JP2002161098A - Organocopper compound, mixed solution containing the compound and copper thin film formed using the solution - Google Patents

Organocopper compound, mixed solution containing the compound and copper thin film formed using the solution

Info

Publication number
JP2002161098A
JP2002161098A JP2000302407A JP2000302407A JP2002161098A JP 2002161098 A JP2002161098 A JP 2002161098A JP 2000302407 A JP2000302407 A JP 2000302407A JP 2000302407 A JP2000302407 A JP 2000302407A JP 2002161098 A JP2002161098 A JP 2002161098A
Authority
JP
Japan
Prior art keywords
compound
copper
group
cch
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000302407A
Other languages
Japanese (ja)
Inventor
Atsushi Sai
篤 齋
Katsumi Ogi
勝実 小木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000302407A priority Critical patent/JP2002161098A/en
Publication of JP2002161098A publication Critical patent/JP2002161098A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an organocopper compound and a solution containing the same which are hardly decomposed in a storage state before film forming and have a long life, and further which have a higher film forming speed, decompose efficiently on a substrate to have high volatility and are excellent in adhesion with a ground film. SOLUTION: The organocopper compound is expressed by the formula (1), and it is obtained by coordinating 1,1,1,5,5,5-hexafluoro2,4-pentanedione and a compound having an alkynol group with a monovalent copper. In the formula, X1 and X2 are same to or different from each other, and they are each H, a 1-7C alkyl, a silyl group or a hydroxyl-containing group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の配線
に用いられる銅(Cu)薄膜を有機金属化学蒸着(Meta
l Organic Chemical Vapor Deposition、以下、MOC
VDという。)法により作製するための有機銅化合物及
び該化合物を含む混合液並びにそれを用いてMOCVD
法により作製された銅薄膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of depositing a copper (Cu) thin film used for wiring of a semiconductor device by metal organic chemical vapor deposition (Meta).
l Organic Chemical Vapor Deposition, MOC
It is called VD. ) An organic copper compound for producing by the method, a mixed solution containing the compound and MOCVD using the same
The present invention relates to a copper thin film produced by a method.

【0002】[0002]

【従来の技術】MOCVD法に用いられる有機銅化合物
として、厳格な化学的、構造的かつ電気的広範な必要条
件の組合せを充足させる選択蒸着能力のある室温で液体
の錯体銅(I)tmvs・hfac(tmvsはトリメチ
ルビニルシランの略語で、hfacはヘキサフルオロア
セチルアセトン陰イオンの略語である)が良く知られて
いる(特開平5−202476)。しかしこの化合物は
極めて安定性に欠け、室温で容易に分解し、金属銅の析
出と副生成物の銅(II)(hfac)2に変化し劣化が著
しい。そのため、この有機銅化合物は成膜時に安定して
供給することが難しく、成膜の再現性に劣る。
2. Description of the Related Art As an organic copper compound used in the MOCVD method, a complex copper (I) tmvs. Liquid at room temperature capable of selective vapor deposition capable of satisfying a strict combination of strict chemical, structural and electrical requirements. hfac (tmvs is an abbreviation for trimethylvinylsilane and hfac is an abbreviation for hexafluoroacetylacetone anion) is well known (JP-A-5-202476). However, this compound has extremely low stability, easily decomposes at room temperature, changes into copper (II) (hfac) 2 as a precipitate of metallic copper, and is significantly deteriorated. Therefore, it is difficult to stably supply this organic copper compound during film formation, and the reproducibility of film formation is poor.

【0003】この点を解決するために、上記有機銅化合
物よりも安定した気化速度を得られるとともに優れた揮
発性と熱安定性を示す室温で液体の銅(I)atms・h
fac(atmsはアリルトリメチルシランの略語であ
る)が開示されている(特開平7−252266、特開
平10−135154)。一方、銅(I)hfacと(メト
キシ)(メチル)シリロレフィンリガンドを含み、気化温
度まで加熱されると、(メトキシ)(メチル)シリロレフィ
ンリガンド内の酸素の電子供与能力が銅と(メトキシ)
(メチル)シリロレフィンリガンドとの間に安定な結合を
提供する銅プリカーサ化合物が提案されている(特開平
10−195654)。この銅プリカーサ化合物では、
メトキシ基の酸素原子が主に銅プリカーサ化合物の揮発
性を抑制し、銅プリカーサ化合物の温度安定性及び寿命
を向上させることができる。
[0003] In order to solve this problem, copper (I) at room temperature liquid copper (I) at room temperature showing a more stable vaporization rate than the above-mentioned organocopper compound and exhibiting excellent volatility and thermal stability.
fac (atms is an abbreviation for allyltrimethylsilane) is disclosed (JP-A-7-252266, JP-A-10-135154). On the other hand, when copper (I) hfac and (methoxy) (methyl) silyl refin ligand are contained and heated to the vaporization temperature, the electron donating ability of oxygen in (methoxy) (methyl) silyl refin ligand becomes copper and ( Methoxy)
A copper precursor compound that provides a stable bond with a (methyl) silylolefin ligand has been proposed (JP-A-10-195654). In this copper precursor compound,
The oxygen atom of the methoxy group mainly suppresses the volatility of the copper precursor compound, and can improve the temperature stability and life of the copper precursor compound.

【0004】[0004]

【発明が解決しようとする課題】しかし、銅(I)tmv
s・hfacは勿論のこと、特開平7−252266号
公報及び特開平10−135154号公報に示された銅
(I)atms・hfac、並びに特開平10−1956
54号公報に示された銅プリカーサ化合物では、いずれ
もスパッタリング法に代表される物理蒸着法に比べて成
膜速度が遅く、下地膜との密着性に劣る欠点があった。
本発明の目的は、保存状態で分解しにくく寿命が長い有
機化合物及び該化合物を含む混合液を提供することにあ
る。本発明の別の目的は、高い成膜速度が得られ、基板
上で効率よく分解して揮発性が高く、下地膜との密着性
に優れた有機化合物及び該化合物を含む混合液を提供す
ることにある。本発明の別の目的は、下地膜と堅牢に密
着する高純度の銅薄膜を提供することにある。
However, copper (I) tmv
s · hfac as well as copper disclosed in JP-A-7-252266 and JP-A-10-135154.
(I) atms.hfac and Japanese Patent Application Laid-Open No. 10-1956
All of the copper precursor compounds disclosed in Japanese Patent Publication No. 54 have the disadvantage that the film formation rate is lower than that of the physical vapor deposition method represented by the sputtering method, and the adhesion to the underlying film is poor.
An object of the present invention is to provide an organic compound which is hardly decomposed in a storage state and has a long life, and a mixed liquid containing the compound. Another object of the present invention is to provide an organic compound which has a high film formation rate, is efficiently decomposed on a substrate, has high volatility, and has excellent adhesion to a base film, and a mixed solution containing the compound. It is in. Another object of the present invention is to provide a high-purity copper thin film that is firmly adhered to a base film.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
一価の銅に1,1,1,5,5,5−ヘキサフルオロ−
2,4−ペンタンジオンとアルキノール基を有する化合
物とを配位した次の式(1)で示される有機銅化合物で
ある。なお、1,1,1,5,5,5−ヘキサフルオロ
−2,4−ペンタンジオンは、ヘキサフルオロアセチル
アセトン(略称hfac)とも呼ばれる。
The invention according to claim 1 is
1,1,1,5,5,5-hexafluoro- to monovalent copper
An organocopper compound represented by the following formula (1) in which 2,4-pentanedione is coordinated with a compound having an alkynol group. In addition, 1,1,1,5,5,5-hexafluoro-2,4-pentanedione is also called hexafluoroacetylacetone (abbreviation hfac).

【0006】[0006]

【化3】 Embedded image

【0007】但し、X1,X2はそれぞれ水素であるか、
又は炭素数が1〜7のアルキル基若しくはシリル基であ
るか、或いは水酸基を含み、かつX1,X2は互いに同一
でも異なってもよい。
However, X 1 and X 2 are each hydrogen,
Or, it is an alkyl group or silyl group having 1 to 7 carbon atoms, or contains a hydroxyl group, and X 1 and X 2 may be the same or different from each other.

【0008】請求項3に係る発明は、一価の銅に1,
1,1,5,5,5−ヘキサフルオロ−2,4−ペンタ
ンジオンとアルケノール基を有する化合物とを配位した
次の式(2)で示される有機銅化合物である。
The invention according to claim 3 is characterized in that monovalent copper contains 1,
An organocopper compound represented by the following formula (2) in which 1,1,5,5,5-hexafluoro-2,4-pentanedione is coordinated with a compound having an alkenol group.

【0009】[0009]

【化4】 Embedded image

【0010】但し、X3,X4,X5,X6は水素である
か、又は炭素数が2〜3のアルキル基であるか、或いは
水酸基を含み、かつX3,X4,X5,X6は互いに同一で
も異なってもよい。
However, X 3 , X 4 , X 5 , and X 6 are hydrogen, an alkyl group having 2 to 3 carbon atoms, or a hydroxyl group, and X 3 , X 4 , X 5 , X 6 may be the same or different.

【0011】請求項1又は3に係る発明の有機銅化合物
は、1,1,1,5,5,5−ヘキサフルオロ−2,4
−ペンタンジオン(hfac)とアルキノール基又はア
ルケノール基を有する化合物とを組合せることによりO
H基からCuに電子供与性を生じ、この電子供与性から
式(1)又は式(2)に示す有機銅化合物は保存状態で
分解しにくく高い安定性を示す。また式(1)又は式
(2)に示す化合物はhfacとアルキノール基又はア
ルケノール基を有する化合物によって立体障害を作り出
すため、成膜速度が高い上、基板上で効率よく分解して
揮発性が高く、下地膜との密着性に優れる。
The organocopper compound of the invention according to claim 1 or 3 is 1,1,1,5,5,5-hexafluoro-2,4.
By combining pentanedione (hfac) with a compound having an alkynol group or an alkenol group;
The H group gives Cu an electron-donating property, and from this electron-donating property, the organic copper compound represented by the formula (1) or the formula (2) hardly decomposes in a storage state and exhibits high stability. Further, the compound represented by the formula (1) or the formula (2) creates steric hindrance by hfac and a compound having an alkynol group or an alkenol group, so that the film formation rate is high, and the compound is efficiently decomposed on the substrate to have high volatility. And excellent adhesion to the underlying film.

【0012】また請求項5に係る発明は、請求項1ない
し4いずれか記載の有機銅化合物と、トリメチルビニル
シラン(以下、「tmvs」という。)、トリメトキシ
ビニルシラン(以下、「tmovs」という。)、アリ
ルトリメチルシラン(以下、「atms」という。)、
アリルトリメトキシシラン(以下、「atmos」とい
う。)、ビニルオキシトリメチルシラン(以下、「vo
tms」という。)、アリルオキシトリメチルシラン
(以下、「aotms」という。)、3−ヘキシン、2
−ブチン及びこれらを配位させたヘキサフルオロアセチ
ルアセトナート銅(I)錯体からなる群より選ばれた1種
又は2種以上の化合物とを混合してなる混合液である。
According to a fifth aspect of the present invention, there is provided an organic copper compound according to any one of the first to fourth aspects, trimethylvinylsilane (hereinafter referred to as "tmvs"), and trimethoxyvinylsilane (hereinafter referred to as "tmovs"). , Allyltrimethylsilane (hereinafter, referred to as "atms"),
Allyltrimethoxysilane (hereinafter, referred to as “atmos”), vinyloxytrimethylsilane (hereinafter, “vos”)
tms ”. ), Allyloxytrimethylsilane (hereinafter referred to as “automs”), 3-hexyne,
A mixture of butyne and one or more compounds selected from the group consisting of copper (I) hexafluoroacetylacetonate complexes coordinated with these.

【0013】請求項5に係る混合液は、Cuのπ結合性
が高まることにより、成膜前の保存状態で有機銅化合物
の分解が抑制され、長寿命の溶液となるとともに、成膜
初期の銅(I)錯体が分解し易くなり、これにより下地膜
での初期の銅成長が起り易くなって、銅薄膜の成長速度
が増大するものと推定される。
In the mixed solution according to the fifth aspect, the decomposition of the organic copper compound is suppressed in the storage state before the film formation by increasing the π-bonding property of Cu, so that a long-life solution is obtained, It is presumed that the copper (I) complex is easily decomposed, whereby initial copper growth on the underlying film is likely to occur, and the growth rate of the copper thin film is increased.

【0014】[0014]

【発明の実施の形態】本発明の有機銅化合物は、前述し
た式(1)に示される一価の銅に1,1,1,5,5,
5−ヘキサフルオロ−2,4−ペンタンジオン(hfa
c)とアルキノール基又はアルケノール基を有する化合
物とを配位した化合物である。なお、アルキノール基と
は、分子内に三重結合と水酸基をともに有する基の総称
であり、アルケノール基とは、分子内に二重結合と水酸
基をともに有する基の総称である。
BEST MODE FOR CARRYING OUT THE INVENTION The organocopper compound of the present invention is prepared by adding 1,1,1,5,5,1 to the monovalent copper represented by the above formula (1).
5-hexafluoro-2,4-pentanedione (hfa
This is a compound in which c) is coordinated with a compound having an alkynol group or an alkenol group. The alkynol group is a general term for a group having both a triple bond and a hydroxyl group in a molecule, and the alkenol group is a general term for a group having both a double bond and a hydroxyl group in a molecule.

【0015】このアルキノール基を有する化合物として
は、3−ブチン−1−オール(HC≡CCH2CH2
H)、2−メチル−3−ブチン−2−オール(HC≡C
C(CH3)2OH)、2−ブチン−1,4−ジオール(H
OCH2C≡CCH2OH)、2−ブチン−1−オール
(CH3C≡CCH2OH)、2,5−ジメチル−3−ヘ
キシン−2,5−ジオール((CH3)2C(OH)C≡CC
(OH)(CH3)2)、3−ヘキシン−2−オール(CH3
CH2C≡CCH(OH)CH3)、5−ヘキシン−1−オ
ール(HC≡C(CH2)3CH2OH)、3−ヘキシン−
1−オール(CH3CH2C≡CCH2CH2OH)、2−
ヘキシン−1−オール(CH3(CH2)2C≡CCH2
H)、1−ヘキシン−3−オール(CH3(CH2)2CH
(OH)C≡CH)、4−メチル−1−ペンチン−3−オ
ール((CH3)2CHCH(OH)C≡CH)、3−メチル
−1−ペンチン−3−オール(CH3CH2C(OH)(C
3)C≡CH)又は4−トリメチルシリル−3−ブチン
−2−オール((CH3)3SiC≡CCH(OH)CH3
のいずれかが挙げられる。またアルケノール基を有する
化合物としては、cis−3−ヘキセン−1−オール又
はtrans−3−ヘキセン−1−オール(CH3CH2
CH=CH(CH2)2OH)又は4−ペンテン−1−オー
ル(H2C=CH(CH2)3OH)が挙げられる。
Examples of the compound having an alkynol group include 3-butyn-1-ol (HCCHCCH 2 CH 2 O).
H), 2-methyl-3-butyn-2-ol (HC≡C
C (CH 3 ) 2 OH), 2-butyne-1,4-diol (H
OCH 2 C≡CCH 2 OH), 2-butyn-1-ol (CH 3 C≡CCH 2 OH), 2,5-dimethyl-3-hexyne-2,5-diol ((CH 3 ) 2 C (OH ) C≡CC
(OH) (CH 3 ) 2 ), 3-hexyn-2-ol (CH 3
CH 2 C≡CCH (OH) CH 3 ), 5-hexyn-1-ol (HC≡C (CH 2 ) 3 CH 2 OH), 3-hexyne-
1-ol (CH 3 CH 2 C≡CCH 2 CH 2 OH), 2-
Hexin-1-ol (CH 3 (CH 2 ) 2 C≡CCH 2 O
H), 1-hexyne-3-ol (CH 3 (CH 2) 2 CH
(OH) C≡CH), 4-methyl-1-pentyn-3-ol ((CH 3 ) 2 CHCH (OH) C≡CH), 3-methyl-1-pentyn-3-ol (CH 3 CH 2 C (OH) (C
H 3 ) C≡CH) or 4-trimethylsilyl-3-butyn-2-ol ((CH 3 ) 3 SiC≡CCH (OH) CH 3 )
Any of the following. Examples of the compound having an alkenol group include cis-3-hexen-1-ol or trans-3-hexen-1-ol (CH 3 CH 2
CH = CH (CH 2) 2 OH) or 4-penten-1-ol (H 2 C = CH (CH 2) 3 OH) and the like.

【0016】また本発明の混合液は、前述した式(1)
又は式(2)に示される有機銅化合物単独か、或いはこ
の有機銅化合物を他の溶剤や別の一価の銅金属を含む有
機銅化合物に溶解することにより調製される。更に本発
明の混合液は、請求項5に記載するように、ベースとな
る有機銅化合物混合溶液にtmvs、tmovs、at
ms、atmos、votms、aotmsなどの有機
ケイ素化合物や、ヘキシン、ブチンなどの不飽和炭化水
素を更に加えることによっても調製される。
The mixed solution of the present invention is obtained by the above-mentioned formula (1)
Alternatively, it is prepared by dissolving the organic copper compound represented by the formula (2) alone or in an organic copper compound containing another solvent or another monovalent copper metal. Further, as described in claim 5, the mixed solution of the present invention is prepared by adding tmvs, tmovs, atm to a base organic copper compound mixed solution.
It is also prepared by further adding an organosilicon compound such as ms, atmos, votoms and aotms, or an unsaturated hydrocarbon such as hexine and butyne.

【0017】式(1)に示される有機銅化合物におい
て、X1,X2はそれぞれ水素であるか、又は炭素数が1
〜7のアルキル基若しくはシリル基であるか、或いは水
酸基を含み、かつX1,X2は互いに同一でも異なっても
よい。次に式(1)に示される有機銅化合物の具体例を
表1に示す。
In the organocopper compound represented by the formula (1), X 1 and X 2 are each hydrogen or have 1 carbon atom.
And X 1 and X 2 may be the same or different from each other, or may contain a hydroxyl group. Next, specific examples of the organocopper compound represented by the formula (1) are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】表1のNo.1からNo.13までの有機銅化合物
をMOCVD法により180℃で成膜し、そのときの銅
薄膜の成膜速度、比抵抗値及び表面粗さを比較評価し
た。これらの結果を表1に示す。具体的には、No.1(H
C≡CCH2CH2OH)の有機銅化合物の成膜速度を100とし
て、他のNo.2〜13の成膜速度を評価した。表1におい
て、A=91〜100、B=81〜90、C=71〜8
0である。同様に表1のNo.1(HC≡CCH2CH2OH)の有機
銅化合物を成膜したときの銅薄膜の比抵抗値を100と
して、他のNo.2〜13の銅薄膜の比抵抗値を評価した。
表1において、A=100〜105、B=106〜11
0、C=111〜120である。同様に表1のNo.1(H
C≡CCH2CH2OH)の有機銅化合物を成膜したときの銅薄膜
の表面粗さを100として、他のNo.2〜13の銅薄膜の
表面粗さを評価した。表1において、A=98〜10
1、B=101〜106、C=107〜110である。
The organic copper compounds No. 1 to No. 13 in Table 1 were deposited at 180 ° C. by MOCVD, and the deposition rate, specific resistance and surface roughness of the copper thin film at that time were compared and evaluated. . Table 1 shows the results. Specifically, No. 1 (H
With the film formation rate of the organic copper compound (C≡CCH 2 CH 2 OH) set to 100, the film formation rates of the other Nos. 2 to 13 were evaluated. In Table 1, A = 91-100, B = 81-90, C = 71-8
0. Similarly, assuming that the specific resistance of the copper thin film when the organic copper compound of No. 1 (HC≡CCH 2 CH 2 OH) in Table 1 is formed is 100, the specific resistance of the other copper thin films of Nos. 2 to 13 is The value was evaluated.
In Table 1, A = 100-105, B = 106-11
0, C = 111-120. Similarly, No. 1 (H
The surface roughness of the other copper thin films of Nos. 2 to 13 was evaluated with the surface roughness of the copper thin film when the organic copper compound (C≡CCH 2 CH 2 OH) was formed as 100. In Table 1, A = 98-10
1, B = 101-106 and C = 107-110.

【0020】式(2)に示される好ましい有機銅化合物
は、X3,X4,X5,X6が水素であるか、又は炭素数が
2〜3のアルキル基であるか、或いは水酸基を含む。次
に式(2)に示される有機銅化合物の具体例を表2に示
す。
Preferred organic copper compounds represented by the formula (2) are those wherein X 3 , X 4 , X 5 and X 6 are hydrogen, an alkyl group having 2 to 3 carbon atoms, or a hydroxyl group. Including. Next, Table 2 shows specific examples of the organocopper compound represented by the formula (2).

【0021】[0021]

【表2】 [Table 2]

【0022】表2のNo.14からNo.15までの有機銅化合物
をMOCVD法により180℃で成膜し、そのときの銅
薄膜の成膜速度、比抵抗値及び表面粗さを比較評価し
た。これらの結果を表2に示す。表2における評価方法
は表1における評価方法と同じである。
The organic copper compounds No. 14 to No. 15 in Table 2 were formed at 180 ° C. by MOCVD, and the film forming speed, specific resistance and surface roughness of the copper thin film were comparatively evaluated. . Table 2 shows the results. The evaluation method in Table 2 is the same as the evaluation method in Table 1.

【0023】請求項1ないし4いずれかに記載された有
機銅化合物は、1,1,1,5,5,5−ヘキサフルオ
ロ−2,4−ペンタンジオン(hfac)とアルキノー
ル基又はアルケノール基を有する化合物との共同作用に
より、銅化合物自体の化学的安定性が向上して成膜前の
保存状態で分解しにくく寿命が長くなるとともに、揮発
性が高く、基板上で効率よく分解して高い成膜速度が得
られ、下地膜との密着性にも優れており、MOCVD用
の混合液として有用である。上記請求項1ないし4いず
れかに記載された有機銅化合物に、別の一価の銅を含む
有機銅化合物又は不飽和炭化水素化合物を混合溶解する
と、基板上で核発生が促され、堆積速度が増進する効果
が見られる。この一価の銅を含む有機銅化合物として
は、前述した銅(I)atms・hfac、銅(I)tmvs
・hfac、又は銅(I)tmovs・hfacが挙げら
れる。不飽和炭化水素化合物としては3−ヘキシン、2
−ブチンが好適である。
The organocopper compound described in any one of claims 1 to 4 is characterized in that 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (hfac) and an alkynol group or an alkenol group. Due to the co-operation with the compound having, the chemical stability of the copper compound itself is improved, it is difficult to decompose in the storage state before film formation, the life is prolonged, and the volatility is high, and it is efficiently decomposed on the substrate and high The film formation rate is obtained and the adhesion to the underlying film is excellent, so that it is useful as a mixed solution for MOCVD. When another organic copper compound containing monovalent copper or an unsaturated hydrocarbon compound is mixed and dissolved in the organic copper compound according to any one of claims 1 to 4, nucleation is promoted on the substrate, and the deposition rate is increased. The effect of increasing is seen. Examples of the organic copper compound containing monovalent copper include copper (I) atms.hfac and copper (I) tmvs described above.
Hfac or copper (I) tmovs · hfac. 3-hexyne, 2
-Butyne is preferred.

【0024】請求項1ないし4いずれかに記載された有
機銅化合物(以下、化合物(a)という。)に別の一価の
銅を含む有機銅化合物(以下、化合物(b)という。)又
は不飽和炭化水素化合物(以下、化合物(c)という。)
を溶解する割合は、化合物(a)100重量%に対して化
合物(b)又は(c)が0.01〜20重量%であることが好
ましく、0.1〜2重量%であることが更に好ましい。
化合物(b)又は(c)の溶解量が上記下限値未満では化合物
(b)又は(c)を添加した効果が現れず、銅薄膜の成長速度
は向上しない。また化合物(b)又は(c)の溶解量が上記上
限値を越えると銅薄膜中の不純物濃度が高くなり、薄膜
の品質が劣化し易くなり、銅薄膜の成長速度もそれ程向
上しない。
The organic copper compound according to any one of claims 1 to 4 (hereinafter referred to as compound (a)) and another organic copper compound containing monovalent copper (hereinafter referred to as compound (b)) or Unsaturated hydrocarbon compound (hereinafter, referred to as compound (c))
Is preferably 0.01 to 20% by weight, more preferably 0.1 to 2% by weight, based on 100% by weight of the compound (a). preferable.
If the dissolved amount of the compound (b) or (c) is less than the lower limit, the compound
The effect of adding (b) or (c) does not appear, and the growth rate of the copper thin film does not improve. When the amount of the compound (b) or (c) dissolved exceeds the above upper limit, the impurity concentration in the copper thin film increases, the quality of the thin film tends to deteriorate, and the growth rate of the copper thin film does not increase so much.

【0025】上記表1〜表2に示されるNo.1〜No.15の
有機銅化合物を用いて作製された銅薄膜は、下地膜と堅
牢に密着し、高純度である特長を有する。この銅薄膜
は、例えばシリコン基板表面のSiO2膜上にスパッタ
リング法又はMOCVD法により形成されたTiN膜又
はTaN膜上にMOCVD法により形成される。なお、
本発明の基板はその種類を特に限定されるものではな
い。
The copper thin films prepared using the organic copper compounds No. 1 to No. 15 shown in Tables 1 and 2 have the characteristics of being firmly adhered to the underlying film and having high purity. This copper thin film is formed by a MOCVD method on a TiN film or a TaN film formed by, for example, a sputtering method or a MOCVD method on a SiO 2 film on a silicon substrate surface. In addition,
The type of the substrate of the present invention is not particularly limited.

【0026】[0026]

【実施例】次に本発明の実施例を説明する。 <実施例1>前述した式(1)に関連して表1のNo.1
に示した有機銅化合物を銅薄膜形成用原料液として用意
した。この有機銅化合物は次の方法により合成した。先
ず酸化銅(I)13.0gに十分に窒素脱気を行った乾燥
塩化メチレン150mlを注ぎ、懸濁液とした。この懸
濁液を激しく攪拌しながら3−ブチン−1−オール1
0.52gを懸濁液に添加し、更に1,1,1,5,
5,5−ヘキサフルオロ−2,4−ペンタンジオン5.
38gをこの懸濁液に1滴ずつ滴下ロートにより滴下し
た。この液を4時間攪拌した後、窒素気流下でろ過し、
ろ液を35℃の温度、減圧下で留去し、濃緑色の液体を
得た。この液体をカラムクロマトグラフィにより精製
し、明黄色の液体の有機銅化合物である、銅(I)(3−ブ
チン−1−オール)(1,1,1,5,5,5−ヘキサフ
ルオロ−2,4−ペンタンジオネート)(銅(I)3-butyn-
1-ol・hfac)5.00gを得た。得られた有機銅化
合物の同定は、NMR及び元素分析により行った。
Next, embodiments of the present invention will be described. <Example 1> No. 1 in Table 1 in relation to the above-mentioned equation (1)
Was prepared as a raw material liquid for forming a copper thin film. This organic copper compound was synthesized by the following method. First, 150 ml of dry methylene chloride sufficiently deaerated with nitrogen was poured into 13.0 g of copper (I) oxide to form a suspension. The suspension is stirred vigorously with 3-butyn-1-ol 1
Add 0.52 g to the suspension and add 1,1,1,5
5,5-hexafluoro-2,4-pentanedione5.
38 g of this suspension was added dropwise to the suspension by a dropping funnel. After stirring this liquid for 4 hours, it was filtered under a nitrogen stream,
The filtrate was distilled off at a temperature of 35 ° C. under reduced pressure to obtain a dark green liquid. This liquid was purified by column chromatography, and a light yellow liquid organic copper compound, copper (I) (3-butyn-1-ol) (1,1,1,5,5,5-hexafluoro-2) was obtained. , 4-pentanedionate) (copper (I) 3-butyn-
5.00 g of (1-ol · hfac) was obtained. The obtained organic copper compound was identified by NMR and elemental analysis.

【0027】NMR分析の結果では、1H−NMR(C
DCL3)では、δ1.2(s,1H),4.3(m,
2H),4.5(m,2H),3.52(br,1
H),5.2(s,1H)であり、元素分析の結果で
は、Cu19.46%(理論値19.47%)、O4.
64%(理論値4.65%)であった。
As a result of the NMR analysis, 1H-NMR (C
DCL3), δ1.2 (s, 1H), 4.3 (m,
2H), 4.5 (m, 2H), 3.52 (br, 1
H), 5.2 (s, 1H), and as a result of elemental analysis, Cu was 19.46% (theoretical value: 19.47%) and O4.
It was 64% (theory 4.65%).

【0028】このように合成された銅(I)3-butyn-1-ol
・hfacからなる銅薄膜形成用原料液を3ヶ月間容器
に密閉して保管した後、容器から取出して用い、MOC
VD法により銅薄膜を形成した。基板として、基板表面
のSiO2膜(厚さ5000Å)上にスパッタリング法
によりTiN膜(厚さ50nm)を形成したシリコン基
板を用い、基板温度を150℃、160℃、170℃、
180℃、190℃、200℃、210℃の7段階に変
えた。気化温度を70℃、圧力を2torrにそれぞれ
設定した。キャリアガスとしてArガスを用い、その流
量を100ccmとした。銅薄膜形成用原料液を0.2
cc/分の割合で5分間供給し、その膜厚を膜の断面S
EM像から測定した。表3に上記時間内における最高の
膜厚を単位時間当りに換算して示す。また四探針式比抵
抗測定装置により膜の比抵抗値を、電子線表面粗さ解析
装置(エリオニクス社製、ERA−8000)により膜
の表面粗さをそれぞれ測定した。表面粗さは表面の最上
部と最下部の差をいう。これらの結果を表3に示す。
The copper (I) 3-butyn-1-ol thus synthesized
・ The raw material liquid for forming a copper thin film composed of hfac is sealed in a container for 3 months, stored, and then taken out from the container and used.
A copper thin film was formed by the VD method. As the substrate, a silicon substrate having a TiN film (thickness: 50 nm) formed by a sputtering method on a SiO 2 film (thickness: 5000 °) on the substrate surface was used, and the substrate temperature was set to 150 ° C., 160 ° C., 170 ° C.
The temperature was changed to seven stages of 180 ° C, 190 ° C, 200 ° C, and 210 ° C. The vaporization temperature was set at 70 ° C., and the pressure was set at 2 torr. Ar gas was used as a carrier gas, and the flow rate was 100 ccm. The raw material liquid for copper thin film formation is 0.2
cc / min for 5 minutes and the film thickness
It was measured from the EM image. Table 3 shows the maximum film thickness in the above-mentioned time in terms of unit time. The specific resistance of the film was measured by a four-probe type specific resistance measuring device, and the surface roughness of the film was measured by an electron beam surface roughness analyzer (ERA-8000, manufactured by Elionix). Surface roughness refers to the difference between the top and bottom of the surface. Table 3 shows the results.

【0029】<実施例2>前述した式(1)に関連して
表1のNo.2に示した有機銅化合物を銅薄膜形成用原料
液として用意した。この有機銅化合物は次の方法により
合成した。実施例1と同様に酸化銅(I)13.0gに十
分に窒素脱気を行った乾燥塩化メチレン150mlを注
ぎ、懸濁液とした。この懸濁液を激しく攪拌しながら2
−メチル−3−ブチン−2−オール10.38gを懸濁
液に添加し、更に1,1,1,5,5,5−ヘキサフル
オロ−2,4−ペンタンジオン5.22gをこの懸濁液
に1滴ずつ滴下ロートにより滴下した。この液を4時間
攪拌した後、窒素気流下でろ過し、ろ液を35℃の温
度、減圧下で留去し、濃緑色の液体を得た。この液体を
カラムクロマトグラフィにより精製し、明黄色の液体の
有機銅化合物である、銅(I)(2−メチル−3−ブチン−
2−オール)(1,1,1,5,5,5−ヘキサフルオロ
−2,4−ペンタンジオネート)(銅(I)2-methyl-3-but
yn-2-ol・hfac)5.01gを得た。得られた有機
銅化合物の同定は、NMR及び元素分析により行った。
Example 2 An organic copper compound shown in No. 2 in Table 1 in relation to the above-mentioned formula (1) was prepared as a raw material liquid for forming a copper thin film. This organic copper compound was synthesized by the following method. In the same manner as in Example 1, 150 ml of dry methylene chloride sufficiently deaerated with nitrogen was poured into 13.0 g of copper (I) oxide to form a suspension. The suspension is stirred vigorously for 2 hours.
10.38 g of -methyl-3-butyn-2-ol are added to the suspension, and 5.22 g of 1,1,1,5,5,5-hexafluoro-2,4-pentanedione are further added to the suspension. The solution was dropped by a dropping funnel one by one. After stirring this liquid for 4 hours, it was filtered under a nitrogen stream, and the filtrate was distilled off at 35 ° C. under reduced pressure to obtain a dark green liquid. This liquid was purified by column chromatography, and a light yellow liquid organic copper compound, copper (I) (2-methyl-3-butyne-
2-ol) (1,1,1,5,5,5-hexafluoro-2,4-pentanedionate) (copper (I) 2-methyl-3-but
(yn-2-ol.hfac) 5.01 g was obtained. The obtained organic copper compound was identified by NMR and elemental analysis.

【0030】NMR分析の結果では、1H−NMR(C
DCL3)では、δ0.15(s,3H),0.25
(s,1H),3.52(br,1H),5.48
(s,1H)であり、元素分析の結果では、Cu18.
72%(理論値18.71%)、O4.45%(理論値
4.46%)であった。
As a result of the NMR analysis, 1H-NMR (C
In DCL3), δ 0.15 (s, 3H), 0.25
(S, 1H), 3.52 (br, 1H), 5.48
(S, 1H), and as a result of elemental analysis, Cu18.
It was 72% (theoretical value 18.71%) and O 4.45% (theoretical value 4.46%).

【0031】このように合成された銅(I)2-methyl-3-bu
tyn-2-ol・hfacからなる銅薄膜形成用原料液を3ヶ
月間容器に密閉して保管した後、容器から取出して用
い、実施例1と同一の条件でMOCVD法により銅薄膜
を形成した。成膜速度(膜厚)、比抵抗値、表面粗さも実
施例1と同様にして測定した。これらの結果を表3に示
す。
Copper (I) 2-methyl-3-bu thus synthesized
A copper thin film forming raw material solution composed of tyn-2-ol · hfac was sealed in a container for 3 months, stored, taken out of the container, and used to form a copper thin film by MOCVD under the same conditions as in Example 1. . The film formation rate (film thickness), specific resistance, and surface roughness were also measured in the same manner as in Example 1. Table 3 shows the results.

【0032】<実施例3〜13>実施例1と同様の手法
により、原料物質を変えて表1のNo.3〜No.13の化合物
を合成し、基板温度を180℃のみにした以外、実施例
1と同一条件でMOCVD法により銅薄膜を形成した。
成膜速度(膜厚)、比抵抗値、表面粗さも実施例1と同様
に測定した。これらの結果を表1の成膜試験の評価の欄
に示す。
<Examples 3 to 13> Compounds No. 3 to No. 13 in Table 1 were synthesized in the same manner as in Example 1 except that the raw materials were changed, and the substrate temperature was set to only 180 ° C. Under the same conditions as in Example 1, a copper thin film was formed by MOCVD.
The deposition rate (film thickness), specific resistance, and surface roughness were also measured in the same manner as in Example 1. These results are shown in the column of evaluation of the film formation test in Table 1.

【0033】<比較例1>銅(I)atms・hfacか
らなる銅薄膜形成用原料液を用いて、実施例1と同一条
件でMOCVD法により銅薄膜を形成した。成膜速度
(膜厚)、比抵抗値、表面粗さも実施例1と同様に測定し
た。この結果を表3に示す。
COMPARATIVE EXAMPLE 1 A copper thin film was formed by MOCVD under the same conditions as in Example 1 using a copper thin film forming raw material liquid composed of copper (I) atms.hfac. Deposition rate
(Film thickness), specific resistance, and surface roughness were also measured in the same manner as in Example 1. Table 3 shows the results.

【0034】<比較例2>銅(I)tmvs・hfacか
らなる銅薄膜形成用原料液を用いて、実施例1と同一条
件でMOCVD法により銅薄膜を形成した。成膜速度
(膜厚)、比抵抗値、表面粗さも実施例1と同様に測定し
た。この結果を表3に示す。
<Comparative Example 2> A copper thin film was formed by MOCVD under the same conditions as in Example 1 using a copper thin film forming raw material liquid composed of tmvs · hfac. Deposition rate
(Film thickness), specific resistance, and surface roughness were also measured in the same manner as in Example 1. Table 3 shows the results.

【0035】<比較例3>銅(I)tmovs・hfac
からなる銅薄膜形成用原料液を用いて、実施例1と同一
条件でMOCVD法により銅薄膜を形成した。成膜速度
(膜厚)、比抵抗値、表面粗さも実施例1と同様に測定し
た。この結果を表3に示す。
<Comparative Example 3> Copper (I) tmovs · hfac
A copper thin film was formed by the MOCVD method under the same conditions as in Example 1 using the copper thin film forming raw material liquid composed of Deposition rate
(Film thickness), specific resistance, and surface roughness were also measured in the same manner as in Example 1. Table 3 shows the results.

【0036】<実施例14〜15>実施例1と同様の手
法により、原料物質を変えて表2のNo.14〜No.15の化合
物を合成し、基板温度を180℃のみにした以外、実施
例1と同一条件でMOCVD法により銅薄膜を形成し
た。成膜速度(膜厚)、比抵抗値、表面粗さも実施例1と
同様に測定した。これらの結果を表2の成膜試験の評価
の欄に示す。
<Examples 14 to 15> Compounds Nos. 14 to 15 in Table 2 were synthesized in the same manner as in Example 1 except that the raw materials were changed, and the substrate temperature was set to only 180 ° C. Under the same conditions as in Example 1, a copper thin film was formed by MOCVD. The deposition rate (film thickness), specific resistance, and surface roughness were also measured in the same manner as in Example 1. The results are shown in Table 2 in the column of evaluation of film formation test.

【0037】[0037]

【表3】 [Table 3]

【0038】表3から明らかなように、1分間に成長し
た膜厚に関して、実施例1〜2ではすべての基板温度に
おいて比較例1〜3より大きく、特に基板温度170〜
210℃では比較例1〜3が170〜240nm/分で
あるのに対して、実施例1〜2では318〜480nm
/分であり、顕著な差異があった。また銅薄膜の比抵抗
値に関して、比較例1〜3が2.5μΩcmであるのに
対して、実施例1〜2は理論値1.6μΩcmに近い
1.9μΩcmであった。更に銅薄膜の表面粗さに関し
て、比較例1〜3が1.5〜3.0nmであるのに対し
て、実施例1〜2は0.2〜0.3nmであり、極めて
平滑であった。
As is clear from Table 3, the film thickness grown in one minute is larger in Examples 1 and 2 than in Comparative Examples 1 to 3 at all substrate temperatures, and especially at a substrate temperature of 170 to
At 210 ° C., Comparative Examples 1-3 are 170-240 nm / min, whereas Examples 1-2 are 318-480 nm.
/ Min, with significant differences. Further, with respect to the specific resistance value of the copper thin film, Comparative Examples 1 to 3 were 2.5 μΩcm, whereas Examples 1 and 2 were 1.9 μΩcm which was close to the theoretical value of 1.6 μΩcm. Further, with respect to the surface roughness of the copper thin film, Comparative Examples 1 to 3 were 1.5 to 3.0 nm, whereas Examples 1 to 2 were 0.2 to 0.3 nm, which was extremely smooth. .

【0039】<実施例16〜25>次に、前述した表1
のNo.1,No.2,No.4,No.5,No.8,No.10,No.12
及びNo.13、表2のNo.14及びNo.15に示される合計10
種類の化合物(a)と、tmvs、tmovs、atm
s、aotms、銅(I)atms・hfac、銅(I)tm
vs・hfac、hexyne銅(I)hfac及びbu
tyn銅(I)hfacからなる8種類の化合物(b)と、ヘ
キシン及びブチンからなる2種類の不飽和炭化水素化合
物(助剤)(c)を選び、化合物(a)100重量%に対して化
合物(b)又は(c)を次の表5に示す0.02〜20重量%
の割合で添加して均一に混合することにより、10種類
の混合液を調製した。これらの原料液を3ヶ月間容器に
密閉して保管した後、それぞれ容器から取出して用い、
基板温度を180℃に統一した以外、実施例1と同一の
条件でMOCVD法により銅薄膜を形成した。化合物
(a)に化合物(b)又は(c)を混合した原料液によって、成
膜速度が向上したか否かについての結果を表4に示す。
また形成した銅薄膜の成膜速度(膜厚)、比抵抗値、表面
粗さも実施例1と同様にして測定した。その結果を表5
に示す。
<Examples 16 to 25> Next, Table 1 described above was used.
No.1, No.2, No.4, No.5, No.8, No.10, No.12
And No. 13, a total of 10 shown in No. 14 and No. 15 in Table 2.
Kinds of compound (a), tmvs, tmovs, atm
s, aotms, copper (I) atms · hfac, copper (I) tm
vs. hfac, hexyne copper (I) hfac and bu
8 kinds of compounds (b) consisting of tyn copper (I) hfac and two kinds of unsaturated hydrocarbon compounds (auxiliaries) (c) consisting of hexine and butyne were selected, and based on 100% by weight of compound (a) Compound (b) or (c) was used in an amount of 0.02 to 20% by weight shown in Table 5 below.
And mixed uniformly to prepare 10 kinds of mixed liquids. After storing these raw material liquids in a container tightly closed for three months, each of them is taken out from the container and used.
A copper thin film was formed by MOCVD under the same conditions as in Example 1 except that the substrate temperature was unified to 180 ° C. Compound
Table 4 shows the results as to whether the film formation rate was improved by the raw material liquid obtained by mixing the compound (b) or (c) with (a).
Further, the deposition rate (film thickness), specific resistance value, and surface roughness of the formed copper thin film were measured in the same manner as in Example 1. Table 5 shows the results.
Shown in

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】表5から明らかなように、実施例16〜2
5では、化合物(b)又は(c)の添加量が0.02〜20重
量%の範囲で、1分間で成長した膜の厚さが402〜4
51nmと大きかった。また膜の抵抗値は理論値1.6
μΩcmに対して1.9〜2.0μΩcmであった。更
に表面粗さは実施例16〜21で0.1〜0.2nmで
あったのに対して、実施例22〜25では0.2〜0.
3nmであった。
As is clear from Table 5, Examples 16 to 2
In No. 5, when the amount of the compound (b) or (c) added is in the range of 0.02 to 20% by weight, the thickness of the film grown in one minute is 402 to 4%.
It was as large as 51 nm. The resistance value of the film is theoretically 1.6.
It was 1.9 to 2.0 μΩcm with respect to μΩcm. Further, the surface roughness was 0.1 to 0.2 nm in Examples 16 to 21, whereas the surface roughness was 0.2 to 0.2 in Examples 22 to 25.
It was 3 nm.

【0043】[0043]

【発明の効果】以上述べたように、本願請求項1〜4に
係る発明によれば、この有機銅化合物を単独で銅薄膜形
成用原料液として、この原料液からMOCVD法により
銅薄膜を形成することにより、下地膜との密着性が高ま
るとともに成膜速度がより一層向上する。成膜前の有機
銅化合物はその分解が抑制され、長い寿命を有する。ま
た本発明の有機銅化合物を用いてMOCVD法により成
膜した銅薄膜は、従来のものと比べてバルク銅と同程度
の理論値に近い抵抗値を有する高純度を示し、下地膜と
堅牢に密着し、かつ表面粗さが小さい特長を有する。こ
の銅薄膜は銅多層配線用の深いコンタクトホールの埋込
みにおいても極めて有効である。
As described above, according to the first to fourth aspects of the present invention, this organic copper compound is used alone as a raw material liquid for forming a copper thin film, and a copper thin film is formed from this raw material solution by MOCVD. By doing so, the adhesion to the underlying film is increased, and the deposition rate is further improved. The organic copper compound before film formation is suppressed from being decomposed and has a long life. In addition, the copper thin film formed by the MOCVD method using the organic copper compound of the present invention shows high purity having a resistance value close to the theoretical value similar to that of bulk copper compared to the conventional one, and is robust with the underlying film. It has the features of close contact and low surface roughness. This copper thin film is extremely effective in filling deep contact holes for copper multilayer wiring.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4H048 AA01 AB91 VA56 VB10 4K030 AA11 BA01 CA04 CA12 FA10 4M104 AA01 BB04 BB30 CC01 DD37 DD43 DD45 EE15 HH09 HH16 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4H048 AA01 AB91 VA56 VB10 4K030 AA11 BA01 CA04 CA12 FA10 4M104 AA01 BB04 BB30 CC01 DD37 DD43 DD45 EE15 HH09 HH16

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一価の銅に1,1,1,5,5,5−ヘ
キサフルオロ−2,4−ペンタンジオンとアルキノール
基を有する化合物とを配位した次の式(1)で示される
有機銅化合物。 【化1】 但し、X1,X2はそれぞれ水素であるか、又は炭素数が
1〜7のアルキル基若しくはシリル基であるか、或いは
水酸基を含み、かつX1,X2は互いに同一でも異なって
もよい。
1. Formula (1) wherein 1,1,1,5,5,5-hexafluoro-2,4-pentanedione and a compound having an alkynol group are coordinated to monovalent copper. Organic copper compounds. Embedded image Provided that X 1 and X 2 are each hydrogen, an alkyl group or a silyl group having 1 to 7 carbon atoms, or a hydroxyl group, and X 1 and X 2 may be the same or different from each other .
【請求項2】 アルキノール基を有する化合物が、3−
ブチン−1−オール(HC≡CCH2CH2OH)、2−
メチル−3−ブチン−2−オール(HC≡CC(CH3)2
OH)、2−ブチン−1,4−ジオール(HOCH2
≡CCH2OH)、2−ブチン−1−オール(CH3C≡
CCH2OH)、2,5−ジメチル−3−ヘキシン−
2,5−ジオール((CH3)2C(OH)C≡CC(OH)
(CH3)2)、3−ヘキシン−2−オール(CH3CH2
≡CCH(OH)CH3)、5−ヘキシン−1−オール
(HC≡C(CH2)3CH2OH)、3−ヘキシン−1−
オール(CH3CH2C≡CCH2CH2OH)、2−ヘキ
シン−1−オール(CH3(CH2) 2C≡CCH2OH)、
1−ヘキシン−3−オール(CH3(CH2)2CH(OH)
C≡CH)、4−メチル−1−ペンチン−3−オール
((CH3)2CHCH(OH)C≡CH)、3−メチル−1
−ペンチン−3−オール(CH3CH2C(OH)(CH3)
C≡CH)又は4−トリメチルシリル−3−ブチン−2
−オール((CH3)3SiC≡CCH(OH)CH3)のい
ずれかである請求項1記載の有機銅化合物。
2. The compound having an alkynol group is 3-
Butyn-1-ol (HC @ CCHTwoCHTwoOH), 2-
Methyl-3-butyn-2-ol (HC≡CC (CHThree)Two
OH), 2-butyne-1,4-diol (HOCH)TwoC
≡CCHTwoOH), 2-butyn-1-ol (CHThreeC≡
CCHTwoOH), 2,5-dimethyl-3-hexyne-
2,5-diol ((CHThree)TwoC (OH) C≡CC (OH)
(CHThree)Two), 3-hexyn-2-ol (CHThreeCHTwoC
≡CCH (OH) CHThree), 5-hexyn-1-ol
(HC≡C (CHTwo)ThreeCHTwoOH), 3-hexyne-1-
All (CHThreeCHTwoC @ CCHTwoCHTwoOH), 2-hex
Syn-1-ol (CHThree(CHTwo) TwoC @ CCHTwoOH),
1-hexyn-3-ol (CHThree(CHTwo)TwoCH (OH)
C≡CH), 4-methyl-1-pentyn-3-ol
((CHThree)TwoCHCH (OH) C≡CH), 3-methyl-1
-Pentin-3-ol (CHThreeCHTwoC (OH) (CHThree)
C≡CH) or 4-trimethylsilyl-3-butyne-2
-All ((CHThree)ThreeSiC≡CCH (OH) CHThreeNo)
The organocopper compound according to claim 1, which is any one of the following.
【請求項3】 一価の銅に1,1,1,5,5,5−ヘ
キサフルオロ−2,4−ペンタンジオンとアルケノール
基を有する化合物とを配位した次の式(2)で示される
有機銅化合物。 【化2】 但し、X3,X4,X5,X6は水素であるか、又は炭素数
が2〜3のアルキル基であるか、或いは水酸基を含み、
かつX3,X4,X5,X6は互いに同一でも異なってもよ
い。
3. Formula (2) wherein 1,1,1,5,5,5-hexafluoro-2,4-pentanedione and a compound having an alkenol group are coordinated to monovalent copper. Organic copper compounds. Embedded image Provided that X 3 , X 4 , X 5 , and X 6 are hydrogen, an alkyl group having 2 to 3 carbon atoms, or a hydroxyl group;
X 3 , X 4 , X 5 , and X 6 may be the same or different.
【請求項4】 アルケノール基を有する化合物が、ci
s−3−ヘキセン−1−オール又はtrans−3−ヘ
キセン−1−オール(CH3CH2CH=CH(CH2)2
H)又は4−ペンテン−1−オール(H2C=CH(CH
2)3OH)である請求項3記載の有機銅化合物。
4. The compound having an alkenol group is ci
s-3-hexen-1-ol or trans-3-hexen-1-ol (CH 3 CH 2 CH = CH (CH 2 ) 2 O
H) or 4-penten-1-ol (H 2 C = CH (CH
2) 3 OH) a is 3. organocopper compound according.
【請求項5】 請求項1ないし4いずれか記載の有機銅
化合物と、トリメチルビニルシラン、トリメトキシビニ
ルシラン、アリルトリメチルシラン、アリルトリメトキ
シシラン、ビニルオキシトリメチルシラン、アリルオキ
シトリメチルシラン、3−ヘキシン、2−ブチン及びこ
れらを配位させたヘキサフルオロアセチルアセトナート
銅(I)錯体からなる群より選ばれた1種又は2種以上の
化合物とを混合してなる混合液。
5. An organocopper compound according to claim 1, wherein said compound comprises trimethylvinylsilane, trimethoxyvinylsilane, allyltrimethylsilane, allyltrimethoxysilane, vinyloxytrimethylsilane, allyloxytrimethylsilane, 3-hexyne, 2-hexyne, -A mixed solution obtained by mixing butyne and one or more compounds selected from the group consisting of hexafluoroacetylacetonate copper (I) complexes to which these are coordinated.
【請求項6】 請求項1ないし4いずれか記載の有機銅
化合物又は請求項5記載の混合液を用いて有機金属化学
蒸着法により作製された銅薄膜。
6. A copper thin film produced by an organometallic chemical vapor deposition method using the organic copper compound according to claim 1 or the mixed solution according to claim 5.
JP2000302407A 2000-09-12 2000-10-02 Organocopper compound, mixed solution containing the compound and copper thin film formed using the solution Withdrawn JP2002161098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000302407A JP2002161098A (en) 2000-09-12 2000-10-02 Organocopper compound, mixed solution containing the compound and copper thin film formed using the solution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000275763 2000-09-12
JP2000-275763 2000-09-12
JP2000302407A JP2002161098A (en) 2000-09-12 2000-10-02 Organocopper compound, mixed solution containing the compound and copper thin film formed using the solution

Publications (1)

Publication Number Publication Date
JP2002161098A true JP2002161098A (en) 2002-06-04

Family

ID=26599706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000302407A Withdrawn JP2002161098A (en) 2000-09-12 2000-10-02 Organocopper compound, mixed solution containing the compound and copper thin film formed using the solution

Country Status (1)

Country Link
JP (1) JP2002161098A (en)

Similar Documents

Publication Publication Date Title
US10914001B2 (en) Volatile dihydropyrazinly and dihydropyrazine metal complexes
US7329768B2 (en) Chemical vapor deposition precursors for deposition of tantalum-based materials
CN103380139B (en) There is the metal complex of N-amido-amidinate part
US7462732B2 (en) Volatile nickel aminoalkoxide complex and deposition of nickel thin film using same
JP4414397B2 (en) Volatile metal β-ketoiminate complex
US20190318925A1 (en) Monoorganoaminodisilane Precursors and Methods for Depositing Films Comprising Same
US7592471B2 (en) Tantalum compound, method for producing same, tantalum-containing thin film and method for forming same
KR20210019522A (en) Method for producing a metal or semimetal-containing film
US20150140790A1 (en) Precursors For GST Films In ALD/CVD Processes
US10570514B2 (en) Process for the generation of metallic films
JP2002522453A (en) Organocopper precursors for chemical vapor deposition
JP4125728B2 (en) Monovalent copper complex
JP2002161098A (en) Organocopper compound, mixed solution containing the compound and copper thin film formed using the solution
JP4102954B2 (en) Organocopper compound for metalorganic chemical vapor deposition, solution raw material for forming copper thin film containing the same, and copper thin film made therefrom
US11377454B2 (en) Aluminum precursor and process for the generation of metal-containing films
US20100286423A1 (en) Nickel-containing film-forming material and process for producing nickel-containing film
JP2002128787A (en) Organocopper compound and mixed liquid containing the same and copper thin film made of the mixed liquid
JP3282392B2 (en) Organocopper compounds for copper thin film formation by metalorganic chemical vapor deposition with high vapor pressure
JP2002161069A (en) Organic copper compound and mixture solution containing the compound and thin copper film made by using the same
WO2010032673A1 (en) Nickel-containing film‑formation material, and nickel-containing film‑fabrication method
JP2785694B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
JP2768250B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
KR20210031492A (en) Method for producing a metal or semimetal-containing film
KR20220018546A (en) Methods of making metal or semimetal-containing films

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204