 1, wherein the reference voltage source for obtaining the second reference voltage is a second reference voltage.
A predetermined constant voltage is obtained by being charged by the output voltage at the position where the detection signal is sampled, and a time constant circuit that holds the voltage before the output voltage changes for a certain period when the output voltage changes is provided. Switching power supply characterized by things.
【請求項6】請求項1〜5に記載のスイッチング電源に
おいて、第2の誤差増幅器が2個の比較器、又は2個の
高利得の誤差増幅器から成る事を特徴とするスイッチン
グ電源。
6. The switching power supply according to claim 1, wherein the second error amplifier comprises two comparators or two high gain error amplifiers.
JP2000373684A 2000-12-08 2000-12-08 Switching power supply Expired - Fee Related JP3779542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000373684A JP3779542B2 (en) 2000-12-08 2000-12-08 Switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000373684A JP3779542B2 (en) 2000-12-08 2000-12-08 Switching power supply

Publications (2)

Publication Number Publication Date
JP2002176770A true JP2002176770A (en) 2002-06-21
JP3779542B2 JP3779542B2 (en) 2006-05-31

Family

ID=18843008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000373684A Expired - Fee Related JP3779542B2 (en) 2000-12-08 2000-12-08 Switching power supply

Country Status (1)

Country Link
JP (1) JP3779542B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107963A1 (en) * 2006-03-23 2007-09-27 Nxp B.V. Converter with parallel coupled differential input pairs
WO2021187053A1 (en) * 2020-03-17 2021-09-23 ローム株式会社 Output feedback control circuit and switching power supply

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107963A1 (en) * 2006-03-23 2007-09-27 Nxp B.V. Converter with parallel coupled differential input pairs
JP2009531013A (en) * 2006-03-23 2009-08-27 エヌエックスピー ビー ヴィ Converter with differential input pairs coupled in parallel
US7990222B2 (en) 2006-03-23 2011-08-02 St-Ericsson Sa Converter with parallel coupled differential input pairs
JP4822145B2 (en) * 2006-03-23 2011-11-24 エスティー‐エリクソン、ソシエテ、アノニム Regulator and device
WO2021187053A1 (en) * 2020-03-17 2021-09-23 ローム株式会社 Output feedback control circuit and switching power supply

Also Published As

Publication number Publication date
JP3779542B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
US7417413B2 (en) Ripple converter
JP3198944B2 (en) Switching power supply
JP4493045B2 (en) Switching regulator circuit
US6127814A (en) System to protect switch mode DC/DC converters against overload current
KR101584169B1 (en) A switching regulator and a method for regulating a voltage using the same
US9837905B2 (en) Switching power supply circuit having a switching element and a free-wheeling element and adapted to turn on or off at least the switching element
US20070075695A1 (en) High switching frequency DC-DC converter with fast response time
KR101278951B1 (en) Mixed type frequency compensating circuit, control circuit, dc-dc converter and method of controlling the same
US9568376B2 (en) Temperature detecting circuit and method thereof
US6683798B2 (en) Switching power supply with transfer function control circuit
JP2007089278A (en) Dc-dc converter
US9729073B1 (en) Power conversion apparatus
CN115940944A (en) Current signal sampling method, sampling circuit and switching power supply
US20050254184A1 (en) Current mode step-down switching regulator
US20100164453A1 (en) Current mode dc-dc converter
JP2002051540A (en) Non-insulating step-down dc-dc converter
CN101106325A (en) Switching regulator
JP2002176770A (en) Switching power source
JP2010220454A (en) Dc-dc converter and semiconductor integrated circuit for control
JP2019022295A (en) Switching regulator
TWI574495B (en) Power conversion apparatus
JP4977829B2 (en) High precision level improved window comparator for DC-DC converter
CN113489341B (en) Control circuit of switching power supply and control method thereof
JP3312763B2 (en) Voltage applied current measurement circuit
JP2015139307A (en) Dc/dc converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees