JP2002172693A - Polyethylene monoaxially stretched product and ground reinforcement - Google Patents

Polyethylene monoaxially stretched product and ground reinforcement

Info

Publication number
JP2002172693A
JP2002172693A JP2000368407A JP2000368407A JP2002172693A JP 2002172693 A JP2002172693 A JP 2002172693A JP 2000368407 A JP2000368407 A JP 2000368407A JP 2000368407 A JP2000368407 A JP 2000368407A JP 2002172693 A JP2002172693 A JP 2002172693A
Authority
JP
Japan
Prior art keywords
intensity
polyethylene
uniaxially stretched
stretched product
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000368407A
Other languages
Japanese (ja)
Inventor
Yuichi Ishino
裕一 石野
Kotaro Yamada
耕太郎 山田
Shinichi Iwasaki
眞一 岩崎
Yuuji Kikutani
雄士 鞠谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2000368407A priority Critical patent/JP2002172693A/en
Publication of JP2002172693A publication Critical patent/JP2002172693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyethylene monoaxially stretched product which shows outstanding creep properties and the best suitability for a ground reinforcement such as banking in the civil engineering field. SOLUTION: The polyethylene monoaxially stretched product has a longitudinal strand part and a crosswise strand part which are connected in a lattice fashion through a crossing part. In case the minimum value of a measured intensity is given as a base intensity B and the difference in intensity between the measured peak intensity and the base intensity B is given as A through X-ray diffraction at a reflective azimuth angle to the crossing part (110), A/(A+B) is 0.5 or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、土木分野におい
て、盛り土などの地盤補強材として好適なポリエチレン
一軸延伸物及び地盤補強材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a uniaxially stretched polyethylene material and a ground reinforcement suitable for a ground reinforcement such as embankment in the field of civil engineering.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
湿地や谷間を盛土造成して宅地や工業用地或いは道路用
地とするケースが多くなってきており、この盛土上に建
築物等が建てられることから盛土の崩落があってはなら
ない。このため、盛土の際に合成樹脂製の補強ネットを
所定の間隔を以って水平に敷き、これに数十センチの盛
土をし、この盛土工程を繰り返すことによって宅地等の
盛土造成が行われている。特に、近年住宅の建設が急増
し、そのため盛土により或いは軟弱地盤上に住宅地が整
備される場合がある。これらの住宅地は地すべりは全く
許されず、このため土中にネット体を層状に配置し、地
すべりを防ぐと共に盛土等を安定化する方法が採用され
ている。このネット体としては、通常ポリエチレンを一
軸又は二軸に延伸して分子配向させ高強度化したものが
用いられている。
2. Description of the Related Art In recent years,
In many cases, embankments are formed in wetlands and valleys to become residential lands, industrial lands, or road lands. Since a building or the like is built on this embankment, the embankment must not collapse. Therefore, at the time of embankment, a reinforcing net made of synthetic resin is laid horizontally with a predetermined interval, embankment of several tens of centimeters is laid on this, and embankment formation such as residential land is performed by repeating this embankment process. ing. In particular, the construction of houses has increased rapidly in recent years, and as a result, there are cases where residential areas are constructed by embankment or on soft ground. In these residential areas, landslides are not allowed at all. For this reason, a method has been adopted in which net bodies are arranged in layers in the soil to prevent landslides and stabilize embankments. As the net, a polyethylene is used which is usually uniaxially or biaxially stretched and molecularly oriented to increase the strength.

【0003】上記の地盤補強用のネットは無数の孔を空
けたネットであり、この孔を介して上下の盛土が連結し
合い、崩落を防止するものである。この盛土の崩落に抗
するため、上記ネットは超高分子量ポリエチレン等の高
延伸性の樹脂をシート一方向又は二方向に延伸して分子
配列をリニアとしたものが用いられる。即ち、盛土の崩
落が予測される方向にネットの分子配列方向を合わせた
ものであり、盛土が動こうとする際にネットが伸びるこ
となく強度が保てるようにしたものである。
[0003] The above-mentioned ground reinforcing net is a net having a number of holes, through which upper and lower embankments are connected to each other to prevent collapse. In order to resist the collapse of the embankment, the net is formed by stretching a highly stretchable resin such as ultra-high molecular weight polyethylene in one or two directions of the sheet so that the molecular arrangement is linear. That is, the molecular arrangement direction of the net is matched with the direction in which the embankment is expected to collapse, and the strength can be maintained without the net extending when the embankment attempts to move.

【0004】図1はこのような樹脂補強用ネット(ポリ
エチレン一軸延伸物)1の概要を示すが、これは、例え
ば図2に示すポリエチレン製シート2に丸型又は矩形の
孔3を打ち抜き、これを例えば一軸延伸加工させて樹脂
補強用ネット1を得るものであり、前記孔3は延伸され
た一対の対向する辺と非延伸状態の対向する辺とを有す
る細長く引き伸ばされた孔形状3’となる。ここで、上
記延伸辺間の陸部、即ち延伸方向に平行で、高度に延伸
された陸部分が縦ストランド部11であり、上記非延伸
辺間の陸部、即ち延伸方向に垂直で、実質的に延伸され
ていない陸部分が横ストランド部12であり、またこれ
ら両ストランド部11、12とが交差する陸部が交差部
13となる。
FIG. 1 shows an outline of such a resin reinforcing net (polyethylene uniaxially stretched product) 1, which is formed, for example, by punching a round or rectangular hole 3 in a polyethylene sheet 2 shown in FIG. Is obtained, for example, by uniaxial stretching to obtain a resin reinforcing net 1. The hole 3 has an elongated elongated hole shape 3 'having a pair of stretched opposed sides and a non-stretched opposed side. Become. Here, a land portion between the extending sides, that is, a land portion that is parallel to the stretching direction and is highly stretched is the vertical strand portion 11, and a land portion between the non-extending sides, that is, perpendicular to the stretching direction, substantially. The land portion that is not stretched in the horizontal direction is the horizontal strand portion 12, and the land portion where these two strand portions 11 and 12 intersect is the intersection portion 13.

【0005】このような地盤補強用のネットは、ジオグ
リッドとも呼ばれているが、これは強度、耐クリープ性
や耐久性に優れるものであることが要求されており、特
に耐クリープ性に優れたポリエチレン一軸延伸物乃至は
地盤補強材が求められていた。
[0005] Such a net for reinforcing the ground is also called a geogrid, which is required to be excellent in strength, creep resistance and durability, and particularly excellent in creep resistance. Further, a uniaxially stretched polyethylene or a ground reinforcing material has been required.

【0006】本発明は、上記事情に鑑みなされたもの
で、優れた耐クリープ性を付与できるポリエチレン一軸
延伸物及び地盤補強材を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a uniaxially stretched polyethylene and a ground reinforcing material capable of imparting excellent creep resistance.

【0007】[0007]

【課題を解決するための手段及び発明の実施の形態】本
発明は、上記事情に鑑み鋭意検討を行った結果、以下の
知見を得た。
Means for Solving the Problems and Embodiments of the Invention The present invention has made the following findings as a result of intensive studies in view of the above circumstances.

【0008】即ち、ポリエチレンを一軸延伸したものは
一軸方向に結晶が配向した縦ストランド部と、ほとんど
結晶が配向していない横ストランド部とからなる。この
ようなポリエチレンの一軸延伸物の延伸の程度により縦
ストランド部の結晶の配向度が決まり、延伸物の延伸方
向の引っ張り強度が決まってくる。
[0008] That is, the uniaxially stretched polyethylene is composed of a vertical strand portion in which crystals are oriented in a uniaxial direction and a horizontal strand portion in which crystals are almost not oriented. The degree of stretching of the uniaxially stretched polyethylene determines the degree of orientation of crystals in the vertical strand portion, and determines the tensile strength of the stretched product in the stretching direction.

【0009】しかしながら、耐クリープ特性について
は、単に縦ストランド部の結晶配高度が高いだけで支配
されるものではなく、横ストランド部と縦ストランド部
とが交差した交差部及び各部の境界部の物性に支配され
るものと予想されるが、定量的に各部の結晶配向をコン
トロールできるまでには至っていない。
However, the creep resistance is not controlled solely by the high crystal arrangement height of the vertical strands, but rather the physical properties of the intersections where the horizontal strands and the vertical strands intersect and the boundaries between the individual parts. However, it has not been possible to control the crystal orientation of each part quantitatively.

【0010】このような点からポリエチレン一軸延伸物
の縦ストランド部、横ストランド部、交差部についてX
線回折を行った結果、縦ストランド部と横ストランド部
との連結位置である交差部が、縦ストランド部ほど著し
い配向ではないものの複雑な配向を有し、かつ延伸方向
に配向していない二軸配向の様相を呈している特質につ
いて着目し、交差部の構造解析の結果、ポリエチレン一
軸延伸物の耐クリープ物性は交差部の配向態様と相関性
があることを知見した。
[0010] From such a point, X, about the vertical strand, the horizontal strand, and the intersection of the uniaxially stretched polyethylene.
As a result of performing the line diffraction, the intersection portion, which is the connection position between the vertical strand portion and the horizontal strand portion, is not as remarkable as the vertical strand portion, but has a complicated orientation, and is not biaxially oriented in the stretching direction. Focusing on the characteristic of the orientation, the structural analysis of the intersection revealed that the creep resistance of the uniaxially stretched polyethylene had a correlation with the orientation of the intersection.

【0011】即ち、交差部に対して(110)反射の方
位角0〜360°のX線回折を行い、測定強度の最小値
をベース強度Bとし、かつ測定されたピーク強度とベー
ス強度との強度差をAとした場合、A/(A+B)が
0.5以上であるポリエチレン一軸延伸物が、優れた耐
クリープ特性を有し、特に地盤補強材として好適である
ことを知見し、本発明をなすに至ったものである。
That is, X-ray diffraction at an azimuth of (110) reflection of 0 to 360 ° is performed on the intersection, the minimum value of the measured intensity is defined as the base intensity B, and the measured peak intensity and the base intensity are compared. When the difference in strength is represented by A, it has been found that a uniaxially stretched polyethylene having A / (A + B) of 0.5 or more has excellent creep resistance and is particularly suitable as a ground reinforcing material. It is what led to.

【0012】従って、本発明は、下記のポリエチレン一
軸延伸物及び地盤補強材を提供する。 〔請求項1〕縦ストランド部と、横ストランド部とを具
備し、かつこれら各ストランド部が交差部を介して格子
状に連結されてなるポリエチレン一軸延伸物において、
上記交差部に対して(110)反射の方位角0〜360
°のX線回折を行い、測定強度の最小値をベース強度B
とし、かつ測定されたピーク強度とベース強度との強度
差をAとした場合、A/(A+B)が0.5以上である
ことを特徴とするポリエチレン一軸延伸物。 〔請求項2〕請求項1記載のポリエチレン一軸延伸物か
らなる地盤補強材。
Accordingly, the present invention provides the following uniaxially stretched polyethylene and ground reinforcement. [Claim 1] In a polyethylene uniaxially stretched product comprising a vertical strand portion and a horizontal strand portion, and each of these strand portions is connected in a lattice pattern through an intersecting portion,
Azimuth angle of (110) reflection with respect to the above intersection 0 to 360
° X-ray diffraction and determine the minimum value of the measured intensity as the base intensity B
And A / (A + B) is 0.5 or more, where A is the intensity difference between the measured peak intensity and the base intensity. [2] A ground reinforcement comprising the uniaxially stretched polyethylene according to [1].

【0013】以下、本発明について図面を参照して説明
すると、本発明のポリエチレン一軸延伸物は、図1、2
に示されるように、ポリエチレンシート2を格子状に打
ち抜き、所定の延伸方向に延伸することにより製造され
るものである。延伸前の格子状のポリエチレンシート2
は、公知の材料を使用して製造することができ、例え
ば、高密度ポリエチレンに、カーボンブラック等の公知
の添加剤を適宜配合して製造することができる。得られ
たシートの形状、厚さ等のシートの態様や、格子状に打
ち抜く方法は常法に従って行うことができ、特に制限さ
れるものではない。
The present invention will be described below with reference to the drawings. The uniaxially stretched polyethylene of the present invention is shown in FIGS.
As shown in FIG. 2, the polyethylene sheet 2 is manufactured by punching out a polyethylene sheet in a lattice shape and stretching the sheet in a predetermined stretching direction. Lattice-shaped polyethylene sheet 2 before stretching
Can be manufactured using a known material. For example, it can be manufactured by appropriately mixing a known additive such as carbon black with high-density polyethylene. The shape and thickness of the obtained sheet and the method of punching it into a lattice can be performed according to a conventional method, and are not particularly limited.

【0014】本発明の延伸物は、格子状に打ち抜かれた
上記ポリエチレンシートを、所定の方法により一軸延伸
して延伸物にできるものであるが、この場合、延伸率は
適宜選定することができ、通常3〜20倍、特に5〜1
5倍であることが好ましい。
The stretched product of the present invention can be formed into a stretched product by uniaxially stretching the above-mentioned polyethylene sheet punched in a lattice by a predetermined method. In this case, the stretching ratio can be appropriately selected. , Usually 3 to 20 times, especially 5 to 1 times
Preferably it is 5 times.

【0015】上記延伸により、ポリエチレンシートの対
向する2組の格子辺のうち、延伸方向に縦長に引き伸ば
される一対の格子辺が縦ストランド部11を、延伸によ
る影響をほとんど受けない他の一対の格子辺が横ストラ
ンド部12となる。また、上記各ストランド部の連結部
分は、縦ストランド部11と横ストランド部12との双
方の影響を受ける箇所で、この箇所が交差部13にな
る。
[0015] Of the two pairs of lattice sides opposed to each other in the polyethylene sheet by the above-mentioned stretching, a pair of lattice sides that are elongated vertically in the stretching direction pass through the vertical strand portion 11 and another pair of lattice sides that are hardly affected by the stretching. The side becomes the horizontal strand portion 12. Further, the connecting portion of each strand portion is a portion affected by both the vertical strand portion 11 and the horizontal strand portion 12, and this portion becomes the intersection portion 13.

【0016】この場合、これら各部の結晶配向は、X線
回折パターンを写真法で測定すると、縦ストランド部で
は、ポリエチレンの結晶格子において110面に相当す
る回折線はほぼスポット状になっており、高度に結晶が
配向している。一方、横ストランド部は回折線がリング
状でありほとんど配向していないが、交差部はリング状
ではなく、円周方向に強度分布がある。また、試料を繊
維試料台にセットし、方位角方向に0〜360°回転さ
せ、シンチレーションカウンター法で110回折線の強
度分布を測定すると、図3のように縦ストランド部は鋭
いピークが2本、横ストランド部はほとんどピークが存
在せず、また、交差部は、4つのピークが存在するもの
である。
In this case, when the X-ray diffraction pattern is measured by a photographic method, the diffraction lines corresponding to the 110 plane in the crystal lattice of polyethylene are almost spot-shaped in the vertical strand portion. The crystals are highly oriented. On the other hand, in the horizontal strand portion, the diffraction lines are ring-shaped and are hardly oriented, but the intersections are not ring-shaped and have an intensity distribution in the circumferential direction. When the sample was set on a fiber sample stage, rotated in the azimuthal direction by 0 to 360 °, and the intensity distribution of 110 diffraction lines was measured by the scintillation counter method, two sharp peaks were found in the vertical strand as shown in FIG. The horizontal strand portion has almost no peak, and the intersection portion has four peaks.

【0017】本発明のポリエチレン一軸延伸物は、交差
部の中心部近傍部分を繊維試料台にのせ、方位角を0〜
360°まで回転させてポリエチレンのX線回折測定を
した場合、方位角方向の110面の回折強度分布曲線が
4つのピークを示し、図4に示すように回折強度分布曲
線ベースラインからピークの頂点の距離(A)と回折強
度0の軸と強度分布曲線のベースラインとの距離(B)
からなる配向度パラメータA/(A+B)が0.5以
上、特に0.7以上であることが必要である。上限とし
て1.0以下、特に0.95以下であることが好まし
い。配向パラメータが低すぎると、十分な耐クリープ特
性を得ることができない。なお、上記ベース強度Bと
は、非配向部のみが寄与する強度であり、ピーク強度と
ベース強度との強度差Aは、配向部のみが起因する強度
である。
In the uniaxially stretched polyethylene of the present invention, the portion near the center of the intersection is placed on a fiber sample table, and the azimuth angle is 0 to 0.
When the X-ray diffraction measurement of polyethylene is performed by rotating the film to 360 °, the diffraction intensity distribution curve of the 110 plane in the azimuth direction shows four peaks, and as shown in FIG. (A), the distance between the axis of diffraction intensity 0 and the baseline of the intensity distribution curve (B)
Is required to be 0.5 or more, especially 0.7 or more. The upper limit is preferably 1.0 or less, particularly preferably 0.95 or less. If the orientation parameter is too low, sufficient creep resistance cannot be obtained. The base strength B is the strength at which only the non-oriented portion contributes, and the intensity difference A between the peak intensity and the base strength is the strength attributable only to the oriented portion.

【0018】更に、本発明の交差部の配向パラメータ
は、耐クリープ特性を評価するための指標として利用で
き、例えば、製品としてのポリエチレン一軸延伸物に対
して、交差部の配向パラメータを算出することにより、
当該一軸延伸物の耐クリープ特性が良好であるか否かを
簡単に判断することができる。
Further, the orientation parameter of the intersection in the present invention can be used as an index for evaluating the creep resistance. For example, the orientation parameter of the intersection is calculated for a uniaxially stretched polyethylene product. By
It can be easily determined whether or not the creep resistance of the uniaxially stretched product is good.

【0019】[0019]

【発明の効果】本発明のポリエチレン一軸延伸物は、優
れた耐クリープ特性を有し、土木分野において、盛り土
などの地盤補強材として好適に使用できる。
Industrial Applicability The uniaxially stretched polyethylene of the present invention has excellent creep resistance and can be suitably used in the field of civil engineering as a ground reinforcement such as embankment.

【0020】[0020]

【実施例】以下、本発明の実施例及び比較例を示し、本
発明を具体的に説明するが、本発は、下記実施例に制限
されるものではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to the following Examples.

【0021】〔実施例及び比較例〕実施例として、ポリ
エチレンのシートを格子状に打ち抜き、これを延伸機に
より延伸した。延伸後の交差部について、(110)反
射の方位角0〜360°のX線回折を行い、測定強度の
最小値をベース強度Bとし、かつ測定されたピーク強度
とベース強度との強度差をAとしたところ、A/(A+
B)で示される配向パラメータは0.75であった。
[Examples and Comparative Examples] As an example, a polyethylene sheet was punched out in a lattice and stretched by a stretching machine. X-ray diffraction of the (110) reflection azimuth angle of 0 to 360 ° is performed on the crossed portion after stretching, and the minimum value of the measured intensity is defined as the base intensity B, and the difference between the measured peak intensity and the base intensity is determined. A and A / (A +
The orientation parameter shown in B) was 0.75.

【0022】得られた延伸物について、1000時間後
のクリープ伸びを測定したところ、9%であった。
The creep elongation of the obtained stretched product after 1000 hours was measured and found to be 9%.

【0023】一方、比較例として、上記実施例と同様
に、延伸した一軸延伸物について、交差部の配向パラメ
ータが0.21の延伸物について、実施例と同様にクリ
ープ伸びを測定したところ、15%であった。
On the other hand, as a comparative example, the creep elongation of the stretched uniaxially stretched product having the orientation parameter of the intersection of 0.21 was measured in the same manner as in the above example. %Met.

【0024】以上の結果より、本発明の特定の配向パラ
メータを有する一軸延伸物は、耐クリープ特性に優れる
ものであることが認められた。
From the above results, it was confirmed that the uniaxially stretched product having the specific orientation parameter of the present invention has excellent creep resistance.

【0025】[0025]

【図面の簡単な説明】[Brief description of the drawings]

【図1】ポリエチレン一軸延伸物の概略平面図である。FIG. 1 is a schematic plan view of a uniaxially stretched polyethylene product.

【図2】延伸前のポリエチレンシートの概略平面図であ
る。
FIG. 2 is a schematic plan view of a polyethylene sheet before stretching.

【図3】本発明に係るポリエチレン一軸延伸物の縦スト
ランド部、交差部、横ストランド部のX線回折パターン
の一例を示し、(A)は回折強度分布、(B)は110
面反射方位角方向の強度分布を示す。
FIG. 3 shows an example of an X-ray diffraction pattern of a vertical strand portion, an intersection portion, and a horizontal strand portion of the uniaxially stretched polyethylene according to the present invention, wherein (A) is a diffraction intensity distribution, and (B) is 110.
3 shows an intensity distribution in a surface reflection azimuth direction.

【図4】交差部の配向評価の説明図である。FIG. 4 is an explanatory diagram of orientation evaluation of an intersection.

【符号の説明】[Explanation of symbols]

1 ポリエチレン一軸延伸物 11 縦ストランド部 12 横ストランド部 13 交差部 DESCRIPTION OF SYMBOLS 1 Uniaxially stretched polyethylene 11 Vertical strand part 12 Horizontal strand part 13 Intersection

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2D044 CA04 4F210 AA04 AG01 AG15 AG28 AH43 QC01 QG01 QG08 QG18  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 2D044 CA04 4F210 AA04 AG01 AG15 AG28 AH43 QC01 QG01 QG08 QG18

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 縦ストランド部と、横ストランド部とを
具備し、かつこれら各ストランド部が交差部を介して格
子状に連結されてなるポリエチレン一軸延伸物におい
て、上記交差部に対して(110)反射の方位角0〜3
60°のX線回折を行い、測定強度の最小値をベース強
度Bとし、かつ測定されたピーク強度とベース強度との
強度差をAとした場合、A/(A+B)が0.5以上で
あることを特徴とするポリエチレン一軸延伸物。
1. A uniaxially stretched polyethylene product having a vertical strand portion and a horizontal strand portion, wherein each of these strand portions is connected in a grid pattern through an intersection portion. ) Reflection azimuth angle 0-3
When X-ray diffraction at 60 ° is performed and the minimum value of the measured intensity is defined as the base intensity B and the intensity difference between the measured peak intensity and the base intensity is defined as A, A / (A + B) is 0.5 or more. A uniaxially stretched polyethylene product.
【請求項2】 請求項1記載のポリエチレン一軸延伸物
からなる地盤補強材。
2. A ground reinforcing material comprising the uniaxially stretched polyethylene according to claim 1.
JP2000368407A 2000-12-04 2000-12-04 Polyethylene monoaxially stretched product and ground reinforcement Pending JP2002172693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368407A JP2002172693A (en) 2000-12-04 2000-12-04 Polyethylene monoaxially stretched product and ground reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368407A JP2002172693A (en) 2000-12-04 2000-12-04 Polyethylene monoaxially stretched product and ground reinforcement

Publications (1)

Publication Number Publication Date
JP2002172693A true JP2002172693A (en) 2002-06-18

Family

ID=18838654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368407A Pending JP2002172693A (en) 2000-12-04 2000-12-04 Polyethylene monoaxially stretched product and ground reinforcement

Country Status (1)

Country Link
JP (1) JP2002172693A (en)

Similar Documents

Publication Publication Date Title
US11834795B2 (en) Multi-axial grid or mesh structures with high aspect ratio ribs
US5419659A (en) Plastic material mesh structure
Pakula et al. Deformation behavior of styrene-butadiene-styrene triblock copolymer with cylindrical morphology
US5156495A (en) Plastic material mesh structure
GB2096531A (en) Plastics material mesh structure
JP2020534457A (en) Geogrid
EP2122067B1 (en) Integral polyethylene terephthalate grids, the method of manufacture, and uses thereof
JP2002172693A (en) Polyethylene monoaxially stretched product and ground reinforcement
AU2012328139B2 (en) Mesh structure, production and uses thereof
Golombok et al. Order in Main Chain Thermotropic Random Copolymers
Das‐Gupta et al. Small‐angle light scattering (SALS) from uniaxially stretched polyvinylidene fluoride
Zhang et al. Simplification of soil classification charts derived from the cone penetration test
JP4738201B2 (en) Wave-absorbing structure and wave-dissipating structure
Al-Jumaili et al. Reinforcement of poor sandy subgrade soil with geogrid
Özkal Experimental investigation on the applicability of geogrid: A comparison between conventional and hybrid-reinforced irregular reinforced concrete members
US20230265632A1 (en) Integral polyethylene terephthalate grids, the method of manufacture, and uses thereof
JPH11247171A (en) Plastic sheet for ground reinforcement
Adamson A model for channel behaviour during cyclic deformation of neutron irradiated copper
CN1473998A (en) Reinforced lattice
Liszka et al. Effects of microscale material randomness on the attainment of optimal structural shapes
Maruyama et al. Orientation distribution of globular protein molecules in a two-dimensional lattice: II. Thermal effect
Thomas Geosynthetics—an unfinished revolution and the path forward
Donald X-ray scattering methods in the study of polymer deformation
Davidson et al. Armor Unit Placement Method Versus Stability Coefficients
Flam Brain Cancer Near Los Alamos?