JP2002168690A - Instrument and method for measuring light intensity - Google Patents

Instrument and method for measuring light intensity

Info

Publication number
JP2002168690A
JP2002168690A JP2000368380A JP2000368380A JP2002168690A JP 2002168690 A JP2002168690 A JP 2002168690A JP 2000368380 A JP2000368380 A JP 2000368380A JP 2000368380 A JP2000368380 A JP 2000368380A JP 2002168690 A JP2002168690 A JP 2002168690A
Authority
JP
Japan
Prior art keywords
light
light intensity
coefficient
measured
approximate expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000368380A
Other languages
Japanese (ja)
Inventor
Yasuyuki Minagawa
恭之 皆川
Yoshihiro Sanpei
義広 三瓶
Makoto Komiyama
誠 小宮山
Mamoru Arihara
守 在原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2000368380A priority Critical patent/JP2002168690A/en
Publication of JP2002168690A publication Critical patent/JP2002168690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide equipment and a method for measuring light intensity, in which the intensity of a light being measured converging onto an array element is calculated accurately, depending on the wavelength thereof. SOLUTION: At measuring of the light intensity by means of an array element, the shift amount between the central part of a light being measured converged onto the array element and the central part of an element irradiated most intensively with the light being measured is determined. Coefficient values of each order in the approximate expression, determined by the shift and the intensity of light, are optimized by a corrective expression using the wavelength as a parameter, thus correcting the intensity of light and accurately measuring the intensity of the light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フォトダイオード
アレイを用いて被測定光である各波長の光強度を測定
し、光強度を演算する信号処理を行うための光強度の測
定装置及び測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light intensity measuring apparatus and method for measuring a light intensity of each wavelength as a measured light using a photodiode array and performing signal processing for calculating the light intensity. It is about.

【0002】[0002]

【従来の技術】フォトダイオードアレイを用いて光強度
を測定する従来の分光器の一例として、ポリクロメータ
方式分光器を挙げることができる。図9は、ポリクロメ
ータ方式の分光器を内蔵した光スペクトラムアナライザ
の一例を示す原理構成図である。図9において、分光器
110は波長分散素子とアレイ素子115を有してい
る。駆動装置120は分光器110のアレイ素子115
の駆動および信号の読み出しを行う装置であり、演算装
置130は光強度を演算するための装置であり、表示装
置140は光強度をプロットすることにより光スペクト
ラムを表示する装置である。
2. Description of the Related Art As an example of a conventional spectroscope for measuring light intensity using a photodiode array, a polychromator type spectrometer can be mentioned. FIG. 9 is a principle configuration diagram showing an example of an optical spectrum analyzer having a built-in polychromator type spectroscope. In FIG. 9, the spectroscope 110 has a wavelength dispersion element and an array element 115. The driving device 120 is an array element 115 of the spectroscope 110.
The arithmetic device 130 is a device for calculating the light intensity, and the display device 140 is a device for displaying the light spectrum by plotting the light intensity.

【0003】分光装置110は、スリット111、コリ
メーティングレンズ112、波長分散素子である回折格
子113、フォーカシングレンズ114、アレイ素子1
15、光シャッター116及び偏光解消素子117から
構成される。具体的には、スリット111に対向してコ
リメーティングレンズ112が設置してある。スリット
111とコリメーティングレンズ112との間には光を
遮断できるように光シャッター116が遮蔽可能に設置
してある。コリメーティングレンズ112の隣でスリッ
ト111と反対側に、コリメーティングレンズ112と
平行に偏光解消素子117が設置されている。
The spectroscopic device 110 includes a slit 111, a collimating lens 112, a diffraction grating 113 serving as a wavelength dispersion element, a focusing lens 114, and an array element 1.
15, an optical shutter 116 and a depolarizing element 117. Specifically, a collimating lens 112 is provided so as to face the slit 111. An optical shutter 116 is installed between the slit 111 and the collimating lens 112 so as to be able to shield light. Next to the collimating lens 112 and on the opposite side of the slit 111, a depolarizing element 117 is provided in parallel with the collimating lens 112.

【0004】回折格子113は入射した被測定光11を
アレイ素子115に回折できるように、偏光解消素子1
17に対して傾けて設置してある。被測定光11を収束
させるためフォーカシングレンズ114がアレイ素子1
15と回折格子113との間に設置されている。以上が
分光装置110内であり、分光装置110の外ではアレ
イ素子115に隣接して駆動装置120が設けられてい
る。さらに駆動装置120に隣接して演算装置130及
び表示装置140が配置されている。
The diffraction grating 113 is provided so that the incident light 11 to be measured can be diffracted toward the array element 115.
It is installed at an angle to 17. The focusing lens 114 is used to converge the measured light 11
15 and the diffraction grating 113. The above is the inside of the spectroscopic device 110, and the driving device 120 is provided outside the spectroscopic device 110 and adjacent to the array element 115. Further, a computing device 130 and a display device 140 are arranged adjacent to the driving device 120.

【0005】つぎに被測定光11の動作について説明す
る。スリット111の入射口を通して入射された被測定
光11はコリメーティングレンズ112で平行光とな
る。コリメーティングレンズ112を透過した光は、偏
光解消素子117を透過し波長分散素子113に入射す
る。偏光解消素子117を透過することにより波長分散
素子、特に回折格子113の偏光依存性が除去される。
波長分散素子113の出射光はフォーカシングレンズ1
14でアレイ素子115上に収束する。この場合、波長
分散素子113は固定されていて、アレイ素子115に
当たる光スポットの位置は被測定光の波長に対応してず
れる。図9では、偏光解消素子117をコリメーティン
グレンズ112と波長分散素子113の間に設置してあ
るが、偏光解消素子117は波長分散素子113に光が
入射される前なら分光器110のどこに設置されていて
もよい。また、図10に示すように被測定光11は光フ
ァイバ118を用いて入射させてもよい。
Next, the operation of the measured light 11 will be described. The light to be measured 11 incident through the entrance of the slit 111 becomes parallel light by the collimating lens 112. The light transmitted through the collimating lens 112 passes through the depolarizing element 117 and enters the wavelength dispersion element 113. By transmitting the light through the depolarizing element 117, the polarization dependence of the wavelength dispersion element, particularly, the diffraction grating 113 is removed.
The light emitted from the wavelength dispersion element 113 is focused on the focusing lens 1
At 14, it converges on the array element 115. In this case, the wavelength dispersion element 113 is fixed, and the position of the light spot hitting the array element 115 is shifted according to the wavelength of the light to be measured. In FIG. 9, the depolarizing element 117 is provided between the collimating lens 112 and the wavelength dispersing element 113, but the depolarizing element 117 is located anywhere on the spectroscope 110 before light is incident on the wavelength dispersing element 113. It may be installed. Further, as shown in FIG. 10, the measured light 11 may be made incident using an optical fiber 118.

【0006】光シャッター116は被測定光を遮り、そ
の時の光素子の暗電流レベルを測定することができる。
この値を被測定値から減算することで、暗電流のドリフ
トの影響も除去でき、高精度な測定が実現できる。
The optical shutter 116 blocks the light to be measured, and can measure the dark current level of the optical element at that time.
By subtracting this value from the measured value, the influence of the drift of dark current can be removed, and highly accurate measurement can be realized.

【0007】アレイ素子115は、短冊状、点状の受光
部(素子または受光素子という)が配列されたものであ
る。各素子の位置が波長に対応しており、各素子の光強
度を検出し、プロットすることにより光スペクトラムが
測定・表示できる。また、各素子の出力から、例えばガ
ウシアン分布を仮定することで、被測定光の中心波長を
精度良く内挿することもできる。
The array element 115 is formed by arranging strip-shaped or point-shaped light receiving portions (referred to as elements or light receiving elements). The position of each element corresponds to the wavelength, and the optical spectrum can be measured and displayed by detecting and plotting the light intensity of each element. Also, by assuming, for example, a Gaussian distribution from the output of each element, the center wavelength of the measured light can be accurately interpolated.

【0008】図9、図10で示すアレイ素子115の受
光素子部分が短冊状の場合を例にとり、z軸よりx−y
面でみた概略図を図11に示す。アレイ素子115は受
光素子200が隙間無く一方向に並んでいるのではな
く、y軸方向にはΔyの長さを有し、x軸方向にはΔp
幅の受光部、Δd幅の非受光部、Δp幅の受光部…とい
うように形成されている。
In the case where the light-receiving element portion of the array element 115 shown in FIGS.
FIG. 11 shows a schematic view as viewed from the plane. The array element 115 does not have the light receiving elements 200 arranged in one direction without a gap, but has a length Δy in the y-axis direction and Δp in the x-axis direction.
A light receiving portion having a width, a non-light receiving portion having a width Δd, a light receiving portion having a width Δp, and so on are formed.

【0009】光強度は受光素子200でそれぞれで検出
された出力値を足すことにより求めることができる。光
強度を求めるために使用する素子は、被測定光11の各
波長で被測定光の光強度が強い素子を中心とした前後数
素子であり、使用する素子数は、受光素子200上で収
束する被測定光のx軸方向の大きさによって異なる。図
11を例にすると、光強度演算に使用する中心の素子は
q番目の素子であり、使用する素子数は(q−1)番
目、q番目、(q+1)番目の3素子となる。前記3素
子の出力を使用して光強度が求まる。前記素子出力値を
それぞれP(q−1)、P(q)、P(q+1)とする
と光強度Powは式(1)と表される。
The light intensity can be obtained by adding the output values detected by the light receiving elements 200 respectively. The elements used for obtaining the light intensity are several elements before and after the element having the strong light intensity of the measured light at each wavelength of the measured light 11, and the number of elements used converges on the light receiving element 200. It depends on the magnitude of the measured light in the x-axis direction. In the example of FIG. 11, the central element used for the light intensity calculation is the q-th element, and the number of elements used is the (q-1) -th, q-th, and (q + 1) -th elements. The light intensity is determined using the outputs of the three elements. Assuming that the element output values are P (q-1), P (q), and P (q + 1), the light intensity Pow is expressed by Expression (1).

【0010】[0010]

【数1】 (Equation 1)

【0011】しかし、アレイ素子115上で収束する被
測定光11がガウシアン分布に相似していても非受光部
が存在するため、素子中心とビーム中心のずれΔxの量
によって光強度は一定とならない。ビーム半径を20μ
m、Δp幅を10μm、Δd幅を10μmとした場合の
Δxと光強度の関係を計算した例を図12に示す。光強
度の演算に使用する素子数は図11を例として3素子と
して計算している。実際は、受光素子の大きさと収束す
る被測定光の大きさによって演算に使用する素子数は変
化する。図12よりΔxの位置によって光強度が変動し
被測定光11の光強度が正確に求まらないことが分か
る。従来は、前記光強度の変動分を式(2)によって補
正を行っている。
However, even if the measured light 11 converging on the array element 115 resembles a Gaussian distribution, there is a non-light-receiving portion, so that the light intensity is not constant depending on the amount of deviation Δx between the element center and the beam center. . 20μ beam radius
FIG. 12 shows an example of calculating the relationship between Δx and the light intensity when the widths of m and Δp are 10 μm and the width of Δd is 10 μm. The number of elements used in the calculation of the light intensity is calculated as three elements using FIG. 11 as an example. Actually, the number of elements used for the calculation changes depending on the size of the light receiving element and the size of the converged light to be measured. It can be seen from FIG. 12 that the light intensity fluctuates depending on the position of Δx, and the light intensity of the measured light 11 is not accurately obtained. Conventionally, the fluctuation of the light intensity is corrected by equation (2).

【0012】[0012]

【数2】 (Equation 2)

【0013】ここで、aは補正係数であり、素子の大き
さと、収束する被測定光11の大きさ、演算に使用する
素子数より求まる値である。式(2)による補正後の結
果を図13に示す。補正のない図12の結果と比較して
Δxによる光強度の変動が減少している。
Here, a is a correction coefficient, and is a value obtained from the size of the element, the size of the converged light under measurement 11, and the number of elements used for calculation. FIG. 13 shows the result after correction by the equation (2). The variation in light intensity due to Δx is reduced as compared with the result of FIG. 12 without correction.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、現実に
製作され使用される分光器にはアレイ素子115上で収
束する被測定光11はガウシアン分布の形状と異なる。
ガウシアン形状と異なるのは、光学部品のばらつき、製
作時の調整誤差、製品の経時変化、使用環境状況など様
々な要因がありこれらすべての原因を除去することは不
可能である。また前記要因によりアレイ素子上で収束す
る被測定光の形状は、x軸方向に対して光強度分布が非
対称になる、被測定光の中心から減衰する光強度がなだ
らかでない、入射する波長に対しても形状が変化する等
が考えられる。
However, in the spectroscope actually manufactured and used, the measured light 11 converged on the array element 115 has a shape different from the Gaussian distribution.
The difference from the Gaussian shape is caused by various factors such as variations in optical components, adjustment errors at the time of manufacture, aging of products, and use environment conditions, and it is impossible to eliminate all of these causes. The shape of the light to be measured converged on the array element due to the above factors is such that the light intensity distribution becomes asymmetric with respect to the x-axis direction, the light intensity attenuated from the center of the light to be measured is not smooth, It is conceivable that the shape may change even if it does.

【0015】被測定光11を非対称とした場合のΔxと
光強度の関係を計算した結果を図14に示す。ビーム半
径は図11においてビーム中心から左側を22μm、右
側を20μmとしている。また、式(2)で補正した結
果を図15に示す。被測定光の形状が対称な場合は式
(2)の補正により、光強度の変動分が0.128dB
ppから0.018dBppと改善されている。しか
し、被測定光が非対称になっただけで、光強度の変動分
は0.134dBppから0.025dBppの改善に
とどまり、光強度の変動が被測定光が対象なガウシアン
形状の場合の補正と比較して補正が機能していないこと
がわかる。
FIG. 14 shows the result of calculating the relationship between Δx and light intensity when the measured light 11 is asymmetric. The beam radius is 22 μm on the left side and 20 μm on the right side from the beam center in FIG. FIG. 15 shows the result corrected by the equation (2). When the shape of the light to be measured is symmetric, the variation of the light intensity is 0.128 dB by the correction of the expression (2).
from pp to 0.018 dBpp. However, the variation in light intensity is only improved from 0.134 dBpp to 0.025 dBpp just because the measured light is asymmetric, and the variation in light intensity is compared with the correction in the case where the measured light has a target Gaussian shape. It can be seen that the correction is not working.

【0016】本発明は上記の事情に鑑みてなされたもの
であり、被測定光の波長に応じてアレイ素子上で収束す
る被測定光の光強度を精度良く演算するための光強度の
測定装置及び測定方法を提供するものである。
The present invention has been made in view of the above circumstances, and has a light intensity measuring apparatus for accurately calculating the light intensity of light to be measured converging on an array element according to the wavelength of the light to be measured. And a measuring method.

【0017】[0017]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に記載の発明は、アレイ素子に収束した
被測定光の光強度を測定する光強度の測定装置におい
て、前記アレイ素子を駆動する駆動装置に隣接して配置
した演算装置内には、前記アレイ素子に収束した被測定
光の中心部と被測定光の光が最も強く照射されている受
光素子の中心部とのずれ量を複数求めるずれ量算出手段
と、求めたずれ量に対応して前記受光素子の中心部とそ
の前後の受光素子で検出された光強度を求める光強度演
算手段と、前記ずれ量と前記光強度との関係を与えるn
次(nは整数)の近似式を求める近似式演算手段と、前
記近似式が前記ずれ量の範囲内で最大値が0となるよう
に前記近似式の係数を設定する係数設定手段と、この係
数設定手段で係数設定後の近似式にある各次数の係数の
符号を反転させる反転手段と、符号を反転させた係数を
用いた補正式により得られた補正値により前記光強度演
算手段から求めた光強度を補正する補正手段と、を有す
ることを特徴とする光強度の測定装置である。
According to a first aspect of the present invention, there is provided a light intensity measuring apparatus for measuring the light intensity of light to be measured converged on an array element. In the arithmetic device arranged adjacent to the driving device for driving the elements, the central part of the light to be measured converged on the array element and the central part of the light receiving element to which the light of the light to be measured is most strongly irradiated A shift amount calculating means for obtaining a plurality of shift amounts; a light intensity calculating means for obtaining light intensities detected by the central portion of the light receiving element and the light receiving elements before and after the center corresponding to the obtained shift amount; N giving the relationship with light intensity
Approximation formula calculating means for calculating the next (n is an integer) approximation formula; coefficient setting means for setting a coefficient of the approximation formula such that the maximum value of the approximation formula becomes 0 within the range of the deviation amount; Inverting means for inverting the sign of each order coefficient in the approximate expression after coefficient setting by the coefficient setting means, and a correction value obtained by a correction expression using a coefficient whose sign is inverted, obtained from the light intensity calculating means. And a correction unit for correcting the light intensity.

【0018】このような構成によれば、ずれ量である△
xを被測定光の波長を変えることにより複数求め、それ
らずれ量から光強度を求め、そこから精度のよい近似式
を求める。近似式では出力が△xの範囲内で最大値が0
となるように定数を決める。そして、近似式の各係数を
反転させ、各係数の符号を反転させて、以下の補正式を
導く。
According to such a configuration, the shift amount is △.
A plurality of x's are obtained by changing the wavelength of the light to be measured, the light intensity is obtained from the shift amount, and a precise approximation formula is obtained therefrom. In the approximate expression, the maximum value is 0 within the range of △ x
Determine the constant so that Then, each coefficient of the approximate expression is inverted, and the sign of each coefficient is inverted to derive the following correction expression.

【0019】[0019]

【数3】 (Equation 3)

【0020】予め補正式の係数はずれ量である△xを求
める前にメモリーに記憶されている。上記の補正式によ
り補正値を求め、下記の式により光強度の補正を行う。
The coefficients of the correction formula are stored in a memory before calculating the deviation amount Δx. A correction value is obtained by the above correction formula, and the light intensity is corrected by the following formula.

【0021】[0021]

【数4】 (Equation 4)

【0022】これより分光器自身の特性を考慮した光強
度の補正が可能となり、分光器の機器の影響を取り除け
る。
Thus, the light intensity can be corrected in consideration of the characteristics of the spectroscope itself, and the influence of the spectrometer device can be eliminated.

【0023】また請求項3に記載の発明は、前記ずれ量
算出手段は、複数の異なる波長範囲で、アレイ素子に収
束した被測定光の中心部と被測定光の光が最も強く照射
されている受光素子の中心部とのずれ量を求め、前記光
強度演算手段は、各波長範囲について、求めたずれ量に
対応して前記受光素子の中心部とその前後の受光素子で
検出された光強度を求め、前記係数設定手段は、各波長
範囲について、前記近似式が前記ずれ量の範囲内で最大
値が0となるように前記近似式の係数を設定し、前記反
転手段は、各波長範囲について、係数設定手段で係数設
定後の近似式にある各次数の係数の符号を反転させ、前
記近似式演算手段は、各波長範囲について、前記ずれ量
と前記光強度との関係を与えるn次の近似式を求め、各
波長範囲について符号を反転させた式にある各次数の係
数をもとに、係数についての波長のm次関数式(mは整
数)を求める関数演算手段を有し、近似式にある各次数
の係数を波長の関数にしたことを特徴とする請求項1記
載の光強度の測定装置である。
According to a third aspect of the present invention, the shift amount calculating means is configured to irradiate the center portion of the measured light converged on the array element and the light of the measured light in the plurality of different wavelength ranges most strongly. The light intensity calculating means calculates, for each wavelength range, the light detected by the central part of the light receiving element and the light receiving elements before and after the central part of the light receiving element for each wavelength range. Determining the intensity, the coefficient setting means sets the coefficient of the approximate expression so that the maximum value of the approximate expression becomes 0 within the range of the deviation amount for each wavelength range, For the range, the sign of the coefficient of each order in the approximate expression after the coefficient is set by the coefficient setting means is inverted, and the approximate expression calculating means gives the relationship between the shift amount and the light intensity for each wavelength range. Calculate the following approximation formula for each wavelength range A function calculating means for calculating an m-th order function expression (m is an integer) of the wavelength for the coefficient based on the coefficient of each order in the inverted expression, and converting the coefficient of each order in the approximation expression to the wavelength 2. The light intensity measuring apparatus according to claim 1, wherein the function is a function of:

【0024】このような構成によれば、被測定光の波長
をパラメータとして用い補正式の各次数の補正係数が下
記の式により定まることになる。
According to such a configuration, the correction coefficient of each order of the correction equation is determined by the following equation using the wavelength of the light to be measured as a parameter.

【0025】[0025]

【数5】 (Equation 5)

【0026】そして、補正式の各次数の補正係数が定ま
ると、下記の式により補正値が求められる。
When the correction coefficient of each order of the correction formula is determined, a correction value is obtained by the following formula.

【0027】[0027]

【数6】 (Equation 6)

【0028】この補正値により、請求項1に記載の発明
で用いた下記の式により、次数の各補正係数も波長をパ
ラメータとして加味した係数となり、光強度も波長の影
響を考慮に入れた結果を導ける。
According to the correction values, the following correction factors used in the first aspect of the present invention are also used as the correction coefficients of the orders, with the wavelength being a parameter, and the light intensity is a result of taking the influence of the wavelength into consideration. Can lead.

【0029】[0029]

【数7】 (Equation 7)

【0030】[0030]

【発明の実施の形態】以下に、本発明の実施の形態を図
面を用いて詳細に説明する。図1は本発明の一実施例の
構成図である。図1ではポリクロメータ方式の分光器の
原理構成図を部分的に示してある。図1で、本発明の特
徴とする演算装置30は、光強度の補正演算を行う。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram of one embodiment of the present invention. FIG. 1 partially shows a principle configuration diagram of a polychromator type spectroscope. In FIG. 1, an arithmetic unit 30 which is a feature of the present invention performs a light intensity correction operation.

【0031】図2は演算装置30の構成例を示した図で
ある。図2で、ずれ量算出手段31は、アレイ素子に収
束した被測定光の中心部と被測定光の光が最も強く照射
されている受光素子の中心部とのずれ量を複数求める。
光強度演算手段32は、求めたずれ量に対応して受光素
子の中心部とその前後の受光素子で検出された光強度を
求める。近似式演算手段33は、ずれ量と光強度との関
係を与えるn次(nは整数)の近似式を求める。係数設
定手段34は、近似式がずれ量の範囲内で最大値が0と
なるように近似式の係数を設定する。反転手段35は、
係数設定手段34で係数設定後の近似式にある各次数の
係数の符号を反転させる。記憶手段36は、符号を反転
させた係数を格納する。補正手段37は、符号を反転さ
せた係数を用いた補正式により得られた補正値により光
強度演算手段32から求めた光強度を補正する。
FIG. 2 is a diagram showing a configuration example of the arithmetic unit 30. In FIG. 2, the shift amount calculating means 31 obtains a plurality of shift amounts between the central part of the measured light converged on the array element and the central part of the light receiving element irradiated with the light of the measured light most strongly.
The light intensity calculating means 32 obtains the light intensity detected by the central portion of the light receiving element and the light receiving elements before and after the central part of the light receiving element in accordance with the obtained shift amount. The approximate expression calculating means 33 obtains an n-th (n is an integer) approximate expression that gives a relationship between the shift amount and the light intensity. The coefficient setting means 34 sets the coefficient of the approximate expression so that the maximum value of the approximate expression becomes 0 within the range of the deviation amount. The reversing means 35
The sign of the coefficient of each order in the approximate expression after the coefficient is set by the coefficient setting means 34 is inverted. The storage means 36 stores the coefficient whose sign is inverted. The correction unit 37 corrects the light intensity obtained from the light intensity calculation unit 32 with a correction value obtained by a correction expression using a coefficient whose sign is inverted.

【0032】なお、近似式演算手段33、係数設定手段
34及び反転手段35は演算装置に設けないで校正装置
に設けてもよい。この校正装置は校正時に接続される。
The approximation formula calculating means 33, coefficient setting means 34 and inverting means 35 may be provided in the calibration device without being provided in the calculating device. This calibration device is connected at the time of calibration.

【0033】本発明の一実施例(例1)の動作を説明す
る。図3は光強度の測定手順を示したフローチャートで
ある。フローチャートのステップ順に従って説明する。 (S1)製造した分光器110に被測定光11を入射す
る。この時、アレイ素子115の出力から演算装置30
によりΔxと光強度とを求める。△xはずれ量であり、
アレイ素子に収束した被測定光の中心部と被測定光の光
が最も強く照射されている受光素子の中心部とのずれ量
を求めることになる。また光強度は従来と同様に光強度
演算手段内にある式(1)により求める。次に被測定光
11の波長を仕様波長範囲全体、又は任意の波長の範囲
で変えて、Δxを少しずらし、前記同様に光強度を求め
る。 (S2)そして、△x及び光強度を第一の記憶手段に格
納する。この記憶手段は演算装置30内に設けられてい
る。式(1)で求めた光強度のなかで最大出力の光強度
で全光強度を規格化する。
The operation of one embodiment (Example 1) of the present invention will be described. FIG. 3 is a flowchart showing the procedure for measuring the light intensity. The description will be made according to the order of steps in the flowchart. (S1) The measured light 11 is incident on the manufactured spectroscope 110. At this time, the arithmetic unit 30 is obtained from the output of the array element 115.
Δx and light intensity are obtained by Δx is the deviation amount,
The amount of shift between the central portion of the measured light converged on the array element and the central portion of the light receiving element that is most strongly irradiated with the light of the measured light is determined. Further, the light intensity is obtained by Expression (1) in the light intensity calculation means as in the conventional case. Next, the wavelength of the light to be measured 11 is changed over the entire specified wavelength range or an arbitrary wavelength range, Δx is slightly shifted, and the light intensity is obtained in the same manner as described above. (S2) Then, Δx and the light intensity are stored in the first storage means. This storage means is provided in the arithmetic unit 30. The total light intensity is normalized by the light intensity of the maximum output among the light intensities obtained by Expression (1).

【0034】(S3)つぎに第一の記憶手段に格納され
た△xと光強度とを用いて近似式を求める。これら一連
の作業を、Δxと光強度の関係から近似式が精度良く求
められるまで行う。具体的には、演算装置30内で予め
高次の式で補正を行えるようにプログラムを設定した演
算手段によりΔxと規格化した光強度より高次の近似式
を求める。例えば10次式をプログラムに設定してお
き、実際には4次式で補正を行う場合は、5次から10
次までの補正式の係数を0とすればよい。
(S3) Next, an approximate expression is obtained using Δx and light intensity stored in the first storage means. These series of operations are performed until an approximate expression is accurately obtained from the relationship between Δx and light intensity. More specifically, a higher-order approximation formula is obtained from Δx and the standardized light intensity by a calculation means in which a program is set in advance so that the correction can be performed by a higher-order formula in the calculation device 30. For example, if a 10th-order equation is set in a program, and correction is actually performed by a 4th-order equation, the fifth-order to 10th-order equations are used.
The coefficients of the following correction equations may be set to 0.

【0035】(S4)式(4)より、補正は各光強度が
最大値と同じになるように行うので近似式の出力がΔx
の範囲内、つまり±(Δp+Δd)/2の範囲にて最大
値が0となるように定数を設定する。 (S5)近似式の係数を反転させれば式(3)のf(Δ
x)となるので、各係数の符号を反転させ、式(3)を
補正式の一般形とする。 (S6)予め分光器110の製造時に各機体ごとに例1
の方法で所定である最適な次数の補正式の係数を第二の
記憶手段に格納してある。分光器110を使用するとき
には光強度を精度良く補正できるように第二のメモリー
から補正式の係数を読み出し、式(3)を求め、式
(3)より補正値を求め、式(4)を用いてその補正値
を用いて光強度演算手段により求められた光強度の補正
を行う。
(S4) According to the equation (4), the correction is performed so that each light intensity becomes equal to the maximum value.
, That is, a constant is set such that the maximum value becomes 0 in the range of ± (Δp + Δd) / 2. (S5) By inverting the coefficient of the approximate expression, f (Δ
x), the sign of each coefficient is inverted, and equation (3) is used as the general form of the correction equation. (S6) Example 1 for each machine before manufacturing the spectroscope 110
The coefficient of the correction equation of the predetermined optimal order is stored in the second storage means. When the spectroscope 110 is used, the coefficients of the correction formula are read from the second memory so that the light intensity can be corrected with high accuracy, the formula (3) is obtained, the correction value is obtained from the formula (3), and the formula (4) is obtained. Then, the light intensity calculated by the light intensity calculating means is corrected using the correction value.

【0036】しかし、分光器は被測定光の波長によって
アレイ素子115上で収束する被測定光11の形状が異
なるので、仕様波長全体で同じ補正式では不十分となる
場合もある。この場合は、補正式の各係数も波長をパラ
メータとして各波長ごとに最適な係数を求める必要があ
る。
However, in the spectroscope, the shape of the measured light 11 converged on the array element 115 differs depending on the wavelength of the measured light, so that the same correction formula may not be sufficient over the entire specified wavelength. In this case, it is necessary to find the optimum coefficient for each wavelength by using the wavelength as a parameter for each coefficient of the correction formula.

【0037】これを改良するための本発明の他の実施例
(例2)について説明する。 (例2)図4は例2で用いる演算装置の構成例を示した
図である。例2で用いる演算装置は例1で用いる演算装
置と次の点が異なる。ずれ量算出手段31は、複数の異
なる波長範囲で、アレイ素子に収束した被測定光の中心
部と被測定光の光が最も強く照射されている受光素子の
中心部とのずれ量を求める。光強度演算手段32は、各
波長範囲について、求めたずれ量に対応して前記受光素
子の中心部とその前後の受光素子で検出された光強度を
求める。近似式演算手段33は、各波長範囲について、
前記ずれ量と前記光強度との関係を与えるn次の近似式
を求める。係数設定手段34は、各波長範囲について、
近似式がずれ量の範囲内で最大値が0となるように近似
式の係数を設定する。反転手段35は、各波長範囲につ
いて、係数設定手段34で係数設定後の近似式にある各
次数の係数の符号を反転させる。記憶手段36は、係数
についての波長のm次関数式にある係数を格納する。補
正手段37は、係数についての波長のm次関数式により
補正式の係数を求め、係数が求められた補正式により得
られた補正値により光強度演算手段32から求めた光強
度を補正する。各波長範囲について求めた近似式にある
各次数の係数をもとに、係数についての波長のm次関数
式(mは整数)を求める関数演算手段38を設けてい
る。例2では、近似式にある各次数の係数を波長の関数
にしている。
Another embodiment (Example 2) of the present invention for improving this will be described. (Example 2) FIG. 4 is a diagram showing an example of the configuration of the arithmetic unit used in Example 2. The arithmetic unit used in Example 2 is different from the arithmetic unit used in Example 1 in the following points. The shift amount calculating means 31 calculates the shift amount between the central part of the measured light converged on the array element and the central part of the light receiving element irradiated with the light of the measured light most strongly in a plurality of different wavelength ranges. The light intensity calculating means 32 obtains, for each wavelength range, the light intensity detected by the central part of the light receiving element and the light receiving elements before and after the central part of the light receiving element in accordance with the obtained shift amount. The approximate expression calculating means 33 calculates, for each wavelength range,
An approximate expression of order n that gives the relationship between the shift amount and the light intensity is obtained. The coefficient setting means 34 calculates, for each wavelength range,
The coefficient of the approximate expression is set so that the maximum value of the approximate expression is 0 within the range of the deviation amount. Inverting means 35 inverts the sign of each order coefficient in the approximate expression after the coefficient setting by coefficient setting means 34 for each wavelength range. The storage means 36 stores the coefficient in the m-th order function expression of the wavelength for the coefficient. The correction unit 37 obtains a coefficient of the correction expression using an m-order function expression of the wavelength with respect to the coefficient, and corrects the light intensity obtained from the light intensity calculation unit 32 with a correction value obtained by the correction expression from which the coefficient was obtained. A function calculating unit 38 is provided for calculating an m-th order function expression (m is an integer) of the wavelength for the coefficient based on the coefficient of each order in the approximate expression obtained for each wavelength range. In Example 2, the coefficient of each order in the approximation formula is a function of wavelength.

【0038】なお、近似式演算手段33、係数設定手段
34、反転手段35及び関数演算手段38は演算装置3
0に設けないで校正装置に設けてもよい。この校正装置
は校正時に接続される。
The approximation formula calculating means 33, coefficient setting means 34, inverting means 35 and function calculating means 38
It may be provided in the calibration device without being provided in 0. This calibration device is connected at the time of calibration.

【0039】図5は光強度の測定手順を示したフローチ
ャートである。フローチャートのステップ順に従って説
明する。例2は補正式の各補正係数が波長をパラメータ
とした例である。 (S11)先ず分光器110の仕様波長範囲の2箇所以
上で任意の波長範囲にて例1と同様にΔxと光強度とを
求める。その求め方は、被測定光11を分光器110に
入射する。この時、アレイ素子115の出力から光強度
演算手段内の式(1)を用いて光強度とを求める。次に
被測定光11の波長を変えて、Δxを少しずらし、例1
と同様にΔxと光強度を求める。 (S12)そして、△x及び光強度を第一の記憶手段に
格納する。前記個所それぞれにて、式(1)で求めた光
強度のなかで最大出力の光強度で全光強度を規格化す
る。
FIG. 5 is a flowchart showing the procedure for measuring the light intensity. The description will be made according to the order of steps in the flowchart. Example 2 is an example in which each correction coefficient of the correction formula uses wavelength as a parameter. (S11) First, Δx and light intensity are obtained at two or more locations within the specified wavelength range of the spectroscope 110 in an arbitrary wavelength range in the same manner as in Example 1. In order to obtain the light, the measured light 11 is incident on the spectroscope 110. At this time, the light intensity is obtained from the output of the array element 115 by using the expression (1) in the light intensity calculating means. Next, by changing the wavelength of the light under measurement 11 and slightly shifting Δx,
Similarly, Δx and light intensity are obtained. (S12) Then, Δx and the light intensity are stored in the first storage means. At each of the locations, the total light intensity is normalized by the light intensity of the maximum output among the light intensities obtained by equation (1).

【0040】(S13)つぎに第一のメモリーに格納さ
れた△xと光強度とを用いて近似式を求める。これら一
連の作業を、Δxと光強度の関係から近似式が精度良く
求まるまで前記個所それぞれにて測定を行う。 (S14)具体的には、演算装置30内に予め高次の式
で補正を行うようにプログラムを設定した演算手段によ
りΔxと規格化した光強度より最適の近似式を求める。 (S15)式(4)より、補正は各光強度が最大値と同
じになるように行うので近似式の出力がΔxの範囲内、
つまり±(Δp+Δd)/2の範囲にて最大値が0とな
るように前記個所それぞれにて求めた近似式の定数を設
定する。
(S13) Next, an approximate expression is obtained using Δx and light intensity stored in the first memory. These series of operations are measured at each of the above locations until an approximate expression is accurately obtained from the relationship between Δx and light intensity. (S14) Specifically, an optimum approximation formula is obtained from Δx and the standardized light intensity by a calculation means in which a program is set in advance in the calculation device 30 so as to perform the correction by a higher-order formula. (S15) From the equation (4), the correction is performed so that each light intensity becomes the same as the maximum value, so that the output of the approximate expression is within the range of Δx.
That is, the constants of the approximation formulas determined at the respective locations are set such that the maximum value becomes 0 in the range of ± (Δp + Δd) / 2.

【0041】(S16)近似式の各係数を反転させれば
式(5)のf(Δx)となるので、前記個所それぞれに
て求めた各係数の符号を反転させ補正式とする。 (S17)前記個所それぞれにて求めた各次数の補正係
数は波長をパラメータとして式(6)で求めることがで
きる。 (S18)分光器110の製造時に各機体ごとに例2の
方法で所定である最適な各次数の補正係数は第三の記憶
手段に格納される。分光器110を使用するときには光
強度を精度良く補正できるよう第三のメモリーから補正
係数を読み出し式(5)、式(6)を求め、最後に式
(4)を用いてその補正値を用いて光強度演算手段によ
り求められた光強度の補正を行う。
(S16) If each coefficient of the approximate expression is inverted, f (Δx) of the expression (5) is obtained. Therefore, the sign of each coefficient obtained at each of the above locations is inverted to obtain a correction expression. (S17) The correction coefficient of each order obtained at each of the above locations can be obtained by Expression (6) using the wavelength as a parameter. (S18) When manufacturing the spectroscope 110, the optimal correction coefficient of each order, which is predetermined by the method of Example 2 for each machine, is stored in the third storage means. When the spectroscope 110 is used, a correction coefficient is read out from the third memory so as to accurately correct the light intensity, equations (5) and (6) are obtained, and finally the correction value is used by using the equation (4). The light intensity calculated by the light intensity calculating means is corrected.

【0042】実際に製造した分光器をもとに、光強度の
補正無しの場合のΔxによる光強度の変動、式(2)で
の補正式の場合のΔxによる光強度の変動、図5の方法
を行った場合のΔxによる光強度の変動をそれぞれ図に
示す。ここで図5の方法では、式(5)の次数は4次で
あり、仕様波長範囲内でΔxと光強度の関係を測定した
個所は3箇所であり、式(6)の次数は3次である。
Based on the actually manufactured spectroscope, the fluctuation of the light intensity due to Δx when there is no correction of the light intensity, the fluctuation of the light intensity due to Δx in the case of the correction formula of equation (2), FIG. Changes in light intensity due to Δx when the method is performed are shown in the figures. Here, in the method of FIG. 5, the order of equation (5) is the fourth order, the relationship between Δx and the light intensity is measured in three places within the specified wavelength range, and the order of equation (6) is the third order. It is.

【0043】Δxと光強度との関係を仕様波長範囲の短
波長側、中心波長付近、長波長付近それぞれを図6、図
7及び図8に示す。補正無の場合の結果を図よりみると
Δxと光強度との変動は波長によって異なっていること
がわかり、補正式(2)の方式では光強度の変動の改善
の効果が少ないが、本発明の方式では各波長領域におい
て光強度の変動の改善に効果があることが分かる。
The relationship between Δx and the light intensity is shown in FIGS. 6, 7 and 8 for the short wavelength side, near the center wavelength, and near the long wavelength of the specified wavelength range. The results of the case without correction show that the variation between Δx and the light intensity differs depending on the wavelength. The method of the correction formula (2) has little effect of improving the variation of the light intensity. It can be seen that the method of (1) is effective in improving the fluctuation of the light intensity in each wavelength region.

【0044】分光器の一例としてポリクロメータ方式分
光器をあげたが、本発明は受光部にアレイ素子を用いる
方式の分光器全てに適用することが可能である。また、
分光器以外でもアレイ素子を用いて光強度を測定する測
定器一般にも応用することが出来る。
Although a polychromator type spectrometer has been described as an example of the spectrometer, the present invention can be applied to all spectrometers of a type using an array element in a light receiving section. Also,
In addition to the spectroscope, the present invention can be applied to general measuring instruments for measuring light intensity using array elements.

【0045】[0045]

【発明の効果】本発明によれば、最適な補正式を用いる
ため分光器における光学部品のばらつき等といった光強
度への変動要因を除去できると共に、被測定光の波長に
よる影響についても同様に除去でき、アレイ素子上で収
束する被測定光の光強度を精度よく演算することが可能
になる。
According to the present invention, since the optimum correction formula is used, it is possible to eliminate a variation factor in light intensity such as a variation in optical components in a spectroscope, and similarly remove an influence due to the wavelength of light to be measured. This makes it possible to accurately calculate the light intensity of the measured light converged on the array element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】演算装置の構成例を示した図である。FIG. 2 is a diagram illustrating a configuration example of an arithmetic unit.

【図3】光強度の測定手順を示したフローチャートであ
る。
FIG. 3 is a flowchart showing a procedure for measuring light intensity.

【図4】演算装置の構成例を示した図である。FIG. 4 is a diagram illustrating a configuration example of an arithmetic unit.

【図5】光強度の測定手順を示したフローチャートであ
る。
FIG. 5 is a flowchart showing a procedure for measuring light intensity.

【図6】短波長領域でのΔxと光強度の関係である。FIG. 6 shows a relationship between Δx and light intensity in a short wavelength region.

【図7】中心波長領域でのΔxと光強度の関係である。FIG. 7 shows a relationship between Δx and light intensity in a central wavelength region.

【図8】長波長領域でのΔxと光強度の関係である。FIG. 8 is a relationship between Δx and light intensity in a long wavelength region.

【図9】従来技術のポリクロメータ方式の分光器の原理
構成図1である。
FIG. 9 is a principle configuration diagram 1 of a conventional polychromator type spectroscope.

【図10】従来技術のポリクロメータ方式の分光器の原
理構成図2である。
FIG. 10 is a principle configuration diagram 2 of a conventional polychromator type spectroscope.

【図11】アレイ素子上での被測定光との関係を示す概
略図である。
FIG. 11 is a schematic diagram showing a relationship with light to be measured on an array element.

【図12】ガウシアン形状の被測定光におけるΔxと光
強度の関係である。
FIG. 12 shows the relationship between Δx and light intensity in Gaussian-shaped light to be measured.

【図13】ガウシアン形状の被測定光におけるΔxと式
(2)にて補正をした光強度の関係である。
FIG. 13 is a graph showing the relationship between Δx in the Gaussian-shaped light to be measured and the light intensity corrected by the equation (2).

【図14】非対称のガウシアン形状の被測定光における
Δxと光強度の関係である。
FIG. 14 is a graph showing a relationship between Δx and light intensity in the asymmetric Gaussian light to be measured.

【図15】非対称のガウシアン形状の被測定光における
Δxと式(2)にて補正をした光強度の関係である。
FIG. 15 shows the relationship between Δx and the light intensity corrected by equation (2) in the asymmetric Gaussian-shaped light to be measured.

【符号の説明】[Explanation of symbols]

11 被測定光 30 演算装置 31 ずれ量算出手段 32 光強度演算手段 33 近似式演算手段 34 係数設定手段 35 反転手段 37 補正手段 38 関数演算手段 115 アレイ素子 DESCRIPTION OF SYMBOLS 11 Light to be measured 30 Arithmetic unit 31 Shift amount calculating means 32 Light intensity calculating means 33 Approximate formula calculating means 34 Coefficient setting means 35 Inverting means 37 Correcting means 38 Function calculating means 115 Array element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 在原 守 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 Fターム(参考) 2G020 AA04 CB04 CB43 CC02 CC55 CC63 CD05 CD24 CD36 CD38 CD39 2G065 AA04 AA13 AB04 BA09 BA33 BB15 BC13 BC33 DA05 5F088 AA01 BA20 BB06 EA02  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Mamoru Arihara 2-93-2 Nakamachi, Musashino-shi, Tokyo F-term in Yokogawa Electric Corporation (reference) 2G020 AA04 CB04 CB43 CC02 CC55 CC63 CD05 CD24 CD36 CD38 CD39 2G065 AA04 AA13 AB04 BA09 BA33 BB15 BC13 BC33 DA05 5F088 AA01 BA20 BB06 EA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】アレイ素子に収束した被測定光の光強度を
測定する光強度の測定装置において、 前記アレイ素子を駆動する駆動装置に隣接して配置した
演算装置内には、 前記アレイ素子に収束した被測定光の中心部と被測定光
の光が最も強く照射されている受光素子の中心部とのず
れ量を複数求めるずれ量算出手段と、 求めたずれ量に対応して前記受光素子の中心部とその前
後の受光素子で検出された光強度を求める光強度演算手
段と、 前記ずれ量と前記光強度との関係を与えるn次(nは整
数)の近似式を求める近似式演算手段と、 前記近似式が前記ずれ量の範囲内で最大値が0となるよ
うに前記近似式の係数を設定する係数設定手段と、 この係数設定手段で係数設定後の近似式にある各次数の
係数の符号を反転させる反転手段と、 符号を反転させた係数を用いた補正式により得られた補
正値により前記光強度演算手段から求めた光強度を補正
する補正手段と、を有することを特徴とする光強度の測
定装置。
1. A light intensity measuring device for measuring the light intensity of light to be measured converged on an array element, wherein an arithmetic unit arranged adjacent to a driving device for driving the array element includes: A shift amount calculating means for obtaining a plurality of shift amounts between a central portion of the converged light to be measured and a central portion of the light receiving element to which the light of the light to be measured is most strongly irradiated; and the light receiving element corresponding to the obtained shift amount. A light intensity calculating means for calculating the light intensity detected by the light receiving elements before and after the central portion of the light emitting element; and an approximate expression calculating an n-th (n is an integer) approximate expression that gives a relationship between the shift amount and the light intensity. Means, coefficient setting means for setting a coefficient of the approximation expression such that the maximum value of the approximation expression is 0 within the range of the deviation amount, and each order in the approximation expression after the coefficient setting by the coefficient setting means. Inverting means for inverting the sign of the coefficient of A light intensity measuring device, comprising: a correcting unit that corrects the light intensity obtained by the light intensity calculating unit with a correction value obtained by a correction formula using a coefficient obtained by inverting the light intensity.
【請求項2】前記近似式演算手段、係数設定手段及び反
転手段は校正装置に設けられていて、この校正装置は校
正時に接続されることを特徴とする請求項1記載の光強
度の測定装置。
2. A light intensity measuring apparatus according to claim 1, wherein said approximation formula calculating means, coefficient setting means and inverting means are provided in a calibration device, and said calibration device is connected at the time of calibration. .
【請求項3】前記ずれ量算出手段は、複数の異なる波長
範囲で、アレイ素子に収束した被測定光の中心部と被測
定光の光が最も強く照射されている受光素子の中心部と
のずれ量を求め、 前記光強度演算手段は、各波長範囲について、求めたず
れ量に対応して前記受光素子の中心部とその前後の受光
素子で検出された光強度を求め、 前記係数設定手段は、各波長範囲について、前記近似式
が前記ずれ量の範囲内で最大値が0となるように前記近
似式の係数を設定し、 前記反転手段は、各波長範囲について、係数設定手段で
係数設定後の近似式にある各次数の係数の符号を反転さ
せ、 前記近似式演算手段は、各波長範囲について、前記ずれ
量と前記光強度との関係を与えるn次の近似式を求め、 各波長範囲について符号を反転させた式にある各次数の
係数をもとに、係数についての波長のm次関数式(mは
整数)を求める関数演算手段を有し、 近似式にある各次数の係数を波長の関数にしたことを特
徴とする請求項1記載の光強度の測定装置。
3. The apparatus according to claim 1, wherein the shift amount calculating means is configured to determine a center of the light to be measured converged on the array element and a center of the light receiving element to which the light of the light to be measured is most strongly irradiated in a plurality of different wavelength ranges. Calculating a shift amount; for each wavelength range, the light intensity calculating means obtains the light intensity detected by the central portion of the light receiving element and the light receiving elements before and after the central portion of the light receiving element corresponding to the calculated shift amount; Sets, for each wavelength range, the coefficient of the approximate expression so that the maximum value of the approximate expression becomes 0 within the range of the deviation amount. The inverting means sets the coefficient by the coefficient setting means for each wavelength range. Inverting the sign of the coefficient of each order in the approximate expression after the setting, the approximate expression calculating means obtains an n-th approximate expression that gives a relationship between the shift amount and the light intensity for each wavelength range. In the formula with the sign inverted for the wavelength range A function calculating means for calculating an m-th order function expression (m is an integer) of the coefficient with respect to the order coefficient, wherein each order coefficient in the approximation formula is a function of the wavelength; The light intensity measuring device according to claim 1.
【請求項4】前記近似式演算手段、係数設定手段、反転
手段及び関数演算手段は校正装置に設けられていて、こ
の校正装置は校正時に接続されることを特徴とする請求
項3記載の光強度の測定装置。
4. The optical device according to claim 3, wherein said approximation formula calculation means, coefficient setting means, inversion means and function calculation means are provided in a calibration device, and said calibration device is connected at the time of calibration. Strength measuring device.
【請求項5】アレイ素子に収束した被測定光の光強度を
測定する光強度の測定方法において、 前記アレイ素子を駆動する駆動装置に隣接して演算装置
を配置し、この演算器装置は次の工程順に従って光強度
を測定することを特徴とする光強度の測定方法。 (a)前記アレイ素子に収束した被測定光の中心部と被
測定光の光が最も強く照射されている受光素子の中心部
とのずれ量を複数求める工程 (b)求めたずれ量に対応して前記受光素子の中心部と
その前後の受光素子で検出された光強度を求める工程 (c)前記ずれ量と前記光強度との関係を与えるn次
(nは整数)の近似式を求める工程 (d)前記近似式が前記ずれ量の範囲内で最大値が0と
なるように前記近似式の係数を設定する工程 (e)係数設定後の近似式にある各次数の係数の符号を
反転させる工程 (f)符号を反転させた係数を用いた補正式により得ら
れた補正値により工程(b)で求めた光強度を補正する
工程
5. A light intensity measuring method for measuring the light intensity of light to be measured converged on an array element, wherein an arithmetic unit is arranged adjacent to a driving device for driving the array element. Measuring the light intensity according to the order of the steps. (A) a step of obtaining a plurality of shift amounts between a central portion of the light to be measured converged on the array element and a central portion of the light receiving element to which the light of the light to be measured is most strongly irradiated; (b) corresponding to the obtained shift amount Determining the light intensity detected by the central portion of the light receiving element and the light receiving elements before and after the central part of the light receiving element; and (c) obtaining an n-th (n is an integer) approximate expression that gives a relationship between the shift amount and the light intensity. Step (d): setting a coefficient of the approximate expression so that the maximum value of the approximate expression is 0 within the range of the deviation amount; and (e) signing the sign of each order coefficient in the approximate expression after the coefficient is set. Inverting step (f) A step of correcting the light intensity obtained in step (b) by a correction value obtained by a correction formula using a coefficient whose sign is inverted.
【請求項6】アレイ素子に収束した被測定光の光強度を
測定する光強度の測定方法において、前記アレイ素子を
駆動する駆動装置に隣接して演算装置を配置し、この演
算器装置は次の工程順に従って光強度を測定することを
特徴とする光強度の測定方法。 (a)複数の異なる波長範囲で、アレイ素子に収束した
被測定光の中心部と被測定光の光が最も強く照射されて
いる受光素子の中心部とのずれ量を求める工程 (b)各波長範囲について、求めたずれ量に対応して前
記受光素子の中心部とその前後の受光素子で検出された
光強度を求める工程 (c)各波長範囲について、前記ずれ量と前記光強度と
の関係を与えるn次の近似式を求める工程 (d)各近似式が前記ずれ量の範囲内で最大値が0とな
るように工程(c)で求めた近似式の係数を設定する工
程 (e)係数設定後の近似式にある各次数の係数の符号を
反転させる工程 (f)工程(e)で符号を反転した各波長範囲の反転近
似式にある各次数の係数をもとに、係数についての波長
のm次関数式を求める工程 (g)工程(f)で求めたm次関数式を用いて前記反転
係数式の各係数を求め、求めた係数を反転近似式に代入
して反転近似式を定め、定めた反転近似式により得られ
た補正値により工程(b)で求めた光強度の補正を行う
工程
6. A light intensity measuring method for measuring the light intensity of light to be measured converged on an array element, wherein an arithmetic unit is arranged adjacent to a driving device for driving the array element. Measuring the light intensity according to the order of the steps. (A) calculating a shift amount between a central portion of the light to be measured converged on the array element and a central portion of the light receiving element to which the light of the light to be measured is applied most strongly in a plurality of different wavelength ranges; Determining the light intensity detected by the central portion of the light receiving element and the light receiving elements before and after the central part of the light receiving element corresponding to the determined shift amount for the wavelength range; and (c) determining the difference between the shift amount and the light intensity for each wavelength range. (D) a step of setting the coefficient of the approximate expression obtained in the step (c) so that each approximate expression has a maximum value of 0 within the range of the deviation amount; A) a step of inverting the sign of the coefficient of each order in the approximate expression after the coefficient is set; (f) a coefficient based on the coefficient of each order in the inversion approximate expression of each wavelength range whose sign has been inverted in step (e). (G) Step of calculating the m-th order function expression of the wavelength for Each coefficient of the inversion coefficient equation is obtained using the following function equation, and the obtained coefficient is substituted into the inversion approximation equation to determine an inversion approximation equation. In step (b), the correction value obtained by the determined inversion approximation equation is used. Step of correcting the obtained light intensity
JP2000368380A 2000-12-04 2000-12-04 Instrument and method for measuring light intensity Pending JP2002168690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368380A JP2002168690A (en) 2000-12-04 2000-12-04 Instrument and method for measuring light intensity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368380A JP2002168690A (en) 2000-12-04 2000-12-04 Instrument and method for measuring light intensity

Publications (1)

Publication Number Publication Date
JP2002168690A true JP2002168690A (en) 2002-06-14

Family

ID=18838634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368380A Pending JP2002168690A (en) 2000-12-04 2000-12-04 Instrument and method for measuring light intensity

Country Status (1)

Country Link
JP (1) JP2002168690A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343223A (en) * 2005-06-09 2006-12-21 Yokogawa Electric Corp Photodiode array
WO2017018142A1 (en) * 2015-07-29 2017-02-02 コニカミノルタ株式会社 Method of calibrating spectroscopic apparatus, and method of producing calibrated spectroscopic apparatus
JP7136958B1 (en) * 2021-03-24 2022-09-13 アンリツ株式会社 Light source device for optical measuring instrument and optical spectrum analyzer
CN116148200A (en) * 2023-04-18 2023-05-23 杭州泽天春来科技有限公司 Water quality analyzer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343223A (en) * 2005-06-09 2006-12-21 Yokogawa Electric Corp Photodiode array
WO2017018142A1 (en) * 2015-07-29 2017-02-02 コニカミノルタ株式会社 Method of calibrating spectroscopic apparatus, and method of producing calibrated spectroscopic apparatus
JPWO2017018142A1 (en) * 2015-07-29 2018-05-31 コニカミノルタ株式会社 Method for calibrating a spectroscopic device and method for producing a calibrated spectroscopic device
JP2020139963A (en) * 2015-07-29 2020-09-03 コニカミノルタ株式会社 Method for calibrating spectroscopic instrument and method for manufacturing calibrated spectroscopic instrument
US10768048B2 (en) 2015-07-29 2020-09-08 Konica Minolta, Inc. Method of calibrating spectral apparatus and method of producing calibrated spectral apparatus
US11307093B2 (en) 2015-07-29 2022-04-19 Konica Minolta, Inc. Method of calibrating spectral apparatus and method of producing calibrated spectral apparatus
JP7136958B1 (en) * 2021-03-24 2022-09-13 アンリツ株式会社 Light source device for optical measuring instrument and optical spectrum analyzer
CN116148200A (en) * 2023-04-18 2023-05-23 杭州泽天春来科技有限公司 Water quality analyzer
CN116148200B (en) * 2023-04-18 2023-08-11 杭州泽天春来科技有限公司 Water quality analyzer

Similar Documents

Publication Publication Date Title
US6522406B1 (en) Correcting the system polarization sensitivity of a metrology tool having a rotatable polarizer
EP1649244B1 (en) Optical bandwidth meter for very narrow bandwidth laser emitted light
US10151633B2 (en) High accuracy absorbance spectrophotometers
JP2011039024A (en) Calibration method of imaging spectrograph
JP2007010364A (en) Spectroscope wavelength calibration method and spectroscope
JP3098241B2 (en) Drift compensation method and device
EP0091126A2 (en) Fluorimeter
US5592291A (en) Spectrophotometer
US7876433B2 (en) Spectrometer optics comprising positionable slots and method for the fully automatic transmission of calibrating adjustments between spectrometers equipped with optics of this type
EP1120637A2 (en) Method and means for calibrating a grating monochromator
CN111998782B (en) Optical measuring device and method
JP2002168690A (en) Instrument and method for measuring light intensity
Brodersen et al. Frequency calibration in high‐resolution Raman spectroscopy
JP2007218860A (en) Strain measuring device and strain measuring method
CN217358748U (en) Device for improving accuracy of spectral imager and spectral imaging system
US6721050B2 (en) Method and device for the spectral analysis of light
JP4146697B2 (en) Temperature measuring method and temperature measuring device
KR101054017B1 (en) Calibration method of the spectrometer
JP5342394B2 (en) Narrowband light source spectrum measuring method and spectrometer device
EP0961107A2 (en) Method of calculating optical frequency spectrum
US20050128478A1 (en) Optical unit and measuring apparatus having the same
JP7128316B1 (en) OPTICAL SPECTRUM ANALYZER AND WAVELENGTH CALIBRATION CONTROL METHOD
JP2005338021A (en) Wavelength measuring method and spectroscopic instrument using the same
JP2004354209A (en) Optical wavelength measuring method, optical wavelength measuring device, and optical spectrum analysis device
US11976974B2 (en) Spectrometer and computer program