JP2002164299A - Substrate-heating equipment and substrate-processing equipment - Google Patents

Substrate-heating equipment and substrate-processing equipment

Info

Publication number
JP2002164299A
JP2002164299A JP2000357820A JP2000357820A JP2002164299A JP 2002164299 A JP2002164299 A JP 2002164299A JP 2000357820 A JP2000357820 A JP 2000357820A JP 2000357820 A JP2000357820 A JP 2000357820A JP 2002164299 A JP2002164299 A JP 2002164299A
Authority
JP
Japan
Prior art keywords
substrate
temperature
processed
temperature sensor
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000357820A
Other languages
Japanese (ja)
Inventor
Kuniaki Horie
邦明 堀江
Naoaki Kogure
直明 小榑
Yuji Araki
裕二 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000357820A priority Critical patent/JP2002164299A/en
Publication of JP2002164299A publication Critical patent/JP2002164299A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a substrate-heating equipment which comprises a substrate temperature measuring means which can detect the radiation energy, even from a low temperature substrate in the presence of disturbances penetrated through the substrate and can make accurate measurement of the temperature, and also to provide a substrate-processing equipment using the substrate-heating equipment. SOLUTION: The substrate-heating equipment comprises a substrate 12 to be processed, a substrate mounting table 11, and an infrared lamp heater 13 using infrared rays disposed on the opposite side from the substrate-mounting table 11. The substrate temperature measuring means for measuring the temperature of the substrate 12 to be processed, consists of a temperature sensor or temperature sensor receiving section 16 for measuring the temperature of the substrate 12 to be processed by detecting the radiation energy from the substrate 12 and is provided on the substrate mounting table 11 of the substrate. In the substrate temperature measuring means, between the infrared lamp heater 13 and the substrate 12 to be processed, at least a double structure of glass boards 14b and 14c which have the same optical characteristics is installed, apart from a protective tube of the infrared lamp heater 13 itself, at least at the time of measuring the substrate temperature, and the temperature of the glass board 14c disposed closer to the substrate 12 to be processed is kept sufficiently lower than that of the substrate 12 to be processed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は基板載置治具に載置
され、赤外線を利用した輻射加熱用ヒータやホットプレ
ートによって加熱される半導体基板等の基板からの輻射
エネルギーを検知して、基板温度を測定、特に低温領域
の基板温度測定に好適な基板温度測定手段を具備する基
板加熱装置及び該基板加熱装置を用いた基板処理装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects radiation energy from a substrate such as a semiconductor substrate or the like which is mounted on a substrate mounting jig and is heated by a radiation heating heater or a hot plate using infrared rays. The present invention relates to a substrate heating apparatus provided with a substrate temperature measuring means suitable for measuring a temperature, in particular, a substrate temperature in a low temperature region, and a substrate processing apparatus using the substrate heating apparatus.

【0002】[0002]

【従来の技術】上記のような輻射加熱用ヒータによって
加熱される半導体基板等の基板からの輻射エネルギーを
検知して基板温度を精度良く測定しモニタするには、下
記(1)〜(3)のような様々な問題がある。
2. Description of the Related Art In order to accurately measure and monitor a substrate temperature by detecting radiation energy from a substrate such as a semiconductor substrate heated by a radiation heater as described above, the following (1) to (3) There are various problems like.

【0003】(1)低温領域の輻射エネルギーを利用し
て温度測定(一般のSiに対して不透明な1μm程度の
波長の輻射エネルギーで基板温度を測定する場合)での
問題点。 一般にSi基板の温度を該基板からの輻射エネルギーを
検知して測定する場合、Siは図1に示すように、1μ
m以下の光に対して殆ど不透明で、また放射率が温度の
変化に対して大きく変化しないという特性を有してい
る。そのため1μm付近の波長エネルギーを受信するセ
ンサが一般的である。そこで、図3(a)に示すよう
に、基板載置用ピン104に載置されたSi基板102
から放射される波長1μm以下の輻射エネルギーを受信
する温度センサ受信部103をSi基板102に対し
て、赤外線ランプ101の反対側に配置すると該赤外線
ランプ101からの波長1μm以下の輻射エネルギーは
Si基板102で阻止され、温度センサ受信部103に
は到達しないことになる。しかし、その場合、基板の温
度が低くなると図2に示すように、基板が発するエネル
ギー自体が急激に小さくなってくるため感度が低下し、
温度測定できなくなるという問題がある。実際的に輻射
エネルギーで温度を測定する場合、400℃以下ではセ
ンサの感度上かなり困難となり、かなりの誤差を許容し
ても現状では250℃以下は殆ど温度測定が不可能であ
るというのが現状である。
(1) Problems in temperature measurement using radiant energy in a low-temperature region (when measuring substrate temperature with radiant energy of a wavelength of about 1 μm which is opaque to general Si). In general, when measuring the temperature of a Si substrate by detecting radiation energy from the substrate, Si is 1 μm as shown in FIG.
It has the property that it is almost opaque to light of m or less, and that the emissivity does not change significantly with changes in temperature. Therefore, a sensor that receives wavelength energy of about 1 μm is generally used. Therefore, as shown in FIG. 3A, the Si substrate 102 mounted on the substrate mounting pins 104 is used.
When the temperature sensor receiving unit 103 for receiving radiant energy having a wavelength of 1 μm or less radiated from the infrared lamp 101 is disposed on the opposite side of the infrared lamp 101 with respect to the Si substrate 102, the radiant energy having a wavelength of 1 μm or less from the infrared lamp 101 is Blocked at 102, it does not reach the temperature sensor receiving unit 103. However, in this case, as the temperature of the substrate decreases, as shown in FIG. 2, the sensitivity itself decreases because the energy itself emitted from the substrate rapidly decreases,
There is a problem that the temperature cannot be measured. In actuality, when measuring temperature with radiant energy, it is quite difficult due to the sensitivity of the sensor below 400 ° C, and at present it is almost impossible to measure temperature below 250 ° C even if a considerable error is allowed. It is.

【0004】(2)基板を透過した外乱がセンサに受信
される場合の問題点。 上記問題を回避するために、低温でもエネルギーの高い
波長、例えば5μm程度の輻射エネルギーで測定する場
合、図3(b)に示すように、基板載置用ピン104に
載置されたSi基板102と赤外線ランプ101の間に
石英ガラス板105を配置すると、5μm程度の波長エ
ネルギーは石英ガラスを透過しないから、温度センサ受
信部103は赤外線ランプ101からの波長5μmのエ
ネルギーは受信しない。しかしながら、石英ガラス板1
05自体が加熱されてその表面が放射される波長5μm
程度の輻射エネルギーはSi基板102を通過して温度
センサ受信部103に到達するから、該温度センサ受信
部103はSi基板102の正確な基板温度を測定する
ことができなくなる。
(2) A problem when disturbance transmitted through the substrate is received by the sensor. In order to avoid the above-described problem, when measurement is performed at a high energy wavelength even at a low temperature, for example, at a radiation energy of about 5 μm, as shown in FIG. 3B, the Si substrate 102 mounted on the substrate mounting pins 104 is used. When the quartz glass plate 105 is placed between the infrared lamp 101 and the infrared lamp 101, the energy of the wavelength of about 5 μm does not pass through the quartz glass, so that the temperature sensor receiving unit 103 does not receive the energy of the wavelength 5 μm from the infrared lamp 101. However, the quartz glass plate 1
05 is heated and its surface is radiated at a wavelength of 5 μm
Since a certain amount of radiation energy passes through the Si substrate 102 and reaches the temperature sensor receiving unit 103, the temperature sensor receiving unit 103 cannot measure the accurate substrate temperature of the Si substrate 102.

【0005】例えば図3の場合、Si基板102の温度
をt1℃、赤外線ランプ101の温度をt2℃とすると、
温度センサ受信部103が受けるエネルギーEは次式の
ようになる。(ここでは温度センサの検知波長内のみの
エネルギーを考える) E=E1+E2ここで、 E1:Si基板102が発する輻射エネルギー(W/
2) E1=ε1×5.67{(t1+273)/100}42:赤外線ランプ101が発する輻射エネルギーのう
ちSi基板102を透過するエネルギー(W/m2) E2=ε2×α2×5.67{(t2+273)/100}4 α2:Si基板102の温度t2℃のときの赤外線の透過
率 である。透過が無い場合、E2=0となるので、E=E1
となる。
For example, in the case of FIG. 3, if the temperature of the Si substrate 102 is t 1 ° C and the temperature of the infrared lamp 101 is t 2 ° C,
The energy E received by the temperature sensor receiving unit 103 is expressed by the following equation. (Here, energy only within the detection wavelength of the temperature sensor is considered.) E = E 1 + E 2 Here, E 1 : radiation energy (W /
m 2 ) E 1 = ε 1 × 5.67 {(t 1 +273) / 100} 4 E 2 : of the radiation energy emitted by the infrared lamp 101, the energy (W / m 2 ) transmitted through the Si substrate 102 E 2 = ε 2 × α 2 × 5.67 {(t 2 +273) / 100} 4 α 2 : The transmittance of infrared rays when the temperature of the Si substrate 102 is t 2 ° C. If there is no transmission, E 2 = 0, so E = E 1
Becomes

【0006】透過があるとき、E=E1+E2、E2>0
となり、t2≫t1(一般に基板を赤外線ランプで加熱す
る場合はt2≫t1となる)のときは透過率α2が十分小
さくてもE2がかなり大きくなるためS/N比、即ちE1
/E2が小さくなり、精度の良い測定は期待できない。
2とt1の温度差が大きいときやα2が大きい場合は、
ノイズが大きくなりすぎ測定不能となってしまうという
問題があった。図2において、例えば2μmの測定波長
を使ったとき、Si基板102の温度400°K、外乱
500°K、但しSi基板102の透過率95%、Si
基板の輻射エネルギーS=1.1×105、500°K
の迷光(ノイズ)N=1.7×106×0.95、即ち
500°Kの迷光が非常に少量であっても、例えば1%
の迷光のとき、正確な基板温度測定はできないことが次
式からわかる。 N/(S+N)=(1.7×106×0.95×0.0
1)/(1.1×105+1.7×106×0.95×
0.01)=0.128 となり、13%がノイズ成分となってしまう。
When there is transmission, E = E 1 + E 2 , E 2 > 0
When t 2 ≫t 1 (in general, when the substrate is heated by an infrared lamp, t 2 ≫t 1 ), even if the transmittance α 2 is sufficiently small, E 2 becomes considerably large, so that the S / N ratio becomes That is, E 1
/ E 2 becomes small, and accurate measurement cannot be expected.
When the temperature difference between t 2 and t 1 is large or α 2 is large,
There was a problem that the noise became too large and measurement became impossible. In FIG. 2, for example, when a measurement wavelength of 2 μm is used, the temperature of the Si substrate 102 is 400 ° K, the disturbance is 500 ° K, but the transmittance of the Si substrate 102 is 95%,
Radiation energy of substrate S = 1.1 × 10 5 , 500 ° K
Stray light (noise) N = 1.7 × 10 6 × 0.95, that is, even if the stray light at 500 ° K is very small, for example, 1%
It can be seen from the following equation that accurate substrate temperature measurement is not possible in the case of stray light. N / (S + N) = (1.7 × 10 6 × 0.95 × 0.0
1) / (1.1 × 10 5 + 1.7 × 10 6 × 0.95 ×
0.01) = 0.128, and 13% becomes a noise component.

【0007】(3)センサ受信部に外乱(迷光)が入り
込むとS/N比が小さくなり、正確な温度測定ができな
くなる。前記(2)以外にも外乱要因は基板の温度より
高いもの、或いは低くても基板温度に近いもの、発する
表面積が大きいもの等から発する赤外線は全て外乱要因
となってしまう。これらの光が乱反射して様々な経路で
温度センサ受信部へ到達すると外乱としてS/N比を下
げ正確な温度測定ができなくなってしまう。
(3) When disturbance (stray light) enters the sensor receiving section, the S / N ratio decreases, and accurate temperature measurement cannot be performed. In addition to the above (2), disturbances are all higher than the temperature of the substrate, or at least close to the substrate temperature even if the temperature is lower, or infrared rays emitted from those having a large surface area to be emitted. When such light is diffusely reflected and reaches the temperature sensor receiving section through various paths, the S / N ratio is reduced as disturbance, and accurate temperature measurement cannot be performed.

【0008】[0008]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたもので、低温領域基板でも、基板を透過し
た外乱がある場合でも基板からの輻射エネルギーを検知
して精度良く温度が測定できる基板温度測定手段を具備
する基板加熱装置及び該基板加熱装置を用いた基板処理
装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and detects a radiation energy from a substrate accurately even in a low-temperature region substrate, even if there is a disturbance transmitted through the substrate. An object of the present invention is to provide a substrate heating device having a substrate temperature measuring means capable of measuring and a substrate processing apparatus using the substrate heating device.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、被処理基板と、該被処理基板
を載置する基板載置治具と、該基板載置治具とは反対側
に配設された少なくとも赤外線を利用した輻射加熱用ヒ
ータとを具備し、被処理基板からの輻射エネルギーを検
知して該被処理基板の温度を測定する温度センサ或いは
温度センサ受信部を該被処理基板に対して前記輻射加熱
用ヒータの反対側に設置した基板加熱装置において、少
なくとも基板温度測温時に輻射加熱用ヒータと被処理基
板の間に該輻射加熱用ヒータ自体の保護管を除き少なく
とも2体のガラス体を設け、且つ被処理基板に最も近い
ガラス体が被処理基板温度よりも十分低い温度に維持さ
れているか或いは維持する機構を有することを特徴とす
る。
According to the first aspect of the present invention, there is provided a substrate processing jig, a substrate mounting jig for mounting the processing substrate, and a substrate mounting jig. A radiant heating heater using at least infrared rays disposed on the opposite side to the temperature sensor or a temperature sensor receiving unit for detecting radiant energy from the substrate to be measured and measuring the temperature of the substrate to be treated In the substrate heating apparatus installed on the opposite side of the radiant heating heater with respect to the substrate to be processed, at least at the time of measuring the substrate temperature, the protective tube of the radiant heating heater itself is provided between the radiant heater and the substrate to be processed. , And at least two glass bodies are provided, and the glass body closest to the substrate to be processed is maintained at a temperature sufficiently lower than the temperature of the substrate to be processed or has a mechanism for maintaining the temperature.

【0010】輻射加熱用ヒータと被処理基板の間に光学
的に同一の特性を有する少なくともガラス体を2体設け
たので、温度センサ或いは温度センサ受信部で検知する
波長領域を該ガラス体で吸収される波長領域に設定する
と、輻射加熱用ヒータからのこの設定波長領域の輻射エ
ネルギーは2体のガラス体の内1体目のガラス体で殆ど
吸収されるから、この波長領域の輻射加熱用ヒータから
の輻射エネルギーは温度センサ或いは温度センサ受信部
に到達することはない。
Since at least two glass bodies having optically the same characteristics are provided between the radiation heating heater and the substrate to be processed, the glass body absorbs a wavelength region detected by a temperature sensor or a temperature sensor receiving unit. When the wavelength is set to the wavelength range to be set, the radiation energy in the set wavelength range from the radiation heating heater is almost absorbed by the first glass body of the two glass bodies. Does not reach the temperature sensor or the temperature sensor receiver.

【0011】また、2体目のガラス体の温度を被処理基
板の温度に対して十分低い温度に維持することにより、
ここからの輻射エネルギーの影響を除去することができ
る。従って、輻射加熱用ヒータからの温度センサ或いは
温度センサ受信部で検知する波長領域の輻射エネルギー
が温度測定に影響を与えることなく、精度のよい基板温
度測定が可能となる。なお、上記ガラス体は光学的に同
一特性を有するか、少なくとも2体目のガラス体の冷却
機構が完全であれば、センサの受信波長領域を透過しな
いものであればよい。また、ここでいう同一特性とはガ
ラス体の厚さで変わるものは含まない。
By maintaining the temperature of the second glass body at a temperature sufficiently lower than the temperature of the substrate to be processed,
The effect of radiation energy from here can be eliminated. Accordingly, the substrate temperature can be measured with high accuracy without the radiation energy in the wavelength region detected by the temperature sensor or the temperature sensor receiving unit from the radiation heating heater affecting the temperature measurement. Note that the above-mentioned glass body may have optically the same characteristics, or may be one that does not transmit the reception wavelength region of the sensor as long as the cooling mechanism of at least the second glass body is perfect. In addition, the same characteristics here do not include those that vary depending on the thickness of the glass body.

【0012】2体目のガラス体の冷却機構をより簡便な
ものにするためには、1体目のガラス体を透過した光は
2体目のガラス体も完全に透過するように透過の波長領
域を1体目より図11に示すように少し広げるとよい
(図11において、(a)は1枚目のガラス板体での光
の透過率状態を示し、(b)は2枚目のガラス板体での
光の透過率状態を示す。1枚目のガラス板体で完全透過
する波長領域λA、多少透過する波長領域λB、λCとす
ると、2枚目のガラス板体で完全透過する波長領域λは
波長領域λA、λB、λCをカバーするλ⊇λA+λB+λC
となっている)。そうすることで1体目のガラスの透過
光で2体目のガラスが過熱されることはなくなる。しか
しこの場合も、1体目のガラス自体が過熱されることで
発する輻射熱により2体目のガラスは過熱されてしま
う。そのため冷却機構はその分の熱のみを奪うものでよ
くなる。
In order to make the cooling mechanism for the second glass body simpler, the wavelength of light transmitted through the first glass body is set such that the light transmitted through the first glass body is completely transmitted through the second glass body. The region may be slightly wider than the first body as shown in FIG. 11 (in FIG. 11, (a) shows the light transmittance state of the first glass plate, and (b) shows the second glass plate). The light transmittance state of the glass plate is shown as follows: the wavelength region λ A that is completely transmitted by the first glass plate, the wavelength regions λ B , and λ C that is slightly transmitted by the first glass plate. The wavelength region λ that is completely transmitted covers the wavelength regions λ A , λ B , and λ C λ⊇λ A + λ B + λ C
Has become.) This prevents the second glass from being overheated by the transmitted light of the first glass. However, also in this case, the second glass is overheated by the radiant heat generated by overheating the first glass itself. Therefore, the cooling mechanism only needs to take away the heat of that amount.

【0013】また、請求項1に記載の基板加熱装置にお
いて、被処理基板からの輻射エネルギーを検知して該基
板の温度を測定する温度センサ或いは温度センサ受信部
の概ね延長線上に輻射加熱用ヒータを配置しないように
する。これにより微少に透過した温度センサ或いは温度
センサ受信部の測定領域波長の輻射エネルギーも温度セ
ンサ或いは温度センサ受信部が直接受けることがないの
で、これにより誤差の少ない温度測定が可能となる。
Further, in the apparatus for heating a substrate according to claim 1, a radiant heating heater is provided on a temperature sensor or a temperature sensor receiving portion which detects radiant energy from a substrate to be processed and measures the temperature of the substrate. Not to be placed. As a result, the radiant energy of the wavelength of the measurement region of the temperature sensor or the temperature sensor receiving unit that has been transmitted slightly is not directly received by the temperature sensor or the temperature sensor receiving unit, thereby enabling temperature measurement with a small error.

【0014】請求項2に記載の発明は、請求項1に記載
の基板加熱装置において、温度センサ或いは温度センサ
受信部で測定する輻射エネルギーの波長はガラス体を殆
ど透過しない波長領域内の波長であることを特徴とす
る。
According to a second aspect of the present invention, in the substrate heating apparatus according to the first aspect, the wavelength of the radiant energy measured by the temperature sensor or the temperature sensor receiving unit is a wavelength within a wavelength range that hardly transmits the glass body. There is a feature.

【0015】上記のように、温度センサ或いは温度セン
サ受信部で測定する輻射エネルギーの波長をガラス体を
殆ど透過しない波長領域内とすることと2体目のガラス
体に冷却機構を設け測定対象処理基板の温度より十分に
冷却することにより、輻射加熱用ヒータから放射される
温度センサ或いは温度センサ受信部の測定波長の輻射エ
ネルギーはガラス体で遮断され、或いはガラス体自体が
過熱されることでガラス体から新たに発することなく、
温度センサ或いは温度センサ受信部に到達することはな
い。
As described above, the wavelength of the radiant energy measured by the temperature sensor or the temperature sensor receiving portion is set within a wavelength range where the glass body hardly transmits, and a cooling mechanism is provided on the second glass body to process the object to be measured. By sufficiently cooling the temperature of the substrate, the radiation energy of the measurement wavelength of the temperature sensor or the temperature sensor receiving unit radiated from the radiant heater is cut off by the glass body, or the glass body itself is overheated to overheat. Without emerging from the body,
It does not reach the temperature sensor or the temperature sensor receiver.

【0016】請求項3に記載の発明は、被処理基板と、
該被処理基板を載置する基板載置治具と、該被処理基板
に対して該基板載置治具とは反対側に配設された少なく
とも赤外線を利用した輻射加熱用ヒータとを具備し、被
処理基板からの輻射エネルギーを検知して該被処理基板
の温度を測定する温度センサ或いは温度センサ受信部を
該被処理基板に対して被処理基板載置台治具側に設置し
た基板加熱装置において、温度センサ或いは温度センサ
受信部が多重の筒状管で覆われた構造であることを特徴
とする。
According to a third aspect of the present invention, a substrate to be processed is provided;
A substrate mounting jig for mounting the substrate to be processed, and a radiant heating heater using at least infrared rays disposed on the opposite side of the substrate mounting jig with respect to the substrate to be processed. A substrate heating apparatus in which a temperature sensor or a temperature sensor receiving unit that detects radiation energy from a substrate to be processed and measures the temperature of the substrate to be processed is provided on the substrate mounting table jig side with respect to the substrate to be processed; , Characterized in that the temperature sensor or the temperature sensor receiving portion is covered with multiple tubular tubes.

【0017】上記のように温度センサ或いは温度センサ
受信部が多重の筒状管で覆われた構造とするので、温度
センサ或いは温度センサ受信部は外部熱線(輻射エネル
ギー)を直接受けることがなく、外部熱線による測定温
度への影響を極力排除できる。
As described above, since the temperature sensor or the temperature sensor receiving section has a structure covered with multiple cylindrical tubes, the temperature sensor or the temperature sensor receiving section does not directly receive external heat rays (radiant energy). The influence of the external heating wire on the measurement temperature can be eliminated as much as possible.

【0018】請求項4に記載の発明は、請求項3に記載
の基板加熱装置において、温度センサ或いは温度センサ
受信部が外周面高反射率の筒状管で覆われた構造である
ことを特徴とする。
According to a fourth aspect of the present invention, in the substrate heating apparatus according to the third aspect, the temperature sensor or the temperature sensor receiving portion has a structure in which the temperature sensor or the temperature sensor receiving portion is covered with a cylindrical tube having a high reflectance on the outer peripheral surface. And

【0019】上記のように温度センサ或いは温度センサ
受信部が外周面高反射率の筒状管で覆われた構造とする
ので、外部赤外線は筒状管の外周面で反射され温度セン
サ或いは温度センサ受信部は直接受けることがなく、外
部赤外線による測定温度への影響を極力排除できる。実
際には更に筒状管の少なくとも内周面を輻射率の高い表
面にすることで輻射率が高い表面は光(赤外線)の吸収
率も大きいため、筒状管上部から入射してくる迷光を排
除することができる。
As described above, since the temperature sensor or the temperature sensor receiving portion is structured so as to be covered with the cylindrical tube having a high reflectance on the outer peripheral surface, the external infrared rays are reflected on the outer peripheral surface of the cylindrical tube, and thus the temperature sensor or the temperature sensor is detected. The receiving unit is not directly affected and can minimize the influence of the external infrared rays on the measured temperature. Actually, since at least the inner peripheral surface of the cylindrical tube has a high emissivity surface, the surface having a high emissivity has a high absorption rate of light (infrared rays). Can be eliminated.

【0020】請求項5に記載の発明は、基板を加熱する
基板加熱手段を具備し、該基板に所定の処理を施す基板
処理装置において、基板加熱手段として請求項1乃至4
のいずれかに記載の基板加熱装置を用いることを特徴と
する。
According to a fifth aspect of the present invention, there is provided a substrate processing apparatus which includes a substrate heating means for heating a substrate and performs a predetermined process on the substrate.
The substrate heating device according to any one of the above is used.

【0021】上記のように、基板処理装置の基板加熱手
段に請求項1乃至4に記載の基板加熱装置を用いること
により、被処理基板からの輻射エネルギーにより低温領
域でも基板温度を精度良く短時間で測定し、適正な基板
処理をすることが可能となる。
As described above, by using the substrate heating device according to any one of claims 1 to 4 as the substrate heating means of the substrate processing device, the substrate temperature can be accurately and quickly controlled even in a low temperature region by the radiation energy from the substrate to be processed. , And appropriate substrate processing can be performed.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて説明する。図4は本発明に係る基板加熱装
置を用いる基板処理装置の概略構成例を示す図である。
本基板処理装置10は内部に基板載置台11を配置し、
該基板載置台11上に被処理基板12が載置されるよう
になっている。被処理基板12に対向して基板載置台1
1の反対側に赤外線ランプヒータ13が配設され、該赤
外線ランプヒータ13の被処理基板12に対向する側面
にガラス板体14が配置され、その反対側面はヒータカ
バー15で覆われている。ガラス板体14は内部に空間
部14aが形成され、該空間部14aを挟んで平行に配
置された一対の板体14b、14cが一体に形成された
構造で、被処理基板12に対向する部分がガラス板の2
重構造となっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 is a diagram showing a schematic configuration example of a substrate processing apparatus using the substrate heating apparatus according to the present invention.
The present substrate processing apparatus 10 has a substrate mounting table 11 disposed therein,
The substrate to be processed 12 is mounted on the substrate mounting table 11. The substrate mounting table 1 faces the substrate 12 to be processed.
An infrared lamp heater 13 is disposed on the opposite side of the substrate 1, and a glass plate 14 is disposed on a side of the infrared lamp heater 13 facing the substrate 12, and the opposite side is covered with a heater cover 15. The glass plate 14 has a structure in which a space 14a is formed therein, and a pair of plates 14b and 14c arranged in parallel with the space 14a interposed therebetween are integrally formed. Is a glass plate 2
It has a heavy structure.

【0023】前記ガラス板体14の空間部14aには冷
却用ガスCGを流すことができるようになっており、板
体14b、14cの空間部14aに対向する面及び外表
面は乱反射が起きないように鏡面に形成されている。ま
た、ヒータカバー15の外表面と基板処理装置10の内
壁面10aの間に冷却媒体CW(例えば、冷却水)を流
すことができる冷却空間20が形成されている。基板載
置台11に下方から被処理基板12の温度を検出するた
めの温度センサのセンサ受信部(又は温度センサ)16
が配置される温度センサ配置孔17が形成されている。
なお、基板載置台11の内部には基板加熱用ヒータ19
が配置されている。
The cooling gas CG can flow through the space 14a of the glass plate 14, and the surfaces and the outer surfaces of the plates 14b and 14c facing the space 14a do not cause irregular reflection. So that it is formed on a mirror surface. In addition, a cooling space 20 through which a cooling medium CW (for example, cooling water) can flow is formed between the outer surface of the heater cover 15 and the inner wall surface 10a of the substrate processing apparatus 10. A sensor receiving unit (or temperature sensor) 16 of a temperature sensor for detecting the temperature of the substrate 12 to be processed from below on the substrate mounting table 11.
The temperature sensor arrangement hole 17 in which is disposed is formed.
The substrate mounting table 11 has a substrate heating heater 19 inside.
Is arranged.

【0024】上記温度センサ配置孔17内には図5に示
すように2重の筒状管18が配置され、該筒状管18の
奥部に被処理基板12からの輻射エネルギーを検知し
て、該被処理基板12の温度を測定する温度センサのセ
ンサ受信部16が配置されている。また、筒状管18の
外周面は反射率が高くなるように鏡面に形成され、且つ
内周面は迷光防止のため黒体に近い表面状態になるよう
処理されている。なお、筒状管18は2重に限定される
ものではなく、それ以上の多重であっても、又単管でも
よい。
As shown in FIG. 5, a double cylindrical tube 18 is disposed in the temperature sensor arrangement hole 17, and radiant energy from the substrate 12 to be processed is detected at a deep portion of the cylindrical tube 18. A sensor receiving section 16 of a temperature sensor for measuring the temperature of the substrate 12 is disposed. Further, the outer peripheral surface of the cylindrical tube 18 is formed into a mirror surface so as to have a high reflectance, and the inner peripheral surface is treated to have a surface state close to a black body in order to prevent stray light. The tubular tube 18 is not limited to a double tube, but may be a multiple tube or a single tube.

【0025】上記構成の基板処理装置において、赤外線
ランプヒータ13からの被処理基板12に向けて赤外線
を照射すると共に、処理室内のガス流入口10bからプ
ロセスガスPGを流入させ、被処理基板12の表面に成
膜等の処理を施し、排気口10cから排気する。被処理
基板12の温度検知は、該被処理基板12からの輻射エ
ネルギーを基板載置台11に形成された温度センサ配置
孔17内に配置された筒状管18内の奥に配置されたセ
ンサ受信部16で行なう。
In the substrate processing apparatus having the above-described structure, infrared rays are radiated from the infrared lamp heater 13 toward the substrate 12 to be processed, and the process gas PG is introduced from the gas inlet 10b in the processing chamber. A process such as film formation is performed on the surface, and air is exhausted from the exhaust port 10c. The temperature of the target substrate 12 is detected by receiving the radiant energy from the target substrate 12 using a sensor disposed at the back of a cylindrical tube 18 disposed in a temperature sensor placement hole 17 formed in the substrate mounting table 11. This is performed in the section 16.

【0026】赤外線ランプヒータ13からの赤外線は、
ガラス板体14を透過して被処理基板12に照射される
が、ここでガラス板体14が例えば石英ガラスで構成さ
れているとして説明する。石英ガラスは図6に示すよう
に、波長が4μmを越える領域では殆ど光(赤外線)は
透過しなくなってしまう。それはこの波長領域の光(赤
外線)は殆どが石英ガラスに熱として吸収されてしまう
からである。上記特性を踏まえて本発明の原理を説明す
る。
The infrared light from the infrared lamp heater 13 is
Irradiation is performed on the substrate to be processed 12 through the glass plate 14. Here, the description will be made on the assumption that the glass plate 14 is made of, for example, quartz glass. As shown in FIG. 6, quartz (glass) hardly transmits light (infrared rays) in a region having a wavelength exceeding 4 μm. This is because most of the light (infrared rays) in this wavelength range is absorbed by quartz glass as heat. The principle of the present invention will be described based on the above characteristics.

【0027】被処理基板12の温度測定には、赤外線
ランプヒータ13からの被処理基板12を透過してくる
光(赤外線)をセンサ受信部16で受信しないようにす
るため、ガラス板体14を構成する石英ガラスの透過率
ができるだけ小さくできれば透過率ゼロの波長を利用す
る。その波長は図6に示すような特性の石英ガラスの場
合、4μm以上とするのがよい。
In measuring the temperature of the substrate 12, the glass plate 14 is set so that the sensor receiver 16 does not receive light (infrared rays) transmitted from the infrared lamp heater 13 through the substrate 12. If the transmittance of the constituent quartz glass can be made as small as possible, a wavelength of zero transmittance is used. The wavelength is preferably 4 μm or more in the case of quartz glass having characteristics as shown in FIG.

【0028】被処理基板12の加熱には、ガラス板体
14を構成する石英ガラスを透過するエネルギーを利用
する(前述の石英ガラスの場合4μm以下の波長である
が、主として透過率の高い3.5μm以下の波長とな
る)。
The substrate 12 to be processed is heated by utilizing the energy transmitted through the quartz glass constituting the glass plate 14 (in the case of the quartz glass described above, the wavelength is 4 μm or less; Wavelength of 5 μm or less).

【0029】赤外線ランプヒータ13から放射される
光エネルギーのうちガラス板体14で吸収されるもの
は、1枚目の板体14bにできるだけ吸収させる。2枚
目の板体14cは処理室に面しているため加熱されてし
まうとプロセスに悪影響を及ぼすばかりではなく、加熱
により2枚目の板体14cの表面から放射される波長4
μm以上のエネルギーが被処理基板12を透過してセン
サ受信部16に到達し、測定基板温度に影響を与えるか
らである。そのためガラス板体14を加熱するエネルギ
ーの波長はできるだけ1枚目で吸収してしまうように1
枚目の板体14bを厚くするとよい。
The light energy radiated from the infrared lamp heater 13 and absorbed by the glass plate 14 is absorbed by the first plate 14b as much as possible. Since the second plate 14c faces the processing chamber, if heated, not only adversely affects the process, but also the wavelength 4 radiated from the surface of the second plate 14c due to heating.
This is because the energy of μm or more passes through the substrate to be processed 12 and reaches the sensor receiving unit 16 and affects the temperature of the measurement substrate. Therefore, the wavelength of the energy for heating the glass plate body 14 is set so as to be absorbed by the first sheet as much as possible.
The thickness of the second plate 14b may be increased.

【0030】ここで1枚目の板体14bと2枚目の板体
14cのガラス材質を同一のものとすると、1枚目の板
体14bを透過する図11(a)の波長領域λAの赤外
線は2枚目の板体14cも透過するので、この領域の赤
外線で2枚目の板体14cが加熱されることはない。し
かし、1枚目の板体14bを多少透過する波長領域
λ B、λCの赤外線で2枚目の板体14cが加熱されてし
まう。そこで2枚目の板体14cの完全透過する波長範
囲λを図11(b)に示すように、λ⊇λB+λA+λC
とすること、即ち2枚目の板体14cの透過範囲を広げ
ることにより、1枚目の板体14bを透過した赤外線で
2枚目の板体14cが加熱されることがなくなる(1枚
目の板体14bを多少透過する波長領域λB、λCの赤外
線は2枚目の板体14cを完全に透過する)。
Here, the first plate 14b and the second plate 14b
If the glass material of 14c is the same, the first plate
The wavelength region λ of FIG.AInfrared
The line also passes through the second plate 14c, so that the red
The outer plate does not heat the second plate 14c. I
However, a wavelength range where the first plate 14b is slightly transmitted.
λ B, ΛCThe second plate 14c is heated by the infrared rays
I will. Therefore, the wavelength range in which the second plate 14c is completely transmitted.
As shown in FIG.B+ ΛA+ ΛC
That is, the transmission range of the second plate 14c is increased.
In this way, the infrared rays transmitted through the first plate 14b
The second plate 14c is no longer heated (one plate
Wavelength region λ slightly transmitting through eye plate 14bB, ΛCInfrared
The line completely penetrates the second plate 14c).

【0031】1枚目の板体14bで2枚目の加熱成分
の波長が全て吸収された場合、2枚目の板体14cを透
過(一部反射)する波長のみの赤外線となり、2枚目の
板体14cが1枚目の板体14bを透過した赤外線で発
熱することはない。そのため1枚目の板体14bを透過
した赤外線によっては2枚目の板体14cを流れるプロ
セスガスPGに悪影響を与えたり、或いはプロセスガス
PGから悪影響を受けたりすることを防ぐことができ
る。更に、2枚目の板体14cの正面から基板測定温度
に影響を与える輻射エネルギーも放射されない。
When all wavelengths of the second heating component are absorbed by the first plate 14b, the infrared light has only a wavelength that transmits (partially reflects) through the second plate 14c. Does not generate heat due to infrared rays transmitted through the first plate 14b. Therefore, it is possible to prevent the process gas PG flowing through the second plate 14c from being adversely affected by the infrared rays transmitted through the first plate 14b, or from being adversely affected by the process gas PG. Further, no radiant energy affecting the substrate measurement temperature is emitted from the front of the second plate 14c.

【0032】しかし実際は1枚目の板体14b自体が
加熱され、該1枚目の板体14bから新たに赤外線が発
せられそれが2枚目の板体14cを通り、温度センサ受
信部16に達してしまうことがある。1枚目及び2枚目
の板体14b、板体14cが異常加熱されないように、
該板体14bと板体14cの間にある空間部14aに冷
却ガスCGを流している。これにより上記問題を防ぐこ
ともできる。即ち1枚目の板体14b自体の加熱を防止
することにより(勿論、この冷却ガスにより板体14c
を同時に冷却することで間接的に板体14bの加熱を防
止する効果もある)該板体14bから発する赤外線の減
少、更に2枚目の板体14c自体の冷却により、該板体
14cから発する赤外線のエネルギーを無視できる程度
に小さくできる。
However, actually, the first plate 14b itself is heated, and a new infrared ray is emitted from the first plate 14b, which passes through the second plate 14c to the temperature sensor receiving section 16. May be reached. In order to prevent the first and second plate members 14b and 14c from being abnormally heated,
Cooling gas CG is supplied to a space 14a between the plate 14b and the plate 14c. This can also prevent the above problem. That is, by preventing heating of the first plate 14b itself (of course, the plate 14c
Is also indirectly prevented from heating the plate member 14b by simultaneously cooling the plate member 14b.) The infrared light emitted from the plate member 14b is reduced, and the second plate member 14c itself is cooled to emit the infrared light from the plate member 14c. Infrared energy can be reduced to a negligible level.

【0033】被処理基板12の温度検知に被処理基板
12からの波長4μm以上の輻射エネルギーを検知する
方法を採用すると、この波長領域の赤外線ランプヒータ
13からの輻射エネルギーはガラス板体14を構成する
1枚目の板体14bで殆ど吸収されてしまい、また上記
理由により、2枚目の板体14cの下からは4μm以上
の波長が発することは殆どない。
If a method of detecting radiant energy having a wavelength of 4 μm or more from the substrate 12 is adopted for detecting the temperature of the substrate 12, the radiant energy from the infrared lamp heater 13 in this wavelength region constitutes the glass plate 14. For this reason, the wavelength of 4 μm or more is hardly emitted from under the second plate 14c.

【0034】上記のようにガラス板体14の2重ガラ
スである板体14b及び14cを通して被処理基板12
を加熱するエネルギーは通過するが、被処理基板12の
温度を測定するための波長領域の光は透過しないので、
センサ受信部16は被処理基板12からのみの輻射エネ
ルギーを受信することができ、正しい温度を測定するこ
とができる。また、センサ受信部16の受信のために使
用波長も4μm以上と長いため、低温でも被処理基板1
2から高いエネルギーを発生するので低い温度からの測
定も可能となる。
As described above, the substrate 12 to be processed is passed through the plates 14b and 14c of the glass plate 14 which are double glasses.
Is passed, but light in a wavelength region for measuring the temperature of the substrate 12 to be processed is not transmitted.
The sensor receiving section 16 can receive radiant energy only from the substrate 12 to be processed, and can measure a correct temperature. Further, since the wavelength used for reception by the sensor receiving unit 16 is as long as 4 μm or more, even when the temperature is low, the substrate 1
Since high energy is generated from 2, the measurement from a low temperature is also possible.

【0035】上記のように赤外線ランプヒータ13から
発する光の波長のうち、少なくとも温度測定に用いる輻
射エネルギーの波長(センサ受信部16で受信する波
長)はガラス板体14の板体14b及び14cを透過し
ないようにすることで、センサ受信部16は赤外線ラン
プヒータ13から発し被処理基板12を透過してくる輻
射エネルギーの影響を除去することができる。しかし、
一般的にはセンサ受信部16に到達する迷光の発生源
は、他にもある。それは基板載置台11に内蔵されてい
る基板加熱用ヒータ19である。
As described above, among the wavelengths of the light emitted from the infrared lamp heater 13, at least the wavelength of the radiant energy used for temperature measurement (the wavelength received by the sensor receiver 16) corresponds to the plate members 14 b and 14 c of the glass plate member 14. By preventing the transmission, the sensor receiving unit 16 can remove the influence of the radiation energy emitted from the infrared lamp heater 13 and transmitted through the substrate 12 to be processed. But,
In general, there are other sources of stray light reaching the sensor receiving unit 16. It is a substrate heating heater 19 built in the substrate mounting table 11.

【0036】上記のように迷光の発生源は被処理基板1
2より温度が高くなる所、被処理基板12より温度が低
いが近い温度、或いは発熱面積の大きいものであり、こ
こで対象となるのは、上部の赤外線ランプヒータ13と
基板載置台11に内蔵(又は基板載置台11の下に配
置)している基板加熱用ヒータ19が主なものである。
この2ヶ所からいろいろな経路を通して発せられる迷光
を完全に除去し、被処理基板のみが発する光(赤外線)
のみをセンサ受信部16が受信できればより正確な被処
理基板温度を測定できることになる。
As described above, the source of the stray light is the substrate 1 to be processed.
2 where the temperature is higher than 2, the temperature is lower than, but close to, the substrate 12 to be processed, or the heat generation area is large. The target here is the infrared lamp heater 13 in the upper part and the built-in The main component is a substrate heating heater 19 (or disposed below the substrate mounting table 11).
Light (infrared light) emitted from only the substrate to be processed by completely removing stray light emitted from these two places through various routes
If only the sensor receiving section 16 can receive only the temperature of the substrate to be processed, the temperature of the substrate to be processed can be measured more accurately.

【0037】本例では被処理基板に近い温度か被処理基
板の温度以上になっている部位として上記赤外線ランプ
ヒータ13と基板加熱用ヒータ19であるが実際の例
で、他にそういう部位があればそこからの赤外線対策が
新たに必要となる。
In the present embodiment, the infrared lamp heater 13 and the substrate heating heater 19 are the portions near the temperature of the substrate to be processed or higher than the temperature of the substrate to be processed. However, in an actual example, there are other such portions. If this is the case, new measures against infrared rays will be required.

【0038】図7は基板加熱用ヒータ19から発せられ
た熱エネルギーの経路を説明するための図である。基板
加熱用ヒータ19と基板載置台11が加熱され、基板載
置台11から発する赤外線Lは被処理基板12の下部で
反射する赤外線L1と、被処理基板12を透過してガラ
ス板体14の板体14c及び14bで反射される赤外線
L2、L3と、ヒータカバー15に到達する赤外線L4
に別れる。
FIG. 7 is a view for explaining the path of the heat energy emitted from the substrate heating heater 19. The substrate heating heater 19 and the substrate mounting table 11 are heated, and the infrared light L emitted from the substrate mounting table 11 is reflected by the infrared light L1 reflected at the lower portion of the processing target substrate 12 and the infrared light L1 transmitted through the processing target substrate 12 and the glass plate body 14 The infrared rays L2 and L3 reflected by the bodies 14c and 14b and the infrared ray L4 reaching the heater cover 15
Break up into

【0039】上記基板載置台11から発せられ被処理基
板12の下部で反射される赤外線L1については従来か
らの経験上ほとんど無視できる。被処理基板12を透過
して板体14c及び14bで反射される赤外線L2はガ
ラスの反射率は小さいので、殆ど無視できるがここから
乱反射してくる赤外線がセンサへの迷光の主体となると
考えられる。ここで板体14c及び14bを構成するガ
ラスに、温度測定用の波長領域の赤外線を透過しない石
英ガラスを採用しているので、赤外線L3、L4が温度
測定を妨害することはない。
The infrared rays L1 emitted from the substrate mounting table 11 and reflected at the lower part of the substrate to be processed 12 can be almost ignored from the experience of the related art. The infrared rays L2 transmitted through the substrate to be processed 12 and reflected by the plates 14c and 14b have little reflectance of the glass, and thus can be almost ignored, but the infrared rays irregularly reflected from the infrared rays L2 are considered to be the main sources of stray light to the sensor. . Here, since the quartz glass that does not transmit infrared rays in the wavelength range for temperature measurement is adopted as the glass constituting the plates 14c and 14b, the infrared rays L3 and L4 do not interfere with the temperature measurement.

【0040】被処理基板12と基板載置台11間の反射
による迷光によるセンサ受信部16への影響は従来から
の経験上無視できる。被処理基板12からの反射による
迷光には図8に示すように基板載置台11の上面11a
と被処理基板12の下面12aで反射してセンサ受信部
16に入る赤外線L1がある。従来の波長1μmの光を
使った測定では、これらの迷光による影響がなかったの
で、本発明でも従来と同一レイアウト、同様の光特性
(下記)であるため、影響されていないと考えられる。
The influence on the sensor receiving section 16 due to stray light due to the reflection between the substrate 12 to be processed and the substrate mounting table 11 can be neglected in the conventional experience. As shown in FIG. 8, the stray light due to the reflection from the processing target substrate 12 has an upper surface 11a of the substrate mounting table 11.
And the infrared light L1 reflected by the lower surface 12a of the substrate 12 to enter the sensor receiver 16. In the measurement using the conventional light having a wavelength of 1 μm, there is no influence of the stray light. Therefore, it is considered that the present invention has the same layout and the same optical characteristics (described below) as the conventional one, and thus is not affected.

【0041】なお、センサ受信部16(又は温度セン
サ)で万一でも赤外線ランプヒータ13及び基板加熱用
ヒータ19からの直接熱線を受けないように、センサ受
信部16(又は温度センサ)の延長線上に赤外線ランプ
ヒータ13を設置しない方がよい。また、基板加熱用ヒ
ータ19からの直接熱線を受けないように、センサ受信
部16(又は温度センサ)を配置する筒状管18を温度
測定時は温度センサ配置孔17内の被処理基板12の近
傍まで伸ばす。そしてセンサ受信部16(又は温度セン
サ)を筒状管18内部奥に設置し、センサ受信部16
(又は温度センサ)のどの点にもできるだけ直接基板加
熱用ヒータ19から赤外線が到達しないようにする。
The sensor receiver 16 (or the temperature sensor) is provided on an extension of the sensor receiver 16 (or the temperature sensor) so as not to receive the direct heat rays from the infrared lamp heater 13 and the substrate heating heater 19 even if the sensor receiver 16 (or the temperature sensor) receives the heat. It is better not to install the infrared lamp heater 13 in the apparatus. In order to prevent direct heat rays from the substrate heating heater 19, the cylindrical tube 18 in which the sensor receiving section 16 (or the temperature sensor) is disposed is used to measure the temperature of the substrate 12 in the temperature sensor arrangement hole 17 when measuring the temperature. Extend to the vicinity. Then, the sensor receiving unit 16 (or temperature sensor) is installed inside the tubular pipe 18 and the sensor receiving unit 16
(Or temperature sensor) so that infrared rays do not reach the substrate heating heater 19 as directly as possible.

【0042】基板加熱用ヒータ19から被処理基板12
側へ放射された熱線が乱反射するのを防ぐために、ガラ
ス板体14の板体14cの表面はできるだけ平坦で滑ら
かにし、赤外線が乱反射するのをできるだけ防ぎ、反射
の少ない透明度の高いものとするとよい。
From the substrate heating heater 19 to the substrate to be processed 12
In order to prevent the heat rays radiated to the side from being irregularly reflected, the surface of the plate body 14c of the glass plate body 14 should be as flat and smooth as possible, the infrared rays should be prevented from being irregularly reflected as much as possible, and the reflection should be low and high in transparency. .

【0043】ここで迷光の主なものとして考えられる赤
外線L2について検討する。センサ受信部16の信号伝
達方向に対して大きな角度で反射しながらセンサ受信部
16に入ってきた熱線は途中の光ファイバでの伝達途
中、光ファイバを透過して逃げてしまうので、信号伝送
部を持つ場合はセンサ部に到達しない(光ファイバはフ
ァイバ外壁に対して全反射していく光のみを伝送し、全
反射角より大きいものは透過してファイバ外部へ逃げて
しまう)ので、迷光の影響を防止できる。
Here, the infrared ray L2 considered as a main stray light will be discussed. The heat rays entering the sensor receiving unit 16 while being reflected at a large angle with respect to the signal transmission direction of the sensor receiving unit 16 pass through the optical fiber during transmission by the optical fiber in the middle, and escape. Does not reach the sensor part (the optical fiber transmits only the light that is totally reflected on the outer wall of the fiber, and the one that is larger than the total reflection angle is transmitted and escapes to the outside of the fiber). The effect can be prevented.

【0044】図9はセンサ受信部に入射した赤外線の伝
播状況を示す図である。図示するように筒状管18内に
配置されたセンサ受信部(光ファイバー)16に入射す
る赤外線Lの入射角度が図9(a)に示すように、セン
サ受信部16で全反射する領域内であれば、入射する赤
外線Lは全反射するため透過ロスがなく、センサ部に到
達する。また、全反射領域外の角度で入射した赤外線L
は図9(b)に示すように、センサ受信部16を透過す
る赤外線Laと反射する赤外線Lbにわかれるため、セ
ンサ部方向へセンサ受信部16を通過して行く赤外線は
殆ど減衰してしまう。センサ受信部16を筒状管18の
奥に配置するもう一つの理由は、奥に配置することで全
反射成分(外乱のない直接被測定基板からのみの成分)
の光を受光することができるからである。このように僅
かの可能性のある迷光L2の成分も殆ど排除することが
できる。
FIG. 9 is a diagram showing the state of propagation of infrared light incident on the sensor receiving section. As shown in FIG. 9, the incident angle of the infrared ray L incident on the sensor receiving unit (optical fiber) 16 disposed in the cylindrical tube 18 is within the area where the sensor receiving unit 16 totally reflects as shown in FIG. If so, the incident infrared light L is totally reflected and thus has no transmission loss and reaches the sensor unit. In addition, the infrared ray L incident at an angle outside the total reflection area
As shown in FIG. 9B, the infrared ray is divided into an infrared ray La that passes through the sensor receiving section 16 and an infrared ray Lb that reflects, so that the infrared ray passing through the sensor receiving section 16 in the direction of the sensor section is almost attenuated. Another reason for arranging the sensor receiving unit 16 at the back of the tubular tube 18 is that by arranging the sensor receiving unit 16 at the back, a total reflection component (a component only from the substrate to be measured directly without disturbance).
This is because the light can be received. In this way, even the slight possibility of the component of the stray light L2 can be almost eliminated.

【0045】図4及び図5に示す位置に筒状管18が常
時あると、センサ受信部16及び筒状管18は時間の経
過と共に、昇温し、いずれ基板加熱用ヒータ19と略同
等な温度まで昇温してしまう。結局、筒状管18から放
射される輻射エネルギーが例えば基板下面に反射するよ
うな経路を通してセンサ受信部16へ入り、そのエネル
ギーが被処理基板12より大きいため、被処理基板12
の温度というよりむしろ基板載置台11の温度を測定し
てしまうことになり、殆ど正しい温度は測定できなくな
ってしまう。その対策として下記及びのことを行な
う。
When the cylindrical tube 18 is always at the position shown in FIGS. 4 and 5, the temperature of the sensor receiving section 16 and the cylindrical tube 18 rises with the passage of time, and eventually becomes substantially the same as the substrate heating heater 19. The temperature rises to the temperature. After all, the radiation energy radiated from the tubular tube 18 enters the sensor receiving unit 16 through a path that reflects, for example, on the lower surface of the substrate, and the energy is larger than the substrate 12 to be processed.
This means that the temperature of the substrate mounting table 11 is measured rather than the above temperature, and almost no correct temperature can be measured. The following are taken as countermeasures.

【0046】センサ受信部16は温度測定時のみ基板
載置台11内の定められた測定位置(温度センサ配置孔
17)に挿入する(常時は図4の点線の位置に待避し、
測定時に実線に示す位置まで挿入する)。基板加熱用
ヒータ19によって筒状管の少なくとも最も内側管が加
熱されないように、多重の筒状管18にする。また、少
なくとも最外周の筒状管の外面は反射率が大きくなるよ
うに磨く等の処理を施し(全ての管の外側は反射率が大
きい方がよい)、少なくとも非測温時は基板載置台11
の外部へ出し、加熱を防ぐと共に、ガス等を用いて積極
的に冷却する。
The sensor receiving section 16 is inserted into a predetermined measurement position (temperature sensor arrangement hole 17) in the substrate mounting table 11 only at the time of temperature measurement (always at the position indicated by the dotted line in FIG. 4;
Insert up to the position shown by the solid line during measurement). A plurality of tubular tubes 18 are provided so that at least the innermost tube of the tubular tubes is not heated by the substrate heating heater 19. In addition, at least the outer surface of the outermost cylindrical tube is polished so as to have a large reflectance (the outside of all the tubes is preferably large in reflectance). 11
To the outside, prevent heating, and actively cool using gas or the like.

【0047】また、筒状管18の内部は迷光がセンサ受
信部16に到達するのを防ぐため輻射率を大きくする処
理を施す。更に、センサ受信部16を筒状管18の奥に
設置することで、図10に示すように直接センサ受信部
16へ入射する赤外線を被処理基板12のみからの赤外
線Lcとし、入射角度の大きい迷光Ldは筒状管18の
内壁で殆ど吸収させるようにする。
The inside of the tubular tube 18 is subjected to processing for increasing the emissivity in order to prevent stray light from reaching the sensor receiving section 16. Further, by installing the sensor receiving unit 16 at the back of the cylindrical tube 18, the infrared light directly incident on the sensor receiving unit 16 is changed to the infrared light Lc from only the substrate 12 to be processed as shown in FIG. The stray light Ld is almost absorbed by the inner wall of the tubular tube 18.

【0048】上記対策を施すことにより、筒状管18の
最も内側の管は外部から加熱されない状態を維持でき、
より正確に被処理基板12の温度を正確に測定すること
ができる。また、センサ受信部16(又は温度センサ)
を温度センサ配置孔17内に挿入し短時間で被処理基板
12の温度を測定できる場合は、必ずしも多重の筒状管
18とすることはなく、外周面が高反射率面とした単筒
状管としてもよい。また、センサ受信部16を多重の筒
状管18又は単筒状管内に配置することにより、センサ
受信部16自体(光ファイバーロッド)が加熱され内部
で赤外線を新たに発するのを防ぐこともできる。(内部
で発生した赤外線はかなりの割合でセンサ部へ到達する
ので、ファイバーロッドの加熱防止は重要である。赤外
線の到達割合は、例えばロッド内のある点が発した赤外
線はその点から全反射で伝わるものは全てセンサ部へ到
達することになるので大きな割合となる。)
By taking the above measures, the innermost tube of the cylindrical tube 18 can be kept from being heated from the outside,
The temperature of the target substrate 12 can be measured more accurately. Also, the sensor receiving unit 16 (or a temperature sensor)
If the temperature of the substrate 12 to be processed can be measured in a short time by inserting the It may be a tube. Further, by disposing the sensor receiving section 16 in the multiple tubular pipes 18 or the single tubular pipe, it is possible to prevent the sensor receiving section 16 itself (optical fiber rod) from being heated and emitting new infrared rays inside. (It is important to prevent heating of the fiber rod because a significant proportion of the infrared light generated inside reaches the sensor. The rate of arrival of the infrared light depends on, for example, the infrared light emitted from a point in the rod, which is totally reflected from that point. Since all of the information transmitted to the sensor unit reaches the sensor unit, the ratio is large.)

【0049】図1に示すように波長1.5μm以上の光
はSi基板に対して半透明である。これを利用して、低
温域の温度を測定する場合、前述のように低温になるほ
どに放射エネルギーは非常に小さくなる。しかし測定対
象の温度が低くてもその温度で強いエネルギーを放出す
る波長を使用した方が、より精度のよい温度測定ができ
ることになる。図2に示すように、例えば500°K
(227℃)では、4μm当たりにエネルギーピークが
あるので、500°Kあたりの温度を測定するには4μ
m程度の波長を使った方が感度が非常に良くなる(例え
ば1μmの波長と比べて約106倍)。もちろんこの波
長で更に高い温度でも測定できる。
As shown in FIG. 1, light having a wavelength of 1.5 μm or more is translucent to the Si substrate. When utilizing this to measure the temperature in the low temperature range, the radiant energy becomes very small as the temperature decreases as described above. However, even if the temperature of the object to be measured is low, using a wavelength that emits strong energy at that temperature enables more accurate temperature measurement. As shown in FIG.
(227 ° C.), since there is an energy peak per 4 μm, 4 μm is required to measure the temperature around 500 ° K.
The sensitivity is much better when a wavelength of about m is used (for example, about 10 6 times the wavelength of 1 μm). Of course, it can be measured at this wavelength even at higher temperatures.

【0050】一般に、本波長が採用されないのは、迷光
が各方面からセンサ又はセンサ受信部に入って、その迷
光のエネルギーが大きい場合は、S/N比が小さくなる
ので測定できなくなってしまうからである。しかし本発
明では迷光をほぼ確実に抑えることが可能であるため、
上記波長を採用することができる。但し、1.5〜4μ
mでは上部の赤外線ランプヒータ13から透過してくる
光が存在するので、4μm以上がよい。4μm以上は前
述のガラス板体14の2重の板体14b及び14cで透
過を防ぐことができる。
Generally, this wavelength is not adopted because stray light enters the sensor or sensor receiving section from various directions, and if the energy of the stray light is large, the S / N ratio becomes small, so that measurement becomes impossible. It is. However, in the present invention, since stray light can be almost certainly suppressed,
The above wavelengths can be employed. However, 1.5-4μ
In the case of m, light transmitted from the upper infrared lamp heater 13 exists, so that it is preferably 4 μm or more. With a thickness of 4 μm or more, transmission can be prevented by the double plate members 14 b and 14 c of the glass plate member 14 described above.

【0051】被処理基板12の温度測定に4μm以上の
波長を用いる場合は、更に次のようなメリットがある。
図11に示すように石英ガラスの一般的な光の透過率を
縦軸に波長を横軸に取って表すと、4μm以上の波長の
光は殆ど石英ガラスを透過しないため、その領域の波長
を温度測定に使用すれば、少なくとも石英ガラスの一次
側からくる外乱(迷光)は、略確実に防ぐことができ
る。
When a wavelength of 4 μm or more is used for measuring the temperature of the substrate 12 to be processed, there are further advantages as follows.
As shown in FIG. 11, when the general light transmittance of quartz glass is represented by the vertical axis and the wavelength is represented by the horizontal axis, light having a wavelength of 4 μm or more hardly passes through the quartz glass. If used for temperature measurement, disturbance (stray light) coming from at least the primary side of quartz glass can be almost certainly prevented.

【0052】図4に示す基板処理装置の場合、赤外線ラ
ンプヒータ13は、被処理基板12の上部にあり、被処
理基板12を上面から加熱している。被処理基板12は
上面から次第に下面に昇温していく昇温過程をとる。被
処理基板12を応答性よく温度制御するためには、被処
理基板12の上面の最も加温されたところの温度を測定
するのがよく、その熱線を検知できた方が応答性の速い
制御が可能となる。これは、例えば被処理基板12を直
ちにある温度まで加熱するときには非常に重要なファク
ターとなる。1.5μm以上のSi基板に対する透過性
のよい波長を使うことで上記のことが可能となる。
In the case of the substrate processing apparatus shown in FIG. 4, the infrared lamp heater 13 is located above the substrate 12 to be processed and heats the substrate 12 from above. The substrate to be processed 12 takes a heating process in which the temperature is gradually increased from the upper surface to the lower surface. In order to control the temperature of the substrate to be processed 12 with good responsiveness, it is preferable to measure the temperature of the top surface of the substrate to be processed 12 where the temperature is most heated. Becomes possible. This is a very important factor when, for example, the target substrate 12 is immediately heated to a certain temperature. The above can be achieved by using a wavelength having a good transmittance to the Si substrate of 1.5 μm or more.

【0053】例えば、被処理基板12の成膜中、エッチ
ング中、被処理基板12上で発熱反応が生じ基板温度が
昇温することがある。プロセスを正しくコントロールす
るためには、当然その発熱反応による温度を把握しなが
ら被処理基板12の温度制御をしなければならない。即
ち、被処理基板12に対して半透明な波長を利用するこ
とにより被処理基板12の裏から該被処理基板12の表
面の温度を測定することが可能となり、それが達成でき
る。上記のように1.5μm以上のSi基板の透過性の
よい波長を使うことで、被処理基板の表面温度での測定
が可能となる。
For example, an exothermic reaction may occur on the processing target substrate 12 during film formation and etching of the processing target substrate 12, and the substrate temperature may rise. In order to properly control the process, the temperature of the substrate to be processed 12 must be controlled while grasping the temperature due to the exothermic reaction. That is, by using a translucent wavelength for the substrate to be processed 12, the temperature of the surface of the substrate to be processed 12 can be measured from the back of the substrate to be processed 12, which can be achieved. As described above, by using a wavelength of 1.5 μm or more with good transmittance of the Si substrate, measurement at the surface temperature of the substrate to be processed becomes possible.

【0054】急速加熱や予熱を熱電対を使用して制御す
る場合と、本発明に係る基板加熱装置を使用して制御す
る場合との比較例を下記に示す。
The following is a comparative example of a case where rapid heating or preheating is controlled using a thermocouple and a case where control is performed using a substrate heating apparatus according to the present invention.

【0055】被処理基板の温度を熱電対を使用して測定
すると、熱電対は必ず被処理基板と接触していなければ
ならないことから、被処理基板の加熱中熱電対自体から
熱が逃げて行き、定常状態になるまで時間がかかる。し
かし急速加熱や予熱のように急速な昇温過程で正しく温
度を測ろうとすると、上記の理由から熱電対を用いたの
では常に測定遅れが生じ、加熱源へのフィードバックが
間に合わず、例えば100℃/secというような、急
速な昇温には、全く役立たない。
When the temperature of the substrate to be processed is measured using a thermocouple, since the thermocouple must always be in contact with the substrate to be processed, heat escapes from the thermocouple itself during heating of the substrate to be processed. It takes time to reach a steady state. However, if the temperature is to be measured correctly in a rapid heating process such as rapid heating or preheating, the use of a thermocouple always causes a measurement delay due to the above reasons, and the feedback to the heating source cannot be made in time. / Sec does not help at all for a rapid temperature rise.

【0056】これに対して、本発明のように被処理基板
からの輻射エネルギーを検知し、温度を測定する基板加
熱装置を使用することにより、温度測定により測定対象
物である被処理基板の温度が下がることがないため、正
しい温度が直ちに測定でき、応答性の速いフィードバッ
クができる。本発明により、従来低温領域(400℃以
下)では不可能であった輻射式温度測定が可能となり、
低温領域での予熱、アニール等が短時間の昇温時間で行
えるようになる。
On the other hand, by using a substrate heating device for detecting the radiation energy from the substrate to be processed and measuring the temperature as in the present invention, the temperature of the substrate to be measured, which is the object to be measured by the temperature measurement, is measured. Since the temperature does not decrease, the correct temperature can be measured immediately, and fast responsive feedback can be provided. According to the present invention, radiation-type temperature measurement, which was conventionally impossible in a low-temperature region (400 ° C. or lower), becomes possible.
Preheating, annealing, and the like in a low-temperature region can be performed in a short heating time.

【0057】また、実際のプロセス温度を熱電対を利用
して測定すると、熱電対の測温部が被処理基板に融着し
てしまうという問題がある。また、熱電対の測温部が被
処理基板に接触していることの確認が熱電対の先端がだ
んだん撓んでくるため、同じ位置では必ず接していると
判断できないため困難等のハード上の問題もある。その
ため、バネ等を利用して接触させたり或いは熱電対自体
の剛性を上げたりすると、それによって被処理基板から
奪う熱量が増し被処理基板を冷やしてしまう等の問題が
あり、抜本的な解決策はなかった。また、接触している
ことは被処理基板の裏面を汚染してしまうという問題も
ある。
Further, when the actual process temperature is measured using a thermocouple, there is a problem that the temperature measuring part of the thermocouple is fused to the substrate to be processed. In addition, it is difficult to confirm that the temperature measuring part of the thermocouple is in contact with the substrate to be processed because the tip of the thermocouple is gradually bent, and it cannot be determined that the thermocouple is in contact at the same position. There is also. Therefore, if the contact is made by using a spring or the like or the rigidity of the thermocouple itself is increased, the amount of heat taken from the substrate to be processed is increased and the substrate to be processed is cooled. There was no. In addition, there is a problem that the contact causes contamination of the back surface of the substrate to be processed.

【0058】なお、図4に示す基板加熱装置では、ガラ
ス板体14は内部に空間部14aが形成され、該空間部
14aを挟んで平行に配置された一対の板体14b、1
4cが一体に形成された構造としているが、これに限定
されるものではなく、赤外線ランプヒータ13と被処理
基板12の間の被処理基板の近傍側に少なくとも2体の
ガラス体を設けた構成であればよい。また、センサ受信
部16で測定する輻射エネルギーの波長は該ガラス体の
透過の殆どない波長領域内と設定すればよい。
In the substrate heating apparatus shown in FIG. 4, a space 14a is formed inside the glass plate 14, and a pair of plates 14b, 1b arranged in parallel with the space 14a interposed therebetween.
4c is formed integrally, but the present invention is not limited to this. At least two glass bodies are provided near the substrate to be processed between the infrared lamp heater 13 and the substrate 12 to be processed. Should be fine. Further, the wavelength of the radiant energy measured by the sensor receiving unit 16 may be set within a wavelength range where the glass body hardly transmits.

【0059】また、2体のガラス体の内、下方(赤外線
ランプヒータの反対側のガラス体)は昇温したら冷却し
たガラス体と入れ換え、外部に取り出し、冷却したら昇
温したガラス体と取り替えるようにしてもよい。
Of the two glass bodies, the lower one (the glass body on the opposite side of the infrared lamp heater) is replaced by a cooled glass body when the temperature is raised, taken out, and replaced by a heated glass body when cooled. It may be.

【0060】なお、上記例ではセンサ受信部16を基板
処理装置(チャンバー)10内に配置したが、図12に
示すようにセンサ又はセンサ受信部24を基板処理装置
10の外側に配置してもよい。図12において、21、
22は石英ガラスからなるガラス体であり、赤外線ラン
プヒータ13からのガラス体21、22を透過する波長
の輻射エネルギーで基板載置用ピン23上に載置され
た、被処理基板12を加熱するようになっており、セン
サ又はセンサ受信部24は被処理基板12から発せられ
窓25を通って到達する輻射エネルギーを受信する。
In the above example, the sensor receiving section 16 is disposed in the substrate processing apparatus (chamber) 10, but the sensor or the sensor receiving section 24 may be disposed outside the substrate processing apparatus 10 as shown in FIG. Good. In FIG. 12, 21,
Reference numeral 22 denotes a glass body made of quartz glass, which heats the processing target substrate 12 mounted on the substrate mounting pins 23 with radiant energy of a wavelength transmitted from the infrared lamp heater 13 through the glass bodies 21 and 22. The sensor or sensor receiving unit 24 receives radiant energy emitted from the processing target substrate 12 and reaching through the window 25.

【0061】この窓25を構成するガラス材としては、
CaF2ガラスを使用すれば被処理基板12から発せら
れる波長7μm以下の輻射エネルギーは殆ど透過してセ
ンサ又はセンサ受信部24に達する。また、BaF2
ラスを使用すれば被処理基板12から発せられる波長1
0μm以下の輻射エネルギーは殆ど透過してセンサ又は
センサ受信部24に達する。
As a glass material constituting the window 25,
If CaF 2 glass is used, radiant energy with a wavelength of 7 μm or less emitted from the substrate 12 to be processed almost passes through and reaches the sensor or the sensor receiving unit 24. Further, if BaF 2 glass is used, the wavelength 1
The radiation energy of 0 μm or less almost passes through and reaches the sensor or the sensor receiving unit 24.

【0062】[0062]

【発明の効果】以上、説明したように各請求項に記載の
発明は下記のような優れた効果が得られる。
As described above, the inventions described in the respective claims have the following excellent effects.

【0063】請求項1に記載の発明によれば、輻射加熱
用ヒータと被処理基板の間に光学的に同一の特性を有す
る少なくともガラス体を2体設け、且つ被処理基板に近
いガラス体の温度を被処理基板の温度よりも十分低い温
度に維持するか或いは維持する機構を有するので、温度
センサ或いは温度センサ受信部で検知する波長領域を該
ガラス体で吸収される波長領域に設定すると、輻射加熱
用ヒータからのこの設定波長領域の輻射エネルギーは2
体のガラス体の内1体目のガラス体で殆ど吸収されるか
ら、この波長領域の輻射加熱用ヒータからの輻射エネル
ギーは温度センサ或いは温度センサ受信部に到達するこ
とはない。また、2体目のガラス体を輻射エネルギーが
放射されない十分低い温度に維持することにより、ここ
からの輻射エネルギーの放射はない。従って、輻射加熱
用ヒータから放射される温度センサ或いは温度センサ受
信部で検知する波長領域の輻射エネルギーが温度測定に
影響を与えることなく、精度のよい基板温度測定が可能
となる。
According to the first aspect of the present invention, at least two glass bodies having the same optical characteristics are provided between the radiation heater and the substrate to be processed, and the glass body close to the substrate to be processed is provided. Since the temperature is maintained at a temperature sufficiently lower than the temperature of the substrate to be processed or has a mechanism for maintaining the temperature, if the wavelength region detected by the temperature sensor or the temperature sensor receiving unit is set to the wavelength region absorbed by the glass body, The radiant energy of this set wavelength region from the radiant heater is 2
Since most of the glass body is absorbed by the first glass body, the radiant energy from the radiant heater in this wavelength range does not reach the temperature sensor or the temperature sensor receiving section. Also, by maintaining the second glass body at a sufficiently low temperature at which radiant energy is not emitted, there is no emission of radiant energy therefrom. Therefore, the substrate temperature can be measured with high accuracy without the temperature sensor radiated from the radiant heating heater or the radiation energy in the wavelength region detected by the temperature sensor receiving unit affecting the temperature measurement.

【0064】請求項2に記載の発明によれば、温度セン
サ或いは温度センサ受信部で測定する輻射エネルギーの
波長をガラス体の透過の殆どない波長領域内の波長とす
ることにより、輻射加熱用ヒータから放射される温度セ
ンサ或いは温度センサ受信部の測定波長の輻射エネルギ
ーはガラス体で遮断され、温度センサ或いは温度センサ
受信部に到達することはないから、精度のよい基板温度
測定が可能となる。
According to the second aspect of the present invention, by setting the wavelength of the radiation energy measured by the temperature sensor or the temperature sensor receiving portion to a wavelength within a wavelength range where the glass body hardly transmits, the radiation heating heater is provided. Since the radiation energy of the measurement wavelength of the temperature sensor or the temperature sensor receiving unit radiated from the glass substrate is cut off by the glass body and does not reach the temperature sensor or the temperature sensor receiving unit, accurate substrate temperature measurement can be performed.

【0065】請求項3に記載の発明によれば、温度セン
サ或いは温度センサ受信部が多重の筒状管で覆われた構
造とするので、外部熱線を直接受けることがなく、外部
熱線による測定温度への影響を極力排除でき、精度のよ
い基板温度測定が可能となる。
According to the third aspect of the present invention, since the temperature sensor or the temperature sensor receiving portion has a structure covered with the multiple cylindrical tubes, the temperature sensor or the temperature sensor receiving portion does not directly receive the external heat ray and the temperature measured by the external heat ray. The effect on the substrate temperature can be eliminated as much as possible, and accurate substrate temperature measurement becomes possible.

【0066】請求項4に記載の発明によれば、温度セン
サ或いは温度センサ受信部が外周面高反射率の筒状管で
覆われた構造とするので、外部熱線は筒状管の外周面で
反射され直接受けることがなく、外部熱線による測定温
度への影響を極力排除でき、精度のよい基板温度測定が
可能となる。
According to the fourth aspect of the present invention, since the temperature sensor or the temperature sensor receiving portion has a structure in which the outer peripheral surface is covered with the cylindrical tube having a high reflectance, the external heat ray is formed on the outer peripheral surface of the cylindrical tube. It is not reflected and directly received, the influence of the external heat ray on the measurement temperature can be eliminated as much as possible, and accurate substrate temperature measurement becomes possible.

【0067】請求項5に記載の発明によれば、基板処理
装置の基板加熱手段に請求項1乃至4に記載の基板加熱
装置を用いることにより、被処理基板からの輻射エネル
ギーにより低温領域でも基板温度を精度良く短時間で測
定し、適正な基板処理することが可能となる。
According to the fifth aspect of the present invention, by using the substrate heating device according to any one of the first to fourth aspects as the substrate heating means of the substrate processing apparatus, the substrate can be heated even in a low temperature region by radiation energy from the substrate to be processed. It is possible to accurately measure the temperature in a short period of time and perform appropriate substrate processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Siの放射率の波長・温度依存性を示す図であ
る。
FIG. 1 is a diagram showing the wavelength / temperature dependence of the emissivity of Si.

【図2】ヒータカバーの分光放射輝度を示す図である。FIG. 2 is a diagram showing a spectral radiance of a heater cover.

【図3】従来の基板加熱装置の概略構成例を示す図であ
る。
FIG. 3 is a diagram illustrating a schematic configuration example of a conventional substrate heating apparatus.

【図4】本発明に係る基板加熱装置を用いる基板処理装
置の概略構成例を示す図である。
FIG. 4 is a diagram showing a schematic configuration example of a substrate processing apparatus using a substrate heating apparatus according to the present invention.

【図5】本発明に係る基板処理装置の温度センサ受信部
の配置構成例を示す図である。
FIG. 5 is a diagram illustrating an example of an arrangement configuration of a temperature sensor receiving unit of the substrate processing apparatus according to the present invention.

【図6】合成石英ガラスの光透過率を示す図である。FIG. 6 is a diagram showing the light transmittance of synthetic quartz glass.

【図7】図4に示す基板処理装置の基板加熱用ヒータか
ら発せられる光(熱)の経路を説明するための図であ
る。
7 is a diagram for explaining a path of light (heat) emitted from a substrate heating heater of the substrate processing apparatus shown in FIG.

【図8】図4に示す基板処理装置の被処理基板からの反
射による迷光を説明するための図である。
8 is a diagram for explaining stray light due to reflection from a substrate to be processed in the substrate processing apparatus shown in FIG.

【図9】図4に示す基板処理装置のセンサ受信部の光の
伝播状態を説明するための図である。
FIG. 9 is a diagram for explaining a light propagation state of a sensor receiving unit of the substrate processing apparatus shown in FIG.

【図10】図4に示す基板処理装置のセンサ受信部の光
の伝播状態を説明するための図である。
FIG. 10 is a diagram for explaining a light propagation state of a sensor receiving unit of the substrate processing apparatus shown in FIG.

【図11】図4に示す基板処理装置のガラス板体の光透
過率の関係を示す図である。
FIG. 11 is a diagram showing a relationship between light transmittances of glass plates of the substrate processing apparatus shown in FIG.

【図12】本発明に係る基板加熱装置の温度センサ受信
部の配置構成例を示す図である。
FIG. 12 is a diagram illustrating an example of an arrangement configuration of a temperature sensor receiving unit of the substrate heating apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

10 基板処理装置 11 基板載置台 12 被処理基板 13 赤外線ランプヒータ 14 ガラス板体 15 ヒータカバー 16 センサ受信部 17 温度センサ配置孔 18 筒状管 19 基板加熱用ヒータ 20 冷却空間 21 ガラス体 22 ガラス体 23 基板載置用ピン 24 センサ又はセンサ受信部 25 窓 DESCRIPTION OF SYMBOLS 10 Substrate processing apparatus 11 Substrate mounting table 12 Substrate to be processed 13 Infrared lamp heater 14 Glass plate 15 Heater cover 16 Sensor receiving unit 17 Temperature sensor arrangement hole 18 Cylindrical tube 19 Heater for substrate heating 20 Cooling space 21 Glass body 22 Glass body 23 substrate mounting pin 24 sensor or sensor receiving unit 25 window

フロントページの続き (72)発明者 荒木 裕二 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 2G066 AC11 BA30 BA38 BB02 Continuation of the front page (72) Inventor Yuji Araki 11-1 Haneda Asahimachi, Ota-ku, Tokyo F-term in Ebara Corporation (reference) 2G066 AC11 BA30 BA38 BB02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被処理基板と、該被処理基板を載置する
基板載置治具と、該基板載置治具とは反対側に配設され
た少なくとも赤外線を利用した輻射加熱用ヒータとを具
備し、被処理基板からの輻射エネルギーを検知して該被
処理基板の温度を測定する温度センサ或いは温度センサ
受信部を該被処理基板に対して前記輻射加熱用ヒータの
反対側に設置した基板加熱装置において、 少なくとも基板温度測温時に前記輻射加熱用ヒータと前
記被処理基板の間に該輻射加熱用ヒータ自体の保護管を
除き少なくとも2体のガラス体を設け、且つ前記被処理
基板に最も近いガラス体が該被処理基板の温度よりも十
分低い温度に維持されているか或いは維持する機構を有
することを特徴とする基板加熱装置。
1. A substrate to be processed, a substrate mounting jig for mounting the substrate to be processed, and a radiant heating heater using at least infrared rays disposed on the opposite side to the substrate mounting jig. A temperature sensor or a temperature sensor receiver for detecting the radiant energy from the substrate to be processed and measuring the temperature of the substrate to be processed is provided on the opposite side of the radiant heating heater with respect to the substrate to be processed. In the substrate heating apparatus, at least at the time of measuring the substrate temperature, at least two glass bodies are provided between the radiation heating heater and the substrate to be processed, except for a protective tube of the radiation heating heater itself, and A substrate heating apparatus, wherein the closest glass body is maintained at a temperature sufficiently lower than the temperature of the substrate to be processed, or has a mechanism for maintaining the temperature.
【請求項2】 請求項1に記載の基板加熱装置におい
て、 前記温度センサ或いは温度センサ受信部で測定する輻射
エネルギーの波長は上記ガラス体を殆ど透過しない波長
領域内の波長であることを特徴とする基板加熱装置。
2. The substrate heating apparatus according to claim 1, wherein the wavelength of the radiant energy measured by the temperature sensor or the temperature sensor receiving unit is a wavelength in a wavelength range that hardly transmits the glass body. Substrate heating device.
【請求項3】 被処理基板と、該被処理基板を載置する
基板載置治具と、該被処理基板に対して該基板載置治具
とは反対側に配設された少なくとも赤外線を利用した輻
射加熱用ヒータとを具備し、被処理基板からの輻射エネ
ルギーを検知して該被処理基板の温度を測定する温度セ
ンサ或いは温度センサ受信部を該被処理基板に対して該
被処理基板載置台治具側に設置した基板加熱装置におい
て、 前記温度センサ或いは温度センサ受信部が多重の筒状管
で覆われた構造であることを特徴とする基板加熱装置。
3. A substrate to be processed, a substrate mounting jig for mounting the substrate to be processed, and at least infrared rays provided on the opposite side of the substrate to be processed with respect to the substrate to be processed. And a temperature sensor or a temperature sensor receiver for detecting the radiation energy from the substrate to be processed and measuring the temperature of the substrate to be processed with respect to the substrate to be processed. A substrate heating apparatus provided on a mounting table jig side, wherein the temperature sensor or the temperature sensor receiving section has a structure covered with multiple tubular tubes.
【請求項4】 請求項3に記載の基板加熱装置におい
て、 温度センサ或いは温度センサ受信部が外周面高反射率の
筒状管で覆われた構造であることを特徴とする基板加熱
装置。
4. The substrate heating apparatus according to claim 3, wherein the temperature sensor or the temperature sensor receiving section is covered with a cylindrical tube having a high reflectance on the outer peripheral surface.
【請求項5】 基板を加熱する基板加熱手段を具備し、
該基板に所定の処理を施す基板処理装置において、 前記基板加熱手段として請求項1乃至4のいずれかに記
載の基板加熱装置を用いることを特徴とする基板処理装
置。
5. A substrate heating means for heating a substrate,
A substrate processing apparatus for performing a predetermined process on the substrate, wherein the substrate heating apparatus according to any one of claims 1 to 4 is used as the substrate heating unit.
JP2000357820A 2000-11-24 2000-11-24 Substrate-heating equipment and substrate-processing equipment Pending JP2002164299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000357820A JP2002164299A (en) 2000-11-24 2000-11-24 Substrate-heating equipment and substrate-processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000357820A JP2002164299A (en) 2000-11-24 2000-11-24 Substrate-heating equipment and substrate-processing equipment

Publications (1)

Publication Number Publication Date
JP2002164299A true JP2002164299A (en) 2002-06-07

Family

ID=18829823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000357820A Pending JP2002164299A (en) 2000-11-24 2000-11-24 Substrate-heating equipment and substrate-processing equipment

Country Status (1)

Country Link
JP (1) JP2002164299A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014111A1 (en) * 2007-07-23 2009-01-29 Rohm Co., Ltd. Substrate temperature measuring apparatus and substrate temperature measuring method
JP2012509575A (en) * 2008-11-19 2012-04-19 アプライド マテリアルズ インコーポレイテッド High temperature measurement method for substrate processing.
CN102538975A (en) * 2012-01-18 2012-07-04 北京市科海龙华工业自动化仪器有限公司 Wireless coke oven top vertical flue observation hole on-line real-time monitoring device
WO2020110192A1 (en) * 2018-11-27 2020-06-04 株式会社日立ハイテクノロジーズ Plasma processing device and sample processing method using same
US11915951B2 (en) 2016-10-28 2024-02-27 Hitachi High-Tech Corporation Plasma processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014111A1 (en) * 2007-07-23 2009-01-29 Rohm Co., Ltd. Substrate temperature measuring apparatus and substrate temperature measuring method
JP2009027100A (en) * 2007-07-23 2009-02-05 Rohm Co Ltd Substrate temperature measuring apparatus and substrate temperature measurement method
JP2012509575A (en) * 2008-11-19 2012-04-19 アプライド マテリアルズ インコーポレイテッド High temperature measurement method for substrate processing.
CN102538975A (en) * 2012-01-18 2012-07-04 北京市科海龙华工业自动化仪器有限公司 Wireless coke oven top vertical flue observation hole on-line real-time monitoring device
US11915951B2 (en) 2016-10-28 2024-02-27 Hitachi High-Tech Corporation Plasma processing method
WO2020110192A1 (en) * 2018-11-27 2020-06-04 株式会社日立ハイテクノロジーズ Plasma processing device and sample processing method using same
JPWO2020110192A1 (en) * 2018-11-27 2021-02-15 株式会社日立ハイテク Plasma processing equipment and sample processing method using it

Similar Documents

Publication Publication Date Title
KR101057853B1 (en) Systems and processes for calibrating temperature measuring devices in heat treatment chambers
US5997175A (en) Method for determining the temperature of a semi-transparent radiating body
KR101047089B1 (en) Film forming apparatus and method comprising temperature and emissivity / pattern compensation
EP0612862A1 (en) Measuring wafer temperatures
JPH11316159A (en) Device and method for determining temperature of object in heat-treatment chamber
WO2007005489A2 (en) Method and system for determining optical properties of semiconductor wafers
JPS60131430A (en) Measuring device of temperature of semiconductor substrate
JP2011525632A (en) Substrate temperature measurement by infrared propagation in the etching process
EP0458388B1 (en) Method and device for measuring temperature radiation using a pyrometer wherein compensation lamps are used
JP2002164299A (en) Substrate-heating equipment and substrate-processing equipment
US6641302B2 (en) Thermal process apparatus for a semiconductor substrate
JP4975927B2 (en) Method and apparatus for measuring optical power loss in fiber optic contact means
JPH08184496A (en) Measurement of radiation luminance by angular wave filteringused in temperature measurement of heat radiating body
JP3190632B2 (en) Optical device with radiation detector
US20050134675A1 (en) Method of discriminating type of recording medium
JPH10111186A (en) Method and apparatus for measuring temperature of semiconductor substrate
JPH0442025A (en) Method and apparatus for measuring temperature of wafer
KR100316445B1 (en) Optical radiation measurement apparatus
WO2000058701A1 (en) Temperature measurement system
US11703391B2 (en) Continuous spectra transmission pyrometry
KR102003224B1 (en) Apparatus for measuring temperature of glass transmission type and induction range having the same
JP7338441B2 (en) light heating device
CN116759339A (en) Heat treatment device and temperature regulation method for semiconductor workpiece
TW202329291A (en) Systems, methods, and apparatus for correcting thermal processing of substrates
KR100529882B1 (en) Exposure