JP2002175776A - Electrode for cold cathode discharge tube and manufacturing method of the same - Google Patents

Electrode for cold cathode discharge tube and manufacturing method of the same

Info

Publication number
JP2002175776A
JP2002175776A JP2000372296A JP2000372296A JP2002175776A JP 2002175776 A JP2002175776 A JP 2002175776A JP 2000372296 A JP2000372296 A JP 2000372296A JP 2000372296 A JP2000372296 A JP 2000372296A JP 2002175776 A JP2002175776 A JP 2002175776A
Authority
JP
Japan
Prior art keywords
electrode
discharge tube
cold cathode
cathode discharge
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000372296A
Other languages
Japanese (ja)
Other versions
JP3760094B2 (en
Inventor
Masayoshi Kujirai
正義 鯨井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2000372296A priority Critical patent/JP3760094B2/en
Publication of JP2002175776A publication Critical patent/JP2002175776A/en
Application granted granted Critical
Publication of JP3760094B2 publication Critical patent/JP3760094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Discharge Lamp (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve sputtering resistivity of an electrode for a cold cathode discharge tube. SOLUTION: By forming a discharging part 19 of the electrode for a cold cathode discharge tube with a metal selected from tungsten, niobium, titanium, tungsten alloy, niobium alloy, and titanium alloy, wherein little sputtering is caused, it is possible to obtain a long-life electrode enabling reduction of wear of the discharging part 19 caused while the cold cathode discharge tube is lighted and to form the discharging part 19 with a length shorter than conventional ones.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電極、特に耐スパ
ッタリング性を有する冷陰極放電管用電極及びその製法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode, particularly an electrode for a cold-cathode discharge tube having sputtering resistance and a method for producing the same.

【0002】[0002]

【従来の技術】希ガス及び水銀蒸気が充填されたガラス
管の内部に一対の電極が対向して配置され且つガラス管
の内壁に蛍光膜が被覆された冷陰極放電管は、従来から
液晶ディスプレイのバックライト用光源等として広く使
用されている。冷陰極放電管の一対の電極には導入線の
一端が接続され、導入線の他端はガラス管の両端から外
部に導出される。一対の電極間に電圧を印加すると、一
方の電極から電子が放出され、ガラス管内の水銀原子に
電子が衝突して紫外線を発生する。この紫外線は、ガラ
ス管の内壁に形成された蛍光膜で可視光線に波長変換さ
れる。
2. Description of the Related Art A cold-cathode discharge tube in which a pair of electrodes are opposed to each other inside a glass tube filled with a rare gas and mercury vapor and a fluorescent film is coated on the inner wall of the glass tube has been conventionally used in a liquid crystal display. Widely used as a light source for backlights. One end of an introduction wire is connected to a pair of electrodes of the cold cathode discharge tube, and the other end of the introduction wire is led out from both ends of the glass tube. When a voltage is applied between the pair of electrodes, electrons are emitted from one of the electrodes, and the electrons collide with mercury atoms in the glass tube to generate ultraviolet rays. This ultraviolet light is wavelength-converted to visible light by a fluorescent film formed on the inner wall of the glass tube.

【0003】特開昭60−100354号公報には、窒
素を含む不活性雰囲気中でタングステン棒を電極として
放電を行い、電極の放電側先端を球状化するタングステ
ン電極の加工方法が開示されている。この加工方法で
は、タングステン電極1mm2当たり7.5Aの電流を流し
て放電加工しても容易に放電側先端を球状化した電極を
得ることができる。
Japanese Unexamined Patent Publication No. Sho 60-100354 discloses a method of processing a tungsten electrode in which a tungsten rod is used as an electrode in an inert atmosphere containing nitrogen to make a discharge-side tip of the electrode spherical. . In this machining method, even when a current of 7.5 A per mm 2 of tungsten electrode is applied to perform electric discharge machining, an electrode having a spherical tip on the discharge side can be easily obtained.

【0004】特開平4−48546号公報は、タングス
テン又はタングステン合金製の棒状体が互いに照射角を
異にする複数方向から同時にレーザの照射を受け、先端
に主部より径の大きい球状の放電部を形成した放電灯用
電極を示す。タングステン又はタングステン合金製の棒
状体の先端部は、レーザの照射を受けて瞬時のうちに高
温溶融状態となると共に、表面張力により球状に形成さ
れる。互いに照射角を異にする複数方向からのレーザの
照射により棒状体のレーザ被照射部においてレーザから
のエネルギが分散されるので、球状部表面に形成される
非晶質層の厚さを球状部全体に均一化すると共に、球状
部の真円度を高める作用がある。
Japanese Patent Application Laid-Open No. 4-48546 discloses that a rod-shaped body made of tungsten or a tungsten alloy is simultaneously irradiated with laser beams from a plurality of directions having different irradiation angles, and a spherical discharge portion having a larger diameter than the main portion is provided at the tip. 1 shows an electrode for a discharge lamp in which is formed. The tip portion of the tungsten or tungsten alloy rod is instantaneously melted at a high temperature upon irradiation with the laser and is formed into a spherical shape by surface tension. Since the energy from the laser is dispersed in the laser-irradiated portion of the rod-shaped body by laser irradiation from a plurality of directions having different irradiation angles from each other, the thickness of the amorphous layer formed on the surface of the spherical portion is reduced. This has the effect of making the whole uniform and increasing the roundness of the spherical portion.

【0005】図6に示す従来の冷陰極放電管(40)は、内
部に放電用ガスが充填されたガラス管(7)と、ガラス管
(7)の両端に固定され電極組立体(20)と、ガラス管(7)の
内面(7a)に被覆され且つニッケル製の電極(3)間の放電
により発生する紫外線の照射を受けて可視光線を放出す
る蛍光膜(9)とを備える。電極組立体(20)は、図7(c)に
示すように、導入線(11)と、導入線(11)に固着されたカ
ップ形状の電極(3)とを備え、導入線(11)は、第1の導
入線構成部材(14)と第2の導入線構成部材(15)とを融着
して形成される。電極組立体(20)の導入線(11)は、導出
部(28)と、ガラス管(7)内に形成された埋設部(29)と、
導出部(28)と埋設部(29)とを接続する結合部(16)とを備
え、導入線(11)の導出部(28)は、ガラス管(7)外で外部
リード(8)に接続される。
A conventional cold cathode discharge tube (40) shown in FIG. 6 comprises a glass tube (7) having a discharge gas filled therein, and a glass tube (7).
It is fixed to both ends of (7) and is covered with the electrode assembly (20) and the inner surface (7a) of the glass tube (7). A fluorescent film (9) for emitting light. As shown in FIG. 7 (c), the electrode assembly (20) includes an introduction line (11) and a cup-shaped electrode (3) fixed to the introduction line (11). Is formed by fusing a first introduction line component (14) and a second introduction line component (15). The lead-in wire (11) of the electrode assembly (20) has a lead-out part (28), a buried part (29) formed in the glass tube (7),
A connecting part (16) for connecting the lead-out part (28) and the buried part (29) is provided, and the lead-out part (28) of the lead wire (11) is connected to the external lead (8) outside the glass tube (7). Connected.

【0006】冷陰極放電管(40)を製造する際に、最初
に、図7(a)に示すように、導入線(11)と、円筒状に形
成されたガラスビーズ(2)と、プレス加工の容易なニッ
ケル製の電極(3)とを用意する。導入線(11)は、半田付
け性に優れたニッケル製の第1の導入線構成部材(14)
と、ガラス融着性に優れたタングステン製の第2の導入
線構成部材(15)とを備え、実質的に等しい直径の第1及
び第2の導入線構成部材(14,15)は互いに融着される。
次に、図7(b)に示すように、導入線(11)の第2の導入
線構成部材(15)をガラスビーズ(2)の孔(2a)に差し込
み、突出部(11a)をガラスビーズ(2)から突出させた状態
で、ガラスビーズ(2)を第2の導入線構成部材(15)に融
着する。ガラスビーズ(2)の孔(2a)は、結合部(16)より
径が小さく且つ第2の導入線構成部材(15)より径が大き
く構成され、結合部(16)によってガラスビーズ(2)の融
着位置が設定される。その後、図7(c)に示すように、
突出部(11a)の先端(11b)を電極(3)の外側底面(3a)に溶
接することにより電極組立体(20)が形成され、円筒状の
ガラス管(7)の両端に電極組立体(20)を配置する。ガラ
ス管(7)内に希ガス及び水銀蒸気を含む放電用ガスを充
填した後、ガラスビーズ(2)をガラス管(7)に融着する
と、図7(d)に示すように、電極(3)及び埋設部(29)がガ
ラス管(7)内に封止され、結合部(16)及び導出部(28)が
ガラス管(7)外に導出された状態となる。導出部(28)
は、適当な長さにカットされた後に外部リード(8)が半
田付けされ、図6に示す冷陰極放電管(40)が形成され
る。
When manufacturing a cold cathode discharge tube (40), first, as shown in FIG. 7 (a), an introduction wire (11), a glass bead (2) formed into a cylindrical shape, and a press A nickel electrode (3) that is easy to process is prepared. The lead-in wire (11) is a first lead-wire component (14) made of nickel having excellent solderability.
And a second lead wire component (15) made of tungsten excellent in glass fusing property, and the first and second lead wire components (14, 15) having substantially the same diameter are fused with each other. Be worn.
Next, as shown in FIG. 7 (b), the second guide line component (15) of the guide line (11) is inserted into the hole (2a) of the glass bead (2), and the protrusion (11a) is inserted into the glass bead (2). While projecting from the beads (2), the glass beads (2) are fused to the second introduction line component (15). The hole (2a) of the glass bead (2) has a smaller diameter than the joint (16) and a larger diameter than the second introduction line component (15), and the glass bead (2) is formed by the joint (16). Is set. Then, as shown in FIG.
An electrode assembly (20) is formed by welding the tip (11b) of the projection (11a) to the outer bottom surface (3a) of the electrode (3), and the electrode assembly is provided at both ends of the cylindrical glass tube (7). Place (20). After filling the glass tube (7) with a discharge gas containing a rare gas and mercury vapor, the glass beads (2) were fused to the glass tube (7), and as shown in FIG. 3) and the buried portion (29) are sealed in the glass tube (7), and the connecting portion (16) and the lead-out portion (28) are led out of the glass tube (7). Derivation unit (28)
After being cut to an appropriate length, the external leads (8) are soldered to form a cold cathode discharge tube (40) shown in FIG.

【0007】従来の冷陰極放電管(40)は、丸棒により構
成される導入線(11)の先端に固定されたカップ形状の電
極(カップ電極)(3)を有するのに対し、カップ形状の
ない丸棒形状の電極(丸棒電極)が知られている。丸棒
電極は、安価に製造できる利点がある反面、カップ電極
のようにホロー効果が得られないため、低消費電力化、
低発熱化、長寿命化に問題がある。これに対し、カップ
電極では、ホロー効果により低消費電力化、低発熱化、
長寿命化が比較的良好に図れる反面、製造工程が煩雑で
あり、生産コストが高くなる欠点がある。従来のカップ
電極は、ニッケル製の丸棒断片をディスク状に延伸成形
した後、プレス加工によりカップ状に形成し、カップ部
の底部に丸軸の先端を溶接することによって形成され
る。このため、丸棒電極に比較して、製造工程は煩雑で
あり、生産コストも高くなる。また、丸棒部分に比較し
て相対的に幅広に形成されるカップ部は、放電管の細管
化の妨げとなる。更に、発光領域にならないカップ電極
は、放電管の長手方向に有効に発光領域を拡張する障害
となる欠点もある。
[0007] A conventional cold cathode discharge tube (40) has a cup-shaped electrode (cup electrode) (3) fixed to the end of an introduction wire (11) formed of a round bar. There is known a round bar-shaped electrode (round bar electrode). The round bar electrode has the advantage of being inexpensive to manufacture, but does not have the hollow effect unlike the cup electrode, thus reducing power consumption.
There is a problem in low heat generation and long life. On the other hand, in the cup electrode, low power consumption, low heat generation,
Although the service life can be extended relatively well, the manufacturing process is complicated and the production cost is high. The conventional cup electrode is formed by stretching a nickel round bar piece into a disk shape, forming the same into a cup shape by pressing, and welding the tip of a round shaft to the bottom of the cup portion. For this reason, the manufacturing process is complicated and the production cost is higher than the round bar electrode. Further, the cup portion formed relatively wider than the round bar portion hinders the narrowing of the discharge tube. Further, the cup electrode which does not become a light emitting region has a drawback that it becomes an obstacle to effectively extend the light emitting region in the longitudinal direction of the discharge tube.

【0008】[0008]

【発明が解決しようとする課題】冷陰極放電管(40)で
は、互いに押圧される状態で抵抗溶接により第1及び第
2の導入線構成部材(14, 15)を融着すると、図7(a)に
示すように、実質的に等しい直径を有する第1及び第2
の導入線構成部材(14, 15)間の結合部(16)に直径より大
きい溶融した金属のこぶが形成される。直径が約0.8m
mの第1及び第2の導入線構成部材(14, 15)の場合、図
7(a)に示す結合部(16)の長さ(L)は約0.6mmにもな
る。このため、外部リード(8)を導出部(28)に接続する
際、図7(d)に示すように、結合部(16)ではなく、ガラ
ス管(7)及び結合部(16)から離間した位置に外部リード
(8)を半田付けしなければならず、冷陰極放電管(40)の
小型化を図ることができない。結合部(16)が大きいと非
発光領域が増大して、発光効率が低下するので、結合部
(16)のこぶに外部リード(8)を半田付けして非発光領域
を減少することもできるが、ニッケルとタングステンと
の融合体でありしかも曲面し且つ不規則な形状の結合部
(16)は半田付け性も悪く、外部リード(8)を結合部(16)
に接着しても外力が加えられると、外部リード(8)が外
れ易い。従って、外部リード(8)と導出部(28)との接続
強度が十分に得られず接続不良の原因となる。
In the cold-cathode discharge tube (40), when the first and second lead wire constituting members (14, 15) are fused by resistance welding in a state where they are pressed against each other, FIG. As shown in a), a first and a second having substantially equal diameters
A bump of molten metal larger than the diameter is formed at the joint (16) between the introduction wire components (14, 15). The diameter is about 0.8m
In the case of the first and second introduction line components (14, 15) of m, the length (L) of the connecting portion (16) shown in FIG. 7A is about 0.6 mm. For this reason, when connecting the external lead (8) to the lead-out part (28), as shown in FIG. 7D, the external lead (8) is separated from the glass tube (7) and the connection part (16) instead of the connection part (16). External lead
(8) must be soldered, and the size of the cold cathode discharge tube (40) cannot be reduced. If the coupling portion (16) is large, the non-light-emitting region increases, and the luminous efficiency decreases.
(16) The non-light-emitting area can be reduced by soldering the external leads (8) to the bumps, but it is a fusion part of nickel and tungsten and has a curved and irregularly shaped joint.
(16) has poor solderability, and the external lead (8) is connected to the joint (16).
When an external force is applied even when the external lead (8) is adhered, the external lead (8) tends to come off. Therefore, sufficient connection strength between the external lead (8) and the lead-out section (28) cannot be obtained, which causes a connection failure.

【0009】ところで、冷陰極放電管(40)では、点灯中
に水銀又は放電用ガス(不活性ガス)のイオンが電極
(3)に衝突するスパッタリング作用が発生して、ガラス
管(7)内の電極(3)及び水銀が徐々に損耗する。一対の電
極(3)間の電流密度が小さいと、電極(3)のスパッタリン
グ量が減少するので、この場合は、放電管の内部圧力を
比較的低く設定して所望の寿命時間を維持できるが、必
要な輝度を確保することができない。電流密度を増大し
て輝度を上昇すると、電極(3)のスパッタリング量が増
加し、スパッタされる電極金属と紫外線を放出する水銀
とが反応して水銀が劣化するので、冷陰極放電管(40)の
寿命が短命化する難点がある。そこで、ガラス管(7)の
内部圧力を増加してスパッタリング量を抑制し、所望の
寿命を維持する必要がある。
In the cold-cathode discharge tube (40), ions of mercury or a discharge gas (inert gas) are turned on during discharge.
The sputtering action colliding with (3) occurs, and the electrode (3) and the mercury in the glass tube (7) are gradually worn. If the current density between the pair of electrodes (3) is small, the amount of sputtering of the electrodes (3) decreases.In this case, the desired life time can be maintained by setting the internal pressure of the discharge tube to be relatively low. , The required brightness cannot be secured. When the current density is increased to increase the brightness, the amount of sputtering of the electrode (3) increases, and the sputtered electrode metal reacts with mercury that emits ultraviolet rays to deteriorate the mercury. ) Has the drawback of shortening the service life. Therefore, it is necessary to increase the internal pressure of the glass tube (7) to suppress the amount of sputtering and maintain a desired life.

【0010】pを内部圧力、iを電流密度、A及びBを
定数とすると、10,000時間の最低寿命を放電管に
付与するときに一対のニッケル製の電極間に生ずる電流
密度とガラス管の内部圧力は、下式: p=Ai+B で表される一定の関数関係を満たす。従って、最低1
0,000時間の寿命を確保するには、前記関数で表わ
される直線の上側領域:p≧Ai+B内に該当する電流
密度と圧力で動作させる必要がある。換言すれば、前記
関数で表わされる実線の下側領域:p<Ai+B内に該
当する電流密度と圧力で、ニッケル製の電極を有する従
来の放電管を動作させると、10,000時間の寿命を
確保することができない。
When p is the internal pressure, i is the current density, and A and B are constants, the current density generated between a pair of nickel electrodes and the glass tube when a minimum life of 10,000 hours is given to the discharge tube. Satisfies a certain functional relationship represented by the following equation: p = Ai + B. Therefore, at least 1
In order to secure a life of 000 hours, it is necessary to operate at a current density and pressure corresponding to the upper region of the straight line represented by the above function: p ≧ Ai + B. In other words, when a conventional discharge tube having a nickel electrode is operated at a current density and pressure corresponding to a region below a solid line represented by the above function: p <Ai + B, a life of 10,000 hours is obtained. Can not secure.

【0011】また、電極の寸法を極力減少して放電管の
非発光領域を縮小する必要があるが、電極を小型化すれ
ば電流密度が増加するので、所望の寿命時間を確保する
には放電管内の圧力を増大しなければならない。放電管
内の圧力を増加すると、下記の問題が発生する。 [1] 管電圧が増大する、 [2] 放電管点燈開始時の電圧が増大する、 [3] 輝度が低下する、 等の種々の問題が生じる。従って、放電管内の圧力を増
加させずに電極を小型化できる放電管の実現が望まれて
いた。また、ガラス管(7)の内部圧力と電極(3)間の電流
密度とを一定の関係に維持して、所望の寿命時間を得な
ければならない。
Although it is necessary to reduce the dimensions of the electrodes as much as possible to reduce the non-light-emitting region of the discharge tube, the smaller the electrodes, the higher the current density. The pressure in the tube must be increased. When the pressure in the discharge tube is increased, the following problems occur. Various problems such as [1] an increase in the tube voltage, [2] an increase in the voltage at the start of lighting of the discharge tube, and [3] a decrease in luminance occur. Therefore, it has been desired to realize a discharge tube capable of downsizing electrodes without increasing the pressure in the discharge tube. Further, a desired life time must be obtained by maintaining a constant relationship between the internal pressure of the glass tube (7) and the current density between the electrodes (3).

【0012】[0012]

【発明が解決しようとする課題】そこで、本発明の目的
は、耐スパッタリング性のある冷陰極放電管用電極及び
その製法を提供することにある。また、本発明の目的
は、放電管を細管化し有効発光領域を増大化できる冷陰
極放電管用電極及びその製法を提供することにある。更
に、本発明の目的は、良好なホロー効果が得られ且つ短
縮された長さと縮径された直径を有する冷陰極放電管用
電極及びその製法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an electrode for a cold cathode discharge tube having a sputtering resistance and a method for producing the same. Another object of the present invention is to provide an electrode for a cold cathode discharge tube capable of increasing the effective light emitting area by making the discharge tube thinner, and a method for producing the same. Another object of the present invention is to provide an electrode for a cold cathode discharge tube having a good hollow effect, a reduced length and a reduced diameter, and a method for producing the same.

【0013】[0013]

【課題を解決するための手段】本発明による冷陰極放電
管用電極は、スパッタリング量の少ないタングステン、
ニオブ、チタン、タングステン合金、ニオブ合金及びチ
タン合金から選択された金属により放電部(19)を形成す
るので、冷陰極放電管の点灯中に放電部(19)の損耗量が
少ない。また、放電部(19)の先端に凹部(10)を形成する
と、電子を放出する放電部(19)の先端部の面積が増大し
て発光輝度を増大することができると共に、従来より短
い長さで放電部(19)を形成することができる。本発明の
実施の形態による冷陰極放電管用電極では、凹部(10)
は、内側に向かってテーパ状に縮径する傾斜面(10a)が
形成される。放電部(19)は、導出部(18)が接続され、導
出部(18)との結合部(16)まで全長さにわたり均一な直径
を有する。放電部(19)に導出部(18)を接続すれば、外部
リード(8)を導出部(18)に良好に接続することができ
る。
According to the present invention, there is provided an electrode for a cold cathode discharge tube, comprising:
Since the discharge part (19) is formed of a metal selected from niobium, titanium, a tungsten alloy, a niobium alloy and a titanium alloy, the amount of wear of the discharge part (19) during lighting of the cold cathode discharge tube is small. Further, when the concave portion (10) is formed at the tip of the discharge portion (19), the area of the tip portion of the discharge portion (19) for emitting electrons can be increased to increase the light emission luminance, and the length is shorter than in the conventional case. Thus, the discharge part (19) can be formed. In the electrode for a cold cathode discharge tube according to the embodiment of the present invention, the concave portion (10)
Is formed with an inclined surface (10a) tapering inward toward the inside. The discharge part (19) is connected to the lead-out part (18) and has a uniform diameter over the entire length up to the joint part (16) with the lead-out part (18). If the lead-out part (18) is connected to the discharge part (19), the external lead (8) can be satisfactorily connected to the lead-out part (18).

【0014】本発明による冷陰極放電管用電極の製法
は、タングステン、ニオブ、チタン、タングステン合
金、ニオブ合金又はチタン合金から選択された金属によ
り形成された軸体(60)をレーザ放出部に対して同軸に配
置する工程と、アシストガスを軸体(60)の一方の端部(6
1)に向かって放出させながら、レーザ光線を軸体(60)の
一方の端部(61)に照射して、一方の端部(61)に凹部(10)
を形成する工程とを含む。本発明では、レーザ光線を集
光する集光レンズの集光角と同一の角度(θ)で傾斜する
テーパ状の傾斜面(10a)を有する凹部(10)を軸体(60)の
一方の端部(61)に形成する工程、凹部(10)を形成するテ
ーパ状の傾斜面(10a)と平行にレーザ光線を照射する工
程、軸体(60)の他方の端部(62)を形成する平面(A)内を
レーザ光線の中心軸(50)が通過する方向にレーザ光線の
照射方向を制御する工程、レーザ光線により軸体(60)の
他方の端部(62)に導出部(18)を接続する工程、又は導出
部(18)を接続した他方の端部(62)とは反対側の一方の端
部(61)に凹部(10)を形成する工程とを選択的に又は組合
せにより含んでもよい。
According to the method of manufacturing an electrode for a cold cathode discharge tube according to the present invention, a shaft (60) formed of a metal selected from tungsten, niobium, titanium, a tungsten alloy, a niobium alloy or a titanium alloy is applied to a laser emitting portion. Coaxially arranging the assist gas and the assist gas at one end (6
While emitting toward (1), a laser beam is irradiated on one end (61) of the shaft body (60), and a recess (10) is formed on one end (61).
And forming a. In the present invention, a concave portion (10) having a tapered inclined surface (10a) inclined at the same angle (θ) as the converging angle of a converging lens for condensing a laser beam is provided on one side of a shaft body (60). Forming the end (61), irradiating the laser beam in parallel with the tapered inclined surface (10a) forming the recess (10), forming the other end (62) of the shaft body (60) Step of controlling the irradiation direction of the laser beam in the direction in which the central axis (50) of the laser beam passes through the plane (A) to be drawn, and the laser beam guides to the other end (62) of the shaft body (60) at the other end (62). 18) or the step of forming a recess (10) at one end (61) opposite to the other end (62) connected to the lead-out portion (18). It may be included in combination.

【0015】[0015]

【発明の実施の形態】次に、本発明の一実施の形態に係
る冷陰極放電管用電極及びその製法を図1〜図5につい
て説明する。図1では、図6及び図7に示す箇所と同一
の部分には同一の符号を付して説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an electrode for a cold cathode discharge tube according to an embodiment of the present invention and a method for manufacturing the same will be described with reference to FIGS. In FIG. 1, the same portions as those shown in FIGS. 6 and 7 are denoted by the same reference numerals, and description thereof will be omitted.

【0016】図1に示す本実施の形態の冷陰極放電管(3
0)に使用される電極(6)は、タングステン、ニオブ、チ
タン、タングステン合金、ニオブ合金及びチタン合金か
ら選択された耐スパッタリング金属により放電部(19)を
形成する点において従来の電極組立体(20)と相違する。
例えば、図2に示すように、タングステン製の電極(6)
は均一な直径L1=0.8mmを有するため、約10mmの幅
を有する従来の放電管に設けられるカップ状の電極(3)
に比較して電極(6)の幅を減少することができる。耐ス
パッタリング性の金属により形成される放電部(19)は、
冷陰極放電管の点灯中に発生する水銀又はアルゴン若し
くは窒素等の放電用ガス(不活性ガス)のイオンによる
スパッタリング量が少ないので、放電部(19)の損耗量が
少なく寿命の長い電極が得られる。因みに、スタッパリ
ング率Sは、チタン0.32、ニオブ0.35、タンタル
0.5であるのに対し、ニッケル0.71である。ここに
いうスパッタリング率Sとは、高速粒子がN1個衝突し
たターゲット物質からNS小のターゲットを構成する原
子が飛び出したとき、S≡N1/NSで定義される量であ
る。本発明では、放電部(19)の先端で内側に向かって縮
径するテーパ状に形成される凹部(10)は、電子を放出す
る放電部(19)の先端部の面積を増大して発光輝度を増大
することができると共に、放電部(19)の先端部に形成さ
れる凹部(10)が従来のカップ電極を兼ねるため、従来の
電極組立体(20)より短い長さで放電部(19)を形成するこ
とができる。
FIG. 1 shows a cold cathode discharge tube (3
The electrode (6) used in (0) is a conventional electrode assembly (10) in that a discharge portion (19) is formed by a sputtering resistant metal selected from tungsten, niobium, titanium, a tungsten alloy, a niobium alloy, and a titanium alloy. 20) is different.
For example, as shown in FIG.
Has a uniform diameter L 1 = 0.8 mm, so that a cup-shaped electrode (3) provided in a conventional discharge tube having a width of about 10 mm
The width of the electrode (6) can be reduced as compared with the case of FIG. The discharge part (19) formed of a sputtering-resistant metal,
Since the amount of sputtering by the discharge gas (inert gas) such as mercury or argon or nitrogen generated during the operation of the cold-cathode discharge tube is small, the discharge part (19) has a small amount of wear and an electrode with a long life can be obtained. Can be Incidentally, the stampering ratio S is 0.37 for titanium, 0.35 for niobium, and 0.51 for tantalum, and is 0.71 for nickel. The sputtering rate S mentioned here is an amount defined by S≡N 1 / N S when atoms constituting the target of N S are ejected from the target material where N 1 high-speed particles collide. In the present invention, the concave portion (10) formed in a tapered shape whose diameter decreases inward at the tip of the discharge portion (19) increases the area of the tip portion of the discharge portion (19) that emits electrons to emit light. The brightness can be increased, and the concave portion (10) formed at the tip of the discharge portion (19) also serves as a conventional cup electrode. Therefore, the discharge portion (10) has a shorter length than the conventional electrode assembly (20). 19) can be formed.

【0017】本発明による冷陰極放電管用電極を製造す
る際に、タングステン、ニオブ、チタン、タングステン
合金、ニオブ合金又はチタン合金から選択された耐スパ
ッタリング金属により形成された軸体(60)を準備し、レ
ーザ放出部に対して軸体(60)を同軸に配置して、図3に
示すように、レーザ光線の中心軸(50)と軸体(60)の中心
軸(51)とを整合させる。この状態で、アシストガスを軸
体(60)の一方の端部(61)に向かって放出させながら、Q
スイッチYAGレーザ又はCO2レーザのレーザ光線を
軸体(60)の一方の端部(61)に照射して、一方の端部に凹
部(10)を形成する。この場合、酸素等のアシストガスの
流れによって溶融物を除去する力学的作用と、タングス
テンが300℃まで加熱されると酸化される際に熱を発
生してタングステンの溶融又は蒸発が促進される加熱作
用との相乗作用によって、レーザ穿孔速度を向上するこ
とができる。アルゴン又は窒素等の不活性ガスをアシス
トガスとして供給してレーザ光線の照射部を冷却するこ
とにより加工の際に軸体(60)の過度の燃焼を回避しても
よい。
In manufacturing the electrode for a cold cathode discharge tube according to the present invention, a shaft body (60) formed of a sputter-resistant metal selected from tungsten, niobium, titanium, a tungsten alloy, a niobium alloy or a titanium alloy is prepared. The shaft body (60) is arranged coaxially with respect to the laser emitting portion, and the center axis (50) of the laser beam is aligned with the center axis (51) of the shaft body (60) as shown in FIG. . In this state, while discharging the assist gas toward one end (61) of the shaft body (60), Q
A laser beam of a switch YAG laser or a CO 2 laser is applied to one end (61) of the shaft body (60) to form a recess (10) at one end. In this case, the mechanical action of removing the melt by the flow of the assist gas such as oxygen, and the heating that generates heat when the tungsten is heated to 300 ° C. when oxidized to promote the melting or evaporation of the tungsten. The laser drilling speed can be improved by the synergistic action with the action. An inert gas such as argon or nitrogen may be supplied as an assist gas to cool the irradiated part of the laser beam, thereby avoiding excessive burning of the shaft body (60) during processing.

【0018】本発明では、種々の方法によりレーザ穿孔
を行うことができる。例えば、レーザ光線を集光する集
光レンズの集光角と同一の角度(θ)を有するテーパ状の
凹部(10)を軸体(60)の一方の端部(61)に形成することが
できる。別法として、テーパ状の凹部(10)を形成する傾
斜面(10a)と平行にレーザ光線を照射してもよい。ま
た、軸体(60)の中心軸(51)に対して同心円を描くよう
に、レーザ光線の中心軸(50)を移動させてレーザ光線を
照射してもよい。いずれにしても、軸体(60)の他方の端
部(62)の投射面により形成される平面(A)内をレーザ光
線の中心軸(50)が通過する方向にレーザ光線の照射方向
を制御することが重要である。本実施の形態では、放電
部(19)がガラスとの融着性に優れたタングステンによっ
て構成されるので、円筒状のガラスビーズを良好に融着
させることができる。
In the present invention, laser drilling can be performed by various methods. For example, a tapered concave portion (10) having the same angle (θ) as the converging angle of the converging lens that condenses the laser beam may be formed at one end (61) of the shaft body (60). it can. Alternatively, a laser beam may be irradiated in parallel with the inclined surface (10a) forming the tapered recess (10). The laser beam may be irradiated by moving the central axis (50) of the laser beam so as to draw a concentric circle with respect to the central axis (51) of the shaft body (60). In any case, the irradiation direction of the laser beam is set such that the center axis (50) of the laser beam passes through a plane (A) formed by the projection surface of the other end (62) of the shaft body (60). It is important to control. In the present embodiment, since the discharge portion (19) is made of tungsten having an excellent fusion property with glass, cylindrical glass beads can be fused well.

【0019】図4は、レーザ穿孔により貫通孔(60c)が
形成された環状の軸体(60a)と中実の円柱状の軸体(60b)
とを接合部(63)で接合した構造を示す。環状の軸体(60
a)と中実の円柱状の軸体(60b)との接合は、抵抗溶接又
はレーザ溶接等種々の方法で接合することができる。
FIG. 4 shows an annular shaft body (60a) having a through hole (60c) formed by laser drilling and a solid cylindrical shaft body (60b).
And a structure in which are joined at a joint (63). Annular shaft (60
The connection between a) and the solid cylindrical shaft body (60b) can be performed by various methods such as resistance welding or laser welding.

【0020】図1に示すように、ガラス管(7)の内側か
ら外側にそのまま電極(6)は放電部(19)を導出して、放
電部(6)に直接外部リード(8)を接続してもよいが、図5
に示すように、凹部(10)が形成された放電部(19)の一方
の端部(61)とは反対側の他方端部(62)側にニッケル製の
導出部(18)を接続すれば、外部リード(8)を導出部(18)
に良好に接続することができ、放電部(19)は、導出部(1
8)との結合部(16)まで全長さにわたり均一な直径を有
し、タングステン製の放電部(19)の直径L1及びニッケ
ル製の導出部(18)の直径L2は何れも実質的に同一の約
0.8mmで形成され、ほぼ均一な直径の連続した外面を
形成する。凹部(10)の深さL4(凹部(10)の底面と導入
線の他方の端面との距離)は、約1mmで、他方の端面の
直径L3は、L3=L1=L2である。導出部(18)を接続す
る場合は、放電部(19)に導出部(18)を接続す前又は接続
した後に凹部(10)を放電部(19)に形成することができ
る。従来のように抵抗溶接により放電部(19)と導出部(1
8)とを接続できるが、レーザ光線により軸体(60)の他方
の端部(62)に導出部(18)を接続(レーザ接合)してもよ
い。放電部(19)に導出部(18)を接続した後に、導出部(1
8)を接続した端部とは反対側の端部に凹部(10)を形成す
ることができる。導出部(18)が半田付性の良好なニッケ
ルから構成されるので、外部リード(8)の半田付けも信
頼性高く行える。また、レーザ光線の照射条件を変更す
ることにより放電部(19)に異なる形状で凹部を容易に製
造することができる。
As shown in FIG. 1, the electrode (6) leads the discharge part (19) from the inside to the outside of the glass tube (7) and connects the external lead (8) directly to the discharge part (6). Figure 5
As shown in FIG. 2, a lead-out portion (18) made of nickel is connected to the other end (62) of the discharge portion (19) having the recess (10) opposite to the one end (61). If the external lead (8) leads out (18)
The discharge part (19) is connected to the lead-out part (1).
8) have a uniform diameter over the entire length up to the joint (16), and the diameter L 1 of the discharge section (19) made of tungsten and the diameter L 2 of the lead-out section (18) made of nickel are substantially the same. Formed approximately the same 0.8 mm, forming a continuous outer surface of substantially uniform diameter. The depth L 4 of the recess (10) (the distance between the bottom surface of the recess (10) and the other end face of the introduction line) is about 1 mm, and the diameter L 3 of the other end face is L 3 = L 1 = L 2 It is. When connecting the lead-out section (18), the recess (10) can be formed in the discharge section (19) before or after connecting the lead-out section (18) to the discharge section (19). The discharge part (19) and the lead-out part (1
8), the lead-out section (18) may be connected to the other end (62) of the shaft body (60) by a laser beam (laser joining). After connecting the discharge section (18) to the discharge section (19), the discharge section (1)
A recess (10) can be formed at the end opposite to the end connected to (8). Since the lead-out portion (18) is made of nickel having good solderability, the external lead (8) can be soldered with high reliability. Further, by changing the irradiation condition of the laser beam, it is possible to easily manufacture the concave portion with a different shape in the discharge portion (19).

【0021】[0021]

【発明の効果】前記の通り本発明では、冷陰極放電管の
点灯中に放電部の損耗量が少ないので、寿命の長い電極
が得られる。また、従来の放電管より細管化され有効発
光領域を増大化できる冷陰極放電管を製造することがで
きる。更に、凹部を有する放電部を一体成形することが
できるので、構成部品数が少なく且つ工数の少ない製造
工程で電極を製造することができる。更に、レーザ加工
が可能であるため、短時間で高精度に電極を形成するこ
とができる。
As described above, in the present invention, since the amount of wear of the discharge portion is small during the operation of the cold cathode discharge tube, an electrode having a long life can be obtained. Further, it is possible to manufacture a cold-cathode discharge tube which can be made thinner than a conventional discharge tube and can increase the effective light emitting area. Further, since the discharge portion having the concave portion can be integrally formed, the electrode can be manufactured in a manufacturing process with a small number of components and a small number of steps. Furthermore, since laser processing is possible, electrodes can be formed with high accuracy in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による電極を使用して製造した冷陰極
放電管の断面図
FIG. 1 is a cross-sectional view of a cold cathode discharge tube manufactured using an electrode according to the present invention.

【図2】 本発明による電極の側面図FIG. 2 is a side view of an electrode according to the present invention.

【図3】 レーザ加工により凹部を軸体に形成する状態
を示す断面図
FIG. 3 is a cross-sectional view showing a state in which a recess is formed in a shaft body by laser processing.

【図4】 本発明による電極の他の実施の形態を示す断
面図
FIG. 4 is a cross-sectional view showing another embodiment of the electrode according to the present invention.

【図5】 本発明による電極の更に別の実施の形態を示
す断面図
FIG. 5 is a sectional view showing still another embodiment of the electrode according to the present invention.

【図6】 従来の冷陰極放電管の断面図FIG. 6 is a sectional view of a conventional cold cathode discharge tube.

【図7】 従来の電極及び冷陰極放電管の製造工程を示
す加工状態図
FIG. 7 is a processing state diagram showing a manufacturing process of a conventional electrode and a cold cathode discharge tube.

【符号の説明】[Explanation of symbols]

(6)・・電極、 (10)・・凹部、 (10a)・・傾斜面、
(16)・・結合部、 (18)・・導出部、 (19)・・放電
部、 (50)・・中心軸、 (60)・・軸体、 (61)・・一
方の端部、 (62)・・他方の端部、 (A)・・平面、
(6) ・ ・ Electrode, (10) ・ ・ Recess, (10a) ・ ・ Slope,
(16) ・ ・ Coupling part, (18) ・ ・ Derivation part, (19) ・ ・ Discharge part, (50) ・ ・ Center shaft, (60) ・ ・ Shaft body, (61) ・ ・ One end, (62) ・ ・ Other end, (A) ・ ・ Plane,

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 タングステン、ニオブ、チタン、タング
ステン合金、ニオブ合金及びチタン合金から選択された
金属により形成された放電部を有し、該放電部の先端に
凹部が形成されたことを特徴とする冷陰極放電管用電
極。
1. A discharge portion formed of a metal selected from tungsten, niobium, titanium, a tungsten alloy, a niobium alloy, and a titanium alloy, and a concave portion is formed at a tip of the discharge portion. Electrodes for cold cathode discharge tubes.
【請求項2】 前記凹部は、内側に向かってテーパ状に
縮径する傾斜面を有する請求項1に記載の冷陰極放電管
用電極。
2. The cold-cathode discharge tube electrode according to claim 1, wherein the concave portion has an inclined surface tapering inward in a tapered shape.
【請求項3】 前記放電部に接続された導出部を備え、
前記放電部は、前記導出部との結合部まで全長さにわた
り均一な直径を有する請求項1に記載の冷陰極放電管用
電極。
3. An output unit connected to the discharge unit,
2. The electrode for a cold cathode discharge tube according to claim 1, wherein the discharge unit has a uniform diameter over the entire length up to a joint with the lead-out unit. 3.
【請求項4】 タングステン、ニオブ、チタン、タング
ステン合金、ニオブ合金又はチタン合金から選択された
金属により形成された軸体をレーザ放出部に対して同軸
に配置する工程と、アシストガスを前記軸体の一方の端
部に向かって放出させながら、レーザ光線を前記軸体の
一方の端部に照射して、前記一方の端部に凹部を形成す
る工程とを含むことを特徴とする冷陰極放電管用電極の
製法。
4. A step of arranging a shaft formed of a metal selected from tungsten, niobium, titanium, a tungsten alloy, a niobium alloy or a titanium alloy coaxially with respect to a laser emitting portion, and supplying an assist gas to said shaft. Irradiating a laser beam to one end of the shaft body while emitting toward one end of the shaft body to form a concave portion at the one end. Manufacturing method for tube electrode.
【請求項5】 前記レーザ光線を集光する集光レンズの
集光角と同一の角度で傾斜するテーパ状の傾斜面を有す
る凹部を前記軸体の一方の端部に形成する工程を含む請
求項4に記載の冷陰極放電管用電極の製法。
5. A step of forming a concave portion having a tapered inclined surface inclined at the same angle as the converging angle of the converging lens for condensing the laser beam at one end of the shaft body. Item 5. A method for producing an electrode for a cold cathode discharge tube according to Item 4.
【請求項6】 凹部を形成するテーパ状の傾斜面と平行
に前記レーザ光線を照射する工程を含む請求項4に記載
の冷陰極放電管用電極の製法。
6. The method for producing an electrode for a cold cathode discharge tube according to claim 4, further comprising a step of irradiating the laser beam in parallel with a tapered inclined surface forming a concave portion.
【請求項7】 前記軸体の他方の端部を形成する平面内
を前記レーザ光線の中心軸が通過する方向に前記レーザ
光線の照射方向を制御する工程を含む請求項4に記載の
冷陰極放電管用電極の製法。
7. The cold cathode according to claim 4, further comprising a step of controlling an irradiation direction of the laser beam in a direction in which a center axis of the laser beam passes through a plane forming the other end of the shaft body. Manufacturing method for electrodes for discharge tubes.
【請求項8】 レーザ光線により前記軸体の他方の端部
に導出部を接続する工程を含む請求項4又は5に記載の
冷陰極放電管用電極の製法。
8. The method for producing an electrode for a cold cathode discharge tube according to claim 4, further comprising a step of connecting a lead-out portion to the other end of the shaft by a laser beam.
【請求項9】 前記軸体の他方の端部に導出部をレーザ
光線により接続する工程と、該導出部を接続した端部と
は反対側の一方の端部に前記凹部を形成する工程を含む
請求項4に記載の冷陰極放電管用電極の製法。
9. A step of connecting a lead-out section to the other end of the shaft body by a laser beam, and a step of forming the recess at one end opposite to the end to which the lead-out section is connected. The method for producing an electrode for a cold-cathode discharge tube according to claim 4.
JP2000372296A 2000-12-07 2000-12-07 Cold cathode discharge tube electrode and method for producing the same Expired - Fee Related JP3760094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000372296A JP3760094B2 (en) 2000-12-07 2000-12-07 Cold cathode discharge tube electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000372296A JP3760094B2 (en) 2000-12-07 2000-12-07 Cold cathode discharge tube electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002175776A true JP2002175776A (en) 2002-06-21
JP3760094B2 JP3760094B2 (en) 2006-03-29

Family

ID=18841866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372296A Expired - Fee Related JP3760094B2 (en) 2000-12-07 2000-12-07 Cold cathode discharge tube electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP3760094B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289136A (en) * 2001-03-27 2002-10-04 West Electric Co Ltd Cold cathode discharge tube and its lighting system
WO2005015604A1 (en) * 2003-08-07 2005-02-17 O.M.C Co., Ltd. Electrode of cold cathode tube and its manufacturing method
WO2005027181A1 (en) * 2003-09-15 2005-03-24 Colour Star Limited Cold-cathode fluorescent lamp with electrode cap

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289136A (en) * 2001-03-27 2002-10-04 West Electric Co Ltd Cold cathode discharge tube and its lighting system
JP4689066B2 (en) * 2001-03-27 2011-05-25 パナソニック フォト・ライティング 株式会社 Electrode assembly for cold cathode discharge tube, cold cathode discharge tube and lighting device
WO2005015604A1 (en) * 2003-08-07 2005-02-17 O.M.C Co., Ltd. Electrode of cold cathode tube and its manufacturing method
JP2005071972A (en) * 2003-08-07 2005-03-17 Omc Co Ltd Electrode for cold cathode tube, and manufacturing method of the same
WO2005027181A1 (en) * 2003-09-15 2005-03-24 Colour Star Limited Cold-cathode fluorescent lamp with electrode cap
US6963164B2 (en) 2003-09-15 2005-11-08 Colour Star Limited Cold cathode fluorescent lamps

Also Published As

Publication number Publication date
JP3760094B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
JP4548290B2 (en) Discharge lamp
EP1148534B1 (en) Electrodes for a high pressure discharge lamp, high pressure discharge lamps and methods of manufacturing therefor
JP2007095665A (en) Short-arc type high-pressure discharge electrode, short-arc type high-pressure discharge tube, short-arc type high-pressure discharge light source device and their manufacturing methods
US4136298A (en) Electrode-inlead for miniature discharge lamps
JP2007250225A (en) Direct-current high-pressure discharge bulb for automobile lighting tool
JP4750550B2 (en) Metal halide lamp
JP2002175776A (en) Electrode for cold cathode discharge tube and manufacturing method of the same
JP3339580B2 (en) Method of manufacturing high pressure discharge lamp and method of manufacturing electrode for high pressure discharge lamp
JP2003051282A (en) High-pressure electric discharge lamp and manufacturing method therefor
EP0381035A2 (en) Single side-sealed metal vapor discharge lamp
KR100537571B1 (en) Discharge tube
JPS62241254A (en) Discharge lamp
JP2000057995A (en) Short arc type discharge lamp
JP3711838B2 (en) Method for producing cathode for discharge lamp
JP2010033864A (en) High-pressure discharge lamp
JP2004006198A (en) High pressure discharge lamp, lighting system, headlamp for automobile, and arc tube for high pressure discharge lamp
JPH0877967A (en) Mercury discharge lamp
CN1650393A (en) High-pressure gas discharge lamp and method of manufacturing the same
JPH10334789A (en) Vessel, luminaire, and manufacture of vessel mount structure
JP4793828B2 (en) Car discharge bulb
JP4848685B2 (en) Ceramic metal halide lamp
JP2004165007A (en) Manufacturing method of electrode, electrode, and cold-cathode discharge tube using the same
JPH1167093A (en) Manufacture of short-arc discharge lamp
JP3589166B2 (en) High frequency excitation type point source lamp
JP2003132843A (en) Cold cathode lead wire and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees