JP2002163679A - Device and method for generating three-dimensional object model - Google Patents

Device and method for generating three-dimensional object model

Info

Publication number
JP2002163679A
JP2002163679A JP2000358461A JP2000358461A JP2002163679A JP 2002163679 A JP2002163679 A JP 2002163679A JP 2000358461 A JP2000358461 A JP 2000358461A JP 2000358461 A JP2000358461 A JP 2000358461A JP 2002163679 A JP2002163679 A JP 2002163679A
Authority
JP
Japan
Prior art keywords
closed surface
object model
stop region
dimensional object
contracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000358461A
Other languages
Japanese (ja)
Inventor
Kenji Hara
健二 原
Akira Sako
紅彬 査
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Prefecture
Original Assignee
Fukuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Prefecture filed Critical Fukuoka Prefecture
Priority to JP2000358461A priority Critical patent/JP2002163679A/en
Publication of JP2002163679A publication Critical patent/JP2002163679A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional object model generating method applicable to an object having a hole region and a plurality of objects and small in calculation load. SOLUTION: This generating method is provided with a stop area formation step for forming circles of a prescribed expansion radius which are mutually connected around each data point constituting a distance image and defining an area formed by such mutually connected circles as a step area, an initial closed surface formation step for forming a single initial closed surface enclosing the stop area outside the stop area, and a closed surface contraction step for contracting the initial closed surface until each component point constituting the initial closed surface is located within the stop area, and makes a closed surface obtained in the closed surface contraction step to be a three-dimensional object model.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三次元物体モデル
生成装置及び三次元物体モデル生成方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional object model generating apparatus and a three-dimensional object model generating method.

【0002】[0002]

【従来の技術】近年、複数の視点方向から取得した距離
画像を統合することにより物体表面の全周計測を行う研
究(H.Zha,K.Morooka,and T.Hasegawa,"Activ Modeling
of 3-D Objects:Planning on the Ne xt Best Pose(NB
P) for Acquiring Range Images," Proc.Int.Conf.on R
ecent Adbances in 3-D Digital Imaging and Modelin
g,pp.68-75,1997)が盛んになっている。
2. Description of the Related Art In recent years, a study has been carried out to measure the entire circumference of an object surface by integrating distance images acquired from a plurality of viewpoint directions (H. Zha, K. Morooka, and T. Hasegawa, "Activ Modeling").
of 3-D Objects: Planning on the Next Best Pose (NB
P) for Acquiring Range Images, "Proc.Int.Conf.on R
ecent Adbances in 3-D Digital Imaging and Modelin
g, pp. 68-75, 1997).

【0003】しかし、こうして得られるデータは離散的
な座標点の集合に過ぎず、データ量も膨大であるため、
このデータを物体認識やグラフィックスに利用するため
には、コンパクトな全周型記述への変換が必要であり、
これを物体モデリングと呼んでいる。
However, the data obtained in this way is merely a set of discrete coordinate points, and the amount of data is enormous.
In order to use this data for object recognition and graphics, it is necessary to convert it to a compact full-circle description.
This is called object modeling.

【0004】かかる物体モデリングでは、動的輪郭モデ
ル(Snakes)(M.Kass,A.Witkin, andD.Terzopoulos,"Sna
kes:Active Contour Models,"Int'l J.of Computer Vis
ion,pp.321-331,1998)を三次元に拡張した変形可能曲
面(deformable surfaces)(H.Delingette,M.Hebert,and
K.Ikeuchi,"Shape Representation and Image Segmenta
tion U sing Deformable Surfaces," Proc.IEEE Conf.C
VPR, pp.467-472,1991、T.McInerney and D.Terzopoulo
s ,"A Finite Element Model for 3D Shape Reconstruc
tion and Nonrigid Motion Tracking,"Proc.Int.Conf.o
n Computer Vision,pp.518-523,1993、K.Hara,H.Zha,an
d T.Hasegawa, "Re gularization Based3-D Object Mod
eling from Multiple Range Images," Proc.Int.Conf.o
n Pattern Recognition,Vol.2,pp.964-968,1998)が広く
用いられている。この変形可能曲面はエネルギー最小化
原理に基づいており、滑らかで閉じた曲面が必ず得られ
るという特長がある。
In such object modeling, an active contour model (Snakes) (M. Kass, A. Witkin, and D. Terzopoulos, "Snakes"
kes: Active Contour Models, "Int'l J. of Computer Vis
ion, pp. 321-331, 1998) and deformable surfaces (H. Delingette, M. Hebert, and
K. Ikeuchi, "Shape Representation and Image Segmenta
tion U sing Deformable Surfaces, "Proc.IEEE Conf.C
VPR, pp. 467-472, 1991; T. McInerney and D. Terzopoulo
s, "A Finite Element Model for 3D Shape Reconstruc
tion and Nonrigid Motion Tracking, "Proc.Int.Conf.o
n Computer Vision, pp. 518-523, 1993, K. Hara, H. Zha, an
d T.Hasegawa, "Regularization Based3-D Object Mod
eling from Multiple Range Images, "Proc.Int.Conf.o
n Pattern Recognition, Vol. 2, pp. 964-968, 1998) is widely used. This deformable surface is based on the principle of energy minimization, and has the advantage that a smooth and closed surface can always be obtained.

【0005】しかしながら、この変形可能曲面では、曲
面の変形過程で分裂や統合といった位相の変化に適応で
きず、穴のある物体や複数の物体からなるシーンなどに
対する位相適応型モデリングが困難であるとの問題点が
指摘されている。
[0005] However, this deformable surface cannot adapt to changes in phase such as splitting and integration in the process of deforming the surface, and it is difficult to perform phase-adaptive modeling on an object having a hole or a scene including a plurality of objects. Problems have been pointed out.

【0006】この問題の解決のために、等高面法(Level
Set Method)(J.A.Sethian, LevelSet Methods and Fas
t Marching Methods,Cambrige University Press,199
9、S.Osher and J.A.Sethian,"Fronts Propageting wit
h Curbature-Dependent Speed: Algorithms Based o n
Hamilton-Jacobi Formulation,"J.of Computational Ph
ysics,Vol.79,pp.12-49,1988、儀我美一,陳蘊剛,動く曲
面を追いかけて,日本評論社,1996)を用いたモデリング
手法(以下、「等高面モデリング手法」という。)(R.Mal
ladi,J.A.Sethian,and B.C.Vemuri,"Shape Modeling wi
th Front Propagation:A Level Set Approach,"IEEE Tr
ans.PAMI ,Vol.17,No.2, pp.158-175, 1995)が提案さ
れ、位相適応型モデリングが可能となった。この等高面
法は、運動方程式に従う曲面の形状進化(surface evolu
tion)を追跡するため、曲面を次元を一つ追加した四次
元空間内のある補助関数のゼロ等高面とみなし、この補
助関数に関する方程式を解析する方法である。これによ
り、分裂などで微分不可能な点が生じた後の曲面の追跡
や、曲面の自己交差の回避が可能となる。
In order to solve this problem, a contour surface method (Level
Set Method) (JASethian, LevelSet Methods and Fas
t Marching Methods, Cambrige University Press, 199
9. S. Osher and JASethian, "Fronts Propageting wit
h Curbature-Dependent Speed: Algorithms Based on
Hamilton-Jacobi Formulation, "J. Of Computational Ph
ysics, Vol. 79, pp. 12-49, 1988, Miichi Giga and Ungo Chen, chasing a moving surface, Nihon Hyoronsha, 1996) (hereinafter referred to as “contour surface modeling method”). ) (R.Mal
ladi, JASethian, and BCVemuri, "Shape Modeling wi
th Front Propagation: A Level Set Approach, "IEEE Tr
ans.PAMI, Vol.17, No.2, pp.158-175, 1995) has been proposed, and phase adaptive modeling has become possible. This contour surface method is based on surface evolution (surface evolu
In this method, a curved surface is regarded as a zero contour surface of a certain auxiliary function in a four-dimensional space to which one dimension is added, and an equation relating to the auxiliary function is analyzed. This makes it possible to track a surface after a point that cannot be differentiated due to division or the like, and to avoid self-intersection of the surface.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記等高面モ
デリング手法では、距離変換の反復や次元の追加を伴
い、計算量や記憶容量の点で効率的とはいえなかった。
However, the above-mentioned contour surface modeling method involves repetition of distance conversion and addition of dimensions, and is not efficient in terms of calculation amount and storage capacity.

【0008】ここで、等高面モデリング手法について概
説し、かかる等高面モデリング手法が有する課題につい
て説明する。
Here, the contour surface modeling method will be outlined, and the problems of the contour surface modeling method will be described.

【0009】まず、等高面法の概要について、簡単のた
め、二次元で説明する。ある閉曲線が時刻tによって変
形していく場合を考える。この曲線をγ(t)とし、与え
られた初期閉曲線γ(t=0)に対し、γ(t)の運動方程式を
導出する。ここで、γ(t)の各点の速度ベクトルの外向
き法線方向への成分Fを導入する。このFは成長速度と
呼ばれ、γ(t)の各点ごとに定まる量である。
First, an outline of the contour surface method will be described in two dimensions for simplicity. Consider a case where a certain closed curve is deformed at time t. Let γ (t) be this curve and derive the equation of motion of γ (t) for the given initial closed curve γ (t = 0). Here, a component F in the outward normal direction of the velocity vector at each point of γ (t) is introduced. This F is called a growth rate and is an amount determined for each point of γ (t).

【0010】等高面法の基本的な考え方は、時問の経過
とともに動く曲線γ(t)をより高次の補助関数z=φ(x,y,
t)のゼロ等高線とみなし、これを埋め込むことにある。
いま、二次元平面上の点X=(x,y)に対する補助関数を φ(X,t=0)=±d (1) と定義する。ここで、dはXから初期閉曲線γ(t=0)まで
の最短距離である。また、右辺は点Xがγ(t=0)の外側に
あるときに正、内側にあるときに負の符号がとられる。
したがって、φ(X,t)の初期値には γ(t=0)={X|φ(X,t=0)=0} (2) を満足するφ(X,t=0):R2→Rが選ばれる。以下では、こ
のφ(X,t)に対する運動方程式を導出する。
The basic idea of the contour surface method is that a curve γ (t) moving with time is converted into a higher-order auxiliary function z = φ (x, y,
It is to regard as zero contour of t) and embed this.
Now, an auxiliary function for a point X = (x, y) on a two-dimensional plane is defined as φ (X, t = 0) = ± d (1). Here, d is the shortest distance from X to the initial closed curve γ (t = 0). The right side has a positive sign when the point X is outside γ (t = 0), and a negative sign when the point X is inside.
Therefore, the initial value of φ (X, t) is γ (t = 0) = {X | φ (X, t = 0) = 0} (2) φ (X, t = 0): R 2 → R is selected. In the following, the equation of motion for φ (X, t) will be derived.

【0011】X(t)を曲線γ(t)上にあって時刻tの経過
とともに動く点とすると、明らかにX(t=0)は初期曲線γ
(t=O)上の点である。すなわち、φのゼロ等高線がγ(t)
と等しくなるための必要十分条件は、 φ(X(t),t)=0 (3) となる。式(3)の両辺をtで微分すると φt+∇φ(X(t),t)・X'(t)=0 (4) となる。このときFは、X(t)の移動速度X'(t)とγの外
向き単位法ベクトルn=∇φ/|∇φ|の積を用いてF=
X'(t)・nと書けるので、φに関する運動方程式(4)は、 φt+F|∇φ|=0 (5) とも書ける。式(5)はOsherとSethianによって導出され
た方程式であり、等高面方程式(Leve1 Set Equation)と
呼ばれる(S.Osher and J.A.Sethian, "Fronts Propaget
ing with Curbature-Dependent Speed:Algorithms Base
d on Hamilton- Jacobi Formulation,"J.of Computatio
nal Physics, Vol.79,pp.12-49,1988.)。等高面法は、
この等高面方程式をある初期条件のもとで解き、得られ
た解φ(X,t)のゼロ等高線をγ(t)とみなす方法である。
If X (t) is a point on the curve γ (t) that moves with the passage of time t, obviously X (t = 0) is the initial curve γ
(t = O). That is, the zero contour of φ is γ (t)
The necessary and sufficient condition for becoming equal to φ (X (t), t) = 0 (3). Differentiating both sides of Equation (3) with t gives φ t + ∇φ (X (t), t) · X ′ (t) = 0 (4). At this time, F is calculated by using the product of the moving speed X ′ (t) of X (t) and the outward unit vector n = γφ / | ∇φ |
Since it can be written as X ′ (t) · n, the equation of motion (4) for φ can also be written as φ t + F | ∇φ | = 0 (5). Equation (5) is an equation derived by Osher and Sethian and is called a contour surface equation (Leve1 Set Equation) (S. Osher and JASethian, "Fronts Propaget
ing with Curbature-Dependent Speed: Algorithms Base
d on Hamilton- Jacobi Formulation, "J. of Computatio
nal Physics, Vol. 79, pp. 12-49, 1988.). The contour surface method
In this method, the contour surface equation is solved under certain initial conditions, and the zero contour of the obtained solution φ (X, t) is regarded as γ (t).

【0012】等高面法の利点として、γ(t)の変形過程
で特異点が生じたとしても、その後の曲面の追跡が可能
となることが挙げられる。このことを説明するため図1
(c)、(d)に、単一の滑らかな初期閉曲線γ(0)が2つの閉
曲線に分離する前後の様子を示す。この曲線が分離する
とき、特異点と呼ばれる微分不可能な点が生じ、その点
でFが求まらず、分裂後の追跡が不可能になってしま
う。これに対し、図1(a)、(b)に示す補助関数z=φ(x ,
y,t)は常に滑らかな関数のままであり、γをφ(x,y,t)
のゼロ等高線とみなすことで分離後の追跡も可能とな
る。
An advantage of the contour surface method is that even if a singular point occurs in the process of deforming γ (t), it is possible to track the curved surface thereafter. To explain this, FIG.
(c) and (d) show a state before and after a single smooth initial closed curve γ (0) is separated into two closed curves. When this curve separates, a non-differentiable point called a singular point occurs, at which point F cannot be determined and tracking after splitting becomes impossible. On the other hand, the auxiliary function z = φ (x,
y, t) always remains a smooth function, and γ is φ (x, y, t)
Tracking after separation is also possible by considering it as a zero contour line.

【0013】なお、曲面の追跡の場合も上の手続きと全
く同様であり、このときは四次元空間内の補助関数u=Φ
(x,y,z,t)に関する等高面方程式を解き、得られた解の
ゼロ等高面を求めることになる。
The procedure for tracking a curved surface is exactly the same as the above procedure. In this case, the auxiliary function u = Φ in a four-dimensional space is used.
By solving the contour surface equation relating to (x, y, z, t), a zero contour surface of the obtained solution is obtained.

【0014】次に、等高面モデリング手法の概要につい
て、簡単のため前記と同様に二次元で説明する。二次元
画像の領域抽出を行う等高面モデリング手法(R.Mallad
i,J.A.Sethian,and B.C.Vemuri,"Sha pe Modeling with
Front Propagation : A Level Set Approach,"IEEE Tr
ans.PAMI,Vol.17,No.2, pp.158-175, 1995)は、運動方
程式 F=±1−εκ (6) に従って形状進化する閉曲線を等高面法を用いて追跡す
るもので、複数輪郭の抽出が可能という利点がある。
Next, for the sake of simplicity, an outline of the contour surface modeling method will be described two-dimensionally in the same manner as described above. Contour surface modeling method (R. Mallad
i, JASethian, and BCVemuri, "Sha pe Modeling with
Front Propagation: A Level Set Approach, "IEEE Tr
ans.PAMI, Vol.17, No.2, pp.158-175, 1995) tracks closed curves that evolve in shape according to the equation of motion F = ± 1-εκ (6) using the contour surface method. There is an advantage that a plurality of contours can be extracted.

【0015】ここで、κは曲線φ(x,y,t)=O上の点Pに
おける内向き単位法ベクトル方向の平均曲率、εは重み
係数である。式(6)の右辺が第一項±1のみからなる場
合、曲線は一定の速さ1の等速成長(+1は膨張、−1
は収縮)に従って形状進化する。しかし、等速成長には
曲線の変形過程で特異点を生じやすいという性質があ
る。これをなるべく避けるため、平滑化項−εκを追加
している。なお、第二項のみからなる運動方程式は平均
曲率流方程式と呼ばれる。
Here, κ is the average curvature of the point P on the curve φ (x, y, t) = O in the direction of the inward unit method vector, and ε is the weighting coefficient. When the right-hand side of the equation (6) consists of only the first term ± 1, the curve shows a constant speed 1 constant growth (+1 is expansion, −1
Evolves according to shrinkage). However, uniform growth has a property that a singular point is apt to be generated in the course of curve deformation. To avoid this as much as possible, a smoothing term −εκ is added. The equation of motion consisting of only the second term is called an average curvature flow equation.

【0016】式(6)を等高面法を用いて解くことによ
り、曲線の分裂や統合といった位相の変化にも適応可能
となるが、このままでは曲線の移動が止まらなくなる。
そこで、式(6)とフイルタ
By solving equation (6) using the contour surface method, it becomes possible to adapt to changes in the phase such as splitting and merging of curves, but the movement of the curves does not stop as it is.
Therefore, the equation (6) and the filter

【0017】[0017]

【数1】 の積 F=kI(±1−εκ) (8) により成長速度Fを定義し直す。ここで、∇Gσ*Iは
標準偏差σのガウス関数による対象画像Iのたたみ込み
を表す。このときkI(x,y)は輪郭点のように画像の勾配
が急激に変化するところでほとんどゼロとなるので、曲
線は輪郭付近で移動を停止する。
(Equation 1) F = k I (± 1−εκ) (8) The growth rate F is defined again. Here, ∇G σ * I represents the convolution of the target image I by the Gaussian function with the standard deviation σ. At this time, k I (x, y) becomes almost zero where the gradient of the image sharply changes like a contour point, so that the curve stops moving near the contour.

【0018】この等高面モデリング手法を三次元に適用
する場合も上と同様にすればよく、そのときはCTデータ
のように各ボクセルが濃度値を蓄えているような三次元
画像データが対象となる。
The same applies to the case where this contour surface modeling method is applied to three dimensions. In this case, three-dimensional image data in which each voxel stores density values, such as CT data, is used. Becomes

【0019】上述した等高面モデリング手法には、特に
三次元で計算量が膨大となるといった課題を有してい
た。
The above-described contour surface modeling method has a problem that the amount of calculation becomes enormous, especially in three dimensions.

【0020】すなわち、等高面モデリング手法を直接に
数値計算する場合、以下の手続きがとられる。まず、三
次元空間と時間を細かく分割して、微分方程式(5)を差
分方程式に直す。そして時間を分割幅だけ進めるごと
に、差分方程式に従って補助関数を更新し、得られた補
助関数のゼロ等高面をもとに式(1)に従って補助関数を
修正する。このとき、空間を構成するすべての要素に対
してゼロ等高面との距離を求めなければならず、膨大な
計算コストがかかる。例えば三次元空間を小立方体のセ
ルの集合に分割し、各軸方向にそれぞれn個のセルが並
んでいる場合を考える。このとき、ゼロ等高面を構成す
るセルの個数はn2に比例し、空間を構成するセルの個数
はn3であるから、上述の処理の計算複雑さはO(n5)とな
る。
That is, the following procedure is taken when directly performing a numerical calculation of the contour surface modeling method. First, the three-dimensional space and time are finely divided, and the differential equation (5) is converted into a difference equation. Then, each time the time is advanced by the division width, the auxiliary function is updated according to the difference equation, and the auxiliary function is corrected according to equation (1) based on the obtained zero contour surface of the auxiliary function. At this time, it is necessary to find the distance from all the elements constituting the space to the zero contour plane, which requires a huge calculation cost. For example, consider a case in which the three-dimensional space is divided into a set of small cube cells, and n cells are arranged in each axis direction. At this time, the number of cells constituting the zero contour plane is proportional to n 2 and the number of cells constituting the space is n 3 , so that the computational complexity of the above processing is O (n 5 ).

【0021】この膨大な計算量を削減するため、ゼロ等
高面の近傍セルに対してのみ距離計算を行なうnarrow-b
andアルゴリズム(D.L.Chopp,"Computing Minimal Surfa
cesvia Level Set Curvature Flow,"J.of Computationa
l Physics, Vol.106, pp.77-91,1993.)が提案されてい
る。ゼロ等高面の近傍のセルの個数をκとすると、この
ときの計算複雑さはO(κn2)となるが、まだなお膨大な
計算量といえる。
In order to reduce this enormous amount of calculation, the distance calculation is performed only on the neighboring cells on the zero contour plane.
and algorithm (DLChopp, "Computing Minimal Surfa
cesvia Level Set Curvature Flow, "J. of Computationa
l Physics, Vol. 106, pp. 77-91, 1993.). Assuming that the number of cells near the zero contour surface is κ, the computational complexity at this time is O (κn 2 ), but it can still be said that the computational complexity is still enormous.

【0022】[0022]

【課題を解決するための手段】そこで、本発明では、上
記間題点を解決するため、反復的なモフォロジー演算を
用いた曲面の形状進化を定義し、これを用いた位相適応
型物体モデリング手法を提案する。ここで、モフォロジ
ー(小畑秀文,モルフォロジー,コロナ社,1996)とあ、構
造化要素と呼ばれる位置ベクトルの集合に従って対象画
像を移動させた画像と元の対象画像との間で論理演算を
行うもので,主に二次元画像処理の分野で使用されてき
たものである。本発明では、かかるモフォロジーを三次
元曲面の形状進化を生成するための動的なモデルに拡張
し、反復的なモフォロジー操作によって曲面を形状進化
させる。構造化要素が凸で十分小さければ、ずらし重ね
(di1ation)やかき取り(erpsion)といったモフォロジー
操作は、ある微分方程式に従う曲面の微小変形を生じる
(A.B.Arehart,L.Vincent,and B.B.Kimia, "Math ematic
al Morphology:The Hamilton-Jacobi Connection, "Pro
c. Int.Conf.on Computer Vision,pp.215-219,1993)。
そのため、構造化要素の大きさを変化させることで擬似
的ではあるが、等高面モデリング手法における微分方程
式の解曲面を高速に生成することができる。
Therefore, in order to solve the above-mentioned problem, the present invention defines a shape evolution of a curved surface using iterative morphological operation, and a phase adaptive object modeling method using the same. Suggest. Here, morphology (Hidefumi Obata, Morphology, Corona Co., 1996) performs a logical operation between the image obtained by moving the target image according to a set of position vectors called a structuring element and the original target image. It has been mainly used in the field of two-dimensional image processing. In the present invention, such a morphology is extended to a dynamic model for generating a shape evolution of a three-dimensional surface, and the surface is shape-evolved by iterative morphological operations. If the structuring element is convex and small enough,
Morphological operations such as (di1ation) and scraping (erpsion) produce small deformations of a surface according to a differential equation
(ABArehart, L. Vincent, and BBKimia, "Math ematic
al Morphology: The Hamilton-Jacobi Connection, "Pro
c. Int. Conf. on Computer Vision, pp. 215-219, 1993).
Therefore, by changing the size of the structuring element, a solution surface of a differential equation in a contour surface modeling method can be generated at high speed, although it is pseudo.

【0023】本手法ではまず,各データ点を球に膨張さ
せることによりデータ点を相互に連結させ、曲面上の点
の速度ベクトルがゼロとなる領域(以下、「停止領域」
という。)を生成する。次に、データ全体を囲む単一の
閉曲面を初期値とし、曲面が変形を停止するまで閉曲面
の内部領域に対するかき取り操作を繰り返す。この収縮
・分裂過程において曲面の滑らかさを保つため、曲率に
依存して大きさが変化する球を構造化要素として用い
る。得られた曲面をもとに、停止領域の外部境界面を抽
出し、この面に沿った停止領域のかき取りにより停止領
域を補正する。そして、この停止領域のもとで曲面を再
度収縮する。得られたモデルをエネルギー最小化により
補正することで、高精度な物体モデルが得られる。
In this method, first, data points are connected to each other by expanding each data point into a sphere, and a region where a velocity vector of a point on a curved surface becomes zero (hereinafter, a “stop region”)
That. ) Is generated. Next, a single closed surface surrounding the entire data is set as an initial value, and the scraping operation on the internal region of the closed surface is repeated until the surface stops deforming. In order to maintain the smoothness of the curved surface during the contraction / division process, a sphere whose size changes depending on the curvature is used as a structuring element. Based on the obtained curved surface, an outer boundary surface of the stop region is extracted, and the stop region is corrected by scraping the stop region along this surface. Then, the curved surface contracts again under the stop area. By correcting the obtained model by energy minimization, a highly accurate object model can be obtained.

【0024】すなわち、本発明では、対象物体に近似さ
せた画像である三次元物体モデルを生成する装置であっ
て、対象物体の周囲の複数の視点から対象物体までの距
離を計測する距離計測手段と、同距離計測手段によって
計測した複数の距離データからなる距離画像を記憶する
距離画像記憶手段と、同距離画像記憶手段によって記憶
した距離画像に基づいて三次元物体モデルを算出する三
次元物体モデル算出手段とからなり、同三次元物体モデ
ル算出手段は、距離画像を構成する各データ点の周囲に
所定の膨張半径の相互に連結する球を形成し、かかる相
互に連結する球によって形成されて領域を停止領域とす
る停止領域形成ステップと、停止領域の外方に停止領域
を囲む単一の初期閉曲面を形成する初期閉曲面形成ステ
ップと、同初期閉曲面を構成する各構成点が停止領域の
内部に位置するまで初期閉曲面を収縮せしめる閉曲面収
縮ステップと、を具備し、閉曲面収縮ステップで得られ
た閉曲面を三次元物体モデルとすることを特徴とする三
次元物体モデル生成装置を提供するものである。
That is, according to the present invention, there is provided an apparatus for generating a three-dimensional object model which is an image approximated to a target object, wherein the distance measuring means measures distances from a plurality of viewpoints around the target object to the target object. A distance image storage means for storing a distance image composed of a plurality of distance data measured by the same distance measurement means; and a three-dimensional object model for calculating a three-dimensional object model based on the distance image stored by the same distance image storage means. The three-dimensional object model calculating means forms an interconnecting sphere of a predetermined expansion radius around each data point constituting the range image, and is formed by the interconnecting sphere. Forming a stop area with the area as a stop area, forming an initial closed surface outside the stop area, and forming a single initial closed surface surrounding the stop area; A closed surface contraction step of contracting the initial closed surface until each of the constituent points constituting the surface is located inside the stop region, and the closed surface obtained in the closed surface contraction step is a three-dimensional object model. The present invention provides a three-dimensional object model generation device characterized by the following.

【0025】また、本発明では、対象物体の周囲の複数
の視点から対象物体までの距離を計測した複数の距離デ
ータからなる距離画像から対象物体に近似させた画像で
ある三次元物体モデルを生成する方法であって、距離画
像を構成する各データ点の周囲に所定の膨張半径の相互
に連結する球を形成し、かかる相互に連結する球によっ
て形成されて領域を停止領域とする停止領域形成ステッ
プと、停止領域の外方に停止領域を囲む単一の初期閉曲
面を形成する初期閉曲面形成ステップと、同初期閉曲面
を構成する各構成点が停止領域の内部に位置するまで初
期閉曲面を収縮せしめる閉曲面収縮ステップと、を具備
し、閉曲面収縮ステップで得られた閉曲面を三次元物体
モデルとすることを特徴とする三次元物体モデル生成方
法を提供するものである。
Further, according to the present invention, a three-dimensional object model which is an image approximated to a target object is generated from a distance image including a plurality of distance data obtained by measuring distances from a plurality of viewpoints around the target object to the target object. Forming a mutually connected sphere having a predetermined expansion radius around each data point constituting the distance image, and forming a stop region formed by the mutually connected spheres as a stop region. A step, an initial closed surface forming step of forming a single initial closed surface surrounding the stop region outside the stop region, and an initial closed surface until each constituent point constituting the initial closed surface is located inside the stop region. A closed surface contraction step of contracting a curved surface, wherein a closed surface obtained in the closed surface contraction step is used as a three-dimensional object model. A.

【0026】また、本発明では、閉曲面収縮ステップ
は、閉曲面を構成する各構成点の周囲に所定のかき取り
半径の相互に連結する球を形成するとともに、かかる相
互に連結する球の内側面を収縮した閉曲面とすることに
よって閉曲面を順次収縮せしめること、また、かき取り
半径は、閉曲面を構成する各構成点での閉曲面の曲率に
応じて変更せしめること、また、閉曲面収縮ステップ
は、初期閉曲面を構成する各構成点が停止領域の内部に
位置した後に、停止領域の外周面から所定の膨張半径の
球を除去した領域を再停止領域とし、収縮した閉曲面の
各構成点が再停止領域の内部に位置するまで再び閉曲面
を収縮せしめること、更には、閉曲面収縮ステップは、
初期閉曲面を構成する各構成点が停止領域の内部に位置
した後に、停止領域の外周面から所定の膨張半径の球を
除去した領域を再停止領域とし、収縮した閉曲面の各構
成点が再停止領域の内部に位置するまで再び閉曲面を収
縮せしめ、その後、収縮した閉曲面をエネルギー最小化
原理に基づいて閉曲面を微収縮せしめることにも特徴を
有する。
Further, in the present invention, the step of contracting the closed surface includes forming interconnecting spheres having a predetermined scraping radius around each of the constituent points constituting the closed surface, and forming the connecting spheres within the interconnecting spheres. The closed surface is shrunk sequentially by making the side surface contracted, and the scraping radius is changed according to the curvature of the closed surface at each of the constituent points constituting the closed surface. After each of the constituent points constituting the initial closed surface is located inside the stop region, the contraction step is a re-stop region in which a sphere having a predetermined expansion radius is removed from the outer peripheral surface of the stop region. Shrinking the closed surface again until each component point is located inside the re-stop area, and further, the closed surface shrinking step includes:
After each of the constituent points constituting the initial closed surface is located inside the stop region, a region where a sphere having a predetermined expansion radius is removed from the outer peripheral surface of the stop region is defined as a re-stop region, and each of the constituent points of the contracted closed surface is It is also characterized in that the closed surface is contracted again until it is located inside the re-stop region, and then the contracted closed surface is slightly contracted based on the principle of energy minimization.

【0027】また、本発明では、上記の三次元物体モデ
ル生成方法を実行するためのプログラムを記録したコン
ピュータ読み取り可能な記録媒体を提供するものであ
る。
The present invention also provides a computer-readable recording medium on which a program for executing the above-described method for generating a three-dimensional object model is recorded.

【0028】[0028]

【発明の実施の形態】以下に本発明の実施の形態につい
て具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be specifically described below.

【0029】進化曲面の形状進化を物体モデリングに利
用するためには、形状進化の過程にある曲面に対して自
己交差を生じないことと滑らかさを維持することの二つ
が要請される。等高面モデリング手法はこれらを満足し
ているが、先にも述べたように距離変換の反復や次元の
追加を行わなければならず、計算効率の点で実用的とは
いえない。そこで、上に述べた要請を満たす曲面の形状
進化をより効率的に生成する手法を提案する。
In order to use the shape evolution of an evolutionary surface for object modeling, it is required to prevent self-intersection from a surface in the process of shape evolution and to maintain smoothness. Although the contour surface modeling method satisfies these requirements, as described above, it is necessary to perform repetition of distance transformation and addition of dimensions, which is not practical in terms of computational efficiency. Therefore, a method for more efficiently generating a shape evolution of a curved surface satisfying the above requirements is proposed.

【0030】まず、三次元モフォロジーの基本演算につ
いて説明する。
First, the basic operation of three-dimensional morphology will be described.

【0031】三次元モフォロジーは三次元空間における
集合論として展開され、二次元の場合と同様、ずらし重
ね(di1ation)、かき取り(erosion)、開放(opening)、閉
合(Closing)を基本演算とする。
The three-dimensional morphology is developed as a set theory in a three-dimensional space, and, as in the two-dimensional case, is based on displacement, erosion, opening, and closing. .

【0032】E3を三次元のユークリツド空間、Aを三
次元空間における集合、Bを集合Aに対してモフォロジ
ー演算に用いる集合、すなわち三次元構造化要素、aを
Aの要素、bをBの要素とする。ここでの要素とは三次
元空間における集合を構成する点の位置ベクトルを意味
する。このとき、集合Aの構造化要素Bによるずらし重
ねは、
E 3 is a three-dimensional Euclidean space, A is a set in the three-dimensional space, B is a set used for morphological operation on the set A, that is, a three-dimensional structuring element, a is an element of A, and b is an element of B Element. The element here means a position vector of a point forming a set in a three-dimensional space. At this time, the displacement of the set A by the structuring element B is

【0033】[0033]

【数2】 と定義される。これは構造化要素Bの原点を三次元図形
A内で移動させたときにBが覆うことのできる領域を表
している。
(Equation 2) Is defined as This represents an area that B can cover when the origin of the structuring element B is moved in the three-dimensional figure A.

【0034】集合Aの構造化要素Bによるかき取りは、The scraping of the set A by the structuring element B is as follows.

【0035】[0035]

【数3】 と定義される。これは三次元図形Aの中に図形Bを入
れ、Aの外にはみ出さない範囲でBを動かせる領域を表
している。
(Equation 3) Is defined as This represents an area in which the figure B can be moved within a range in which the figure B is inserted into the three-dimensional figure A and does not protrude outside the A.

【0036】また、集合Aの構造化要素Bによる開放A
Bは、
Further, the opening A by the structuring element B of the set A
B is

【0037】[0037]

【数4】 と定義され、集合Aの構造化要素Bによる閉合ABは、(Equation 4) And the closure A B of the set A with the structuring element B is

【0038】[0038]

【数5】 と定義される。(Equation 5) Is defined as

【0039】次に、モフォロジーの反復計算と運動方程
式について説明する。
Next, iterative calculation of morphology and equations of motion will be described.

【0040】Kimiaらは、モフォロジーの反復計算によ
って生じる曲面の形状進化がある微分方程式に従うもの
であることを示した(A.B.Arehart,L.Vincent,and B.B.K
imia,"Mathematical Morphology:The Hamilton-Jacobi
Connection, "Proc.Int.Conf.on Computer Vision,pp.2
15-219,1993、B.B.Kimia, A.R.Tannenbaum,and S.W.Zuc
ker,"Shapes,shocks,and deformations, I:The compon
ents of shape and the reaction-diffusion space,"In
t'l J.of Computer Vision,Vol.15,pp.189-224,1995)。
Have shown that the shape evolution of a surface caused by iterative computation of morphology obeys a differential equation (ABArehart, L. Vincent, and BBK).
imia, "Mathematical Morphology: The Hamilton-Jacobi
Connection, "Proc.Int.Conf.on Computer Vision, pp.2
15-219, 1993, BBKimia, ARTannenbaum, and SWZuc
ker, "Shapes, shocks, and deformations, I: The compon
ents of shape and the reaction-diffusion space, "In
t'l J. of Computer Vision, Vol. 15, pp. 189-224, 1995).

【0041】集合Bのサイズを1としたとき、Bをn倍に
拡大したサイズnの集合nB(nは正の整数)は、ずらし重
ねを用いて、
Assuming that the size of the set B is 1, a set nB (n is a positive integer) of a size n obtained by expanding B by n times is obtained by shifting and overlapping.

【0042】[0042]

【数6】 のように定義される。Bが凸であれば、nBはBと同じ
形状でサイズがn倍になっている。したがって、三次元
図形Aの構造化要素nBによるずらし重ねは、次式のよ
うにBによるずらし重ねをn回順番に行うことと等し
い。すなわち、
(Equation 6) Is defined as If B is convex, then nB has the same shape as B and is n times larger in size. Therefore, the shifting and overlapping of the three-dimensional figure A by the structuring element nB is equivalent to performing the shifting and overlapping by B in order of n times as in the following equation. That is,

【0043】[0043]

【数7】 ただし式(14)では、ずらし重ね演算に関する結合則を用
いている。同様に、構造化要素nBによるかき取りも次
式のようにBによるかき取りをn回順番に行うことと等
しくなる。すなわち、
(Equation 7) However, in the equation (14), the combination rule regarding the shift overlap operation is used. Similarly, scraping by the structuring element nB is equivalent to performing scraping by B n times in sequence as in the following equation. That is,

【0044】[0044]

【数8】 ただし式(15)では、かき取り演算に関する分配則を用い
ている。式(14)や式(15)は、ある凸の構造化要素を用い
たずらし重ね(かき取り)が、形状が同じで大きさが1/n
の構造化要素のずらし重ね(かき取り)をn回行うことと
等しいことを意味している。このときn→∞のようにす
ると、微分を用いた解析が可能となる。
(Equation 8) However, in equation (15), a distribution rule relating to a scraping operation is used. Equations (14) and (15) are staggered using a certain convex structuring element (scraping), but the shape is the same and the size is 1 / n
This means that it is equivalent to n times the structuring element is repeatedly shifted (scraped). At this time, if n → ∞, analysis using differentiation is possible.

【0045】三次元図形Sから三次元図形S'を得るモ
フォロジー操作は、Sの境界面∂SをS'の境界面∂S'
に変換する曲面の変形操作とみなせる。時刻tで図形S
にサイズλの構造化要素のずらし重ね(かき取り)を施し
たとき、そのλ時間後に曲面∂S上のある点pが外向き
法ベクトル方向にΓ(p,t,λ)だけ移動したとする。この
とき成長率度Fは、Γ(p,t,0)=0を用いて、
The morphology operation for obtaining the three-dimensional figure S ′ from the three-dimensional figure S is performed by changing the boundary surface S of S to the boundary surface S ′ of S ′.
It can be regarded as a deformation operation of the curved surface converted into. Figure S at time t
, A point p on the surface ∂S is moved by Γ (p, t, λ) in the outward normal vector direction after λ time. I do. At this time, the growth rate F is obtained by using Γ (p, t, 0) = 0.

【0046】[0046]

【数9】 と書ける。したがって、ずらし重ねやかき取りによって
生じる曲面の変形は、式(16)で表される偏微分方程式に
従うことになる。ここで微分変形量β(p,t)はpにおける
∂Sの法線へのBの射影の最大値となることが知られて
いる(A.B. Arehart,L.Vincent,and B.B.Kimia,"Mathema
tical Morphology:The Hamilton-Jacobi Connection, "
Proc.Int.Conf.on Computer Vision,pp. 215-219,199
3)。例えば、半径1の球Bの構造化要素を用いたとき、
運動方程式(16)は、 F=±1 (17) となる。これは曲面が外側(ずらし重ね)や内側(かき取
り)に一定の法速度で成長する等速成長の運動方程式と
等しい。
(Equation 9) I can write Therefore, the deformation of the curved surface caused by the offset overlapping or scraping follows the partial differential equation represented by Expression (16). It is known that the amount of differential deformation β (p, t) is the maximum value of the projection of B onto the normal of の S at p (AB Arehart, L. Vincent, and BBKimia, “Mathema
tical Morphology: The Hamilton-Jacobi Connection, "
Proc.Int.Conf.on Computer Vision, pp. 215-219,199
3). For example, when using the structuring element of a sphere B with a radius of 1,
The equation of motion (16) is as follows: F = ± 1 (17) This is equivalent to the equation of motion of constant growth in which the curved surface grows outside (shifted over) or inside (scraping) at a constant normal speed.

【0047】なお、偏微分方程式(16)は曲面がp上で滑
らかであることを仮定して導出されたものである。pが
微分不可能、すなわち特異点の場合、等高面法を用いて
式(16)を解くことができるが、この解とずらし重ね(か
き取り)による曲面の変形が等価であることが知られて
いる(B.B.Kimia, A.R.Tannenbaum,and S.W. Zucker,"Sh
apes,shocks,and deformations, I:The components of
shape and the reaction-diffusion space,"Int'l J.of
Computer Vision, Vol.15, pp.189-224,1995)。
The partial differential equation (16) is derived on the assumption that the curved surface is smooth on p. If p is undifferentiable, that is, if it is a singular point, equation (16) can be solved using the contour surface method.However, it is known that this solution is equivalent to the deformation of the curved surface by shifting and overlapping (scraping). (BBKimia, ARTannenbaum, and SW Zucker, "Sh
apes, shocks, and deformations, I: The components of
shape and the reaction-diffusion space, "Int'l J.of
Computer Vision, Vol.15, pp.189-224,1995).

【0048】式(17)に従う曲面は変形過程で滑らかさを
失いやすく(図2(a))、物体モデリングヘの応用に適して
いるとはいいがたい。そのため、式(6)を三次元に拡張
した方程式の解曲面のように、滑らかさを保った曲面の
形状進化を生成する必要がある。そこで、曲面に沿って
ずらし重ね(かき取り)を行う際に構造化要素のサイズを
曲面の曲がり方によって変化させるしくみを導入する。
The curved surface according to equation (17) tends to lose its smoothness during the deformation process (FIG. 2 (a)), and is not suitable for application to object modeling. Therefore, it is necessary to generate a shape evolution of a curved surface that maintains smoothness, such as a solution surface of an equation obtained by expanding Equation (6) into three dimensions. Therefore, a mechanism for changing the size of the structuring element depending on how the curved surface bends when shifting and overlapping (scraping) along the curved surface is introduced.

【0049】ここでは、主に球体の構造化要素を用いた
かき取り操作を物体モデリングに適用する。そこでかき
取りに用いる球の半径λを、 λ=λ0+ε'K (18) のように変化させる。ここに、λOとε'はある正の定数
である。また、K=K(p,t)はノイズの影響を受けやす
い三次元曲率の代わりに導入したもので、曲面上の点p
における凸の度合いを表し、近傍の外部領域と内部領域
の体積比を用いて、
Here, a scraping operation mainly using a spherical structuring element is applied to object modeling. Therefore, the radius λ of the sphere used for scraping is changed as follows: λ = λ 0 + ε′K (18) Here, λ O and ε ′ are certain positive constants. K = K (p, t) is introduced instead of the three-dimensional curvature susceptible to noise.
Represents the degree of convexity in the, using the volume ratio of the nearby outer region and the inner region,

【0050】[0050]

【数10】 のように定義される。ここで、α=α(p,t)とβ=β(p,
t)は、pを中心とする半径ρの球面で囲まれた領域のう
ち、曲面内部にあるセルの個数、曲面外部にあるセルの
個数をそれぞれ表す(図3)。
(Equation 10) Is defined as Here, α = α (p, t) and β = β (p,
t) represents the number of cells inside the curved surface and the number of cells outside the curved surface, respectively, in a region surrounded by a spherical surface having a radius ρ centered on p (FIG. 3).

【0051】これにより、曲面が滑らかさを保ちつつ収
縮するようになる(図2(b))。ただし、この曲面の形状進
化は式(6)のような平均曲率流の方程式に従うものと必
ずしも同一ではない。そこで、前述した曲率流の性質と
類似しているという意味で、これを擬似曲率流と呼ぶこ
とにする。なお、ずらし重ねの場合は式(18)をλ=λ0
ε'Kとすればよい。
As a result, the curved surface contracts while maintaining smoothness (FIG. 2B). However, the shape evolution of this curved surface is not necessarily the same as that following the equation of the average curvature flow as in equation (6). Therefore, this is called a pseudo-curvature flow in the sense that it is similar to the above-described characteristic of the curvature flow. Note that shifting in the case of overlapping the formula (18) with λ = λ 0 -
ε'K may be used.

【0052】曲面の形状進化を距離画像のような離散デ
ータを入力とした物体モデリングに利用するとき、曲面
の移動をいかにして物体表面の位置で停止させるかが問
題となる。これに対し、曲面上の点の速度ベクトルがゼ
ロとなる領域を定義し、擬似曲率流による曲面の形状進
化を用いて位相の正しい物体モデルを大まかに求め、得
られたモデルをエネルギー最小化に基づき補正する方法
が考えられる。以下に、この曲面の形状進化と従来の変
形可能曲面とを併用した位相適応型物体モデリング手法
について述べる。
When the evolution of the shape of a curved surface is used for object modeling using discrete data such as a distance image as an input, there is a problem how to stop the movement of the curved surface at a position on the surface of the object. On the other hand, a region where the velocity vector of a point on a curved surface is zero is defined, and the object model with the correct phase is roughly obtained using the shape evolution of the curved surface by pseudo-curvature flow, and the obtained model is used for energy minimization. There is a method of making correction based on this. A phase-adaptive object modeling method using both the shape evolution of the curved surface and the conventional deformable curved surface will be described below.

【0053】本手法はモデルの初期推定と推定値の補正
の二段階から構成される。モデルの初期推定ではまず、
距離画像を構成するデータ点の集合(図4(a))に対しサイ
ズδの球でずらし重ねを行い、連続した領域を生成する
(図4(b))。この領域内にある曲面点は速度ベクトルがゼ
ロとなるようにし、これを停止領域と呼ぶことにする。
距離画像の全体を囲む単一の閉曲面を初期値として与
え、前述した擬似曲率流による曲面の収縮・分裂をすべ
ての曲面点が停止領域に到達するまで繰り返す(図4
(c))。こうして得られた曲面を用いて、停止領域の境界
面を物体内部に属する境界面(以下、内部境界面)と物体
外部に属する境界面(以下、外部境界面)とに分離する。
サイズδの球を再度利用し、得られている外部境界面に
沿って停止領域を削り取ることにより、停止領域を修正
する(図4(d))。曲面は再び収縮を開始し、停止領域で停
止することにより、モデルの初期推定値が得られる(図4
(e))。
The present method comprises two stages: initial estimation of the model and correction of the estimated value. In the initial estimation of the model,
Generate a continuous area by shifting and overlapping a set of data points (Fig. 4 (a)) constituting a range image with a sphere of size δ
(FIG. 4 (b)). A curved surface point in this region has a velocity vector of zero, which is called a stop region.
A single closed surface surrounding the entire range image is given as an initial value, and the contraction / division of the surface due to the pseudo-curvature flow described above is repeated until all surface points reach the stop region (FIG.
(c)). Using the curved surface thus obtained, the boundary surface of the stop region is separated into a boundary surface belonging to the inside of the object (hereinafter, internal boundary surface) and a boundary surface belonging to the outside of the object (hereinafter, external boundary surface).
The stop area is corrected by using the sphere of size Δ again and scraping the stop area along the obtained external boundary surface (FIG. 4 (d)). The surface starts shrinking again and stops at the stop area, giving an initial estimate of the model (Figure 4).
(e)).

【0054】次に推定値補正の処理を行う。できるだけ
高い記述精度を得るため、上の初期推定過程で得られた
物体モデルの各頂点位置をエネルギー最小化原理に基づ
き微修正する(図4(f))。
Next, processing for correcting the estimated value is performed. To obtain as high a description accuracy as possible, each vertex position of the object model obtained in the above initial estimation process is finely corrected based on the principle of energy minimization (FIG. 4 (f)).

【0055】このように、本発明では、対象物体の周囲
の複数の視点から対象物体までの距離を計測した複数の
距離データからなる距離画像から対象物体に近似させた
画像である三次元物体モデルを生成する方法であって、
距離画像を構成する各データ点の周囲に所定の膨張半径
の相互に連結する球を形成し、かかる相互に連結する球
によって形成されて領域を停止領域とする停止領域形成
ステップと、停止領域の外方に停止領域を囲む単一の初
期閉曲面を形成する初期閉曲面形成ステップと、同初期
閉曲面を構成する各構成点が停止領域の内部に位置する
まで初期閉曲面を収縮せしめる閉曲面収縮ステップと、
を具備し、閉曲面収縮ステップで得られた閉曲面を三次
元物体モデルとすることとしたものである。そして、閉
曲面収縮ステップは、閉曲面を構成する各構成点の周囲
に所定のかき取り半径の相互に連結する球を形成すると
ともに、かかる相互に連結する球の内側面を収縮した閉
曲面とすることによって閉曲面を順次収縮せしめること
としたものである。しかも、かき取り半径は、閉曲面を
構成する各構成点での閉曲面の曲率に応じて変更せしめ
ることとしたものである。また、閉曲面収縮ステップ
は、初期閉曲面を構成する各構成点が停止領域の内部に
位置した後に、停止領域の外周面から所定の膨張半径の
球を除去した領域を再停止領域とし、収縮した閉曲面の
各構成点が再停止領域の内部に位置するまで再び閉曲面
を収縮せしめることとしたものであり、更には、収縮し
た閉曲面をエネルギー最小化原理に基づいて閉曲面を微
収縮せしめることとしたものである。
As described above, according to the present invention, a three-dimensional object model which is an image approximated to a target object from a distance image including a plurality of distance data obtained by measuring distances from a plurality of viewpoints around the target object to the target object. A method for generating
Forming a mutually connected sphere having a predetermined expansion radius around each data point constituting the distance image, forming a stop region as a stop region formed by the interconnected spheres, and a stop region forming step. An initial closed surface forming step of forming a single initial closed surface outwardly surrounding the stop area, and a closed surface for contracting the initial closed surface until each of the constituent points constituting the initial closed surface is located inside the stop area A contraction step;
And the closed surface obtained in the closed surface contraction step is used as a three-dimensional object model. Then, the closed surface shrinking step forms a mutually connected sphere having a predetermined scraping radius around each of the constituent points constituting the closed surface, and a closed curved surface obtained by contracting the inner surface of the mutually connected sphere. By doing so, the closed curved surface is contracted sequentially. In addition, the scraping radius is changed according to the curvature of the closed surface at each of the constituent points constituting the closed surface. In addition, the closed surface contraction step includes, after the respective constituent points constituting the initial closed surface are located inside the stop region, a region where a sphere having a predetermined expansion radius is removed from the outer peripheral surface of the stop region is set as a re-stop region, The closed surface is contracted again until each of the constituent points of the closed surface is located inside the re-stop region, and the contracted closed surface is slightly contracted based on the principle of energy minimization. It was decided to make it.

【0056】以下に、各処理過程の詳細について説明す
る。
The details of each processing step will be described below.

【0057】与えられた距離画像に対し、前述した擬似
曲率流に従う曲面の形状進化を用いてモデルの初期推定
処理を行う。まず、距離画像に対しサイズδの球の構造
化要素δBでずらし重ねを行い、各データ点をサイズδ
の球に膨張させる。δがデータ点間の距離に比べて十分
大きければ、膨張したデータ点は相互に連結する。ただ
し、δを大きくしすぎると位相的に正しいモデルが得ら
れなくなるのでδの設定には注意を要する。このように
して離散データは互いに素な外部境界面と内部境界面で
挟まれた領域Xに変換される。このXを停止領域とし、
これを式で表すと、
For the given distance image, an initial model estimation process is performed using the shape evolution of the curved surface according to the pseudo curvature flow described above. First, the distance image is shifted and superimposed by a structuring element δB of a sphere having a size δ, and each data point is set to a size δ.
Inflate into a sphere. If δ is sufficiently large compared to the distance between the data points, the expanded data points are interconnected. However, if δ is too large, a correct topological model cannot be obtained, so care must be taken in setting δ. In this way, the discrete data is converted into a region X sandwiched between disjoint outer boundary surfaces and inner boundary surfaces. This X is a stop area,
Expressing this as an equation,

【0058】[0058]

【数11】 と表せる。ここで、Lはデータ点の集合である。[Equation 11] Can be expressed as Here, L is a set of data points.

【0059】次に、図5に示すように、距離画像全体を
囲む単一の閉曲面を初期曲面とする。前述したように、
この曲面を大きさが可変な球の構造化要素λBで反復的
にかき取りながら停止領域に到達するまで収縮・分裂さ
ぜる。ここで、時刻tの曲面上の点pを中心にもつ球の
半径λ=λ(p,t)は、式(18)を修正した
Next, as shown in FIG. 5, a single closed curved surface surrounding the entire range image is set as an initial curved surface. As previously mentioned,
This curved surface is contracted and split while repeatedly scraping the curved surface with the structuring element λB of a variable size until it reaches the stop region. Here, the radius λ = λ (p, t) of the sphere having the center at the point p on the curved surface at the time t is obtained by modifying the equation (18).

【0060】[0060]

【数12】 で定義する。ここで、λ0とεは式(18)で用いたものと
同じ役割をもつ正の定数である。また、K=K(p,t)は式(1
9)のところで定義した曲面の曲がり具合いである。式(2
1)は、前述したように滑らかさを保った曲面の形状進化
を生成し、一方で曲面上の点pにおけるλ0+εKが負に
なったり、あるいはpが停止領域X上に位置するときに
は、pを移動させないことを表す。これにより、曲面は
物体または物体群を外から覆うように停止領域に交わっ
た状態で停止する。ここで、停止領域の境界面上の各点
が曲面の外部にあるか内側にあるかを計算し、その結果
をもとに停止領域の外部境界面を抽出する。ここで、停
止領域の境界面を直接、外部境界面と内部境界面とに分
離することは困難であることに注意されたい。その後、
停止領域生成の際に用いたのと同じサイズの構造化要素
δBを再度用いて、この外部境界面に沿って停止領域S
をかき取ることでXの外部境界面を補正する。曲面の移
動を再度開始し、物体表面付近で曲面の移動が停止す
る。
(Equation 12) Defined by Here, λ 0 and ε are positive constants having the same role as that used in equation (18). In addition, K = K (p, t) is obtained by the equation (1
This is the curvature of the curved surface defined in 9). Equation (2
1) generates the shape evolution of a curved surface that maintains smoothness as described above. On the other hand, when λ 0 + εK at a point p on the curved surface becomes negative or when p is located on the stop region X, Indicates that p is not moved. As a result, the curved surface stops in a state of intersecting the stop region so as to cover the object or the object group from outside. Here, it is calculated whether each point on the boundary surface of the stop region is outside or inside the curved surface, and the external boundary surface of the stop region is extracted based on the calculation result. Here, it should be noted that it is difficult to directly separate the boundary surface of the stop region into the external boundary surface and the internal boundary surface. afterwards,
The structuring element δB having the same size as that used in the generation of the stop region is used again, and the stop region S is formed along the outer boundary surface.
, The outer boundary surface of X is corrected. The movement of the curved surface is started again, and the movement of the curved surface stops near the object surface.

【0061】離散空間で球の形状を正確に表すことは困
難であり、そのサイズが小さくなるほど量子化誤差は大
きくなる。そのため、初期推定の段階で得られるモデル
の表面には細かな凹凸が残ることが多い。そこで原形状
により忠実な記述を得るために、この曲面をエネルギー
最小化原理に基づき補正する(H.Delingette,M.Hebert,a
nd K.Ikeuchi,"Shape Representation and Image Segme
ntation Using Deformable S urfaces," Proc.IEEE Con
f. CVPR,pp.467-472,1991、T.McInerney and D.Terzopo
ulos ,"A Finite Element Model for 3D Shape Reconst
ruction and Nonrigid Motion Tracking,"Proc.Int.Con
f.on Computer Vision,pp.518-523,1993、K.Hara,H.Zh
a,and T.Hasegawa, "Regularization Bas ed 3-D Objec
t Modeling from Multiple Range Images," Proc.Int.C
onf.on Pattern Recognition,Vol.2,pp.964-968,199
8)。
It is difficult to accurately represent the shape of a sphere in a discrete space, and the quantization error increases as the size of the sphere decreases. Therefore, fine irregularities often remain on the surface of the model obtained at the stage of initial estimation. Therefore, in order to obtain a description that is more faithful to the original shape, this surface is corrected based on the principle of energy minimization (H. Delingette, M. Hebert, a
nd K. Ikeuchi, "Shape Representation and Image Segme
ntation Using Deformable Surfaces, "Proc.IEEE Con
f. CVPR, pp. 467-472, 1991, T. McInerney and D. Terzopo
ulos, "A Finite Element Model for 3D Shape Reconst
ruction and Nonrigid Motion Tracking, "Proc.Int.Con
f.on Computer Vision, pp.518-523,1993, K.Hara, H.Zh
a, and T.Hasegawa, "Regularization Bas ed 3-D Objec
t Modeling from Multiple Range Images, "Proc.Int.C
onf.on Pattern Recognition, Vol.2, pp.964-968,199
8).

【0062】まず、前段階で得られた曲面を外包する四
角形メッシュを抽出する。ここで、メッシュが細かすぎ
るときは、三次元空間全体の分割幅を拡大し、より粗い
メッシュを生成する。ここでは、この四角形メッシュを
初期値とした変形可能曲面によりモデルの補正処理を行
う。なお、前段階で正しい位相のモデルが得られている
ことから、ここで用いる変形可能曲面に位相適応性は不
要である。
First, a quadrangular mesh enclosing the curved surface obtained in the previous stage is extracted. Here, when the mesh is too fine, the division width of the entire three-dimensional space is enlarged to generate a coarser mesh. Here, model correction processing is performed using a deformable curved surface with this quadrilateral mesh as an initial value. Since a model having a correct phase has been obtained in the previous stage, the deformable surface used here does not need phase adaptability.

【0063】メッシュのある頂点の位置ベクトルをVで
表したとき、最小化すべきエネルギー関数は、 Epoint(V)=Eint(V)+Eest(V) (22) のように定義される。ここで、Eint(V)は内部エネルギ
ーと呼ばれ、正則化項に対応する。ここでは、互いに連
結された頂点間にバネを設定した内部エネルギーを用い
ている。また、Eest(V)は外部エネルギーと呼ばれ、メ
ッシュと距離データの間の近接性を要請する。ここで
は、頂点とその位置から最も近いデータ点との間にバネ
を設定した外部エネルギーを用いている(T.McInerney a
nd D.Terzopoulos ,"A Finite Element Model for 3D S
hape Reconstruction and Nonrigid Motion Tracking,"
Proc.Int.Conf.on Computer Vision, pp.518-523, 199
3)。そして、式(22)を高速に最小化するためGreedyアル
ゴリズム(D.J.Williams and M.Shah, A Fast Algorith
m for Active Contours, 捻roc.ICCV,pp.592-595,1990)
を用いる。Greedyアルゴリズムでは、各頂点に対して、
その点が三次元空間の26近傍に移動した場合のエネルギ
ー値に基づき次の移動先が決定される。
When the position vector of a certain vertex of the mesh is represented by V, the energy function to be minimized is defined as E point (V) = E int (V) + E est (V) (22) Here, E int (V) is called an internal energy and corresponds to a regularization term. Here, internal energy in which a spring is set between vertices connected to each other is used. E est (V) is called external energy, and requires proximity between the mesh and the distance data. Here, the external energy with a spring set between the vertex and the data point closest to that position is used (T. McInerney a
nd D. Terzopoulos, "A Finite Element Model for 3D S
hape Reconstruction and Nonrigid Motion Tracking, "
Proc.Int.Conf.on Computer Vision, pp.518-523, 199
3). Then, to minimize Equation (22) quickly, the Greedy algorithm (DJ Williams and M. Shah, A Fast Algorithm
m for Active Contours, Torsion, ICCV, pp.592-595, 1990)
Is used. In the Greedy algorithm, for each vertex,
The next destination is determined based on the energy value when the point has moved to the vicinity of 26 in the three-dimensional space.

【0064】以下に、合成距離データと二種類の実距離
データについて行った実験の結果を示す。
The following shows the results of experiments performed on synthetic distance data and two types of actual distance data.

【0065】(実験1 合成距離データを用いた実験)
図6(a)は六角ナットのCADデータをもとに人工的に作成
した距離データである。このデータを入力としたモデリ
ング実験の結果を示す。この実験では、本手法が疎なデ
ータにも適用できるかどうか、等高面法を用いた位相適
応型モデリング手法と比較して有効かどうか、を検証す
るために行われた。
(Experiment 1 Experiment Using Synthetic Distance Data)
FIG. 6A shows distance data artificially created based on CAD data of a hexagon nut. The results of a modeling experiment using this data as input are shown. This experiment was performed to verify whether this method can be applied to sparse data and whether it is more effective than the phase-adaptive modeling method using the contour surface method.

【0066】このデータから初期設定された停止領域
(δ=8)に対し初期閉曲面を収縮・分裂させて得られた
結果を図6(b)、この結果をもとに停止領域を修正して得
られた結果を図6(c)にそれぞれ示す。その後、推定値補
正の処理において頂点の微小移動を行い、最終的に得ら
れた物体モデルを図6(d)に示す。表1の右から3〜5列
に、各段階でのパッチ数(N)とそれまでに要した計算時
間(Tsec.)(PentiumII300MHz)を示す。ただし対象物の
形状が比較的単純であることから、図6(c)に示す初期推
定結果の表面からメッシュを抽出する際、セルの分割幅
を倍に拡大してパッチ数を四分の一ほどに削減してい
る。
The stop area initialized from this data
Fig. 6 (b) shows the results obtained by contracting and splitting the initial closed surface for (δ = 8), and Fig. 6 (c) shows the results obtained by modifying the stop region based on these results. Shown respectively. Thereafter, the vertices are slightly moved in the estimation value correction process, and the finally obtained object model is shown in FIG. 6 (d). Columns 3 to 5 from the right of Table 1 show the number of patches (N) at each stage and the calculation time (Tsec.) (Pentium II 300 MHz) required up to that point. However, since the shape of the object is relatively simple, when extracting a mesh from the surface of the initial estimation result shown in FIG. Has been reduced to a modest degree.

【0067】また、従来手法との比較のため、narrow-b
andアルゴリズム(D.L.Chopp, Computig Minimal Surf
aces via Level Set Curvature Flow, J.of Computati
onalPhysics,Vol.106,pp.77-91,1993)で高速化した等高
面モデリング手法を初期推定処理の段階に用いた。この
モデリング結果を図7に示す。図7(a)は初期停止領域
(δ=8)に対して、単一の初期閉曲面を等高面法により
収縮・分裂させた結果であり、図6(b)に対応する。図7
(b)は修正後の停止領域に対して等高面モデリング手法
により得られた結果であり、図6(c)に対応する。これら
により、どちらの手法においてもほとんど同等な結果が
得られているといえる。表1の右から1、2列に、図7
(a),(b)のパッチ数と計算時間を示す。表1の図6(b)と図
7(a)の計算時間T、図6(c)と図7(b)の計算時間Tをそれ
ぞれ比較すると、本手法が等高面モデリング手法よりも
10倍近く高速に実行されたことがわかる。
For comparison with the conventional method, narrow-b
and algorithm (DLChopp, Computig Minimal Surf
aces via Level Set Curvature Flow, J.of Computati
onalPhysics, Vol. 106, pp. 77-91, 1993), was used for the initial estimation processing stage. FIG. 7 shows the modeling result. Fig. 7 (a) shows the initial stop area
This is the result of contracting and dividing a single initial closed surface by the contour surface method for (δ = 8), and corresponds to FIG. 6 (b). Fig. 7
(b) shows the result obtained by the contour surface modeling method for the corrected stop area, and corresponds to FIG. 6 (c). From these, it can be said that almost the same results are obtained in both methods. In columns 1 and 2 from the right in Table 1,
(a) and (b) show the number of patches and the calculation time. Figure 6 (b) and figure in Table 1
When comparing the calculation time T of FIG. 7 (a) and the calculation time T of FIG. 6 (c) and FIG. 7 (b), the present method is more effective than the contour surface modeling method.
It can be seen that the execution was nearly 10 times faster.

【0068】図8は、初期推定の段階における曲面の変
形過程を断面図を用いて示したものである。図8(a)は初
期曲面である。図8(b),(c)はそれぞれ、初期停止領域に
対する曲面の収縮・分裂過程における中間結果と収束結
果である。
FIG. 8 is a sectional view showing a process of deforming a curved surface at the stage of initial estimation. FIG. 8A shows an initial curved surface. FIGS. 8B and 8C show an intermediate result and a convergence result in the process of contraction and division of the surface with respect to the initial stop region, respectively.

【0069】図9は停止領域を設定しなかったときの曲
面の変形過程を断面図を用いて示したものである。この
結果、本手法で採用した曲面の形状進化では、曲率に依
存した成長速度により曲面が平滑化されながら収縮した
ことが確認される。
FIG. 9 is a sectional view showing a process of deforming a curved surface when a stop area is not set. As a result, in the shape evolution of the curved surface adopted in the present method, it is confirmed that the curved surface contracted while being smoothed by the growth rate depending on the curvature.

【0070】(実験2 穴とふちをもつ物体のモデリン
グ)次に、図10(a)に示す穴とふちをもつ物体(ティーカ
ップ)に対するモデリングの結果を紹介する。この実験
で対象とする物体はモデリングが困難なものの典型であ
る。例えば、データ点同士を順番に接続してメッシュを
生成する方法をとると、薄いふちの外側と内側に存在す
るデータ点同士を誤って連結してしまう恐れがある。変
形可能曲面はこの問題には対応できるかもしれないが、
今度は取っ手のところにある穴領域の復元が困難という
問題がある。
(Experiment 2 Modeling of Object with Hole and Border) Next, the result of modeling the object (tea cup) with hole and rim shown in FIG. 10A will be introduced. The objects targeted in this experiment are typical of those that are difficult to model. For example, if a method of generating a mesh by connecting data points in order is used, there is a possibility that data points existing outside and inside the thin edge are erroneously connected. Deformable surfaces may be able to address this problem,
This time, there is a problem that it is difficult to restore the hole area at the handle.

【0071】この物体の全表面の距離データを取得する
ため、物体を針金で吊るして浮かせ、多視点からレンジ
ファインダによる計測を行った。こうして得られた距離
データを図10(b)に示す・このデータを入力として得ら
れた初期推定結果と最終結果を図11(a),(b)にそれぞれ
示す。
In order to acquire the distance data of the entire surface of the object, the object was suspended by a wire and floated, and measurement was performed from multiple viewpoints using a range finder. FIG. 10 (b) shows the distance data thus obtained. FIGS. 11 (a) and 11 (b) show the initial estimation result and the final result obtained using this data as an input.

【0072】(実験3 複数物体の同時モデリング)最
後に、図12(a)に示す複数物体シーン(モアイ像2体とは
にわ1体)のモデリングの結果を紹介する。
(Experiment 3 Simultaneous Modeling of a Plurality of Objects) Finally, the results of modeling of a plurality of object scenes (two moai images and one haniwa) shown in FIG. 12A will be introduced.

【0073】入カデータを取得するため、レンジファイ
ンダを用いて多視点計測を行った。ただし、このデータ
は物体が置かれているテーブルのデータ点を余分に含ん
でいるため、物体の高さ方向(z軸方向)に対するしきい
値処理によりこれらを除外した。こうして得られた入力
データを図12(b)に示す。次に隙間なく連続した停止領
域を生成する必要があるが、物体の底面は未計測領域と
なっており、他の領域に比べて大きなホールが存在す
る。そこで、底面と近い高さにあるデータ点に対して
は、z軸に対して平たい楕円面に囲まれた集合、
To obtain input data, multi-viewpoint measurement was performed using a range finder. However, since this data includes extra data points of the table on which the object is placed, the data points were excluded by threshold processing in the height direction (z-axis direction) of the object. The input data thus obtained is shown in FIG. Next, it is necessary to generate a continuous stop region without a gap, but the bottom surface of the object is an unmeasured region, and there is a hole larger than other regions. Therefore, for data points at a height close to the bottom surface, a set surrounded by an ellipsoid that is flat with respect to the z-axis,

【0074】[0074]

【数13】 を構造化要素としたずらし重ね、他の領域にあるデータ
点に対してはサイズδの球δBを構造化要素としたずら
し重ねをそれぞれ行い、物体の全ての表面を内部に含む
停止領域を生成した。ただし、δ=8,a=b=3とし
た。
(Equation 13) Is used as a structuring element, and data points in other areas are shifted and superimposed using a sphere δB of size δ as a structuring element to generate a stop area including the entire surface of the object inside. did. However, δ = 8 and a = b = 3.

【0075】本手法の各段階で得られた結果を図13に示
す。まず、上記の停止領域のもとで単一の閉曲面が収縮
・分裂していく過程を図13(a)〜(d)に示す。図13(a)か
ら図13(c)にかけて単一の閉曲面が収縮し・それが図13
(d)で三つの閉曲面に分裂している。同時に、図13(a)で
は「はにわ」の腕の穴領域が復元されているのもわか
る。なお、図13(a)〜(d)で物体の下の部分が若干突き出
ているのは、式(2 3)で定義した扁平な楕円のためであ
る。図13(d)に示した結果をもとに停止領域を修正し、
曲面を再び収縮させて得られた初期推定結果を図13(e)
に示す。最終結果を図13(f)に示す。図13(f)の頂点数は
21144、計算時間は2276sec.である。ただし、実験1と
同じ計算機を使用している。
FIG. 13 shows the results obtained at each stage of the method. First, FIGS. 13A to 13D show a process in which a single closed surface contracts and splits under the above-mentioned stop region. From FIG. 13 (a) to FIG. 13 (c), a single closed surface contracts.
It is divided into three closed surfaces in (d). At the same time, in FIG. 13A, it can be seen that the hole area of the arm of “Haniwa” is restored. In FIG. 13A to FIG. 13D, the lower part of the object slightly protrudes because of the flat ellipse defined by the equation (23). Correct the stop area based on the result shown in FIG.
Figure 13 (e) shows the initial estimation result obtained by contracting the surface again.
Shown in The final result is shown in FIG. The number of vertices in Fig. 13 (f) is
21144, the calculation time is 2276 sec. However, the same computer as in Experiment 1 was used.

【0076】[0076]

【発明の効果】三次元モフォロジーに基づく曲面の形状
進化を用いた位相適応型物体モデリング法について述べ
た。穴領域をもつ物体の合成距離画像や複数物体を含む
シーンの実距離画像に本手法を適用し、その有効性が確
認された。本手法は、等高面モデリング手法のように最
短距離を求めるための膨大な計算や次元の追加を必要と
せず、計算負荷の少ないアルゴリズムとなっている。
A phase-adaptive object modeling method using a shape evolution of a curved surface based on three-dimensional morphology has been described. The proposed method was applied to a synthetic range image of an object with a hole area and an actual range image of a scene including multiple objects, and its effectiveness was confirmed. This method does not require an enormous amount of calculations or additional dimensions for finding the shortest distance unlike the contour surface modeling method, and is an algorithm with a small calculation load.

【0077】また、等高面の枠組みで計算量と精度の問
題の解決を図った物体モデリング手法(R.T.Whitaker,
A Level-Set Approach to 3D Reconstruction from Ran
ge Data, Int l J.of Computer Vision,Vol.29,pp.203
-231,1998)が提案されているが、そこでは離散データが
隙間がないほど密で、しかもセンサの視点方向と対象物
の位置関係が既知の場合に限定される。本手法では、疎
な距離データに対してもそのモデリングが可能である。
また、距離画像の計測方向に関する事前知識も不要であ
り、例えば接触型センサで得られた距離データにも対応
可能である。
Further, an object modeling method (RTWhitaker,
A Level-Set Approach to 3D Reconstruction from Ran
ge Data, Int l J. of Computer Vision, Vol. 29, pp. 203
-231,1998), but it is limited to the case where the discrete data is dense enough to have no gap and the positional relationship between the sensor's viewpoint direction and the object is known. This method enables modeling of sparse distance data.
Further, prior knowledge regarding the measurement direction of the distance image is not required, and for example, it is possible to correspond to distance data obtained by a contact sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】等高面法における曲率の形状進化を示す説明
図。
FIG. 1 is an explanatory diagram showing a shape evolution of a curvature in a contour surface method.

【図2】サイズ可変な構造化要素を用いた曲面の形状進
化を示す説明図。
FIG. 2 is an explanatory diagram showing the evolution of the shape of a curved surface using a variable-size structuring element.

【図3】曲面の曲がり方を示す説明図。FIG. 3 is an explanatory view showing how a curved surface is bent.

【図4】本手法の概要を示す説明図。FIG. 4 is an explanatory diagram showing an outline of the present technique.

【図5】曲面の収縮と分裂を示す説明図。FIG. 5 is an explanatory view showing contraction and division of a curved surface.

【図6】穴あき物体に対する実験結果。FIG. 6 shows an experimental result for a perforated object.

【図7】等高面モデリング手法による実験結果。FIG. 7 is an experimental result by a contour surface modeling method.

【図8】位相変化の過程を示す断面図。FIG. 8 is a sectional view showing a process of a phase change.

【図9】滑らかさを保った曲面変形の過程を示す断面
図。
FIG. 9 is a cross-sectional view showing a process of curved surface deformation while maintaining smoothness.

【図10】穴とふちをもつ物体を示す斜視図。FIG. 10 is a perspective view showing an object having a hole and a rim.

【図11】穴とふちをもつ物体に対する実験結果。FIG. 11 is an experimental result for an object having a hole and a rim.

【図12】複数物体を示す斜視図。FIG. 12 is a perspective view showing a plurality of objects.

【図13】複数物体に対する実験結果。FIG. 13 shows experimental results for a plurality of objects.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA06 AA53 BB05 FF04 NN20 QQ13 QQ17 QQ24 QQ32 QQ45 2F112 AC06 BA05 CA08 FA03 FA45 FA50 GA01 5B080 AA08 BA00  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F065 AA06 AA53 BB05 FF04 NN20 QQ13 QQ17 QQ24 QQ32 QQ45 2F112 AC06 BA05 CA08 FA03 FA45 FA50 GA01 5B080 AA08 BA00

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 対象物体に近似させた画像である三次元
物体モデルを生成する装置であって、 対象物体の周囲の複数の視点から対象物体までの距離を
計測する距離計測手段と、 同距離計測手段によって計測した複数の距離データから
なる距離画像を記憶する距離画像記憶手段と、 同距離画像記憶手段によって記憶した距離画像に基づい
て三次元物体モデルを算出する三次元物体モデル算出手
段とからなり、 同三次元物体モデル算出手段は、 距離画像を構成する各データ点の周囲に所定の膨張半径
の相互に連結する球を形成し、かかる相互に連結する球
によって形成されて領域を停止領域とする停止領域形成
ステップと、 停止領域の外方に停止領域を囲む単一の初期閉曲面を形
成する初期閉曲面形成ステップと、 同初期閉曲面を構成する各構成点が停止領域の内部に位
置するまで初期閉曲面を収縮せしめる閉曲面収縮ステッ
プと、を具備し、閉曲面収縮ステップで得られた閉曲面
を三次元物体モデルとすることを特徴とする三次元物体
モデル生成装置。
1. An apparatus for generating a three-dimensional object model, which is an image approximated to a target object, comprising: distance measuring means for measuring distances from a plurality of viewpoints around the target object to the target object; A distance image storage unit that stores a distance image composed of a plurality of distance data measured by the measurement unit; and a three-dimensional object model calculation unit that calculates a three-dimensional object model based on the distance image stored by the distance image storage unit. The three-dimensional object model calculating means forms an interconnecting sphere having a predetermined expansion radius around each data point constituting the range image, and forms an area formed by the interconnecting spheres as a stop area. Forming an initial closed surface outside the stop region and forming a single initial closed surface surrounding the stop region; and forming each of the initial closed surfaces A closed surface shrinking step of shrinking the initial closed surface until the point is located inside the stop area, wherein the closed surface obtained in the closed surface shrinking step is a three-dimensional object model. Original object model generation device.
【請求項2】 閉曲面収縮ステップは、閉曲面を構成す
る各構成点の周囲に所定のかき取り半径の相互に連結す
る球を形成するとともに、かかる相互に連結する球の内
側面を収縮した閉曲面とすることによって閉曲面を順次
収縮せしめることを特徴とする請求項1記載の三次元物
体モデル生成装置。
2. The closed surface shrinking step includes forming interconnecting spheres having a predetermined scraping radius around each of the constituent points forming the closed surface, and shrinking the inner surface of the interconnecting spheres. The three-dimensional object model generating apparatus according to claim 1, wherein the closed surface is sequentially contracted by forming the closed surface.
【請求項3】 かき取り半径は、閉曲面を構成する各構
成点での閉曲面の曲率に応じて変更せしめることを特徴
とする請求項2記載の三次元物体モデル生成装置。
3. The three-dimensional object model generating apparatus according to claim 2, wherein the scraping radius is changed according to the curvature of the closed surface at each of the constituent points constituting the closed surface.
【請求項4】 閉曲面収縮ステップは、初期閉曲面を構
成する各構成点が停止領域の内部に位置した後に、停止
領域の外周面から所定の膨張半径の球を除去した領域を
再停止領域とし、収縮した閉曲面の各構成点が再停止領
域の内部に位置するまで再び閉曲面を収縮せしめること
を特徴とする請求項1〜請求項3のいずれかに記載の三
次元物体モデル生成装置。
4. The closed surface shrinking step is a step in which, after each of the constituent points constituting the initial closed surface is located inside the stop region, a region in which a sphere having a predetermined expansion radius is removed from the outer peripheral surface of the stop region is a re-stop region. The three-dimensional object model generating apparatus according to any one of claims 1 to 3, wherein the closed surface is contracted again until each of the constituent points of the contracted closed surface is located inside the re-stop region. .
【請求項5】 閉曲面収縮ステップは、初期閉曲面を構
成する各構成点が停止領域の内部に位置した後に、停止
領域の外周面から所定の膨張半径の球を除去した領域を
再停止領域とし、収縮した閉曲面の各構成点が再停止領
域の内部に位置するまで再び閉曲面を収縮せしめ、その
後、収縮した閉曲面をエネルギー最小化原理に基づいて
閉曲面を微収縮せしめることを特徴とする請求項1〜請
求項4のいずれかに記載の三次元物体モデル生成装置。
5. The closed surface contraction step includes, after each of the constituent points constituting the initial closed surface is located inside the stop region, re-stop the region obtained by removing a sphere having a predetermined expansion radius from the outer peripheral surface of the stop region. The contracted closed surface is contracted again until each component point of the contracted closed surface is located inside the re-stop region, and then the contracted closed surface is slightly contracted based on the energy minimization principle. The three-dimensional object model generation device according to any one of claims 1 to 4.
【請求項6】 対象物体の周囲の複数の視点から対象物
体までの距離を計測した複数の距離データからなる距離
画像から対象物体に近似させた画像である三次元物体モ
デルを生成する方法であって、 距離画像を構成する各データ点の周囲に所定の膨張半径
の相互に連結する球を形成し、かかる相互に連結する球
によって形成されて領域を停止領域とする停止領域形成
ステップと、 停止領域の外方に停止領域を囲む単一の初期閉曲面を形
成する初期閉曲面形成ステップと、 同初期閉曲面を構成する各構成点が停止領域の内部に位
置するまで初期閉曲面を収縮せしめる閉曲面収縮ステッ
プと、を具備し、閉曲面収縮ステップで得られた閉曲面
を三次元物体モデルとすることを特徴とする三次元物体
モデル生成方法。
6. A method for generating a three-dimensional object model that is an image approximated to a target object from a distance image including a plurality of distance data obtained by measuring distances from a plurality of viewpoints around the target object to the target object. Forming a mutually connected sphere having a predetermined expansion radius around each data point constituting the distance image, and forming a stop region as a stop region formed by the mutually connected spheres; An initial closed surface forming step of forming a single initial closed surface surrounding the stop region outside the region, and shrinking the initial closed surface until each of the constituent points constituting the initial closed surface is located inside the stop region A closed surface shrinking step, wherein the closed surface obtained in the closed surface shrinking step is used as a three-dimensional object model.
【請求項7】 閉曲面収縮ステップは、閉曲面を構成す
る各構成点の周囲に所定のかき取り半径の相互に連結す
る球を形成するとともに、かかる相互に連結する球の内
側面を収縮した閉曲面とすることによって閉曲面を順次
収縮せしめることを特徴とする請求項6記載の三次元物
体モデル生成方法。
7. The closed surface shrinking step includes forming interconnecting spheres having a predetermined scraping radius around each of the constituent points constituting the closed surface, and shrinking the inner surface of the interconnecting spheres. 7. The method for generating a three-dimensional object model according to claim 6, wherein the closed surface is sequentially contracted by forming the closed surface.
【請求項8】 かき取り半径は、閉曲面を構成する各構
成点での閉曲面の曲率に応じて変更せしめることを特徴
とする請求項2記載の三次元物体モデル生成方法。
8. The three-dimensional object model generating method according to claim 2, wherein the scraping radius is changed according to the curvature of the closed surface at each of the constituent points constituting the closed surface.
【請求項9】 閉曲面収縮ステップは、初期閉曲面を構
成する各構成点が停止領域の内部に位置した後に、停止
領域の外周面から所定の膨張半径の球を除去した領域を
再停止領域とし、収縮した閉曲面の各構成点が再停止領
域の内部に位置するまで再び閉曲面を収縮せしめること
を特徴とする請求項6〜請求項8のいずれかに記載の三
次元物体モデル生成方法。
9. The closed surface contraction step includes, after each of the constituent points forming the initial closed surface is located inside the stop region, re-stopping the region obtained by removing a sphere having a predetermined expansion radius from the outer peripheral surface of the stop region. The method for generating a three-dimensional object model according to any one of claims 6 to 8, wherein the closed surface is contracted again until each constituent point of the contracted closed surface is located inside the re-stop region. .
【請求項10】 閉曲面収縮ステップは、初期閉曲面を
構成する各構成点が停止領域の内部に位置した後に、停
止領域の外周面から所定の膨張半径の球を除去した領域
を再停止領域とし、収縮した閉曲面の各構成点が再停止
領域の内部に位置するまで再び閉曲面を収縮せしめ、そ
の後、収縮した閉曲面をエネルギー最小化原理に基づい
て閉曲面を微収縮せしめることを特徴とする請求項6〜
請求項9のいずれかに記載の三次元物体モデル生成方
法。
10. The closed surface contraction step includes, after each of the constituent points constituting the initial closed surface is located inside the stop region, re-stop the region where a sphere having a predetermined expansion radius is removed from the outer peripheral surface of the stop region. The contracted closed surface is contracted again until each component point of the contracted closed surface is located inside the re-stop region, and then the contracted closed surface is slightly contracted based on the energy minimization principle. Claim 6-
A method for generating a three-dimensional object model according to claim 9.
【請求項11】 請求項6〜請求項10のいずれかに記
載の三次元物体モデル生成方法を実行するためのプログ
ラムを記録したコンピュータ読み取り可能な記録媒体。
11. A computer-readable recording medium on which a program for executing the method for generating a three-dimensional object model according to claim 6 is recorded.
JP2000358461A 2000-11-24 2000-11-24 Device and method for generating three-dimensional object model Pending JP2002163679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000358461A JP2002163679A (en) 2000-11-24 2000-11-24 Device and method for generating three-dimensional object model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000358461A JP2002163679A (en) 2000-11-24 2000-11-24 Device and method for generating three-dimensional object model

Publications (1)

Publication Number Publication Date
JP2002163679A true JP2002163679A (en) 2002-06-07

Family

ID=18830353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000358461A Pending JP2002163679A (en) 2000-11-24 2000-11-24 Device and method for generating three-dimensional object model

Country Status (1)

Country Link
JP (1) JP2002163679A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723422B1 (en) 2006-03-16 2007-05-30 삼성전자주식회사 Apparatus and method for rendering image data using sphere splating and computer readable media for storing computer program
CN107680102A (en) * 2017-08-28 2018-02-09 国网甘肃省电力公司电力科学研究院 A kind of airborne cloud data electric force pole tower extraction method based on space constraint
WO2020059716A1 (en) * 2018-09-21 2020-03-26 株式会社Zozo Size measurement system
US11468651B2 (en) 2018-03-30 2022-10-11 ZOZO, Inc. Size measuring system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723422B1 (en) 2006-03-16 2007-05-30 삼성전자주식회사 Apparatus and method for rendering image data using sphere splating and computer readable media for storing computer program
CN107680102A (en) * 2017-08-28 2018-02-09 国网甘肃省电力公司电力科学研究院 A kind of airborne cloud data electric force pole tower extraction method based on space constraint
US11468651B2 (en) 2018-03-30 2022-10-11 ZOZO, Inc. Size measuring system
WO2020059716A1 (en) * 2018-09-21 2020-03-26 株式会社Zozo Size measurement system
CN112955931A (en) * 2018-09-21 2021-06-11 株式会社Zozo Dimension measuring system
JPWO2020059716A1 (en) * 2018-09-21 2021-09-02 株式会社Zozo Size measurement system
JP7132347B2 (en) 2018-09-21 2022-09-06 株式会社Zozo size measurement system

Similar Documents

Publication Publication Date Title
EP3695384B1 (en) Point cloud meshing method, apparatus, device and computer storage media
Hoppe et al. Piecewise smooth surface reconstruction
US5432712A (en) Machine vision stereo matching
Han et al. A topology preserving level set method for geometric deformable models
Zaharescu et al. Transformesh: a topology-adaptive mesh-based approach to surface evolution
Zaharescu et al. Topology-adaptive mesh deformation for surface evolution, morphing, and multiview reconstruction
Zhang et al. Critical regularizations for neural surface reconstruction in the wild
KR100512760B1 (en) Method for generating 3d mesh from 3d points by using shrink-wrapping scheme of boundary cells
US8830235B1 (en) Non-uniform relaxation procedure for multiresolution mesh processing
Fua et al. Reconstructing surfaces from unstructured 3d points
WO2002080110A1 (en) Image processing method for fitness estimation of a 3d mesh model mapped onto a 3d surface of an object
CN112825200A (en) Processing 3D signals of shape attributes on real objects
CN112991504B (en) Improved hole filling method based on TOF camera three-dimensional reconstruction
Lachaud et al. Deformable model with adaptive mesh and automated topology changes
Franchini et al. Implicit shape reconstruction of unorganized points using PDE-based deformable 3D manifolds
US8698800B2 (en) Method and apparatus for non-shrinking mesh smoothing using local fitting
JP2002163679A (en) Device and method for generating three-dimensional object model
Bischoff et al. Parameterization-free active contour models with topology control
Bischoff et al. Snakes with topology control
CN107356968B (en) Three-dimensional level set fault curved surface automatic extraction method based on crop
CN116486015A (en) Automatic three-dimensional size detection and CAD digital-analog reconstruction method for check cabinet
Sakaue et al. Optimization approaches in computer vision and image processing
Duan et al. Intelligent balloon: a subdivision-based deformable model for surface reconstruction of arbitrary topology
Ilic et al. Using dirichlet free form deformation to fit deformable models to noisy 3-D data
Belyaev et al. An Image Processing Approach to Detection of Ridges and Ravines on Polygonal Surfaces.

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040830