JP2002168766A - Pit size distribution measuring method and device using specific molecular weight part rejection ratio of solute - Google Patents

Pit size distribution measuring method and device using specific molecular weight part rejection ratio of solute

Info

Publication number
JP2002168766A
JP2002168766A JP2000356613A JP2000356613A JP2002168766A JP 2002168766 A JP2002168766 A JP 2002168766A JP 2000356613 A JP2000356613 A JP 2000356613A JP 2000356613 A JP2000356613 A JP 2000356613A JP 2002168766 A JP2002168766 A JP 2002168766A
Authority
JP
Japan
Prior art keywords
membrane
size distribution
molecular weight
pore size
solute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000356613A
Other languages
Japanese (ja)
Other versions
JP3339679B2 (en
Inventor
在 源 ▲ちょ▼
Zaigen Cho
Soyopu Lee
相 ▲ヨプ▼ 李
榮 鎬 ▲ちょ▼
Eiko Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gwangju Institute of Science and Technology
Original Assignee
Gwangju Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gwangju Institute of Science and Technology filed Critical Gwangju Institute of Science and Technology
Priority to JP2000356613A priority Critical patent/JP3339679B2/en
Publication of JP2002168766A publication Critical patent/JP2002168766A/en
Application granted granted Critical
Publication of JP3339679B2 publication Critical patent/JP3339679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of measuring a pit size distribution economically and continuously regardless of the kind of a membrane and the pore size, and a device used therefor. SOLUTION: This pit size distribution measuring method and this device used therefor include a process in which aqueous solution (influent) including chargeable or non-chargeable solute having a known molecular weight size distribution is passed and filtrated through a membrane whose pit size is required to be measured, and then the molecular weight size distributions of the solute between the influent and the filtrate are compared each other, to thereby calculate a specific molecular weight part rejection ratio by membrane filtration, and the ratio is converted into a pore size distribution of the membrane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶質の特定分子量
部分除去率を用いた膜孔サイズ分布測定方法および装置
に関し、さらに詳しくは、電荷性または非電荷性溶質の
うち膜を通過した分子と通過していない分子の分子量分
布を比べて算出した特定分子量部分除去率を膜の気孔サ
イズ分布に換算することによって、膜の種類および気孔
サイズに関わらず、膜孔サイズ分布を経済的で、かつ連
続的に測定できる方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring pore size distribution using a specific molecular weight partial removal rate of a solute, and more particularly, to a method of measuring a molecule of a charged or non-charged solute that has passed through a membrane. By converting the specific molecular weight partial removal rate calculated by comparing the molecular weight distributions of the molecules that have not passed through to the pore size distribution of the membrane, the membrane pore size distribution is economical regardless of the type and pore size of the membrane, and The present invention relates to a method and apparatus capable of continuously measuring.

【0002】[0002]

【従来の技術】上水および排水処理工程、化学および食
品関連工程などに色々な膜が広く用いられており、各工
程に適合する膜を選択するためには、膜孔サイズをあら
かじめ測定しなければならない。また、このような応用
分野だけでなく、マイクロ濾過(microfiltration)
膜、限外濾過(ultrafiltration)膜およびナノ濾過(nano
filtration)膜に区別される種々の気孔サイズを有する
膜を製造する時にも膜孔サイズを正確で、かつ容易に測
定する技術が要求される。
2. Description of the Related Art Various membranes are widely used in water and wastewater treatment processes, chemical and food-related processes, and the like. In order to select a membrane suitable for each process, the membrane pore size must be measured in advance. Must. In addition to such application fields, microfiltration
Membrane, ultrafiltration membrane and nanofiltration
When manufacturing membranes having various pore sizes distinguished from filtration membranes, a technique for accurately and easily measuring the membrane pore size is required.

【0003】膜の気孔サイズおよび分布を測定する代表
的な技術として電子顕微鏡写真法、原子力顕微鏡法(At
omic Force Microscopy, AFM)および液体排除法(liqui
d displacement method)などが用いられていた。
[0003] As typical techniques for measuring the pore size and distribution of a membrane, electron microscopy, nuclear microscopy (At)
omic Force Microscopy (AFM) and liquid exclusion method (liqui
d displacement method).

【0004】電子顕微鏡写真法は、電子顕微鏡で膜表面
の写真をとって膜孔サイズを測定する方法であり、電子
ビームを膜の表面に透写して反射される映像をとる技術
である。この方法は、膜孔が小さい場合、膜孔サイズが
測定できず、膜孔サイズの連続分布測定が難しいという
短所を有する。
[0004] Electron microscopy is a method of measuring the pore size by taking a photograph of the film surface with an electron microscope, and is a technique for taking an image reflected by reflecting an electron beam on the film surface. This method has a disadvantage that when the pore size is small, the pore size cannot be measured, and it is difficult to measure the continuous distribution of the pore size.

【0005】原子力顕微鏡法は、10nm程の直径を有
する測定チップを用いて膜表面の構造と膜孔サイズを測
定する方法である。この方法によっても膜孔サイズの分
布を連続的に測定することが難しく、また、膜試料を準
備するに複雑な過程が要求されるという短所を有する。
Atomic force microscopy is a method for measuring the structure of the membrane surface and the pore size using a measuring chip having a diameter of about 10 nm. Even with this method, it is difficult to continuously measure the pore size distribution, and a complicated process is required to prepare a membrane sample.

【0006】液体排除法は、膜の気孔を液体で満たした
後、特定圧力を有するガスで液体を膜孔から排除するこ
とによって膜孔サイズを間接的に測定する方法であり、
具体的には、膜表面への湿潤度が非常に高い溶媒(接触
角=0)で膜を浸した後、特定圧力を有する窒素ガスを
膜に適用して溶媒を膜孔から押出し、膜孔を介して流れ
る窒素ガスの量を測定することによって膜孔サイズ分布
を算出する。この液体排除法もまた、膜孔サイズが小さ
い限外濾過膜およびナノ濾過膜には適用しにくいという
短所を有する。
[0006] The liquid exclusion method is a method of indirectly measuring the pore size of a membrane by filling the pores of the membrane with a liquid and then removing the liquid from the pores with a gas having a specific pressure.
Specifically, after immersing the membrane in a solvent having a very high wettability to the membrane surface (contact angle = 0), a nitrogen gas having a specific pressure is applied to the membrane, and the solvent is extruded from the membrane pores. The pore size distribution is calculated by measuring the amount of nitrogen gas flowing through. This liquid exclusion method also has the disadvantage that it is difficult to apply to ultrafiltration membranes and nanofiltration membranes having small pore sizes.

【0007】その上、上記の方法は、いずれも高価な特
定機器を用いなければならなく、膜が実際使用される現
場での条件を考慮に入れた膜孔サイズの測定はほとんど
不可能であった。
[0007] In addition, all of the above methods require the use of expensive specific equipment, and it is almost impossible to measure the membrane pore size taking into account the conditions at the site where the membrane is actually used. Was.

【0008】[0008]

【発明が解決しようとする課題】したがって、本発明の
目的は、膜の種類および気孔サイズに関わらず膜孔サイ
ズ分布を経済的で、かつ連続的に測定できる方法および
それに用いられる装置を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for economically and continuously measuring the pore size distribution irrespective of the type of membrane and the pore size, and an apparatus used therefor. That is.

【0009】[0009]

【課題を解決するための手段】本発明の一実施態様によ
って、本発明では、既知の分子量サイズ分布を有する電
荷性または非電荷性溶質含有水溶液(流入水)を膜孔サ
イズを測定しようとする膜に通して濾過した後、流入水
と濾過水間の溶質の分子量サイズ分布を比べることによ
って膜濾過による特定分子量部分除去率を算定し、これ
を膜の気孔サイズ分布に換算することを含む、膜孔サイ
ズ分布測定方法が提供される。
According to one embodiment of the present invention, the present invention seeks to determine the pore size of a charged or uncharged solute-containing aqueous solution (influent) having a known molecular weight size distribution. After filtering through the membrane, calculating the specific molecular weight partial removal rate by membrane filtration by comparing the molecular weight size distribution of the solute between the influent and the filtered water, including converting this to a pore size distribution of the membrane, A method for measuring pore size distribution is provided.

【0010】また、本発明では、膜フォルダー付きの膜
濾過装置、該膜濾過装置に連結されて流入水および濾過
水の溶質の分子量サイズ分布を測定する高性能液体クロ
マトグラフィー(High performance Liquid Chromatogr
aphy, HPLC)およびサイズ排除クロマトグラフィー(Si
ze Exclusion Chromatography, SEC)、およびクロマト
グラフィーから導出された結果を分析し、膜孔サイズ分
布に換算して表示するソフトウェアを含む、膜孔サイズ
分布測定装置が提供される。
In the present invention, there is also provided a membrane filtration device provided with a membrane folder, and a high performance liquid chromatograph connected to the membrane filtration device for measuring the molecular weight size distribution of solutes of inflow water and filtrate water.
aphy, HPLC) and size exclusion chromatography (Si
ze Exclusion Chromatography, SEC), and a pore size distribution measuring device including software for analyzing results derived from chromatography, converting the results into pore size distribution and displaying the results.

【0011】[0011]

【発明の実施の形態】図1は、膜濾過装置、HPLC、
SEC(カラムと探知機で構成)および結果分析ソフト
ウェアを含む本発明による膜孔サイズ分布測定装置の概
略図であって、電荷性または非電荷性溶質含有水溶液
を、膜孔サイズを測定する膜に通して濾過した後(膜濾
過装置)、流入水および濾過水の溶質の分子量サイズ分
布(molecular mass distribution)を測定し(HPL
CおよびSEC)、この二つの値を比べて膜濾過による
特定分子量部分除去率を算定し、これを膜の気孔サイズ
分布(membrane pore size distribution)に換算する
(結果分析ソフトウェア)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a membrane filtration device, an HPLC,
1 is a schematic diagram of a pore size distribution measuring apparatus according to the present invention including SEC (comprising a column and a detector) and result analysis software, wherein an aqueous solution containing a charged or non-charged solute is applied to a membrane for measuring pore size; After filtration through a membrane (membrane filtration device), the molecular mass distribution of the solutes in the influent and filtered water was measured (HPL).
C and SEC), the two values are compared to calculate a specific molecular weight partial removal rate by membrane filtration, and this is converted into a membrane pore size distribution (result analysis software).

【0012】本発明によれば、膜濾過装置に導入される
流入水は、たとえば、活性炭、イオン交換樹脂および逆
浸透圧膜フィルターを通した超純水に電荷性または非電
荷性溶質を溶解することによって製造し、膜孔サイズ分
布測定用膜は、超純水に低温(5℃)で一定時間(12
時間)保管後使用する。この際、膜濾過装置は膜の種類
(高分子膜またはセラミック膜)によって違う種類のフ
ォルダーを用い、該フォルダーに膜を装着した後濾過装
置に流入水を導入して膜孔を通過した溶質が含まれた濾
過水を得る。
According to the present invention, the influent introduced into the membrane filtration device dissolves a charged or non-charged solute in, for example, activated carbon, ion exchange resin and ultrapure water passed through a reverse osmosis membrane filter. The membrane for pore size distribution measurement is prepared in ultrapure water at a low temperature (5 ° C.) for a certain time (12 hours).
Time) Use after storage. At this time, the membrane filtration device uses different types of folders depending on the type of the membrane (polymer membrane or ceramic membrane), and after attaching the membrane to the folder, inflowing water is introduced into the filtration device, and the solute that has passed through the membrane hole is removed. Obtain the contained filtered water.

【0013】電荷性溶質としては、スルホン酸ポリスチ
レン、サリチル酸、アミノ酸、自然有機物質(natural o
rganic matter)(たとえば、フミン酸、ピュビン酸)お
よびこれらの混合物が用いられ、電荷性溶質は負電荷を
帯びている高分子基が負電荷を帯びている膜表面と電荷
反発現象を引起すので、電荷性溶質からは電荷反発力を
考慮したみかけ膜孔サイズ分布を求めることができる。
As the charged solute, polystyrene sulfonate, salicylic acid, amino acid, natural organic substance (natural o
rganic matter) (eg, humic acid, puvic acid) and mixtures thereof are used, and the charged solute causes the negatively charged polymer groups to cause a charge repulsion phenomenon with the negatively charged membrane surface. From the charged solute, the apparent pore size distribution in consideration of the charge repulsion can be obtained.

【0014】非電荷性溶質としては、ポリエチレングリ
コール、多糖類およびこれらの混合物が用いられ、非電
荷性溶質からは絶対膜孔サイズ分布を求めることができ
る。
As the non-charged solute, polyethylene glycol, polysaccharide and a mixture thereof are used, and the absolute pore size distribution can be determined from the non-charged solute.

【0015】また、溶質の種類、および流入水のpH、
イオン強度および電荷反発力などは、膜が使用される現
場条件を考慮して選択および調節することができる。た
とえば、塩化ナトリウムまたはカルシウムイオンを加え
て流入水のイオン強度または電荷反発力を変化させるこ
とによってこれらが膜孔サイズに及ぼす影響を予想する
ことができる。
The type of solute, the pH of the influent water,
Ionic strength and charge repulsion, etc., can be selected and adjusted taking into account the on-site conditions in which the membrane will be used. For example, by adding sodium or calcium ions to change the ionic strength or charge repulsion of the influent water, the effect of these on membrane pore size can be expected.

【0016】本発明によれば、HPLCおよびSECを
用いて流入水および濾過水の溶質の分子量サイズ分布を
測定するが、HPLC溶出液においては、非電荷性溶質
の場合には超純水を、電荷性溶質の場合にはリン酸緩衝
溶液を用い、SECの探知機としては、非電荷性溶質の
場合は屈折率(refractive index)探知機を、電荷性溶質
の場合は紫外線探知機を用いる。この際、種々の分子量
サイズの溶質を分析することによって、溶質の分子量と
SEC保有時間(retention time)との関係式から標準検
定式(calibration curve)を予め求めておき、溶質の分
子量サイズ分布の測定時にこれを用いる。
According to the present invention, the molecular weight size distribution of the solute in the influent water and filtrate is measured using HPLC and SEC. In the HPLC eluate, ultrapure water is used for non-charged solutes. In the case of a charged solute, a phosphate buffer solution is used. In the case of a non-charged solute, a refractive index (refractive index) detector is used. In the case of a charged solute, an ultraviolet ray detector is used. At this time, by analyzing solutes of various molecular weight sizes, a standard calibration equation (calibration curve) was previously obtained from the relational expression between the molecular weight of the solute and the SEC retention time (retention time), and the molecular weight size distribution of the solute was determined. Use this when measuring.

【0017】ついで、本発明によれば、流入水および濾
過水の溶質の分子量サイズ分布測定結果を比べて特定分
子量に対する部分除去率(fractional rejection, RM
i)を下記式1のように求める。
Then, according to the present invention, the measured results of the molecular weight size distributions of the solutes of the inflow water and the filtrate water are compared to determine the fractional rejection (RM) for a specific molecular weight.
i) is obtained as in the following equation 1.

【0018】 RMi=[WMi−W’Mi(1−Roverall)]/WMi …(式1) (式中、Roverallは溶解した有機炭素(dissolved org
anic carbon)の全体除去率を示し、WMiおよびW’Mi
は各々流入水および濾過水の溶質中の特定分子量SEC
における相対強度を示す)。
R Mi = [W Mi −W ′ Mi (1-R overall )] / W Mi (Equation 1) (where R overall is dissolved organic org)
anc carbon), W Mi and W ' Mi
Is the specific molecular weight SEC in the solute of the influent and filtrate
Shows the relative intensity at.

【0019】前記式1から求められた特定分子量部分除
去率曲線に相応するX軸(相対分子量)値は、それより
大きな分子量を有する分子は膜孔を通過できないという
意味を有する。このような脈絡から、特定分子量部分除
去率曲線の傾きは当該サイズの膜孔の相対的な存在比
率、すなわち、相対的な個数を意味するため、各分子サ
イズ別に膜孔の存在比率を示す本発明による結果分析ソ
フトウェアを用いて、測定する膜の気孔サイズ分布曲線
が得られる。
The X-axis (relative molecular weight) value corresponding to the specific molecular weight partial removal rate curve obtained from Equation 1 means that molecules having a higher molecular weight cannot pass through the pores of the membrane. From such a context, the slope of the specific molecular weight partial removal rate curve indicates the relative abundance ratio of the pores of the size, that is, the relative number, and therefore, the present invention showing the abundance ratio of the pores for each molecular size. Using the result analysis software according to the invention, a pore size distribution curve of the membrane to be measured is obtained.

【0020】[0020]

【実施例】以下、本発明を下記実施例によってさらに詳
細に説明する。ただし、下記実施例は本発明を例示する
ためのもののみであり、本発明の範囲を制限しない。
The present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and do not limit the scope of the present invention.

【0021】実施例1:高分子膜(MWCO=8,00
0)の絶対膜孔サイズ分布測定分子量遮断度(molecula
r weight cutoff, MWCO)が8,000である(膜
製造会社から提供される値)高分子限外濾過膜を、活性
炭、イオン交換樹脂および逆浸透圧膜フィルターを通し
た超純水に5℃で12時間浸して保管した後用いた。ま
た、超純水1lに平均分子量が約8,000であるポリ
エチレングリコール50mgを入れ、30分間攪拌して
ポリエチレングリコール水溶液(溶液(A))を製造し
た。この溶液(A)に各々塩化ナトリウム10mMおよ
びカルシウムイオン10mMを加えて溶液(B)および
(C)を製造した。
Example 1 Polymer film (MWCO = 8,000)
0) Absolute pore size distribution measurement Molecular weight cutoff (molecula
The polymer ultrafiltration membrane with a weight cutoff (MWCO) of 8,000 (provided by the membrane manufacturer) is placed at 5 ° C. in activated carbon, ion exchange resin and ultrapure water through a reverse osmosis membrane filter. For 12 hours before use. Also, 50 mg of polyethylene glycol having an average molecular weight of about 8,000 was added to 1 liter of ultrapure water and stirred for 30 minutes to produce an aqueous solution of polyethylene glycol (solution (A)). To this solution (A) were added 10 mM of sodium chloride and 10 mM of calcium ions, respectively, to produce solutions (B) and (C).

【0022】図1に示す本発明による膜孔サイズ分布測
定装置を用いて膜濾過装置に取付けられたフォルダーに
膜を装着した後、該膜濾過装置に溶液(A)、(B)お
よび(C)を各々導入し、相応する濾過水を得た。HP
LCの溶出液として超純水を用い、SEC(ウォーター
ス社(Waters)製、米国)分析には屈折率探知機を用い
た。この際、超純水50mlに平均分子量が200,6
00,2000,3400,4600および8000で
あるポリエチレングリコール(アルドリッチ社(Aldric
h)製)10mgずつを溶解して製造したポリエチレング
リコール標準水溶液を標準検定式算定に用いた。
After the membrane is attached to the folder attached to the membrane filtration apparatus using the membrane pore size distribution measuring apparatus according to the present invention shown in FIG. 1, the solutions (A), (B) and (C) are applied to the membrane filtration apparatus. ) Were introduced to obtain the corresponding filtered water. HP
Ultrapure water was used as an eluent for LC, and a refractive index detector was used for SEC (Waters, USA) analysis. At this time, the average molecular weight was 200,6 in 50 ml of ultrapure water.
Polyethylene glycols of 00, 2000, 3400, 4600 and 8000 (Aldric
h) The polyethylene glycol standard aqueous solution prepared by dissolving 10 mg each was used for the standard assay formula calculation.

【0023】流入水、および溶液(A)、(B)および
(C)各々の濾過水から得られた溶質の分子量サイズ分
布曲線を図2に、図2の曲線から前記式1に従って算出
された特定分子量部分除去率曲線を図3に、図3の曲線
から換算した絶対膜孔サイズ分布曲線を図4に各々示
す。図2〜図4から分かるように、測定した膜の分子量
遮断度は8,000であり、塩化ナトリウムの添加は流
入水のイオン強度の上昇、また、カルシウムイオンの添
加は流入水の電荷反発力の減少を引起し、いずれの場合
もみかけ膜孔サイズが小さくなった。
FIG. 2 shows the molecular weight size distribution curve of the solute obtained from the influent water and the filtered water of each of the solutions (A), (B) and (C), and was calculated from the curve of FIG. A specific molecular weight partial removal rate curve is shown in FIG. 3, and an absolute pore size distribution curve converted from the curve in FIG. 3 is shown in FIG. As can be seen from FIGS. 2 to 4, the measured molecular weight cutoff of the membrane was 8,000, the addition of sodium chloride increased the ionic strength of the influent, and the addition of calcium ions caused the charge repulsion of the influent. The apparent pore size was reduced in each case.

【0024】実施例2:高分子膜(MWCO=250)
の絶対膜孔サイズ分布測定 分子量遮断度が250である(膜製造会社から提供され
る値)高分子ナノ濾過膜に対し、溶質として平均分子量
が約250であるポリエチレングリコールを用いて前記
実施例1と同様な方法で実験を行った。
Example 2: Polymer film (MWCO = 250)
Measurement of Absolute Membrane Pore Size Distribution of Polymer Nanofiltration Membrane with a Molecular Weight Blocking Degree of 250 (Value Provided by Membrane Manufacturer) Using polyethylene glycol having an average molecular weight of about 250 as a solute, Example 1 was used. An experiment was performed in the same manner as described above.

【0025】得られた絶対膜孔サイズ分布曲線を図5に
示す。図5から分かるように、測定した膜の分子量遮断
度は250であり、塩化ナトリウムの添加は流入水のイ
オン強度の上昇、カルシウムイオンの添加は流入水の電
荷反発力の減少を引起し、いずれの場合もみかけ膜孔が
小さくなった。
FIG. 5 shows the obtained absolute pore size distribution curve. As can be seen from FIG. 5, the measured molecular weight cutoff of the membrane was 250, the addition of sodium chloride caused an increase in the ionic strength of the influent and the addition of calcium ions caused a decrease in the charge repulsion of the influent. In the case of, the apparent membrane pore was also reduced.

【0026】実施例3〜6:セラミック膜の絶対膜孔サ
イズ分布測定 分子量遮断度が各々8,000、5,000、3,00
0および1,000である(膜製造会社から提供される
値)二酸化チタン材質のセラミック膜に対し、平均分子
量が約8,000、5,000、3,000および1,
000のポリエチレングリコール水溶液を用いて前記実
施例1と同様な方法で実験を行った。
Examples 3 to 6: Measurement of absolute pore size distribution of ceramic membrane Molecular weight cutoff was 8,000, 5,000, 3,000, respectively.
For ceramic membranes of titanium dioxide material of 0 and 1,000 (values provided by the membrane manufacturer), the average molecular weights are about 8,000, 5,000, 3,000 and 1,
An experiment was conducted in the same manner as in Example 1 using an aqueous solution of polyethylene glycol of 000.

【0027】得られた絶対膜孔サイズ分布曲線を各々図
6〜図9に示す。図6〜図9から分かるように、測定し
た膜の分子量遮断度は各々約7,800、5,200、
3,400および1,200である。
FIGS. 6 to 9 show the obtained absolute pore size distribution curves. As can be seen from FIGS. 6 to 9, the measured molecular weight cutoffs of the membranes were about 7,800, 5,200,
3,400 and 1,200.

【0028】実施例7:高分子膜(MWCO=8,00
0)のみかけ膜孔サイズ分布測定 分子量遮断度が8,000である(膜製造会社から提供
される値)高分子限外濾過膜を活性炭、イオン交換樹脂
および逆浸透圧膜フィルターを通した超純水に5℃で1
2時間浸して保管した後用い、流入水としてナックドン
江水を採取して用いた。
Example 7: Polymer film (MWCO = 8,000)
0) Apparent membrane pore size distribution measurement Ultrafiltration of a polymer ultrafiltration membrane having a molecular weight cutoff of 8,000 (provided by a membrane manufacturer) through activated carbon, an ion exchange resin and a reverse osmosis membrane filter 1 at 5 ℃ in pure water
Used after being immersed for 2 hours and stored, Nakdong River water was collected and used as influent water.

【0029】図1に示す本発明による膜孔サイズ分布測
定装置を用いて膜濾過装置に取付けられたフォルダーに
膜を挿入した後、この膜濾過装置に採取した江水を導入
して濾過水を得た。HPLCの溶出液としてリン酸緩衝
溶液(pH6.8およびイオン強度0.1M)を用い、
SEC(ウォータース社製、米国)分析には紫外線探知
機を用いた。この際、超純水50mlに平均分子量が1
800、4600、8000および35000であるス
ルホン酸ポリスチレン(ポリサイエンス(PolyScienc
e)社製)10mgずつを溶解して製造したスルホン酸
ポリスチレン標準水溶液を標準検定式算定に用いた。
After the membrane is inserted into the folder attached to the membrane filtration apparatus using the membrane pore size distribution measuring apparatus according to the present invention shown in FIG. 1, the collected water is introduced into the membrane filtration apparatus to obtain filtered water. Was. Using a phosphate buffer solution (pH 6.8 and ionic strength 0.1 M) as an eluent for HPLC,
An ultraviolet detector was used for SEC (Waters, USA) analysis. At this time, the average molecular weight is 1 in 50 ml of ultrapure water.
800, 4600, 8000 and 35000 polystyrene sulfonates (PolyScienc
e) A standard aqueous solution of polystyrene sulfonate prepared by dissolving 10 mg each was used for the calculation of the standard assay formula.

【0030】流入水および濾過水から得られた溶質(自
然有機物質)の分子量サイズ分布曲線を図10に、換算
したみかけ膜孔サイズ分布曲線を図11に各々示す。図
10および図11から分かるように、江水に含まれた自
然有機物質の電荷と膜の間の電荷反発力によってみかけ
膜孔サイズ分布曲線は8,000よりはるかに小さくな
っている。
FIG. 10 shows a molecular weight size distribution curve of a solute (natural organic substance) obtained from inflow water and filtrate water, and FIG. 11 shows a converted apparent membrane pore size distribution curve. As can be seen from FIGS. 10 and 11, the apparent pore size distribution curve is much smaller than 8,000 due to the charge of the natural organic substance contained in the river water and the charge repulsion between the film.

【0031】実施例8:高分子膜(MWCO=250)
のみかけ膜孔サイズ分布測定 分子量遮断度が250である(膜製造会社から提供され
る値)高分子ナノ濾過膜に対して前記実施例7と同様な
方法で実験を行った。
Example 8: Polymer film (MWCO = 250)
Apparent Membrane Pore Size Distribution Measurement An experiment was performed on a polymer nanofiltration membrane having a molecular weight cutoff of 250 (a value provided by a membrane manufacturer) in the same manner as in Example 7 above.

【0032】江水に含まれた自然有機物質の電荷性によ
って溶質と膜の間に電荷反発力が生じるため、みかけ膜
孔サイズ分布は250より小さくなっている。その結果
を図12に示す。
The apparent pore size distribution is smaller than 250 because a charge repulsion is generated between the solute and the membrane due to the charge property of the natural organic substance contained in the river water. The result is shown in FIG.

【0033】[0033]

【発明の効果】本発明の膜孔サイズ分布測定方法によれ
ば、膜の種類および気孔サイズに関わらず、測定する膜
の気孔サイズ分布を経済的で、かつ連続的に測定でき、
該膜に実用される応用分野の溶液および運営条件をその
まま膜孔測定時に適用できるため、実際使用時の膜孔サ
イズが求められるだけでなく、除去または分離する溶質
が電荷を帯びる場合にもその電荷を考慮したみかけ膜孔
サイズ分布を測定することができる。
According to the method of measuring the pore size distribution of the present invention, the pore size distribution of the film to be measured can be economically and continuously measured irrespective of the type and pore size of the membrane.
Since the solution and operating conditions of the application field practically used for the membrane can be applied as it is when measuring the pores, not only the pore size in actual use is required but also when the solute to be removed or separated is charged. The apparent pore size distribution in consideration of the charge can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による膜孔サイズ分布測定装置を示す概
略図。
FIG. 1 is a schematic diagram showing a pore size distribution measuring apparatus according to the present invention.

【図2】分子量遮断度が8,000の高分子膜に対する
実施例1から得られた溶質の分子量サイズ分布曲線を示
す図。
FIG. 2 is a diagram showing a molecular weight size distribution curve of a solute obtained from Example 1 for a polymer membrane having a molecular weight cutoff of 8,000.

【図3】分子量遮断度が8,000である高分子膜に対
する実施例1から得られた溶質の特定分子量部分除去率
曲線を示す図。
FIG. 3 is a diagram showing a specific molecular weight partial removal rate curve of a solute obtained from Example 1 for a polymer membrane having a molecular weight cutoff of 8,000.

【図4】分子量遮断度が8,000である高分子膜に対
する実施例1から得られた絶対膜孔サイズ分布曲線を示
す図。
FIG. 4 is a view showing an absolute pore size distribution curve obtained from Example 1 for a polymer membrane having a molecular weight cutoff of 8,000.

【図5】分子量遮断度が250である高分子膜に対する
実施例2から得られた絶対膜孔サイズ分布曲線を示す
図。
FIG. 5 is a view showing an absolute pore size distribution curve obtained from Example 2 for a polymer membrane having a molecular weight cutoff of 250.

【図6】分子量遮断度が8,000であるセラミック膜
に対する実施例3から得られた絶対膜孔サイズ分布曲線
を示す図。
FIG. 6 is a view showing an absolute pore size distribution curve obtained from Example 3 for a ceramic membrane having a molecular weight cutoff of 8,000.

【図7】分子量遮断度が5,000であるセラミック膜
に対する実施例4から得られた絶対膜孔サイズ分布曲線
を示す図。
FIG. 7 is a view showing an absolute pore size distribution curve obtained from Example 4 for a ceramic membrane having a molecular weight cutoff of 5,000.

【図8】分子量遮断度が3,000であるセラミック膜
に対する実施例5から得られた絶対膜孔サイズ分布曲線
を示す図。
FIG. 8 is a view showing an absolute pore size distribution curve obtained from Example 5 for a ceramic membrane having a molecular weight cutoff of 3,000.

【図9】分子量遮断度が1,000であるセラミック膜
に対する実施例6から得られた絶対膜孔サイズ分布曲線
を示す図。
FIG. 9 is a view showing an absolute pore size distribution curve obtained from Example 6 for a ceramic membrane having a molecular weight cutoff of 1,000.

【図10】分子量遮断度が8,000である高分子膜に
対する実施例7から得られた溶質の分子量サイズ分布曲
線を示す図。
FIG. 10 is a diagram showing a molecular weight size distribution curve of a solute obtained from Example 7 for a polymer membrane having a molecular weight cutoff of 8,000.

【図11】分子量遮断度が8,000である高分子膜に
対する実施例7から得られたかけ膜孔サイズ分布曲線を
示す図。
FIG. 11 is a diagram showing a membrane pore size distribution curve obtained from Example 7 for a polymer membrane having a molecular weight cutoff of 8,000.

【図12】分子量遮断度が250である高分子膜に対す
る実施例8から得られたみかけ膜孔サイズ分布曲線を示
す図。
FIG. 12 is a view showing an apparent pore size distribution curve obtained from Example 8 for a polymer membrane having a molecular weight cutoff of 250.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 李 相 ▲よぷ▼ 大韓民国、411−350京畿道高陽市一山区馬 頭洞789 江村マウル・アパートメント 501−205 (72)発明者 ▲ちょ▼ 榮 鎬 大韓民国、138−220ソウル特別市松坡区▲ じゃん▼室洞(番地なし) 住公アパート メント27 516−908 Fターム(参考) 4D006 GA06 GA07 LA06 MA22 MC03 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Lee Seo ▲ yo ぷ ▼ Republic of Korea, 411-350, Gong-dong, Goyang-dong, Gyeonggi-do 789 Magu-dong, Gangseong-maul Apartments 501-205 (72) Inventor ▲ Cho ▼ Ei-ho Republic of Korea, 138-220 Songpa-gu, Seoul ▲ Jan ▼ Murodong (No address) Sumigong Apartment 27 516-908 F-term (reference) 4D006 GA06 GA07 LA06 MA22 MC03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 既知の分子量サイズ分布を有する電荷性
または非電荷性溶質含有水溶液(流入水)を膜孔サイズ
を測定しようとする膜に通して濾過した後、流入水と濾
過水間の溶質の分子量サイズ分布を比べることによって
膜濾過による特定分子量部分除去率を算定し、これを膜
の気孔サイズ分布に換算することを含む、膜孔サイズ分
布測定方法。
An aqueous solution containing a charged or non-charged solute (influent water) having a known molecular weight size distribution (influent water) is filtered through a membrane whose pore size is to be measured. A method of measuring the pore size distribution, comprising calculating the specific molecular weight partial removal rate by membrane filtration by comparing the molecular weight size distributions of the above, and converting this into the pore size distribution of the membrane.
【請求項2】 前記電荷性溶質が、スルホン酸ポリスチ
レン、サリチル酸、アミノ酸、自然有機物質またはこれ
らの混合物であることを特徴とする請求項1記載の方
法。
2. The method according to claim 1, wherein the charged solute is polystyrene sulfonate, salicylic acid, an amino acid, a natural organic substance, or a mixture thereof.
【請求項3】 前記非電荷性溶質が、ポリエチレングリ
コール、多糖類またはこれらの混合物であることを特徴
とする請求項1記載の方法。
3. The method according to claim 1, wherein the non-charged solute is a polyethylene glycol, a polysaccharide, or a mixture thereof.
【請求項4】 膜フォルダー付きの膜濾過装置、該膜濾
過装置に連結されて流入水および濾過水の溶質の分子量
サイズ分布を測定する高性能液体クロマトグラフィー
(HPLC)およびサイズ排除クロマトグラフィー(S
EC)、およびクロマトグラフィーから導出された結果
を分析し、膜孔サイズ分布に換算して表示するソフトウ
ェアを含む、請求項1〜3のいずれかに記載の方法に用
いられる膜孔サイズ分布測定装置。
4. A membrane filtration device with a membrane folder, high performance liquid chromatography (HPLC) and size exclusion chromatography (S) connected to the membrane filtration device for measuring the molecular weight size distribution of solutes in the influent and filtered water.
EC), and a software for analyzing the results derived from the chromatography, converting the data into a pore size distribution and displaying the result, and used for the method according to any one of claims 1 to 3. .
JP2000356613A 2000-11-22 2000-11-22 Method and apparatus for measuring pore size distribution using specific molecular weight partial removal rate of solute Expired - Fee Related JP3339679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000356613A JP3339679B2 (en) 2000-11-22 2000-11-22 Method and apparatus for measuring pore size distribution using specific molecular weight partial removal rate of solute

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000356613A JP3339679B2 (en) 2000-11-22 2000-11-22 Method and apparatus for measuring pore size distribution using specific molecular weight partial removal rate of solute

Publications (2)

Publication Number Publication Date
JP2002168766A true JP2002168766A (en) 2002-06-14
JP3339679B2 JP3339679B2 (en) 2002-10-28

Family

ID=18828826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000356613A Expired - Fee Related JP3339679B2 (en) 2000-11-22 2000-11-22 Method and apparatus for measuring pore size distribution using specific molecular weight partial removal rate of solute

Country Status (1)

Country Link
JP (1) JP3339679B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017647A (en) * 2008-07-10 2010-01-28 Metawater Co Ltd Method for inspecting membrane
JP2012035265A (en) * 2011-11-10 2012-02-23 Ngk Insulators Ltd Filtration membrane evaluation system
CN104741009A (en) * 2015-03-20 2015-07-01 江苏大学 Preparation method of salicylic acid molecular imprinted cellulose acetate blended membrane and application of blended membrane
CN112051198A (en) * 2020-08-03 2020-12-08 江苏省科建成套设备有限公司 Quantitative evaluation method for pore diameter of porous membrane
CN114904397A (en) * 2021-02-09 2022-08-16 上海工程技术大学 Method for measuring aperture and aperture distribution of filter membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109224867B (en) * 2018-09-21 2021-08-03 湖州师范学院求真学院 Characterization method of microporous membrane aperture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017647A (en) * 2008-07-10 2010-01-28 Metawater Co Ltd Method for inspecting membrane
JP2012035265A (en) * 2011-11-10 2012-02-23 Ngk Insulators Ltd Filtration membrane evaluation system
CN104741009A (en) * 2015-03-20 2015-07-01 江苏大学 Preparation method of salicylic acid molecular imprinted cellulose acetate blended membrane and application of blended membrane
CN104741009B (en) * 2015-03-20 2017-03-29 江苏大学 The preparation method and applications of salicylic acid molecular engram acetyl cellulose blend film
CN112051198A (en) * 2020-08-03 2020-12-08 江苏省科建成套设备有限公司 Quantitative evaluation method for pore diameter of porous membrane
CN114904397A (en) * 2021-02-09 2022-08-16 上海工程技术大学 Method for measuring aperture and aperture distribution of filter membrane
CN114904397B (en) * 2021-02-09 2023-09-19 上海工程技术大学 Method for measuring pore diameter and pore diameter distribution of filter membrane

Also Published As

Publication number Publication date
JP3339679B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
Cho et al. Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane
Fujioka et al. Probing the internal structure of reverse osmosis membranes by positron annihilation spectroscopy: Gaining more insight into the transport of water and small solutes
Chen et al. A facile method to quantify the carboxyl group areal density in the active layer of polyamide thin-film composite membranes
Thanuttamavong et al. Rejection characteristics of organic and inorganic pollutants by ultra low-pressure nanofiltration of surface water for drinking water treatment
Kilduff et al. Transport and separation of organic macromolecules in ultrafiltration processes
Tu et al. Effects of membrane fouling and scaling on boron rejection by nanofiltration and reverse osmosis membranes
Sioutopoulos et al. Relation between fouling characteristics of RO and UF membranes in experiments with colloidal organic and inorganic species
Bellona et al. Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review
Cho et al. Membrane filtration of natural organic matter: initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes
Rho et al. Surface charge characterization of nanofiltration membranes by potentiometric titrations and electrophoresis: Functionality vs. zeta potential
Su-Hua et al. Adsorption of bisphenol A by polysulphone membrane
Breitner et al. Effect of functional chemistry on the rejection of low-molecular weight neutral organics through reverse osmosis membranes for potable reuse
Osorio et al. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges
Yoon et al. Use of surfactant modified ultrafiltration for perchlorate (ClO4−) removal
Mitrouli et al. Calcium carbonate scaling of desalination membranes: Assessment of scaling parameters from dead-end filtration experiments
Yang et al. High permeance or high selectivity? Optimization of system-scale nanofiltration performance constrained by the upper bound
Choo et al. Selective removal of cobalt species using nanofiltration membranes
Yoon et al. Transport of perchlorate (ClO4−) through NF and UF membranes
JP3339679B2 (en) Method and apparatus for measuring pore size distribution using specific molecular weight partial removal rate of solute
Verliefde et al. Rejection of trace organic pollutants with high pressure membranes (NF/RO)
CN106932448B (en) A kind of chiral Molecular Recognition and enantiomeric excess detection method based on nanometer pore single-molecule technology
San Roman et al. Sulfonated polymerized liquid crystal nanoporous membranes for water purification
JP4902672B2 (en) Method for separating at least one actinide element from a lanthanide element in an aqueous solution by sequestering and membrane filtration
Braghetta The influence of solution chemistry and operating conditions on nanofiltration of charged and uncharged organic macromolecules
Lv et al. Enhanced surface hydrophilicity of thin-film composite membranes for nanofiltration: an experimental and DFT study

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees