JP2002162349A - Method and apparatus for monitoring gas-liquid two- phase flow - Google Patents

Method and apparatus for monitoring gas-liquid two- phase flow

Info

Publication number
JP2002162349A
JP2002162349A JP2000360393A JP2000360393A JP2002162349A JP 2002162349 A JP2002162349 A JP 2002162349A JP 2000360393 A JP2000360393 A JP 2000360393A JP 2000360393 A JP2000360393 A JP 2000360393A JP 2002162349 A JP2002162349 A JP 2002162349A
Authority
JP
Japan
Prior art keywords
light
liquid
gas
monitoring
phase flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000360393A
Other languages
Japanese (ja)
Inventor
Yasutaka Suzuki
康隆 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000360393A priority Critical patent/JP2002162349A/en
Publication of JP2002162349A publication Critical patent/JP2002162349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for monitoring a gas-liquid two-phase flow which can monitor conditions of mixed gas and liquid in the gas-liquid two-phase flow without contacting the liquid. SOLUTION: The apparatus comprises, a radiating means 63 for radiating a light from one side of the flowing liquid to another side, a light receiving means 64 for receiving the light on another side and a monitoring means 7 for monitoring strength of the light on another side as an element representing a mixed ratio of the gas and the liquid based on an output from the receiving means 64.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コーヒープラント等の
食品飲料プラントに於いて、生産(充填)過程でコーヒ
ー液等の製品液内に発生又は混入するN2 ,CO2 等の
ガス、空気等をインラインの送液配管内で監視する気液
2相流の監視方法および装置に関する。
BACKGROUND OF THE INVENTION The present invention, in the food and beverage plants, such as coffee plants, production (fill) N 2 generated or mixed in the product liquid in the coffee liquid such in the process, CO 2 gas such as air The present invention relates to a method and an apparatus for monitoring a gas-liquid two-phase flow for monitoring the same in an in-line liquid feed pipe.

【0002】[0002]

【従来の技術】食品飲料プラント、例えばコーヒープラ
ントでは、コーヒーの製品液がタンク内で撹拌されて気
泡を含んだり、製品液からN2ガスやCO2ガスが発生し
て遊離し、これが泡となって該製品液中に留まることが
ある。
2. Description of the Related Art In a food and beverage plant, for example, a coffee plant, a coffee product liquid is stirred in a tank to contain air bubbles, or N 2 gas or CO 2 gas is generated and released from the product liquid, and this is generated as foam. And may remain in the product liquid.

【0003】この場合、充填機に製品液を送る送液配管
中を該製品液が液−ガスの2相流体の状態で流通するこ
とになる。送液配管中で製品液が2相流状態になると、
充填機における液量計や圧力計等の計器の指示値が不正
確になる。すなわち、一般に、容器への製品液の充填量
は、容積型の液量計によって計測されるので、製品液が
2相流状態になっている場合、液量計がガスをも計量し
て充填の入味(正味充填量)が不足するという不具合が
生じる。上記の不具合は、目視できないところで発生す
るので、最終の製品を検査で調べた時点で判明すること
になる。それゆえ、上記不具合が発生した場合、製品の
歩留まりが著しく低下する。
[0003] In this case, the product liquid flows in a liquid-gas two-phase fluid state in a liquid sending pipe for sending the product liquid to the filling machine. When the product liquid enters the two-phase flow state in the liquid supply pipe,
Indicated values of instruments such as a liquid meter and a pressure gauge in the filling machine become inaccurate. That is, in general, the filling amount of the product liquid in the container is measured by a positive displacement type liquid meter, and when the product liquid is in a two-phase flow state, the liquid meter also measures and fills the gas. However, there arises a problem that the flavor (net filling amount) is insufficient. Since the above-mentioned inconvenience occurs in a place where it cannot be visually observed, it will become apparent when the final product is inspected by inspection. Therefore, when the above-mentioned problem occurs, the yield of products is significantly reduced.

【0004】[0004]

【発明が解決しようとする課題】上述したように、コー
ヒープラント等においては、送液配管を流通する製品液
に空気やN2ガス等が混入している場合に、該製品液の
正味充填量が不足するという不具合が発生する。そこ
で、送液配管中を製品液が2相流体の状態で流通してい
ることを製品液に直接接触することなく常時監視するこ
とができる手段が望まれているが、いまだにそのような
手段は提案されていない。
As described above, in a coffee plant or the like, when air, N2 gas, or the like is mixed in a product liquid flowing through a liquid feed pipe, the net filling amount of the product liquid is reduced. The problem of shortage occurs. Therefore, there is a need for a means for constantly monitoring the flow of the product liquid in the state of the two-phase fluid in the liquid feed pipe without directly contacting the product liquid. However, such means is still required. Not proposed.

【0005】本発明の課題は、上記の状況に鑑み、気液
2相流を液体に接触することなく監視することができる
気液2相流の監視方法および装置を提供することにあ
る。
An object of the present invention is to provide a method and apparatus for monitoring a gas-liquid two-phase flow that can monitor the gas-liquid two-phase flow without contacting the liquid in view of the above situation.

【0006】[0006]

【課題を解決するための手段】本発明に係る気液2相流
の監視方法は、流通する液体の一側方から他側方に向け
て光を投射するステップと、前記他側方における前記光
の強度を気液の混合比を示す要素として監視するステッ
プとを含んでいる。この監視方法では、前記投射する光
として可視光を用いることが可能である。また、この監
視方法は、食品プラントの送液配管を流通する飲料の監
視に適用することができる。本発明に係る気液2相流の
監視装置は、流通する液体の一側方から他側方に向けて
光を投射する投光手段と、前記他側方において前記光を
受ける受光手段と、該受光手段の出力に基づいて前記他
側方における光の強度を気液の混合比を示す要素として
監視する監視手段とを備えている。この監視装置では、
前記投光手段から投射される光が平行光でない場合に、
該光を平行光にするレンズを設けることができる。ま
た、この監視装置では、前記投光手段から投射された光
の断面形状を調整するスリットを設けることができる。
更に、この監視装置では、前記受光手段で受光される光
の強度を予め設定した基準強度と比較する比較手段を設
けることにより、上記気液の混合比の程度を2値的に認
識することができる。
According to the present invention, there is provided a method for monitoring a gas-liquid two-phase flow, comprising projecting light from one side of a flowing liquid toward the other side; Monitoring the light intensity as an element indicative of the gas-liquid mixing ratio. In this monitoring method, it is possible to use visible light as the light to be projected. Further, this monitoring method can be applied to monitoring of a beverage flowing through a liquid feeding pipe of a food plant. The gas-liquid two-phase flow monitoring device according to the present invention is a light projecting unit that projects light from one side of the flowing liquid toward the other side, and a light receiving unit that receives the light at the other side, Monitoring means for monitoring the light intensity on the other side as an element indicating the gas-liquid mixing ratio based on the output of the light receiving means. In this monitoring device,
When the light projected from the light emitting means is not a parallel light,
A lens for converting the light into parallel light can be provided. In this monitoring device, a slit for adjusting a cross-sectional shape of the light projected from the light projecting means can be provided.
Further, in this monitoring device, by providing comparison means for comparing the intensity of light received by the light receiving means with a preset reference intensity, the degree of the gas-liquid mixing ratio can be recognized in a binary manner. it can.

【0007】[0007]

【発明の実施の形態】本発明に係る気液2相流の監視方
法および装置は、例えば、図1に示すコーヒー液充填プ
ラントに適用される。なお、以下においては、ガスがN
2ガスの場合について説明するが、CO2ガスに関しても
同様の監視方法と装置を適用可能である。図1に示すよ
うに、コーヒー飲料の充填プラントは、コーヒー抽出配
合タンク1と充填機2との間に送液配管3を介在させた
構成を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method and apparatus for monitoring a gas-liquid two-phase flow according to the present invention are applied to, for example, a coffee liquid filling plant shown in FIG. In the following, the gas is N
Although the case of two gases will be described, the same monitoring method and apparatus can be applied to CO 2 gas. As shown in FIG. 1, the coffee beverage filling plant has a configuration in which a liquid feed pipe 3 is interposed between a coffee extraction blending tank 1 and a filling machine 2.

【0008】充填機2は、回転可能に支持された環状の
液チャンバ21と、この液チャンバ21と上記送液配管
3との間に介在させたロータリジョイント22と、液チ
ャンバ21の底部周方向に所定の間隔で配列する多数の
充填バルブ23とを備えている。
The filling machine 2 includes an annular liquid chamber 21 rotatably supported, a rotary joint 22 interposed between the liquid chamber 21 and the liquid supply pipe 3, and a bottom circumferential direction of the liquid chamber 21. And a number of filling valves 23 arranged at predetermined intervals.

【0009】本発明に係る気液2相流の監視装置5は、
送液配管3における充填機2に近い部位に設けた検出部
6と、該検出部6に接続した制御器7とを有する。図2
は、上記検出部6の拡大断面図を示し、また図3は、図
2のA−A断面図を示している。これらの図に示すよう
に、検出部6は、両端に嵌合した支持具61を介して送
液配管3の途中に同軸状に介在された透光筒62と、こ
の透光筒62を挟んで相対向する発光素子63および受
光素子64と、発光素子63の光軸上にスリット65a
を位置させたフード65と、発光素子63から照射され
る光を平行にする集光レンズ66とを備えている。な
お、発光素子63が平行光を発するものである場合に
は、上記集光レンズ66を省略することができる。
The gas-liquid two-phase flow monitoring device 5 according to the present invention comprises:
It has a detection unit 6 provided at a position near the filling machine 2 in the liquid sending pipe 3, and a controller 7 connected to the detection unit 6. FIG.
3 shows an enlarged cross-sectional view of the detection unit 6, and FIG. 3 shows a cross-sectional view taken along line AA of FIG. As shown in these drawings, the detection unit 6 is provided with a light-transmitting cylinder 62 coaxially interposed in the middle of the liquid sending pipe 3 via a support member 61 fitted to both ends, and sandwiches the light-transmitting cylinder 62. A light emitting element 63 and a light receiving element 64 opposed to each other, and a slit 65 a on the optical axis of the light emitting element 63.
And a condenser lens 66 for collimating the light emitted from the light emitting element 63. When the light emitting element 63 emits parallel light, the condenser lens 66 can be omitted.

【0010】透光筒62は、透光性を有するガラス、樹
脂等の材料で形成されており、中を通るコーヒー液の通
過を乱さないように、その断面形状を送液配管3の断面
形状に近似させてある。なお、光が通過する対向壁部分
は、互いに平行であることが望ましい。
The light-transmitting cylinder 62 is formed of a material such as glass or resin having a light-transmitting property, and the cross-sectional shape of the liquid-feeding pipe 3 is set so as not to disturb the passage of the coffee liquid passing therethrough. Is approximated. It is desirable that opposing wall portions through which light passes are parallel to each other.

【0011】支持具61は、その内周面が透光筒62の
内周面と揃うように該透光筒62を保持し、フランジ継
手61aおよびパッキン61bを介して送液配管3に水
密連結してある。なお、フランジ継手に代えてユニオン
継手を使用しても良い。発光素子63には、発光ダイオ
ードのように一定の強度の可視光を安定に発することが
できる光源が使用される。この発光素子63から投射さ
れた光は、集光レンズ66によって平行にされ、かつ、
フード65のスリット65aを通して適宜な断面形状を
持つように修正された後、透光筒62の平行壁部を貫通
する。なお、制御器7は、電力供給線63aを介して発
光素子63に発光用の電力を供給する。
The support 61 holds the light transmitting cylinder 62 so that its inner peripheral surface is aligned with the inner peripheral surface of the light transmitting cylinder 62, and is watertightly connected to the liquid feed pipe 3 via a flange joint 61a and a packing 61b. I have. Note that a union joint may be used instead of the flange joint. As the light emitting element 63, a light source capable of stably emitting visible light having a constant intensity, such as a light emitting diode, is used. The light projected from the light emitting element 63 is made parallel by the condenser lens 66, and
After being modified to have an appropriate cross-sectional shape through the slit 65 a of the hood 65, it passes through the parallel wall portion of the light transmitting cylinder 62. Note that the controller 7 supplies power for light emission to the light emitting element 63 via the power supply line 63a.

【0012】受光素子64は、透光筒62を通過した光
を全て受取って、その光をその強度に対応したを電圧に
変換して出力するものであり、例えば、ホトセルが使用
される。この受光素子64の出力信号は、信号線64a
を介して制御器7に加えられる。なお、制御器7は、マ
イクロプロセッサーを内蔵している。
The light receiving element 64 receives all the light that has passed through the light transmitting tube 62, converts the light into a voltage corresponding to the intensity thereof, and outputs the voltage. For example, a photocell is used. The output signal of the light receiving element 64 is a signal line 64a.
To the controller 7 via The controller 7 has a built-in microprocessor.

【0013】以下、この気液2相流の監視装置5の作用
を説明する。コーヒー抽出配合タンク1に貯えられたコ
ーヒー液は、ポンプ8によって送液配管3に圧送され
る。そして、このコーヒー飲料は、充填機2のロータリ
ージョイント22を介して液チャンバー21に供給され
た後、充填バルブ23を介して容器9内に充填される。
容器9へのコーヒー飲料の充填量は、図示していない計
量手段によって計量されるが、前述したように、コーヒ
ー飲料中に泡が含まれている場合には、上記充填量の計
量値に誤差を生じて、容器9に対する飲料の正味充填量
が不足するという不具合が発生する。
The operation of the gas-liquid two-phase flow monitoring device 5 will be described below. The coffee liquid stored in the coffee extraction / mixing tank 1 is pumped to the liquid sending pipe 3 by the pump 8. Then, the coffee beverage is supplied to the liquid chamber 21 via the rotary joint 22 of the filling machine 2 and then filled into the container 9 via the filling valve 23.
The filling amount of the coffee beverage into the container 9 is measured by a measuring means (not shown). As described above, when the coffee beverage contains bubbles, the measured value of the filling amount has an error. And the problem that the net filling amount of the beverage in the container 9 becomes insufficient occurs.

【0014】そこで、送液配管3に設けられた上記監視
装置5は、透光筒62内を流れるガスと液の混合比を所
定の時間間隔で監視する。ここで、まず、混合比の測定
の原理を説明する。光の強度Iは、他の物質中を通過す
る際に指数関数的に減衰するので、一般に、該光の通過
距離Sの指数関数として次式で表すことができる。 I=I1 exp(−μS) ・・・(1) ここに、I1:入口位置(スリット65aの位置)の光
の強度 μ:物質によって決まる定数(減衰率)
Therefore, the monitoring device 5 provided in the liquid sending pipe 3 monitors the mixing ratio of the gas and the liquid flowing in the light transmitting cylinder 62 at predetermined time intervals. Here, the principle of the measurement of the mixing ratio will be described first. Since the light intensity I is exponentially attenuated when passing through another substance, it can be generally expressed by the following equation as an exponential function of the light transmission distance S. I = I 1 exp (−μS) (1) where I 1 : intensity of light at entrance position (position of slit 65a) μ: constant determined by substance (attenuation rate)

【0015】いま、透光筒62の壁の影響を無視し、該
透光筒62の内壁間の距離をS2 とすると、N2 ガスの
みを流したときの出口位置(透光筒62を抜出た位置)
での光強度IN2と、コーヒー液のみを流したときの出口
位置での光強度IC2は、それぞれ以下のように表わされ
る。 IN2=I1 exp(−μN2) ・・・(2) ここに、μN :N2 ガスの減衰率 IC2=I1 exp(−μC2) ・・・(3) ここに、μC :コーヒー液の減衰率
Now, ignoring the effect of the wall of the light transmitting cylinder 62 and assuming that the distance between the inner walls of the light transmitting cylinder 62 is S 2 , the exit position when only N 2 gas flows (the light transmitting cylinder 62 is (Extracted position)
The light intensity I N2 in the light intensity I C2 at the exit position when a current of coffee liquid only, are expressed as follows. I N2 = I 1 exp (−μ N S 2 ) (2) where μ N : attenuation rate of N 2 gas I C2 = I 1 exp (−μ C S 2 ) (3) Where μ C : attenuation rate of coffee liquid

【0016】液が2相流体となり、そのときのN2 ガス
の厚み(光の通過距離)をSN 、コーヒー液の厚みをS
C とすると、出口位置での光強度 ID2は、 ID2=I1 exp(−μNN)exp(−μCC ) =I1 exp(−μNN−μCC ) ・・・(4) と表わされる。
The liquid becomes a two-phase fluid. At this time, the thickness of the N 2 gas (light passing distance) is S N , and the thickness of the coffee liquid is S
If C, the light intensity I D2 at the outlet position, I D2 = I 1 exp ( -μ N S N) exp (-μ C S C) = I 1 exp (-μ N S N -μ C S C ) (4)

【0017】そして、S2 =SN +SC という関係があ
るので、上式(4)は、 ID2=I1 exp(−μN (S2−SC)−μCC) =I1 exp(−μN2−(μC−μN)SC =I1 exp(−μN2)exp(−(μC−μN)SC ) =IN2exp(−(μC−μN)SC ) ・・・(5) または、 ID2=IC2exp(−(μN+μC)SN ) ・・・(5)’ と表わされる。従って、I1,μN,μC が既知であれ
ば、ID2を計測することによってコーヒー液の厚みSC
とN2 ガスの厚みSN 、ならびにコーヒー液とN2 ガス
の混合比 SN/SC を知ることができる。
Then, since there is a relationship of S 2 = S N + S C , the above equation (4) gives I D2 = I 1 exp (−μ N (S 2 −S C ) −μ C S C ) = I 1 exp (-μ N S 2 - (μ C -μ N) S C = I 1 exp (-μ N S 2) exp (- (μ C -μ N) S C) = I N2 exp (- (μ C -μ N) S C) ··· (5) or, I D2 = I C2 exp ( -. denoted (μ N + μ C) S N) ··· (5) ' Thus, I 1, μ If N and μ C are known, the thickness S C of the coffee liquid can be obtained by measuring I D2.
And N 2 gas having a thickness of S N, as well as to know the mixing ratio S N / S C of the coffee solution and N 2 gas.

【0018】図4は、光の通過距離Sに対する光強度I
の減衰特性を例示したダイアグラムである。このダイア
グラムに示すように、N2 ガスのみが流通している場合
の光強度IN は、入口光強度I1 から出口光強度IN2
で緩やかに減衰し、またN2ガスとコーヒーが混じった
2相流についての光強度ID は、入口光強度I1 から上
記光強度IN2よりも低い出口光強度ID2まで減衰する。
そして、コーヒーのみが流通している場合の光強度IC
は、入口光強度I1 から上記光強度ID2よりも更に低い
出口光強度IC2まで減衰する。
FIG. 4 shows the light intensity I with respect to the light transmission distance S.
3 is a diagram illustrating an example of the attenuation characteristic. As shown in this diagram, the light intensity I N when only N 2 gas is flowing gradually attenuated from the entrance light intensity I 1 to the exit light intensity I N2 , and the N 2 gas and coffee were mixed. The light intensity I D for the two-phase flow attenuates from the entrance light intensity I 1 to the exit light intensity I D2 which is lower than the light intensity I N2 .
And the light intensity I C when only coffee is distributed
Attenuates from the entrance light intensity I 1 to the exit light intensity I C2 which is still lower than the light intensity I D2 .

【0019】このダイアグラムから明らかなように、2
相流についての出口強度ID2は、コーヒー液とN2 ガス
の混合比に応じて変化することになる。換言すれば、上
記出口強度ID2は、コーヒー液とN2 ガスの混合比を示
唆する要素となる。上記検出部6によって計測される光
強度ID2は、コーヒー液とN2 ガスの混合比を示唆する
情報として制御器7に送られる。そこで、制御器7は、
上記光強度ID2を予め設定した閾値ITHと比較し、ID2
>ITHの場合に警報発令やラインの停止等のために必要
な信号を出力する。
As is apparent from this diagram, 2
The outlet intensity I D2 for the phase flow will vary depending on the mixture ratio of the coffee liquid and the N 2 gas. In other words, the outlet intensity I D2 is a suggestive element mixing ratio of the coffee solution and N 2 gas. The light intensity I D2 measured by the detection unit 6 is sent to the controller 7 as information indicating the mixture ratio of the coffee liquid and the N 2 gas. Therefore, the controller 7
The light intensity I D2 is compared with a preset threshold value I TH, and I D2
In case of> ITH , it outputs signals necessary for issuing an alarm or stopping the line.

【0020】ところで、上記制御器7においては、受光
素子64の出力から得られる出口光強度ID2と、前記式
(5),(5)’とに基づいて混合比の正確な値を算出
し、この混合比を適宜な閾値と比較するようにしても良
い。しかし、正味充填量の不足という不具合の発生を判
断するだけなら、上記光強度ID2を上記閾値ITHと比較
するだけで十分であり、この方が制御器7における演算
処理が容易になる。なお、本発明の実施に際しては、I
1 ,IN2,IC2が予め測定される。また、上記閾値I
THは、実験等によって適宜設定される。
The controller 7 calculates an accurate value of the mixing ratio based on the exit light intensity I D2 obtained from the output of the light receiving element 64 and the equations (5) and (5) ′. Alternatively, the mixture ratio may be compared with an appropriate threshold. However, it is sufficient to compare the light intensity I D2 with the threshold value I TH only to determine the occurrence of a defect such as a shortage of the net filling amount. This makes the arithmetic processing in the controller 7 easier. In practicing the present invention, I
1 , I N2 and I C2 are measured in advance. Further, the threshold I
TH is appropriately set by experiments and the like.

【0021】上記実施形態に係る監視方法および装置
は、気液2相流の監視に適用しているが、液液2相流の
監視にも適用可能である。但し、この液液2相流の監視
に適用する場合には、2液の減衰率が大きく異なってい
る必要がある。
The monitoring method and apparatus according to the above embodiment are applied to monitoring of a gas-liquid two-phase flow, but can also be applied to monitoring of a liquid-liquid two-phase flow. However, when applied to the monitoring of the liquid-liquid two-phase flow, the two liquids need to have greatly different attenuation rates.

【0022】[0022]

【発明の効果】本発明によれば、少なくとも次のような
効果が得られる。 (1) 液体を扱うコーヒープラント等に適用すれば、
送液配管中を流れる液に生じ又は混入する気体の量をイ
ンラインで連続監視することができるので、運転の自動
化や製品品質の安定に寄与する。 (2) 投射する光として可視光を用いることが可能で
あるので、取扱いの容易化と実施コストの低減を図るこ
とができる。 (3) 液体に接触することなく監視することができ
る、装置の維持管理が容易である。
According to the present invention, at least the following effects can be obtained. (1) If applied to coffee plants that handle liquids,
Since the amount of gas generated or mixed in the liquid flowing in the liquid supply pipe can be continuously monitored in-line, it contributes to automation of operation and stability of product quality. (2) Since visible light can be used as the light to be projected, it is possible to facilitate the handling and reduce the implementation cost. (3) The device can be monitored without coming into contact with the liquid, and the maintenance of the device is easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用されたコーヒープラントを示す概
略図。
FIG. 1 is a schematic diagram showing a coffee plant to which the present invention is applied.

【図2】本発明に係る気液2相流監視装置の検出部の要
部拡大断面図。
FIG. 2 is an enlarged sectional view of a main part of a detection unit of the gas-liquid two-phase flow monitoring device according to the present invention.

【図3】図2のA-A断面図。FIG. 3 is a sectional view taken along line AA of FIG. 2;

【図4】光の通過距離Sに対する光強度Iの減衰特性を
例示したダイアグラム。
FIG. 4 is a diagram illustrating an attenuation characteristic of a light intensity I with respect to a light passing distance S;

【符号の説明】[Explanation of symbols]

1 抽出配合タンク 2 充填機 22 ロータリージョイント 23 充填バルブ 3 送液配管 5 監視装置 6 検出部 62 透光筒 63 発光素子 64 受光素子 65 フード 7 制御器 DESCRIPTION OF SYMBOLS 1 Extraction / mixing tank 2 Filling machine 22 Rotary joint 23 Filling valve 3 Liquid sending pipe 5 Monitoring device 6 Detector 62 Translucent cylinder 63 Light emitting element 64 Light receiving element 65 Hood 7 Controller

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 流通する液体の一側方から他側方に向け
て光を投射するステップと、前記他側方における前記光
の強度を気液の混合比を示す要素として監視するステッ
プとを含む気液2相流の監視方法。
1. A step of projecting light from one side of a flowing liquid toward another side, and a step of monitoring the intensity of the light on the other side as an element indicating a gas-liquid mixing ratio. A method for monitoring gas-liquid two-phase flows.
【請求項2】 前記投射する光として可視光を用いるこ
とを特徴とする請求項1に記載の気液2相流の監視方
法。
2. The method for monitoring a gas-liquid two-phase flow according to claim 1, wherein visible light is used as the light to be projected.
【請求項3】 前記液体が、食品プラントの送液配管を
流通する飲料である請求項1または2に記載の気液2相
流の監視方法。
3. The method for monitoring a gas-liquid two-phase flow according to claim 1, wherein the liquid is a beverage flowing through a liquid feeding pipe of a food plant.
【請求項4】 流通する液体の一側方から他側方に向け
て光を投射する投光手段と、前記他側方において前記光
を受ける受光手段と、該受光手段の出力に基づいて前記
他側方における光の強度を気液の混合比を示す要素とし
て監視する監視手段とを備える気液2相流の監視装置。
4. A light projecting means for projecting light from one side of the flowing liquid toward another side, a light receiving means for receiving the light on the other side, and the light receiving means based on an output of the light receiving means. Monitoring means for monitoring the light intensity on the other side as an element indicating the gas-liquid mixing ratio.
【請求項5】 前記投光手段から投射される光を平行光
にするレンズを設けたことを特徴とする請求項4に記載
の気液2相流の監視装置。
5. The gas-liquid two-phase flow monitoring device according to claim 4, further comprising a lens for converting light projected from said light projecting means into parallel light.
【請求項6】 前記投光手段から投射された光の断面形
状を調整するスリットを設けたことを特徴とする請求項
4または5に記載の気液2相流の監視装置。
6. The gas-liquid two-phase flow monitoring device according to claim 4, wherein a slit for adjusting a sectional shape of the light projected from the light projecting means is provided.
【請求項7】 前記監視手段が、前記受光手段で受光さ
れる光の強度を予め設定した基準強度と比較する比較手
段を備えることを特徴とする請求項4〜6のいずれかに
記載の気液2相流の監視装置。
7. The air monitor according to claim 4, wherein said monitoring means includes a comparing means for comparing the intensity of the light received by said light receiving means with a preset reference intensity. Monitoring device for liquid two-phase flow.
JP2000360393A 2000-11-28 2000-11-28 Method and apparatus for monitoring gas-liquid two- phase flow Pending JP2002162349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000360393A JP2002162349A (en) 2000-11-28 2000-11-28 Method and apparatus for monitoring gas-liquid two- phase flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000360393A JP2002162349A (en) 2000-11-28 2000-11-28 Method and apparatus for monitoring gas-liquid two- phase flow

Publications (1)

Publication Number Publication Date
JP2002162349A true JP2002162349A (en) 2002-06-07

Family

ID=18832008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000360393A Pending JP2002162349A (en) 2000-11-28 2000-11-28 Method and apparatus for monitoring gas-liquid two- phase flow

Country Status (1)

Country Link
JP (1) JP2002162349A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101247658B1 (en) 2010-10-26 2013-04-01 한국기계연구원 Device for measuring dryness fraction of two-phase fluid and method using the same
KR101428666B1 (en) * 2012-11-30 2014-08-08 주식회사 케이씨텍 Apparatus for monitoring an alien substance in pipeline

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101247658B1 (en) 2010-10-26 2013-04-01 한국기계연구원 Device for measuring dryness fraction of two-phase fluid and method using the same
KR101428666B1 (en) * 2012-11-30 2014-08-08 주식회사 케이씨텍 Apparatus for monitoring an alien substance in pipeline

Similar Documents

Publication Publication Date Title
US8085401B2 (en) Ozone concentration sensor
EP0698262B1 (en) Smoke detector sensitivity testing apparatus
CN104919302B (en) Photometric measurement unit
CA2437711A1 (en) Method and apparatus for calibration of instruments that monitor the concentration of a sterilant in a system
NO312426B1 (en) turbidity Measurement
US20210032087A1 (en) Carbonation device for beverages and related carbonation sensor
US20150077540A1 (en) System and method for determining gas permeability of polymer films by means of image acquisition
US10288470B2 (en) Method for operating a flowmeter and flowmeter
CA2611876A1 (en) Uv transmittance measuring device
CA2980434C (en) Method of measuring carbonation levels in open-container beverages
US6192737B1 (en) Method for measuring the concentration of a dissolved gas in a fluid
JP2002162349A (en) Method and apparatus for monitoring gas-liquid two- phase flow
US9927281B1 (en) Level measuring device comprising a radar transmitter and visual level gauge for radar transmitter calibration, and method of use
US9816846B2 (en) Apparatus and method for determining a non-condensable gas parameter
EP1305599B1 (en) A method and an apparatus for producing a gaseous medium
US20070251330A1 (en) Flowmeter
JPH09166512A (en) Fluid pressure sensor
US20220136883A1 (en) Fluid metering/monitoring system using vibration
JP2003287545A (en) Dispensing apparatus
EP0689038B1 (en) Non-invasive method of determining residual liquid reagents
WO2008119987A1 (en) Beverage property measurement
JP3438916B2 (en) Method and apparatus for filling fluid material
US20170241966A1 (en) Method and system for determining the fractions of a streaming gaseous medium
US20210285860A1 (en) Measurement system
US20230098744A1 (en) Multi-Wavelength Ozone Concentration Sensor and Method of Use

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070801