JP2002171089A - Electromagnetic wave absorbing sheet having no anisotropy, and its manufacturing method - Google Patents

Electromagnetic wave absorbing sheet having no anisotropy, and its manufacturing method

Info

Publication number
JP2002171089A
JP2002171089A JP2000363361A JP2000363361A JP2002171089A JP 2002171089 A JP2002171089 A JP 2002171089A JP 2000363361 A JP2000363361 A JP 2000363361A JP 2000363361 A JP2000363361 A JP 2000363361A JP 2002171089 A JP2002171089 A JP 2002171089A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
rolling
sheet
wave absorbing
absorbing sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000363361A
Other languages
Japanese (ja)
Inventor
Kazuhisa Tsutsui
和久 筒井
Hiroshi Endo
博司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2000363361A priority Critical patent/JP2002171089A/en
Publication of JP2002171089A publication Critical patent/JP2002171089A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic wave absorbing sheet having an absorption performance of electromagnetic wave incident to the sheet not different according to a polarization direction, without anisotropy in absorption characteristics in the sheet obtained by molding a powder or soft magnetic metal dispersed into a matrix material of a rubber or a plastic by rolling by a roll, and to produce a method for manufacturing the same. SOLUTION: The method for manufacturing the electromagnetic wave absorbing sheet comprises the steps of blending the powder of the soft magnetic metal with the matrix material of the rubber or the plastic, kneading and roughly rolling the mixture by a mixing roll, and then precisely rolling the material by a calender roll. In this case, the rough rolling by the mixing roll is stopped to a thickness of the sheet not les than 4 mm, and transferred to the precise rolling by the calender roll. The material is cross-rolled in the precise rolling to a desired sheet thickness, and the electromagnetic wave absorbing sheet having low anisotropic of its permittivity is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収特性に異方性
のない電磁波吸収シートに関する。詳しくは、シート状
の電磁波吸収体であって、種々の角度で種々の方向から
このシートに入射する電磁波に対し、その吸収性能が、
偏波方向によって異ならない電磁波吸収シートに関す
る。
The present invention relates to relates to an electromagnetic wave absorbing sheet having no anisotropy in absorption characteristics. Specifically, it is a sheet-like electromagnetic wave absorber, and its electromagnetic wave absorbing performance with respect to electromagnetic waves incident on this sheet from various directions at various angles is as follows.
The present invention relates to an electromagnetic wave absorbing sheet that does not differ depending on the polarization direction.

【0002】[0002]

【従来の技術】電子機器に対する外部からの電磁波によ
る干渉を防ぎ、またその機器自身からノイズ電磁波を放
射することを抑制するため、軟磁性金属、たとえばパー
マロイの粉末を、ゴムまたはプラスチックのマトリクス
材料中に分散させたものが、電磁波吸収体として広く使
用されている。その多くはシート形状であって、シート
への成形は、通常、ロール圧延により行なう。
2. Description of the Related Art In order to prevent external electromagnetic waves from interfering with electronic equipment and to suppress radiation of noise electromagnetic waves from the equipment itself, a soft magnetic metal, such as permalloy powder, is used in a rubber or plastic matrix material. Are widely used as electromagnetic wave absorbers. Most of them are in the form of a sheet, and forming into a sheet is usually performed by roll rolling.

【0003】この種の電磁波吸収シートが示す吸収特
性、たとえば吸収が最も強く行なわれるピーク周波数
は、分散させる軟磁性金属粉末の粒度分布、粒子形状、
マトリクス中に配合する割合およびシートの厚さなど、
多くの因子によって決定される。ノイズ電磁波の放射を
抑制するためには、その電子機器が動作する周波数およ
びその高調波のうちの主要なものに、吸収のピークを合
致させるべきことはいうまでもなく、特定の周波数に吸
収のピークを位置させた電磁波吸収シートの製造技術が
種々開発されている。
[0003] The absorption characteristics of this type of electromagnetic wave absorbing sheet, such as the peak frequency at which the absorption is performed most strongly, depend on the particle size distribution, particle shape, and the like of the soft magnetic metal powder to be dispersed.
For example, the ratio to be mixed in the matrix and the thickness of the sheet
Determined by many factors. In order to suppress the emission of noise electromagnetic waves, it is needless to say that the absorption peak should be matched to the main frequency of the frequency at which the electronic device operates and its harmonics. Various techniques for producing an electromagnetic wave absorbing sheet having a peak have been developed.

【0004】ところが、この種のシート状の電磁波吸収
体には、シートをどの方向に切り出したものを使用する
かによって、その特性に異方性が生じることがある、と
いう事実がわかった。この現象を追究して来た発明者ら
は、電磁波吸収特性の異方性が、主として誘電率の異方
性に起因することを知った。誘電率は吸収のピーク周波
数を左右する重要な因子であるから、同じ電磁波吸収シ
ートから実用するシートを切り出したときに、その方向
によって吸収のピーク周波数が異なることになる。
However, it has been found that the characteristics of the sheet-shaped electromagnetic wave absorber may have anisotropy depending on the direction in which the sheet is cut out. The inventors who have pursued this phenomenon have found that the anisotropy of the electromagnetic wave absorption characteristics is mainly caused by the anisotropy of the dielectric constant. Since the dielectric constant is an important factor influencing the peak frequency of absorption, when a practical sheet is cut out from the same electromagnetic wave absorbing sheet, the peak frequency of absorption differs depending on the direction.

【0005】ロール圧延により製造した電磁波吸収シー
トにおいて、図1に示すように、圧延方向と直角の方向
をA方向、圧延方向をB方向とするとき、シートのもつ
誘電率εを測定すると、A方向については相対的に高
く、B方向については相対的に低い値が得られる。(こ
こで、誘電率εの測定は導波管法により、「ネットワー
クアナライザーHP8510C」を用いて実施した。) この現象は、電磁波吸収シートに対して吸収のピークに
近い周波数の電磁波が入射したとき、偏波方向によって
吸収の様子が異なることを意味し、意図したとおりの吸
収が実現しないという結果を招く。こうした異方性はも
ちろん好ましいものではない。
[0005] In the electromagnetic wave absorber sheet produced by rolling, as shown in FIG. 1, the direction of the rolling direction and the perpendicular direction A, when the rolling direction B direction, when measuring the dielectric constant ε having a sheet, A A relatively high value is obtained in the direction and a relatively low value is obtained in the B direction. (Here, the measurement of the dielectric constant ε was performed by a waveguide method using a “network analyzer HP8510C”.) This phenomenon occurs when an electromagnetic wave having a frequency close to the absorption peak enters the electromagnetic wave absorbing sheet. This means that the state of absorption differs depending on the polarization direction, which results in that the intended absorption is not realized. Such anisotropy is of course not preferred.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、電磁
波吸収シートにつきまとう上述した問題を解消し、吸収
特性に異方性のない電磁波吸収シート、詳しくは、シー
トに入射する電磁波に対する吸収性能が、偏波方向によ
って異ならない電磁波吸収シートと、その製造方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems associated with an electromagnetic wave absorbing sheet, and to provide an electromagnetic wave absorbing sheet having no anisotropy in its absorption characteristics. However, an object of the present invention is to provide an electromagnetic wave absorbing sheet that does not differ depending on the polarization direction, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成する本
発明の電磁波吸収シートは、軟磁性金属の粉末をゴムま
たはプラスチックのマトリクス材料中に分散させたもの
をロール圧延によりシート状に成形してなる電磁波吸収
シートにおいて、誘電率を圧延方向について測定した値
とそれに直角な方向について測定した値との間に実質上
差がなく、したがって偏波方向による吸収特性に異方性
のない電磁波吸収シートである。
The electromagnetic wave absorbing sheet of the present invention, which achieves the above object, is obtained by dispersing a soft magnetic metal powder in a rubber or plastic matrix material into a sheet by roll rolling. In the electromagnetic wave absorbing sheet, there is substantially no difference between the measured value of the dielectric constant in the rolling direction and the value measured in the direction perpendicular to the rolling direction. It is a sheet.

【0008】この吸収特性に異方性のない電磁波吸収シ
ートを製造する本発明の方法は、軟磁性金属の粉末をゴ
ムまたはプラスチックのマトリクス材料と配合し、ミキ
シングロールで混練および粗圧延したのち、カレンダー
ロールで精圧延することからなる電磁波吸収シートの製
造方法において、ミキシングロールによる粗圧延を、シ
ート厚が4mmを下回らない厚さに止め、カレンダーロー
ルによる精圧延で所望の厚さのシートにすることを特徴
とする。
According to the method of the present invention for producing an electromagnetic wave absorbing sheet having no anisotropy in absorption characteristics, a soft magnetic metal powder is mixed with a rubber or plastic matrix material, kneaded with a mixing roll and roughly rolled. In the method for producing an electromagnetic wave absorbing sheet comprising fine rolling with a calender roll, rough rolling with a mixing roll is stopped to a thickness not less than 4 mm, and a sheet with a desired thickness is formed by fine rolling with a calender roll. It is characterized by the following.

【0009】[0009]

【発明の実施形態】電磁波吸収シートに異方性が生じる
原因として、まず考えられることは、シートにロール圧
延操作が与える影響である。そこで、いわゆる「クロス
圧延」すなわち、ある方向に圧延を行なったら、次には
それと直角の方向に圧延するという操作が、異方性の低
いシートを与えることが期待される。ところが、発明者
らが試みた限りでは、後記する比較例にみるように、ク
ロス圧延はあまり効果的ではなかった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One of the causes that may cause anisotropy in an electromagnetic wave absorbing sheet is the influence of a roll rolling operation on the sheet. Therefore, the so-called "cross-rolling", that is, an operation of rolling in a certain direction and then rolling in a direction perpendicular thereto is expected to give a sheet with low anisotropy. However, as far as the inventors tried, cross rolling was not very effective as seen in the comparative examples described later.

【0010】そこで電磁波吸収シートの製造工程を振り
返ってみると、軟磁性金属粉末とマトリクスのゴムまた
はプラスチックとの混練はミキシングロールによってお
り、圧延は圧延ロールによっている。両者の差は、ミキ
シングロールのロール対が混練効果を生じさせるような
回転をするのに対し、圧延ロールのロール対は、混練効
果が直接生じるような回転をしないことである。これに
着目した発明者らは、混練が異方性をもたらすのではな
いかと推測し、シート形成の過程において混練の影響を
なるべく早く打ち切ることを試みた。具体的には、ミキ
シングロールで得る粗圧延シートの厚さが厚い段階で混
練をやめ、圧延ロールによる精圧延に移行することであ
る。この試みは成功し、製品電磁波吸収シートの吸収特
性の異方性を、顕著に低減することができた。
Looking back at the manufacturing process of the electromagnetic wave absorbing sheet, the kneading of the soft magnetic metal powder and the matrix rubber or plastic is performed by a mixing roll, and the rolling is performed by a rolling roll. Difference between them, roll pair of a mixing roll while the rotation that produces the kneading effect, the roll pair of the rolling rolls is that the kneading effect is not rotating as occurs directly. The inventors who paid attention to this guessed that kneading might cause anisotropy, and tried to discontinue the influence of kneading as soon as possible in the process of sheet formation. Specifically, kneading is stopped at a stage where the thickness of the rough rolled sheet obtained by the mixing roll is large, and the process is shifted to fine rolling by the rolling roll. This attempt was successful, and the anisotropy of the absorption characteristics of the product electromagnetic wave absorbing sheet was significantly reduced.

【0011】ミキシングロールによる混練・粗圧延から
圧延ロールによる精圧延への移行をどの厚さで行なうべ
きかを追究したところ、意外に臨界性があり、最終製品
の厚さが1mm内外である通常の場合、4mmを下回らない
ところで移行すればよいことが明らかになった。
When the thickness of the transition from kneading / rough rolling using a mixing roll to fine rolling using a rolling roll should be determined, it is surprisingly critical that the final product has a thickness of about 1 mm or more. In the case of, it was clarified that the transition should be made at a position not less than 4 mm.

【0012】圧延ロールによる精圧延の段階において
は、前述したクロス圧延は有用であって、吸収特性の異
方性が十分に低い電磁波吸収シートを得ようとするなら
ば、やはり行なうべきである。
At the stage of fine rolling by a rolling roll, the above-mentioned cross rolling is useful, and should be performed if an electromagnetic wave absorbing sheet having sufficiently low anisotropy in absorption characteristics is to be obtained.

【0013】本発明の実施に当たっては、この分野にお
いて既知の技術はいずれも利用できる。たとえば軟磁性
金属の粉末は、前記のパーマロイのほか、Fe−Al−
Si合金、Fe−Ni合金またはFe−Cr合金の粉末
が、好適に使用できる。同様にマトリクス材料も、塩素
化ポリエチレンゴムやアクリルゴムなど、よく使われて
いるものが有用である。
In practicing the present invention, any technique known in the art can be used. For example, soft magnetic metal powders include Fe-Al-
Powders of Si alloy, Fe-Ni alloy or Fe-Cr alloy can be suitably used. Similarly, as the matrix material, those often used such as chlorinated polyethylene rubber and acrylic rubber are useful.

【0014】[0014]

【実施例】Fe−13Cr合金を水噴霧して得た粉末
(平均粒子径8μm)の67重量部を、塩素化ポリエチ
レン12重量部と配合した。ミキシングロールによる混
練および粗圧延に続いて圧延ロールによる精圧延を行な
い、厚さ0.5mmの電磁波吸収シートにした。このと
き、混練・粗圧延から精圧延に移行するシート厚さを、
比較例は2.5mm、実施例は4.0mmにえらんだ。精圧
延の段階においては、どちらもクロス圧延を行なった。
得られた各シートから、図1に示すような、相互に直交
する方向にサンプルを切り取った。
EXAMPLE 67 parts by weight of a powder (average particle diameter: 8 μm) obtained by spraying an Fe-13Cr alloy with water were mixed with 12 parts by weight of chlorinated polyethylene. After kneading with a mixing roll and rough rolling, fine rolling was performed with a rolling roll to obtain an electromagnetic wave absorbing sheet having a thickness of 0.5 mm. At this time, the sheet thickness at which the transition from kneading and rough rolling to fine rolling is
The thickness of the comparative example was 2.5 mm, and that of the example was 4.0 mm. In the fine rolling stage, both were cross-rolled.
From each of the obtained sheets, samples were cut in directions orthogonal to each other as shown in FIG.

【0015】各電磁波吸収シートの誘電率を28〜40
MHzの周波数領域で測定し、比較例は図2、実施例は
図4に示す結果を得た。それぞれの吸収特性は、図3お
よび図5に示すとおりであった。
The dielectric constant of each electromagnetic wave absorbing sheet is 28-40.
The measurement was performed in the frequency range of MHz, and the result shown in FIG. 2 was obtained in the comparative example, and the result shown in FIG. 4 was obtained in the example. Each absorption characteristic was as shown in FIG. 3 and FIG.

【0016】比較例に関する図2のグラフをみると、誘
電率ε'の値が、シートの方向により、絶対値で6〜7
という大きな差をもっている。その結果、これらのシー
トが示す吸収特性は、図3に見るように、ピーク吸収周
波数が、一方(A方向)は37MHz、他方(B方向)
は39.5MHzと異なり、反射減衰RLも、一方は−
10dB止まりであるが、他方は−16dBに達してい
る。これに対し実施例は、図3にみるように、誘電率
ε'の値は絶対値で2以内の差しかなく、それに伴っ
て、図5にみるようにピーク周波数がともに38MHz
という設計値に位置し、反射減衰RLも22〜23dB
という高いレベルで一致している。
Referring to the graph of FIG. 2 relating to the comparative example, the value of the dielectric constant ε ′ is 6 to 7 in absolute value depending on the direction of the sheet.
There is a big difference. As a result, as shown in FIG. 3, the absorption characteristics of these sheets show that the peak absorption frequency is 37 MHz for one (A direction) and 37 MHz for the other (B direction).
Is different from 39.5 MHz, the return loss RL is also
It stops at 10 dB, but the other reaches -16 dB. On the other hand, in the embodiment, as shown in FIG. 3, the absolute value of the dielectric constant ε ′ is not more than 2 in absolute value, and accordingly, both peak frequencies are 38 MHz as shown in FIG.
And the return loss RL is also 22 to 23 dB.
At a high level.

【0017】[0017]

【発明の効果】本発明の電磁波吸収シートは、シートの
もつ誘電率の異方性が低いから、吸収特性に生じる異方
性が低い。具体的には、好適に製造された本発明の電磁
波吸収シートにおいては、誘電率εの差が絶対値で2以
下とすることが容易であり、従って、たとえば20〜4
0MHzの周波数領域におけるピーク吸収周波数のズレ
が、1MHz以内となるなど、設計どおりの電磁波吸収
シートを得ることができる。
The electromagnetic wave absorbing sheet of the present invention has low anisotropy in the dielectric constant of the sheet, and thus has low anisotropy in the absorption characteristics. Specifically, in the suitably manufactured electromagnetic wave absorbing sheet of the present invention, it is easy to make the difference between the dielectric constants ε equal to or less than 2 in absolute value.
An electromagnetic wave absorbing sheet as designed can be obtained such that the deviation of the peak absorption frequency in the 0 MHz frequency region is within 1 MHz.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 電磁波吸収シートの圧延方向と、サンプル切
り出し方向との関係を示す平面図。
FIG. 1 is a plan view showing a relationship between a rolling direction of an electromagnetic wave absorbing sheet and a sample cutting direction.

【図2】 本発明の比較例のデータであって、電磁波吸
収シートの誘電率の異方性を示すグラフ。
FIG. 2 is a graph showing data of a comparative example of the present invention and showing anisotropy of dielectric constant of an electromagnetic wave absorbing sheet.

【図3】 同じく本発明の比較例のデータであって、図
2に誘電率を示した電磁波吸収シートの吸収特性のズレ
を示すグラフ。
3 is a graph showing data of a comparative example of the present invention, showing a deviation of an absorption characteristic of an electromagnetic wave absorbing sheet whose dielectric constant is shown in FIG. 2;

【図4】 本発明の実施例のデータであって、電磁波吸
収シートの誘電率の等方性を示すグラフ。
FIG. 4 is a graph showing the isotropic property of the dielectric constant of the electromagnetic wave absorbing sheet, which is data of the example of the present invention.

【図5】 同じく本発明の実施例のデータであって、図
4に誘電率を示した電磁波吸収シートの吸収特性の一致
を示すグラフ。
5 is a graph showing the coincidence of the absorption characteristics of the electromagnetic wave absorbing sheet showing the dielectric constant in FIG. 4, which is also data of the example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 105:16 H01F 1/00 C B29L 7:00 1/14 A B Fターム(参考) 4F204 AA47 AE03 FA06 FB02 FB21 FF01 FF05 FQ26 5E040 AA11 CA13 5E041 AA04 AA07 AA11 AA19 5E321 BB32 BB44 BB53 GG05 GG07 GG11 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // B29K 105: 16 H01F 1/00 C B29L 7:00 1/14 ABF term (reference) 4F204 AA47 AE03 FA06 FB02 FB21 FF01 FF05 FQ26 5E040 AA11 CA13 5E041 AA04 AA07 AA11 AA19 5E321 BB32 BB44 BB53 GG05 GG07 GG11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 軟磁性金属の粉末をゴムまたはプラスチ
ックのマトリクス材料中に分散させたものを、ロール圧
延によりシート状に成形してなる電磁波吸収シートにお
いて、誘電率を圧延方向について測定した値とそれに直
角な方向について測定した値との間に実質上差がなく、
したがって偏波方向による吸収特性に異方性のない電磁
波吸収シート。
1. An electromagnetic wave absorbing sheet obtained by forming a soft magnetic metal powder dispersed in a rubber or plastic matrix material into a sheet by roll rolling, wherein the dielectric constant is measured in a rolling direction. There is virtually no difference between the values measured for the direction perpendicular to it,
Therefore, an electromagnetic wave absorbing sheet having no anisotropy in the absorption characteristics depending on the polarization direction.
【請求項2】 軟磁性金属の粉末が、Fe−Ni合金、
Fe−Al−Si合金またはFe−Cr合金からえらん
だ金属の粉末である請求項1の電磁波吸収シート。
2. The soft magnetic metal powder is an Fe—Ni alloy,
The electromagnetic wave absorbing sheet according to claim 1, wherein the sheet is a metal powder selected from an Fe-Al-Si alloy or an Fe-Cr alloy.
【請求項3】 マトリクス材料が、塩素化ポリエチレン
ゴムまたはアクリルゴムである請求項1の電磁波吸収シ
ート。
3. The electromagnetic wave absorbing sheet according to claim 1, wherein the matrix material is chlorinated polyethylene rubber or acrylic rubber.
【請求項4】 軟磁性金属の粉末をゴムまたはプラスチ
ックのマトリクス材料と配合し、ミキシングロールで混
練および粗圧延したのち、カレンダーロールで精圧延す
ることからなる電磁波吸収体の製造方法において、ミキ
シングロールによる粗圧延を、シート厚が4mmを下回ら
ない厚さに止め、カレンダーロールによる精圧延で所望
の厚さのシートにすることを特徴とする吸収特性に異方
性のない電磁波吸収シートの製造方法。
4. A method for producing an electromagnetic wave absorber, comprising mixing a soft magnetic metal powder with a rubber or plastic matrix material, kneading and rough rolling with a mixing roll, and then fine rolling with a calender roll. The method for producing an electromagnetic wave absorbing sheet having no anisotropy in absorption characteristics, characterized in that the rough rolling is stopped to a thickness not less than 4 mm and the sheet is rolled to a desired thickness by calendering. .
【請求項5】 カレンダーロールによる精圧延を2回以
上、互いにほぼ直角な方向の圧延を組み合わせて実施す
る請求項4の製造方法。
5. The method according to claim 4, wherein the fine rolling by the calender roll is performed twice or more and the rolling in directions substantially perpendicular to each other is performed.
JP2000363361A 2000-11-29 2000-11-29 Electromagnetic wave absorbing sheet having no anisotropy, and its manufacturing method Pending JP2002171089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000363361A JP2002171089A (en) 2000-11-29 2000-11-29 Electromagnetic wave absorbing sheet having no anisotropy, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000363361A JP2002171089A (en) 2000-11-29 2000-11-29 Electromagnetic wave absorbing sheet having no anisotropy, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002171089A true JP2002171089A (en) 2002-06-14

Family

ID=18834482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000363361A Pending JP2002171089A (en) 2000-11-29 2000-11-29 Electromagnetic wave absorbing sheet having no anisotropy, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002171089A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311332A (en) * 2004-03-22 2005-11-04 Toray Ind Inc Radio wave absorbing sheet and radio wave absorber using the same
JP2018056354A (en) * 2016-09-29 2018-04-05 大同特殊鋼株式会社 Electromagnetic wave-absorbing sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311332A (en) * 2004-03-22 2005-11-04 Toray Ind Inc Radio wave absorbing sheet and radio wave absorber using the same
JP4684699B2 (en) * 2004-03-22 2011-05-18 東レ株式会社 Radio wave absorbing sheet material and radio wave absorber using the same
JP2018056354A (en) * 2016-09-29 2018-04-05 大同特殊鋼株式会社 Electromagnetic wave-absorbing sheet
JP7005132B2 (en) 2016-09-29 2022-02-04 大同特殊鋼株式会社 Electromagnetic wave absorption sheet

Similar Documents

Publication Publication Date Title
EP1675217A1 (en) Electromagnetic radiation absorber based on magnetic microwires
Acher et al. Generalization of Snoek’s law to ferromagnetic films and composites
Lagarkov et al. High-frequency behavior of magnetic composites
Truong et al. Polypyrrole based microwave absorbers
Singh et al. Microwave absorption studies of Ca–NiTi hexaferrite composites in X-band
EP1394820A2 (en) Magnetic loss material and method of producing the same
JPH0935927A (en) Composite magnetic body and electromagnetic interference suppressor using the same
Ramezanzaeh et al. Electromagnetic wave reflection loss and magnetic properties of M-type SrFe12− x (Mn0. 5Sn0. 5) xO19 hexagonal ferrite nanoparticles in the Ku microwave band
Maranville et al. Characterization of magnetic properties at edges by edge-mode dynamics
DE2923152A1 (en) MAGNETIC AUDIO RECORDING TAPE
Yuan et al. Enhanced magnetic permeability and electromagnetic noise suppression by sieved and oriented large flaky sendust particles
Gupta et al. Broadband strip-line ferromagnetic resonance spectroscopy of soft magnetic CoFeTaZr patterned thin films
JP2002171089A (en) Electromagnetic wave absorbing sheet having no anisotropy, and its manufacturing method
Kolev et al. Microwave absorption of ferrite powders in a polymer matrix
Adenot et al. Tuneable microstrip device controlled by a weak magnetic field using ferromagnetic laminations
Rakshit et al. Acoustic vibration induced high electromagnetic responses of Fe3O4 nano-hollow spheres in the THz regime
EP1734542A1 (en) Electromagnetic noise suppressing thin film
EP0866475B1 (en) Composite magnetic material and electromagnetic interference suppressing material
Belyaev et al. Singularity in high-frequency susceptibility of thin magnetic films with uniaxial anisotropy
Neige et al. Microwave permeability of FeNiMo flakes-polymer composites with and without an applied static magnetic field
US6521140B2 (en) Composite magnetic body and electromagnetic interference suppressing body using the same
JP2000138492A (en) Electromagnetic wave absorber
Ghasemi et al. Influence of matching thickness on the absorption properties of doped barium ferrites at microwave frequencies
Hayashi et al. Functional effects of carbon-coated iron metal particles for magnetic recording media
Li et al. Enhanced microwave absorption of flake-oriented Sendust sheets by tape casting